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1. Introduction

Multiple diseases
interacting with one
another often leads to
increased disease
severity.

Diseases can only be treated, and eliminated, if they can be accurately identified; if there are
additional diseases present in an individual, a different treatment may be needed than if a
single disease is present. When multiple diseases occur together, known as a multi-morbidity,
they often lead to increased disease severity, fuelling economic hardship within communities.

Many of the world’s most deadly diseases affect those living in low and middle-income
countries. Biosensors Beyond Borders Ltd (BBB) develops innovative new diagnostic services
with the goal of increasing access to diagnostics in these parts of the world. BBB wants to
determine the performance characteristics of its screening methods. A series of mathematical
techniques and concrete experiments is needed to determine the performance and reliability
of BBB’s system, including the scenario where only partial data or data at a single time
interval are available.

Our aim is to develop a population-scale mathematical model describing the evolution of
multiple diseases and multi-morbidities.

Figure 1 – Prevalence of HIV among adults aged 15 to 49, 2017 [1].

Glossary
� Markov Model: This is a probabilistic model describing a sequence of possible events in

which the probability of each event depends only on the state of the previous event.

� Hidden Markov Model: This is a Markov model in which the system being modelled is
assumed to be a Markov process with unobserved (i.e. hidden) states.

� Digraph: This is a directed graph consisting of set of nodes (e.g. the number of
individuals in a state) connected by edges (e.g. the movement between states).

� Disease State: This is an abstract categorisation of an individual’s overall health. For
example, one state may be “having cancer”, and another state “having cancer and HIV”.

� Multi-Morbidity: This is the presence of additional diseases in an individual.

� Coupling:This is a system inwhich the evolution of one variable influences the evolution
of another.

2. Individual Multi-Morbidity Model
We follow [2] and formulate a mathematical model to describe the disease state and multi-
morbidities of a patient, given clinical features at discrete time intervals. An individual’s health
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is abstractly categorised into one of M disease states S1 to SM , while the multi-morbidities Xk ,
which are either ‘on’ or ‘off’, represent specific health problems.

Disease state
transitions evolve
independently of the
multi-morbidities, but
each multi-morbidity
is disease dependent.

Disease state transitions evolve independently of the multi-morbidities, but each
multi-morbidity is disease dependent, hence there is one way coupling between them. A
schematic of the individual disease state and multi-morbidity progression of the Markov
model proposed in [2] for the case of three disease states and two multi-morbidities is shown
in Figure 2.

Figure 2 – Schematic of individual disease transition model with 3 disease states and 2 multi-
morbidities.

Multi-morbidities can
either be ‘on’ or ‘off’.

In Figure 3, we present the resuts from a simulation of the disease state Markov model,
showing a single individual transitioning between the three different states, starting in disease
state S1. Note that an individual can transition from each disease state to any other disease
state. Similarly, in Figure 4we show a simulation of themulti-morbidityMarkovmodel, where
the lines represent the times where the multi-morbidities are ‘on’ in the individual. Initially
the multi-morbidity X1 is ‘on’ whilst X2 is ‘off’, so that the individual only has the health
problem X1.

Figure 3 –Simulation of disease state transitionwithin an individual using amodelwith 3 disease
states.

3. Population Multi-Morbidity Model
Markov Model
Starting from the individual disease transition model (see Section 2), by considering the
transition between disease states of individuals, we derive a population-levelmodel describing
the likely number of individuals in each disease state. We define the number of individuals in
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Figure 4 – Simulation of multi-morbidity transitions within an individual using a model with 2
multi-morbidities.

disease state Sm by Sm , so for instance if 2 individuals in the population are in disease state
S1 then S1 � 2.

In each small time
interval a disease
state transition by one
individual can occur.

In figure 5 we display a digraph of the disease state model for S1, showing that, in any small
time interval, S1 can stay the same or increase or decrease by 1, but has to remain bounded
above by N and below by 0. Similarly, in figure 6 we display a digraph of the disease state
model for S1 and S2 which, in this case, is a two dimensional lattice, showing the possibilities
in which (S1, S2) can change.

Figure 5 – Digraph of the population disease state model with 2 disease states for S1.

Figure 6 – Digraph of the population disease state model with 3 disease states for S1 and S2.
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InFigure 7,we shownumerical simulationsof thepopulationdisease state andmulti-morbidity
models for a population of 100 individuals. In figure 7 (a), we show the probability distribution
of S1 as time evolves, with there initially being 2 individuals in state S1. Similarly, in figure
7 (b) we show the distribution of X1, the number of individuals who have multi-morbidity
X1. We see that, in both simulations, the system reaches an equilibrium in which it remains
unchanged after a long time period.

The number of
individuals in a
disease state and with
a certain multi-
morbidity reaches an
equilibrium after a
long time.

(a) S1

(b) X1

Figure 7 – Markov model probability distributions of disease state S1 and multi-morbidity X1.

Ordinary and Stochastic Differential Equation Models
As well as formulating a population-level Markov model, we also formulate two differential
equation models. An ordinary differential equation (ODE) model, which describes the mean
of the population distribution, and a stochastic differential equation (SDE) model which also
incorporates fluctuations in the population.
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In Figure 8, we show simulations of the SDE and ODEmodels forS1 andX1. In both cases, the
mean remains unchanged after a long time, while the SDE model fluctuate around the ODE
equilibrium.

Stochastic differential
equations incorporate
fluctuations in the
population.

(a) S1 (b) X1

Figure 8 – Three simulations of the SDE models and the corresponding ODE models governing
the disease state S1 and multi-morbidity X1.

Long-Term Distribution

Simulations of the
SDE and Markov
models match in the
limit of a large
population.

We are interested in the long-term behaviour of the population and we find that the long-term
probability distributions of S1 and X1 follow the binomial distribution. In Figure 9, we plot
the long-term distribution of the population disease state andmulti-morbidityMarkovmodels
and a historgram of results from 100,000 SDE simulations. In Figure 9 (a), we show that the
SDE simulations for S1and the Markov model match exactly. However, in 9 (b), we show that,
although the two models for X1 match closely, there is a discrepancy due to the fact that the
transition of the multi-morbidities is dependent on the disease state. The SDE simulations are
an accurate approximation of the Markov model for X1 in the limit of a large population.

(a) S1 (b) X1

Figure 9 – Long-term distributions of S1 and X1. The solution of the Markov models in red, and
a histogram of 100,000 simulations of the stochastic differential equations.
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4. Discussion, Conclusions & Recommendations
We have built upon the work of [2], deriving aggregate models for the transition of disease
states and multi-morbidities within a population. Starting from the hidden Markov model for
the progression of a disease of an individual, we have derived various population models.

We formulated equations governing the likelihood of a certain number of individuals being
in each disease state and having a multi-morbidity. From these we derived an ordinary
differential equation model which we used to estimate the mean of the evolution of a disease
within a population. Finally, we derived stochastic differential equation models in order to
incorporate the effects of noise on the population.

In the limit of large time, the system was shown to reach a steady state where, although the
disease transitions within each individual may still be ongoing, the population as a whole
remains unchanged. Through computational and mathematical means, we showed that our
different models are equivalent. Moreover, we showed that, for the case of two disease states,
the equilibrium is given by a binomial distribution.

Existing knowledge
from compartmental
population based
models can be used
to inform the disease
states of individuals.

Following on from our research, BBB will continue to develop their work on mathematical
models. A possible caveat is the lack of sufficient real world data, since capturing a full disease
trajectorymay require a longitudinal study, hence giving rise to the necessity to utilise existing
knowledge from compartmental population-based models. Future work would investigate
how we can employ knowledge from existing compartmental models and use this knowledge
and supplementary material for further development.

The mathematical models formulated in this project have been disease agnostic and have just
considered abstract disease states and multi-morbidities. Our work serves as an introductory
part of the theoretical grounding for modelling specific disease-states within a population.
Our long term aim is to use mathematical models and data to enable forecasting of dangerous
disease combinations.

5. Potential Impact
This project is an entry point into the development of forecasting techniques which, if
successful, could help to set priorities and aid in planning to address dangerous disease
combinations in populations. A changing situation on the ground coupled with a number of
challenges in clinical presentation, the variable genetic factors involved, and considerable
individual variation, present significant challenges.

Leonidas Eleftheriou, Head of Artificial Intelligence at Biosensors Beyond Borders,
commented:

“By helping us to assess the performance and reliability of our system in this project, we move one-step
closer to achieving our mission of increasing access to sensitive diagnostics for in-need populations
globally. ”
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