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ABSTRACT: These lectures introduce quantum field theory on twistor space, with gauge
theory as the motivating example. I'll begin by reviewing the Penrose-Ward transformation
and how it can be used to recast the self-dual sector of gauge theory as a holomorphic field
theory on twistor space. This holomorphic theory is sick at one-loop: it suffers from a gauge
anomaly. Cancelling the anomaly yields a quantum integrable theory on space-time. I will
then elucidate the Costello-Paquette correspondence, which leverages this integrability to
compute gauge theory amplitudes and form factors using chiral algebra techniques.
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1 Lecturel

» Big picture: A new notion of quantum integrability in four dimensions. Celestial
chiral algebras play the role of quantum groups. Can be used to compute loop
amplitudes inaccessible by other methods.

» Goals of these lectures:

— Introduce twistor space and the Ward correspondence
— Understand one-loop anomaly to integrability

— Derive quantum corrected celestial chiral algebra and compute a loop amplitude
» Main references:

— arXiv: 2111.08879 (Quantizing Local Holomorphic Field Theories on Twistor
Space)

— arXiv: 2201.02595 (Celestial Holography meets Twisted Holography: 4d Ampli-
tudes from Chiral Correlators)

— arXiv: 2204.05301 (On the Associativity of One-Loop Corrections to the Celes-
tial OPE)



The Self-Dual Sector of Gauge Theory

The dynamical field of non-abelian gauge theory on R? is a connection 1-form A €
Q' (R*, g) with field strength
1
F(A)=dA+ §[A’ Al € Q*(RY,g). (1.1)
In four-dimensions the Hodge star operator maps 2-forms to 2-forms
1
(*F),UJ/ = 56“1/ Fpo‘ (12)

and *2 = 1. Can decompose F(A) into its +1 and —1 eigenspaces

F(A)=F.(A)+F_(A4). (1.3)
The self-dual Yang-Mills (sdYM) equations are
Fo(4) = %(F(A) _4F(A)) =0. (1.4)

These are integrable. They imply the full Yang-Mills equations since
D« F(A)=DF(A) =0 (1.5)

by the Bianchi identity.

Yang-Mills theory on R* with the flat metric 6 has action
1 2
Sym[A] = —— dz tr(F (A)FH(A)) = / tr(F_(A) A F_(A)) + f-term .
292 Jra 92 Jra

(1.6)

Up to a 6 term can be rewritten in a chiral first order form

9> 2
/R4 (B AF(A) - & /R4 w(BAB) = /sz tr(F_(A) A F_(A)) (1.7)

where B € Q2 (R%, g) obeys *B = —B.
In the limit g?> — 0 recover sdYM theory. Equations of motion are
x F(A)=F(A), dB+[A,B]=0. (1.8)

B represents a linearised negative-helicity gluon propagating freely on the self-dual
background determined by A.

The tree amplitudes of this theory vanish for generic kinematics. The one-loop am-
plitudes are finite. There are no connected higher loop amplitudes on combinatorial
grounds.



» Can get to full Yang-Mills in perturbation theory around the self-dual sector by

inserting the operator tr(B?)(x) multiple times and integrating over its position

Sym|A] - 9%
I =S
k=0

The simplest non-vanishing trees appear at k = 1; these are the famous MHV ampli-

/ Ad*zy .. dYag te(B?)(21) . . . tr(B?) (x) e SamlABl (1 9)
R4k

tudes.

We want understand sdYM at the quantum level with (at least) one insertion of
tr(B?). Currently not clear why this is any better than ordinary perturbation theory.

Twistor Space

Choose a complex structure on R* compatible with the metric § and orientation d*z.
Let (u®,u') € C? be holomorphic co-ordinates, and (u’, a') their complex conjugates.

In these co-ordinates the anti-self-dual (asd) 2-forms are du® A dui, da’ A da! and
the Kihler form w = 1 (du’ A da® + du! A dat). The sdYM equations become

FX(A) =0 = F0,i(A) = 0,04, = 0,1 4,0 +[A;,A,1] =0,
FO,2(A) — O — Faf)al (A) g 0’ (110)
WAFY(A) =0 = F0(A) + F i (A) =0.

These equations hold iff the operators
Do = Ogo — Z@ui + Ao — ZAuj , Dl =0y + Z@uo + Ap + ZAUO (1.11)

commute ([Dg, D1] = 0) for all 2. This is a Lax pair for the sdYM equations - a
hallmark of integrability. Notice that [Dy, d5] = [D1,9;] = 0 also.

Now suppose we incorporate z into the geometry, that is, work on R* x CP!. We
will show that Dy, D1, 0> determine a holomorphic vector bundle on this space in an
appropriate complex structure.

First step is to give R* x CP! a complex structure. We interpret dy = 9z0 — 20,1, 01 =
Og1 + 20,5 and Oz as Cauchy-Riemann operators on R* x CP! (in the patch z # o).
Holomorphic co-ordinates are

W= —za', v =ul+a®, 2. (1.12)

In the other patch Z = 1/z we use Cauchy-Riemann operators
o =0, +205, 0j=0, —Z20.0, O; (1.13)

for which the holomorphic co-ordinates are

A 0 , o
= a2l = —, dl=a 2t = —. (1.14)
z



Meromorphic functions of z with poles of at worst order m at z = co are holomorphic
sections of the line bundle O(m). So with this complex structure R* x CP! is

O(1) ® O(1) — CP! (1.15)
as a complex manifold. This is twistor space, denoted PT.

There are a number of ways to define a holomorphic vector bundle on a complex
manifold X:

— A smooth, complex vector bundle on X whose transition functions are holomor-
phic maps into GL,(C).

— A smooth, complex vector bundle with a (0, 1)-form connection a € Q%! (X, gl,,(C))
such that
f%%(a)=0a+aNa=0. (1.16)

These are equivalent: equation (1.16) implies that in a sufficiently nice patch it’s
possible to find a gauge in which a = 0. When we go from a patch U to a patch V
with the transition map h: U NV — GL,(C) we have

WOu + au)h™" = (dy + av). (1.17)
Choosing patches and gauges so that a;; = ay = 0 we learn that h is holomorphic.

We will use the second definition. To define a locally it’s enough to supply differential
operators
Dy=0y+ag=0y+ 0y ua,
Di=01+a1 =040 1a, (1.18)
D2:82+ag:82+824a.

Equation (1.16) holds if these differential operators commute with one another.

We’ve seen that the sdYM equations supply suitable candidates with az = 0. Can
interpret this as a gauge condition, but necessary to assume this gauge exists. This
yields the Ward correspondence:

sdYM connections on R* <+ holomorphic vector bundles* on PT . (1.19)

*trivialisable on twistor lines.

The sdYM equations depend on the conformal structure of space-time. Somehow
this must be encoded in the complex structure of twistor space.

A point z = (uo,ui) € R* determines a complex line (vo,vi) = (uo — 2t ut + 2u0)
in twistor space. But in fact, there are lines corresponding to points in complexified
space-time, i.e., can take (a°, ') — (@°,@') to be independent of u”, u'. These lines

intersect when the corresponding points in C* are null separated.



» Indeed the line (vo i) = (uo — 2t ul + zui”) intersects the line corresponding to the

0
origin (v%,v!) = (0,0) if there’s a z € CP! for which

ud = it , T (1.20)
This only happens if
Wil +ulit =0, (1.21)
ie., (uo, ui, @°, ') € C* is null separated from the origin.

1.3 Twistor Action for Self-Dual Yang-Mills

» We can write down an action imposing (1.16) as an equation of motion by introducing
a Lagrangian multiplier b € Q%}(PT, O(—4) ® g)

Sherla, b] = / dz A dod A dol /\tr(b/\ da+bAaA a) ) (1.22)
PT

The notation O(—4) indicates that b has a zero of order 4 at z = co. This compensates
the fourth order pole at z = co in

L dzZA diad A dot

dz/\dvo/\dvi = =1
z

(1.23)

» This is classically equivalent to sdYM theory on space-time:

— First gauge fix az = 0.

— Then integrate out the components of b in the R* directions to learn that
[Dy, 05] = [D1,05] = 0. These are solved by

ag = Ago(x) —2zAi(z), a1 =An(x)+24,(z). (1.24)

The action becomes

/ d41,‘/ dzAdZ bz (Fﬂoal (A)+ZFaou0 (A)—f—ZFﬂlui (A)—I-ZQFuoui (A)) . (1.25)
R4 CPL
— Upon making the identifications

B o, :/dzb, B = By, :/dzzb, Baog :/dzzzb (1.26)
x T T

we recover Sgqym[A, B]. (Here [.pi = [,.) This final step tells us how b is
related to B in the gauge az = 0. It is the linear Penrose transform for a field
of spin s = 1 and helicity h = —1.



2 Lecture I1

Twistorial Anomalies

Last lecture wrote down a twistor action for sdYM. This lecture we will find that it
does not exist at the quantum level; it suffers from a gauge anomaly.

Recall that gauge anomalies arise when we have a gauge invariant action, but there’s
no regularization which retains this symmetry at loop level. Usually associated with
chiral fermions.

Since the kinetic term on twistor space is 0, all fields are chiral and contribute to
anomalies. It’s perhaps strange that a field can contribute to its own anomaly - this
is because we should define QFT with a cutoff and require gauge invariance of the
effective action.

Recall the twistor action

/ dzdvodvitr(b ANda+bAaAa). (2.1)
PT

This has a gauge symmetry with parameter ¢ € Q(PT, g)

da = Oe + [a,€e], b= [b, ¢ (2.2)

The symmetry with parameter € is anomalous. There are two ways of seeing this:

— direct Feynman diagram computation,

— index theory.
In these lectures I will concentrate on the former.

For simplicity let’s work in the patch z # oo which looks like C3. Since anomalies
are local, this will also be an anomaly on PT.

Then the gauge variation of the box diagram is anomalous. To evaluate this we follow
the following steps:

— Pick the metric |2[2 + 102 + |v!|? and fix Lorenz gauge
Ozaz + 0 pazo + 0 iam =0. (2.3)
Propagator is a Bochner-Martinelli kernel

zdo%dot + 0%dotdz — vtde®dz
(|22 + [v0]2 + [v1[2)2

{a A b)o o (2.4)

— Employ a heat kernel regularisation with length scales 0 <! < L.

— Evaluate integral in limit { — O (which defines the theory at scale L) followed
by L — 0 (the UV limit).



» The result is

/ traq(eda A Oa A Oa) (2.5)
C3
where 0 = dz0, + dfuoauo + dviavi.

In the index theory approach, we interpret the one-loop partition function around
some background ag as a section of a line bundle over the moduli space of holomorphic
vector bundles. For the partition function to be a number this bundle would need
to be trivial, but we can check that it has non-vanishing first Chern class. (This
essentially reproduces the above formula).

Restoring Integrability

In order to restore integrability we need to cancel the anomaly. There are a few ways
to do this:

— couple to appropriate Grassmann odd fields,

— Green-Schwarz mechanism,

— couple to an infinite tower of higher spin fields,
— add a non-local term on twistor space.

In the first case want fields to obey spin-statistics on space-time. Can be achieved
using the linear Penrose transform Weyl fermions in the representation R

s=1/2, h=+1 represented by H'(PT,O0(-1) ® R),

s=1/2, h =41 represented by H'(PT,O(-3) ® R*). (26)
In the A = +1 case can use a Dolbeault representative
x € IQYYPT; O(-1) ® R). (2.7)
The corresponding left-handed space-time fermion is
Vs = /xdz %X. (2.8)
In the h = —1 case can use a Dolbeault representative
% € Q%Y (PT; O(-3) ® R*). (2.9)

The corresponding right-handed space-time fermion is

P = /dz (i) X- (2.10)

Can write down a twistor action reproducing the usual action for Weyl fermions on
space-time

/ dzdvdo! Xi(0 + a)ijxj = / Atz Ueah (0, + A”)ij\I/j‘j‘ . (2.11)
PT R4



Contribute to the twistorial anomaly with opposite sign and in representation R, so
cocycle is modified to

/ tragenr(eda A da A 0a) = / traq(eda A da A Oa) — trr(eda A Oa A Oa) . (2.12)
PT PT

Clearly vanishes when R = Ad, corresponding to A/ = 1 SUSY, but there are other
possibilities. Vanishing is equivalent to the trace identity traq(X?) = trr(X*?).

Consider, e.g., G = SLy(C) and look for R = F®Nr @ (F*)®Ns. This is the self-dual
sector of SUy gauge theory with N, fundamental Diracs. Can easily check that

traq(X?) = 16trp(X?) (2.13)
so Ny = 8 will do. There exist many other examples.

Might worry that we miss something by working on C? rather than PT. Indeed we
do: the usual chiral gauge anomaly on space-time comes from a mixed anomaly with
the background complex structure on PT. For G = SL,(C) with n > 3 this can be
evaded using Dirac fermions.

Space-Time Interpretation

Twistorial anomalies do not represent gauge anomalies on space-time. What do they
tell us?

To understand these need to think about amplitudes. Positive helicity gluon scatter-
ing states in sdYM can be represented by

Ays = itam2el®P | Ao =0 (2.14)
w

where pua”‘m = &%(1,w)* is a complexified null momentum. In particular
x-p= (uo — wi')Fy + (ui + wi®)&; . (2.15)
Negative helicity states are represented by

Buoui - elx.py B — Bui,al - welx.p7 BﬂOﬂl == wzelx.p . (216)

1070
These lift to twistor representatives localised at points on the CP' base, in particular

a=t0?(z— w)ei”%adé, b=t,0%(z— w)ei”d’%ddi, (2.17)
and similarly for b.

Holomorphic BF theory on twistor space does not know about the metric, so we can
choose to evaluate Feynman diagrams in whichever gauge we like. A natural choice
is

5+ r?gepr (2.18)



where § is the flat metric on R* and ggp1 is the Fubini-Study metric on CP!. Scaling
up r we can make the propagation in the CP' direction arbitrarily difficult. This
means that states supported at different values of z can cannot talk to one another,
and amplitudes vanish for generic kinematics.

» But although the trees vanish in sdYM, the loops do not. As a result, sdYM theory
cannot arise as QFT on twistor space. This is the four-dimensional interpretation of
the anomaly: the non-vanishing loop amplitudes.

» When the twistorial anomaly vanishes other nice properties hold:

— Conformal symmetries complexify, e.g., protects operators from acquiring anoma-
lous dimensions.

— Correlation functions of local operators are analytic functions of position with
poles on the complexified light cone.

— Chiral algebra bootstrap, subject of next lecture.

3 Lecture III

3.1 Deforming away from Self-Duality

» Have seen that to deform one step away from the self-dual sector we need to add the
integral of tr(B?). This will give us access to two-minus tree, one-minus one-loop and
all-plus two-loop amplitudes.

» Inserting the operator tr(B?) at some point x breaks translation invariance, but
integrating over position restores it. In an amplitude the integral over x generates
the momentum conserving J-function. It’s therefore enough to evaluate amplitudes
in the presence of the operator tr(B?)(0).

» We'd like to uplift tr(B?)(0) to twistor space. In the trivial gauge background (in
the gauge az =0

tr(B?)(x) ~ / / dzd?’ (2 — z')Qtr(b INOE (3.1)
=0 Jx=0
But our scattering states are not in this gauge - we need a gauge invariant expressions.

» This can be achieved by gluing the two copies of b together with a frame field g(z, z’)
obeying
(0 + az)g(z2) =0, g(<,2) = id.. (3.2)

We can solve this explicitly to get

> dzleQ...dZm
N = E ANag---N\apg,. 3.3
o152 mﬂéo o o)1 = 22) (o — ) 2 N (39)



» Then

dz1dzy ... dzm
tr( / / mrn z4(m+1)tr(b1/\a2 A Ab 1 AN+ -+ - Q) -
=0 z=0 #12%23 - - - Z(m+n)1

m,n>1

(3.4)

At this stage can plug in scattering states and recover tree MHV amplitude; however,
we will instead reinterpret this formula as the correlator of some chiral CF'T coupled

to holomorphic BF theory.

3.2 Chiral Algebras

» A chiral algebra consists of holomorphic operators O;(z) of conformal dimensions A;
together with a singular OPE

C.Ak
Oi(21)0j(z2) ~ > A —an Ok(z2). (3.5)
k:AHA>AL 212

» Would like to view tr(B?) as the correlator of some chiral CFT coupling to a,b.
Suppose a couples to Jc(z) and b9 to Jy(z)

Ifa,b] = /:0 dz (a°Je(z) + bdjd(z)) . (3.6)

From this formula can read off A(J(2)) =1, A(Jy(2)) = —1.

» The OPEs of J,.J can be determined by requiring gauge invariance of the coupling.
The variation under da = ¢ + [a, €] is

ol = /:0 dz (9 Jc(z) + fafa®e Je(2)) (3.7)

First term vanishes by holomorphicity of J.. Second must cancel against linearised
variation of the bilocal term

5(I%) = / / dzrdz (36 (21)a (22) Je(21) Ja(z2) + aS(z0)Be (22) Je(21) Ja (22)) -
z=0 Jx=0
(3.8)
Now Jc(z1)J4(z2) may have a pole as z; — z2, so integrating by parts in first term
can generate a local contribution. This cancels equation (3.7) if

C

Ja (Zl)Jb(ZQ) ~ iiz JC(ZQ) . (3.9)

This is Kac-Moody at level zero. If we’d kept b would also learn that

abc JC(ZQ) N Ja(Zl)Jb(ZQ) ~ 0. (3.10)

212

Ja(21)Jp(22) ~

~10 -



» To recover tr(B?) need to define correlation functions compatible with these OPEs.
Enough to fix the two-point function

<ja(2'1)Jb(22)> = /ﬁ;abZ%Q 5 (3.11)

and require that insertions of three or more Js give zero. The remaining correlators
are determined by the operator product and conformal dimensions

(Jar (21) - Ja, s (Zn—2)Jan71(zn—l)jan(zn)>

Zn-1)
— Z > > . . tr(ta, (1) - - tag (1) tan) -
oESH_1 o(1)a(2)%c(2)o(3) -« + “o(n—1)n*no(1)

(3.12)

The proof is by induction. Using this formula we find that tr(B?)(z) = (exp(—1I[a, b])).

» This is not the only correlator compatible with the OPEs, for example, could require
that the two-point function vanishes but

(Ja(21)Jo(22) Je(23))ia(p3) = fabc12723231 - (3.13)

Insertions of four or more Js are required to give zero. This correlator generates the
operator tr(B3). A family of correlators compatible with the OPE is known as a
conformal block.

» But this is not the most general possible coupling we could have considered between
holomorphic BF theory and a chiral CFT. Could also couple to holomorphic deriva-
tives 030" a and 9730";b with operators J[m,n|(z) and Jylm,n](2) of conformal
dimensions 1 — (m +n)/2 and —1 — (m +n)/2.

Gauge invariance of the bulk-defect coupling yields the S-algebra

Tlp )zl s1(22) ~ 2y 0+ 5](22)

Rlp ) slz2) ~ el g+ sl(za) s bl )l sl(z2) ~ 0.
(3.14)
In fact any operator in sdYM theory can be obtained as a conformal block of this
chiral CFT.

» To compute an amplitude in the presence of a local operator we just plug into our
twistor representatives for a,b. These correspond to insertions of hard states

. Jo[m,n](w)  (3.15)

respectively. The amplitude in the presence of O is the correlation function of these
states, dressed by a momentum conserving d-function generated by the space-time
integral.

- 11 -



3.3
>

>

Quantum Deformation

The real power of this approach is at loop level. This is because quantum corrections

can be built into the chiral algebra.

These are generated by loop contributions to the gauge variation of the bulk-defect
coupling. On grounds of conformal spin and space-time dilation symmetry the sim-
plest one-loop correction must take the form

A ~ -
Ja[1,0](21)Jp[0, 1] (22) ~ h%fabc c(#) + hi(faecfbde + foe fad®) ZJchi (22) -
(3.16)

However, there’s no choice for A, B such that this OPE is associative. To see this we

compare

% % d21d22 ZlJa[l,O](zl)Jb[O, 1](Z2)JC(O) (317)
|z12]=2¢€ J|22]|=¢€

to
(é:?e fmze—}[z”:% ﬁQZG)dzldzg 21 (1, 01(21)Jb[0, 1] (22)Jc(0) . (3.18)

By a deformation of contours argument these should be equal, but they do not agree.

The culprit is the twistorial anomaly we saw in lecture II. Consider a general G
and R such that the anomaly vanishes. The fermions contribute two new towers of
Grassmann odd states M;[m, n](z) and M7[m,n](z) coupling to 50 x* and 0" X
of conformal dimensions (1 —m —n)/2 and —(1+m+n)/2 respectively. These have
tree OPEs which are determined by gauge invariance

Tlp.al(e1) Ml s)(e2) ~ (82 Mylp + 7.+ 5)(z).

Tlp. ) ¥l s)(22) ~ = () M+ + ). (3.19)

Milp,a)(a1) 38 (22) ~ — (62 Plp+ g+ 5](z2).

(ta)j ; is the matrix representing the basis element ¢, in the representation . There

are also quantum corrections involving the M;[m,n], M7[m,n| states. In particular
the J, J OPE acquires a correction (again fixed by symmetry)

Ja[1,0](21)Jb[0, 1] (22) ~ h£(<ta>i k()" + (ta) 5 (ts) 1) t Mi(21) M7+ (22) . (3.20)

Z12
Can show that there is a consistent chiral algebra with
IQ(Ad) — IZ(R) 1
A=— B=C= . 3.21
9672 ’ 3272 (3:21)

with trr(X?) = I(R)tr(X?).

- 12 —



» At this stage can compute the one-loop one-minus amplitude at arbitrary multiplicity.
Using the loop corrected OPEs one finds that in the tr(B?) conformal block

IQ(Ad) — IQ(R) 213223

(Ja[1,0)(21)Jb[0, 1) (22) Je(23)) = —Dfabe 9672 23,

(3.22)

To prove this we first check the singularity of the left hand side in the z; — zo limit,
which yields

2B~ B() ( L (o)) + 1aZQ<Jd<zg>jc<zg>>> - O(o1)
96 219 2212

= —FLfabcI2 <Z23 zjz) + 0(212)

= —hfabe Iz(Ad) IQ(R) a3%% O(z12) -

9672 22,

(3.23)
This is the only singularity in z; (can check that there are no contributions from
normal ordered products). Finally the correlator vanishes to first order as z1, 2z — o0,
so the regular terms vanish.

» Can induct to get the one-loop one-minus amplitude in gauge theory with group G
and anomaly cancelling fermions in the representation R. The final result is

At (n=1)"n7) = (Jay (R, w1) - - Jay (Rnet, Wn—1)Ja, (Fn, wp))

- 967;2 Z Z

veSn 1 1<i<j<n—1 WijWe(1)o(2) * + + Wo(n—1)nWno(1)

trAd@HR(ta(,<1) e taa(n71)tan)

(3.24)
Proof is by induction on n.

~13 -
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