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Abstract: These lectures introduce quantum field theory on twistor space, with gauge

theory as the motivating example. I’ll begin by reviewing the Penrose-Ward transformation

and how it can be used to recast the self-dual sector of gauge theory as a holomorphic field

theory on twistor space. This holomorphic theory is sick at one-loop: it suffers from a gauge

anomaly. Cancelling the anomaly yields a quantum integrable theory on space-time. I will

then elucidate the Costello-Paquette correspondence, which leverages this integrability to

compute gauge theory amplitudes and form factors using chiral algebra techniques.
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1 Lecture I

ä Big picture: A new notion of quantum integrability in four dimensions. Celestial

chiral algebras play the role of quantum groups. Can be used to compute loop

amplitudes inaccessible by other methods.

ä Goals of these lectures:

– Introduce twistor space and the Ward correspondence

– Understand one-loop anomaly to integrability

– Derive quantum corrected celestial chiral algebra and compute a loop amplitude

ä Main references:

– arXiv: 2111.08879 (Quantizing Local Holomorphic Field Theories on Twistor

Space)

– arXiv: 2201.02595 (Celestial Holography meets Twisted Holography: 4d Ampli-

tudes from Chiral Correlators)

– arXiv: 2204.05301 (On the Associativity of One-Loop Corrections to the Celes-

tial OPE)
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1.1 The Self-Dual Sector of Gauge Theory

ä The dynamical field of non-abelian gauge theory on R4 is a connection 1-form A ∈
Ω1(R4, g) with field strength

F (A) = dA+
1

2
[A,A] ∈ Ω2(R4, g) . (1.1)

ä In four-dimensions the Hodge star operator maps 2-forms to 2-forms

(∗F )µν =
1

2
ε ρσ
µν Fρσ (1.2)

and ∗2 = 1. Can decompose F (A) into its +1 and −1 eigenspaces

F (A) = F+(A) + F−(A) . (1.3)

ä The self-dual Yang-Mills (sdYM) equations are

F−(A) =
1

2

(
F (A)− ∗F (A)

)
= 0 . (1.4)

These are integrable. They imply the full Yang-Mills equations since

D ∗ F (A) = DF (A) = 0 (1.5)

by the Bianchi identity.

ä Yang-Mills theory on R4 with the flat metric δ has action

SYM[A] = − 1

2g2

∫
R4

d4x tr(Fµν(A)Fµν(A)) =
2

g2

∫
R4

tr
(
F−(A) ∧ F−(A)

)
+ θ-term .

(1.6)

ä Up to a θ term can be rewritten in a chiral first order form∫
R4

tr(B ∧ F (A))− g2

8

∫
R4

tr(B ∧B) ' 2

g2

∫
R4

tr
(
F−(A) ∧ F−(A)

)
(1.7)

where B ∈ Ω2
−(R4, g) obeys ∗B = −B.

ä In the limit g2 → 0 recover sdYM theory. Equations of motion are

∗ F (A) = F (A) , dB + [A,B] = 0 . (1.8)

B represents a linearised negative-helicity gluon propagating freely on the self-dual

background determined by A.

ä The tree amplitudes of this theory vanish for generic kinematics. The one-loop am-

plitudes are finite. There are no connected higher loop amplitudes on combinatorial

grounds.
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ä Can get to full Yang-Mills in perturbation theory around the self-dual sector by

inserting the operator tr(B2)(x) multiple times and integrating over its position

e−SYM[A] =
∞∑
k=0

g2k

k!23k

∫
R4k

d4x1 . . . d
4xk tr(B2)(x1) . . . tr(B2)(xk)e

−SsdYM[A,B] . (1.9)

The simplest non-vanishing trees appear at k = 1; these are the famous MHV ampli-

tudes.

ä We want understand sdYM at the quantum level with (at least) one insertion of

tr(B2). Currently not clear why this is any better than ordinary perturbation theory.

1.2 Twistor Space

ä Choose a complex structure on R4 compatible with the metric δ and orientation d4x.

Let (u0̇, u1̇) ∈ C2 be holomorphic co-ordinates, and (ū0, ū1) their complex conjugates.

ä In these co-ordinates the anti-self-dual (asd) 2-forms are du0̇ ∧ du1̇, dū0 ∧ dū1 and

the Kähler form ω = i
2(du0̇ ∧ dū0 + du1̇ ∧ dū1). The sdYM equations become

F 2,0(A) = 0 =⇒ Fu0̇u1̇(A) = ∂u0̇Au1̇ − ∂u1̇Au0̇ + [Au0̇ , Au1̇ ] = 0 ,

F 0,2(A) = 0 =⇒ Fū0ū1(A) = 0 ,

ω ∧ F 1,1(A) = 0 =⇒ Fu0̇ū0(A) + Fu1̇ū1(A) = 0 .

(1.10)

ä These equations hold iff the operators

D̄0 = ∂ū0 − z∂u1̇ +Aū0 − zAu1̇ , D̄1 = ∂ū1 + z∂u0̇ +Aū1 + zAu0̇ (1.11)

commute ([D̄0, D̄1] = 0) for all z. This is a Lax pair for the sdYM equations - a

hallmark of integrability. Notice that [D̄0, ∂z̄] = [D̄1, ∂z̄] = 0 also.

ä Now suppose we incorporate z into the geometry, that is, work on R4 × CP1. We

will show that D̄0, D̄1, ∂z̄ determine a holomorphic vector bundle on this space in an

appropriate complex structure.

ä First step is to give R4×CP1 a complex structure. We interpret ∂̄0 = ∂ū0−z∂u1̇ , ∂̄1 =

∂ū1 + z∂u0̇ and ∂z̄ as Cauchy-Riemann operators on R4 ×CP1 (in the patch z 6=∞).

Holomorphic co-ordinates are

v0̇ = u0̇ − zū1 , v1̇ = u1̇ + zū0 , z . (1.12)

ä In the other patch z̃ = 1/z we use Cauchy-Riemann operators

∂̃0̇ = ∂u0̇ + z̃∂ū1 , ∂̃1̇ = ∂u1̇ − z̃∂ū0 , ∂¯̃z (1.13)

for which the holomorphic co-ordinates are

ṽ0̇ = −ū1 + z̃u0̇ =
v0̇

z
, ṽ1̇ = ū0 + z̃u1̇ =

v1̇

z
. (1.14)
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Meromorphic functions of z with poles of at worst order m at z =∞ are holomorphic

sections of the line bundle O(m). So with this complex structure R4 × CP1 is

O(1)⊕O(1)→ CP1 (1.15)

as a complex manifold. This is twistor space, denoted PT.

ä There are a number of ways to define a holomorphic vector bundle on a complex

manifold X:

– A smooth, complex vector bundle on X whose transition functions are holomor-

phic maps into GLn(C).

– A smooth, complex vector bundle with a (0, 1)-form connection a ∈ Ω0,1(X, gln(C))

such that

f0,2(a) = ∂̄a+ a ∧ a = 0 . (1.16)

ä These are equivalent: equation (1.16) implies that in a sufficiently nice patch it’s

possible to find a gauge in which a = 0. When we go from a patch U to a patch V
with the transition map h : U ∩ V → GLn(C) we have

h(∂̄U + aU )h−1 = (∂̄V + aV) . (1.17)

Choosing patches and gauges so that aU = aV = 0 we learn that h is holomorphic.

ä We will use the second definition. To define a locally it’s enough to supply differential

operators

D̄0 = ∂̄0 + a0 = ∂̄0 + ∂̄0 y a ,

D̄1 = ∂̄1 + a1 = ∂̄1 + ∂̄1 y a ,

D̄z̄ = ∂z̄ + az̄ = ∂z̄ + ∂z̄ y a .

(1.18)

Equation (1.16) holds if these differential operators commute with one another.

ä We’ve seen that the sdYM equations supply suitable candidates with az̄ = 0. Can

interpret this as a gauge condition, but necessary to assume this gauge exists. This

yields the Ward correspondence:

sdYM connections on R4 ↔ holomorphic vector bundles∗ on PT . (1.19)

∗trivialisable on twistor lines.

ä The sdYM equations depend on the conformal structure of space-time. Somehow

this must be encoded in the complex structure of twistor space.

ä A point x = (u0̇, u1̇) ∈ R4 determines a complex line (v0̇, v1̇) = (u0̇ − zū1, u1̇ + zū0)

in twistor space. But in fact, there are lines corresponding to points in complexified

space-time, i.e., can take (ū0, ū1)→ (ũ0, ũ1) to be independent of u0̇, u1̇. These lines

intersect when the corresponding points in C4 are null separated.

– 4 –



ä Indeed the line (v0̇, v1̇) = (u0̇− zũ1, u1̇ + zũ0) intersects the line corresponding to the

origin (v0̇, v1̇) = (0, 0) if there’s a z ∈ CP1 for which

u0̇ = zũ1 , u1̇ = −zũ0 . (1.20)

This only happens if

u0̇ũ0 + u1̇ũ1 = 0 , (1.21)

i.e., (u0̇, u1̇, ũ0, ũ1) ∈ C4 is null separated from the origin.

1.3 Twistor Action for Self-Dual Yang-Mills

ä We can write down an action imposing (1.16) as an equation of motion by introducing

a Lagrangian multiplier b ∈ Ω0,1(PT,O(−4)⊗ g)

ShBF[a, b] =

∫
PT

dz ∧ dv0̇ ∧ dv1̇ ∧ tr
(
b ∧ ∂̄a+ b ∧ a ∧ a

)
. (1.22)

The notationO(−4) indicates that b has a zero of order 4 at z =∞. This compensates

the fourth order pole at z =∞ in

dz ∧ dv0̇ ∧ dv1̇ = −dz̃ ∧ dṽ0̇ ∧ dṽ1̇

z̃4
. (1.23)

ä This is classically equivalent to sdYM theory on space-time:

– First gauge fix az̄ = 0.

– Then integrate out the components of b in the R4 directions to learn that

[D̄0, ∂z̄] = [D̄1, ∂z̄] = 0. These are solved by

a0 = Aū0(x)− zAu1̇(x) , a1 = Aū1(x) + zAu0̇(x) . (1.24)

The action becomes∫
R4

d4x

∫
CP1

x

dz∧dz̄ bz̄
(
Fū0ū1(A)+zFū0u0̇(A)+zFū1u1̇(A)+z2Fu0̇u1̇(A)

)
. (1.25)

– Upon making the identifications

Bu0̇u1̇ =

∫
x

dz b , Bū0u0̇ = Bū1u1̇ =

∫
x

dz zb , Bū0ū1 =

∫
x

dz z2b (1.26)

we recover SsdYM[A,B]. (Here
∫
CP1

x
=
∫
x.) This final step tells us how b is

related to B in the gauge az̄ = 0. It is the linear Penrose transform for a field

of spin s = 1 and helicity h = −1.
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2 Lecture II

2.1 Twistorial Anomalies

ä Last lecture wrote down a twistor action for sdYM. This lecture we will find that it

does not exist at the quantum level; it suffers from a gauge anomaly.

ä Recall that gauge anomalies arise when we have a gauge invariant action, but there’s

no regularization which retains this symmetry at loop level. Usually associated with

chiral fermions.

ä Since the kinetic term on twistor space is ∂̄, all fields are chiral and contribute to

anomalies. It’s perhaps strange that a field can contribute to its own anomaly - this

is because we should define QFT with a cutoff and require gauge invariance of the

effective action.

ä Recall the twistor action∫
PT

dzdv0̇dv1̇tr(b ∧ ∂̄a+ b ∧ a ∧ a) . (2.1)

This has a gauge symmetry with parameter ε ∈ Ω0(PT, g)

δa = ∂̄ε+ [a, ε] , δb = [b, ε] (2.2)

ä The symmetry with parameter ε is anomalous. There are two ways of seeing this:

– direct Feynman diagram computation,

– index theory.

In these lectures I will concentrate on the former.

ä For simplicity let’s work in the patch z 6= ∞ which looks like C3. Since anomalies

are local, this will also be an anomaly on PT.

ä Then the gauge variation of the box diagram is anomalous. To evaluate this we follow

the following steps:

– Pick the metric |z|2 + |v0̇|2 + |v1̇|2 and fix Lorenz gauge

∂zaz̄ + ∂v0̇av̄0 + ∂v1̇av̄1 = 0 . (2.3)

Propagator is a Bochner-Martinelli kernel

〈a ∧ b〉0 ∝
z̄dv̄0dv̄1 + v̄0dv̄1dz̄ − v̄1dv̄0dz̄

(|z|2 + |v0̇|2 + |v1̇|2)2
. (2.4)

– Employ a heat kernel regularisation with length scales 0 < l� L.

– Evaluate integral in limit l → 0 (which defines the theory at scale L) followed

by L→ 0 (the UV limit).
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ä The result is ∫
C3

trAd(ε∂a ∧ ∂a ∧ ∂a) (2.5)

where ∂ = dz∂z + dv0̇∂v0̇ + dv1̇∂v1̇ .

ä In the index theory approach, we interpret the one-loop partition function around

some background a0 as a section of a line bundle over the moduli space of holomorphic

vector bundles. For the partition function to be a number this bundle would need

to be trivial, but we can check that it has non-vanishing first Chern class. (This

essentially reproduces the above formula).

2.2 Restoring Integrability

ä In order to restore integrability we need to cancel the anomaly. There are a few ways

to do this:

– couple to appropriate Grassmann odd fields,

– Green-Schwarz mechanism,

– couple to an infinite tower of higher spin fields,

– add a non-local term on twistor space.

ä In the first case want fields to obey spin-statistics on space-time. Can be achieved

using the linear Penrose transform Weyl fermions in the representation R

s = 1/2 , h = +1 represented by H1(PT,O(−1)⊗R) ,

s = 1/2 , h = +1 represented by H1(PT,O(−3)⊗R∗) .
(2.6)

ä In the h = +1 case can use a Dolbeault representative

χ ∈ ΠΩ0,1(PT;O(−1)⊗R) . (2.7)

The corresponding left-handed space-time fermion is

Ψα̇ =

∫
x

dz
∂

∂vα̇
χ . (2.8)

ä In the h = −1 case can use a Dolbeault representative

χ̃ ∈ ΠΩ0,1(PT;O(−3)⊗R∗) . (2.9)

The corresponding right-handed space-time fermion is

Ψ̃α =

∫
x

dz

(
1

z

)α
χ̃ . (2.10)

ä Can write down a twistor action reproducing the usual action for Weyl fermions on

space-time∫
PT

dzdv0̇dv1̇ χ̃i(∂̄ + a)i jχ
j =

∫
R4

d4x Ψ̃α
i σ

µ
α̇α(∂µ +Aµ)i jΨ

jα̇ . (2.11)
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ä Contribute to the twistorial anomaly with opposite sign and in representation R, so

cocycle is modified to∫
PT

trAd⊕ΠR(ε∂a∧ ∂a∧ ∂a) =

∫
PT

trAd(ε∂a∧ ∂a∧ ∂a)− trR(ε∂a∧ ∂a∧ ∂a) . (2.12)

ä Clearly vanishes when R = Ad, corresponding to N = 1 SUSY, but there are other

possibilities. Vanishing is equivalent to the trace identity trAd(X4) = trR(X4).

ä Consider, e.g., G = SL2(C) and look for R = F⊕Nf ⊕ (F∗)⊕Nf . This is the self-dual

sector of SU2 gauge theory with Nf fundamental Diracs. Can easily check that

trAd(X4) = 16trF(X4) (2.13)

so Nf = 8 will do. There exist many other examples.

ä Might worry that we miss something by working on C3 rather than PT. Indeed we

do: the usual chiral gauge anomaly on space-time comes from a mixed anomaly with

the background complex structure on PT. For G = SLn(C) with n ≥ 3 this can be

evaded using Dirac fermions.

2.3 Space-Time Interpretation

ä Twistorial anomalies do not represent gauge anomalies on space-time. What do they

tell us?

ä To understand these need to think about amplitudes. Positive helicity gluon scatter-

ing states in sdYM can be represented by

Auα̇ = ita
κ̃α̇
w
eix·p , Aūα = 0 (2.14)

where pµσ
µα̇α = κ̃α̇(1, w)α is a complexified null momentum. In particular

x · p = (u0̇ − wū1)κ̃0̇ + (u1̇ + wū0)κ̃1̇ . (2.15)

Negative helicity states are represented by

Bu0̇u1̇ = eix·p , Bu0̇ū0 = Bu1̇ū1 = weix·p , Bū0ū1 = w2eix·p . (2.16)

ä These lift to twistor representatives localised at points on the CP1 base, in particular

a = taδ
(2)(z − w)eivα̇κ̃α̇dz̄ , b = taδ

(2)(z − w)eivα̇κ̃α̇dz̄ , (2.17)

and similarly for b.

ä Holomorphic BF theory on twistor space does not know about the metric, so we can

choose to evaluate Feynman diagrams in whichever gauge we like. A natural choice

is

δ + r2gCP1 (2.18)
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where δ is the flat metric on R4 and gCP1 is the Fubini-Study metric on CP1. Scaling

up r we can make the propagation in the CP1 direction arbitrarily difficult. This

means that states supported at different values of z can cannot talk to one another,

and amplitudes vanish for generic kinematics.

ä But although the trees vanish in sdYM, the loops do not. As a result, sdYM theory

cannot arise as QFT on twistor space. This is the four-dimensional interpretation of

the anomaly: the non-vanishing loop amplitudes.

ä When the twistorial anomaly vanishes other nice properties hold:

– Conformal symmetries complexify, e.g., protects operators from acquiring anoma-

lous dimensions.

– Correlation functions of local operators are analytic functions of position with

poles on the complexified light cone.

– Chiral algebra bootstrap, subject of next lecture.

3 Lecture III

3.1 Deforming away from Self-Duality

ä Have seen that to deform one step away from the self-dual sector we need to add the

integral of tr(B2). This will give us access to two-minus tree, one-minus one-loop and

all-plus two-loop amplitudes.

ä Inserting the operator tr(B2) at some point x breaks translation invariance, but

integrating over position restores it. In an amplitude the integral over x generates

the momentum conserving δ-function. It’s therefore enough to evaluate amplitudes

in the presence of the operator tr(B2)(0).

ä We’d like to uplift tr(B2)(0) to twistor space. In the trivial gauge background (in

the gauge az̄ = 0

tr(B2)(x) '
∫
x=0

∫
x=0

dzdz′ (z − z′)2tr
(
b ∧ b′

)
. (3.1)

But our scattering states are not in this gauge - we need a gauge invariant expressions.

ä This can be achieved by gluing the two copies of b together with a frame field g(z, z′)

obeying

(∂z̄ + az̄)g(z, z′) = 0 , g(z′, z′) = id. . (3.2)

We can solve this explicitly to get

g(z, z′) =
∞∑
m=0

∫
x=0

. . .

∫
x=0

dz1dz2 . . . dzm
(z − z1)(z1 − z2) . . . (zm − z′)

a1 ∧ a2 · · · ∧ am . (3.3)
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ä Then

tr(B2) =
∑
m,n≥1

∫
x=0

. . .

∫
x=0

dz1dz2 . . . dzm+n

z12z23 . . . z(m+n)1
z4

1(m+1)tr(b1∧a2 . . . am∧bm+1∧am+2 . . . am+n) .

(3.4)

At this stage can plug in scattering states and recover tree MHV amplitude; however,

we will instead reinterpret this formula as the correlator of some chiral CFT coupled

to holomorphic BF theory.

3.2 Chiral Algebras

ä A chiral algebra consists of holomorphic operators Oi(z) of conformal dimensions ∆i

together with a singular OPE

Oi(z1)Oj(z2) ∼
∑

k : ∆i+∆j>∆k

C k
ij

z
2(∆i+∆j−∆k)
12

Ok(z2) . (3.5)

ä Would like to view tr(B2) as the correlator of some chiral CFT coupling to a, b.

Suppose ac couples to Jc(z) and bd to J̃d(z)

I[a, b] =

∫
x=0

dz
(
acJc(z) + bdJ̃d(z)

)
. (3.6)

From this formula can read off ∆(Jc(z)) = 1, ∆(J̃d(z)) = −1.

ä The OPEs of J, J̃ can be determined by requiring gauge invariance of the coupling.

The variation under δa = ∂̄ε+ [a, ε] is

δI =

∫
x=0

dz
(
∂̄εcJc(z) + f c

ab a
aεbJc(z)

)
(3.7)

First term vanishes by holomorphicity of Jc. Second must cancel against linearised

variation of the bilocal term

δ(I2) =

∫
x=0

∫
x=0

dz1dz2

(
∂̄εc(z1)ad(z2)Jc(z1)Jd(z2) + ac(z1)∂̄εd(z2)Jc(z1)Jd(z2)

)
.

(3.8)

Now Jc(z1)Jd(z2) may have a pole as z1 → z2, so integrating by parts in first term

can generate a local contribution. This cancels equation (3.7) if

Ja(z1)Jb(z2) ∼
f c
ab

z12
Jc(z2) . (3.9)

This is Kac-Moody at level zero. If we’d kept b would also learn that

Ja(z1)J̃b(z2) ∼
f c
ab

z12
J̃c(z2) , J̃a(z1)J̃b(z2) ∼ 0 . (3.10)
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ä To recover tr(B2) need to define correlation functions compatible with these OPEs.

Enough to fix the two-point function

〈J̃a(z1)J̃b(z2)〉 = κabz
2
12 , (3.11)

and require that insertions of three or more J̃s give zero. The remaining correlators

are determined by the operator product and conformal dimensions

〈Ja1(z1) . . . Jan−2(zn−2)J̃an−1(zn−1)J̃an(zn)〉

=
∑

σ∈Sn−1

z4
(n−1)n

zσ(1)σ(2)zσ(2)σ(3) . . . zσ(n−1)nznσ(1)
tr(taσ(1) . . . taσ(n−1)

tan) .
(3.12)

The proof is by induction. Using this formula we find that tr(B2)(x) = 〈exp(−I[a, b])〉.

ä This is not the only correlator compatible with the OPEs, for example, could require

that the two-point function vanishes but

〈J̃a(z1)J̃b(z2)J̃c(z3)〉tr(B3) = fabcz12z23z31 . (3.13)

Insertions of four or more J̃s are required to give zero. This correlator generates the

operator tr(B3). A family of correlators compatible with the OPE is known as a

conformal block.

ä But this is not the most general possible coupling we could have considered between

holomorphic BF theory and a chiral CFT. Could also couple to holomorphic deriva-

tives ∂m
v0̇
∂n
v1̇
a and ∂m

v0̇
∂n
v1̇
b with operators Ja[m,n](z) and J̃b[m,n](z) of conformal

dimensions 1− (m+ n)/2 and −1− (m+ n)/2.

Gauge invariance of the bulk-defect coupling yields the S-algebra

Ja[p, q](z1)Jb[r, s](z2) ∼
f c
ab

z12
Jc[p+ r, q + s](z2) ,

Ja[p, q](z1)J̃b[r, s](z2) ∼
f c
ab

z12
J̃c[p+ r, q + s](z2) , J̃a[p, q](z1)J̃b[r, s](z2) ∼ 0 .

(3.14)

In fact any operator in sdYM theory can be obtained as a conformal block of this

chiral CFT.

ä To compute an amplitude in the presence of a local operator we just plug into our

twistor representatives for a, b. These correspond to insertions of hard states

Ja(κ̃, w) =
∑
m,n≥0

κ̃m
0̇
κ̃n

1̇

m!n!
Ja[m,n](w) , J̃a(κ̃, w) =

∑
m,n≥0

κ̃m
0̇
κ̃n

1̇

m!n!
J̃a[m,n](w) (3.15)

respectively. The amplitude in the presence of O is the correlation function of these

states, dressed by a momentum conserving δ-function generated by the space-time

integral.
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3.3 Quantum Deformation

ä The real power of this approach is at loop level. This is because quantum corrections

can be built into the chiral algebra.

ä These are generated by loop contributions to the gauge variation of the bulk-defect

coupling. On grounds of conformal spin and space-time dilation symmetry the sim-

plest one-loop correction must take the form

Ja[1, 0](z1)Jb[0, 1](z2) ∼ ~
A

z2
12

f c
ab J̃c

(
z1+z2

2

)
+ ~

B

z12
(f c

ae f
e

bd + f c
be f

e
ad ) :JcJ̃

d : (z2) .

(3.16)

ä However, there’s no choice for A,B such that this OPE is associative. To see this we

compare ∮
|z12|=2ε

∮
|z2|=ε

dz1dz2 z1Ja[1, 0](z1)Jb[0, 1](z2)Jc(0) (3.17)

to (∮
|z2|=2ε

∮
|z1|=ε

−
∮
|z1|=2ε

∮
|z2|=ε

)
dz1dz2 z1Ja[1, 0](z1)Jb[0, 1](z2)Jc(0) . (3.18)

By a deformation of contours argument these should be equal, but they do not agree.

ä The culprit is the twistorial anomaly we saw in lecture II. Consider a general G

and R such that the anomaly vanishes. The fermions contribute two new towers of

Grassmann odd statesMi[m,n](z) and M̃ j [m,n](z) coupling to ∂m
v0̇
∂n
v1̇
χi and ∂m

v0̇
∂n
v1̇
χ̃j

of conformal dimensions (1−m−n)/2 and −(1 +m+n)/2 respectively. These have

tree OPEs which are determined by gauge invariance

Ja[p, q](z1)Mi[r, s](z2) ∼ 1

z12
(ta)

j
iMj [p+ r, q + s](z2) ,

Ja[p, q](z1)M̃ j [r, s](z2) ∼ − 1

z12
(ta)

j
iM̃

i[p+ r, q + s](z2) ,

Mi[p, q](z1)M̃ j(z2) ∼ 1

z12
(ta)

j
iJ̃

a[p+ r, q + s](z2) .

(3.19)

(ta)
j
i is the matrix representing the basis element ta in the representation R. There

are also quantum corrections involving the Mi[m,n], M̃ j [m,n] states. In particular

the J, J OPE acquires a correction (again fixed by symmetry)

Ja[1, 0](z1)Jb[0, 1](z2) ∼ ~
C

z12

(
(ta)

i
k(tb)kj + (ta)

k
j(tb)i k

)
:Mi(z1)M̃ j : (z2) . (3.20)

ä Can show that there is a consistent chiral algebra with

A = −I2(Ad)− I2(R)

96π2
, B = C =

1

32π2
. (3.21)

with trR(X2) = I2(R)tr(X2).
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ä At this stage can compute the one-loop one-minus amplitude at arbitrary multiplicity.

Using the loop corrected OPEs one finds that in the tr(B2) conformal block

〈Ja[1, 0](z1)Jb[0, 1](z2)J̃c(z3)〉 = −~fabc
I2(Ad)− I2(R)

96π2

z13z23

z2
12

. (3.22)

To prove this we first check the singularity of the left hand side in the z1 → z2 limit,

which yields

− ~f d
ab

I2(Ad)− I2(R)

96π2

(
1

z2
12

〈J̃d(z2)J̃c(z3)〉+
1

2z12
∂z2〈J̃d(z2)J̃c(z3)〉

)
+O(z12)

= −~fabc
I2(Ad)− I2(R)

96π2

(
z2

23

z2
12

+
z23

z12

)
+O(z12)

= −~fabc
I2(Ad)− I2(R)

96π2

z13z23

z2
12

+O(z12) .

(3.23)

This is the only singularity in z1 (can check that there are no contributions from

normal ordered products). Finally the correlator vanishes to first order as z1, z2 →∞,

so the regular terms vanish.

ä Can induct to get the one-loop one-minus amplitude in gauge theory with group G

and anomaly cancelling fermions in the representation R. The final result is

A
(
1+, . . . , (n− 1)+, n−

)
= 〈Ja1(κ̃1, w1) . . . Jan−1(κ̃n−1, wn−1)J̃an(κ̃n, wn)〉

=
~

96π2

∑
σ∈Sn−1

∑
1≤i≤j≤n−1

κ̃α̇i κ̃
β̇
j εα̇β̇w

2
inw

2
jn

wijwσ(1)σ(2) . . . wσ(n−1)nwnσ(1)
trAd⊕ΠR(taσ(1) . . . taσ(n−1)

tan)

(3.24)

Proof is by induction on n.
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