
 

 

 

 

EPSRC Centre for Doctoral Training in 

Industrially Focused Mathematical 
Modelling 

 

 
 

Improved Algebraic Decoupling 

 of the Pressure Equation 

 during Reservoir Simulation 

 

Thomas Roy 

 

 



 
1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contents 
1. Introduction ............................................................ 2 

Background ................................................................... 2 

Mathematical Model ................................................. 2 

Decoupling the Pressure Equation ..................... 2 

Glossary of Terms ...................................................... 3 

2. Constrained Pressure Residual 

Preconditioner ................................................................. 3 

Two-Stage Preconditioner ..................................... 3 

Currently Used Decoupling Operators .............. 3 

New Decoupling Operators .................................... 4 

3. Results ....................................................................... 5 

Row Scaling .................................................................. 5 

Test Case ....................................................................... 5 

Properties of the System ........................................ 6 

4. Discussion, Conclusions and 

Recommendations ............................................................ 7 

Conserving the Pressure Residual ...................... 7 

Row-Dependent Decoupling Strategy ............... 7 

Non-Pressure Decoupling ....................................... 7 

5. Potential Impact ................................................... 7 

 

 

 

 

 

 

 



 
 

 
2 

 
 

 

1. Introduction 

Background 
The use of reservoir simulation models in the oil and gas industry is essential to the 
development of new oil fields and in generating production forecasts for existing oil fields. 
Reservoir simulators solve mathematical models for the flow of fluids (typically oil, water 
and gas) through porous media. The complexity of such models, and the time each 
simulation takes motivates the need for highly efficient solvers. A major time-consuming 
step in reservoir simulation is solving thousands of linear systems of equations. Our aim is 
to find a novel transformation of these equations which reduces the number of iterations 
needed to solve them.  

Mathematical Model 
Mathematical models for oil reservoirs describe flow through porous media. For single-
phase flow, the model comprises of a conservation of mass equation, where the velocity of 
the fluid is usually described using Darcy's law, relating the velocity to the pressure 
gradient. This can easily be generalized for multi-phase flow, in which mass transfer 
between phases is allowed. Black-oil systems are a special case of these models in which we 
assume that there is a water phase, an oil component which can form its own phase or get 
dissolved in the water, and a gas component which can form its own phase or get 
dissolved in the oil. This model may be written as a system of coupled partial differential 
equations (PDEs). In order to solve to the systems numerically, we discretise and apply an 
iterative nonlinear solver (e.g. the Newton-Raphson method) to the resulting nonlinear 
system. We obtain a very sparse linear system of the form 

𝐴𝑥 =  [
𝐴𝑝𝑝 𝐴𝑝𝑠

𝐴𝑠𝑝 𝐴𝑠𝑠
] [

𝑥𝑝

𝑥𝑠
] = [

𝑏𝑝

𝑏𝑠
] = 𝑏,                               (1) 

where 𝐴𝑝𝑝 is a block matrix representing the “pressure coefficients”, 𝐴𝑠𝑠 is a block matrix 

representing the coefficients of the “secondary variables” (typically 

concentrations/saturations), and 𝐴𝑝𝑠 and 𝐴𝑠𝑝 represent the respective coupling 

coefficients. The solution of the system is the vector 𝑥, where 𝑥𝑝 is the pressure variable 

and 𝑥𝑠 represents the secondary variables. The vector 𝑏 is the residual of the system, where 

𝑏𝑝 is the residual of the pressure equation and 𝑏𝑠 represents the residuals of the secondary 

equations. The pressure equation is represented by the first row of this system, and the 
second row represents the equations for the secondary variables of the model. The 
pressure equation is different from the equations for the secondary variables, in that it is 
elliptic, and the other equations are not. The ellipticity of the pressure equation means that 
the effect of the pressure is global, i.e. a change in pressure in one part of the reservoir 
influences the flow everywhere in the reservoir. In contrast, the secondary variables are 
local in nature.  

Decoupling the Pressure Equation 
A crucial part of the effective solution of the linear systems is the choice of 
preconditioners. These are transformations that one applies to a linear system in order to 
make it easier to solve by iterative methods. The different nature of the pressure equation 
and secondary equations means that a separate preconditioner is needed for each set. 
Indeed, the elliptic-like nature of the pressure variable requires a preconditioner that 
conserves the global influence of the pressure. For the other equations, a local 
preconditioning is sufficient.  

In order to treat the pressure separately from the secondary variables, we must first reduce 
the coupling between them. A system is fully decoupled if the variables do not interact 
with each other and each variable can be solved for independently. A full decoupling 

(𝐴𝑝𝑠 = 0) is not numerically feasible and thus we only seek to weaken the coupling, so that 

a large change in the secondary variables only makes a very small change in the pressure. In 
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fact, we seek to concentrate the elliptic properties of the system inside the pressure block 

𝐴𝑝𝑝. By doing this, we can then precondition the pressure equation (represented by 

𝐴𝑝𝑝𝑥𝑝 = 𝑏𝑝) with a global preconditioner, and the rest of the system with a local 

preconditioner.  

Glossary of Terms 
 Decoupling operator: A matrix multiplied on both sides of the linear system in order 

to reduce the coupling between the equations. 

 Diagonal dominance: A matrix is diagonally dominant if the coefficients on its 
diagonal are greater than the sums of the absolute values of the off-diagonal 
coefficients of their respective rows. 

 M-matrix: A diagonally dominant matrix with positive coefficients on its diagonal, 
and non-positive off-diagonal coefficients. The M-matrix property is very important 
for the convergence of the algebraic multigrid (AMG) method.  

 Sparse matrix: A matrix is sparse if it has relatively few non-zero coefficients. The 
sparsity pattern of a matrix relates to where these non-zero coefficients are located 
in the matrix.  

 Norm: A norm is a function that assigns a positive number to a vector or a matrix. 
It serves as an indicator of the magnitude of vectors or matrices. The Euclidean 

norm of a vector 𝑥 gives the ordinary distance from the origin to the point 𝑥. 

2. Constrained Pressure Residual 
Preconditioner 

The constrained pressure residual (CPR) preconditioner was introduced in the 80s and is 
still used today in commercial reservoir simulators. This method consists of a decoupling 
of the pressure equation followed by a two-stage preconditioning. The resulting linear 
system is solved using an iterative solution method.  

Two-Stage Preconditioner  
After applying a suitable decoupling operator to the linear system, we define a two-stage 
preconditioner as follows: 

1. Solve the pressure system: 𝐴𝑝𝑝𝑥𝑝 = 𝑏𝑝 for 𝑥𝑝; 

2. Solve the full system and update 𝑥: 𝑥 = 𝑀−1 �̂� + [
𝑥𝑝

0
], 

where �̂� = 𝑏 − 𝐴 [
𝑥𝑝

0
], and the preconditioner 𝑀−1 is an approximation of 𝐴−1. This two-

stage process relies on a high quality decoupling. In fact, if the decoupling is not perfect 

(𝐴𝑝𝑠 ≠ 0), the error from this two-stage process is related to the norm of 𝐴𝑝𝑠. Thus, it is 

key that the decoupling makes the 𝐴𝑝𝑠 block small.  

The first stage of the preconditioner is where global preconditioning is used to solve the 
pressure system. An example of a global preconditioner is algebraic multigrid (AMG), 
which is known to preserve global properties of systems. The preconditioner in the second 
stage only needs to conserve local properties, so simple methods such as incomplete LU 
factorisation (ILU) are sufficient and very efficient.  

Currently Used Decoupling Operators 
Apart from weakening the couplings between equations, a decoupling operator should also 
improve or, at the very least, maintain desirable properties of the linear system. For 
example, the AMG preconditioner relies on the decoupled pressure block satisfying M-
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matrix properties. These properties are usually observed in elliptic-like systems such as the 
pressure equation. Consequently, the original pressure block usually satisfies them.  

Only minor improvements have been proposed to the decoupling operators used in CPR 
since its creation. However, the models used in reservoir simulation are constantly evolving 
and the usual decoupling operators should be adapted to reflect this. Two widely used 
decoupling operators are true-IMPES (TI) and quasi-IMPES (QI). The QI decoupling 

operator reduces 𝐴𝑝𝑠 by setting its main diagonal blocks to zero. In many cases, this results 

in a high quality decoupling using QI. However, this technique does not consider the off-

diagonal terms of 𝐴𝑝𝑠. Hence, we will formulate methods that consider the whole of 𝐴𝑝𝑠 

to reduce the coupling.  

All the decoupling operators we considered are block diagonal matrices. This ensures that 
the decoupled system maintains a similar sparsity pattern to that of the original system. 
Moreover, this allows conservation of desirable properties of the pressure block such as 
M-matrix properties and prevent additional fill in the matrices. 

Even if the TI and QI decoupling operators behave well most of the time, it is not always 
the case. Hence, valuable computational resources (e.g. AMG) are wasted on solving an 
inaccurate representation of the pressure equation. The main purpose of an improved 
decoupling operator is to have a more robust decoupling in the cases where QI and TI fail. 

New Decoupling Operators 
Our first newly introduced decoupling operator, which we call the least squares (LSQ) 

decoupling operator, seeks to minimise the norm of 𝐴𝑝𝑠 to weaken the couplings between 

pressure and the secondary variables, whilst retaining the structure of a block diagonal 
matrix. The coefficients of each row in this decoupling operator are the solution of a least 

squares problem which minimises the Euclidean norm of the rows of 𝐴𝑝𝑠. 

In, the QI, TI and LSQ approaches, we only consider 𝐴𝑝𝑠 when choosing the coefficients 

inside the decoupling operator. However, the properties of the pressure block are very 
important to the convergence of the pressure solution. Hence, we create another 
decoupling operator inspired by the Dynamic Row Sum (DRS) preconditioner, which 

seeks to impose diagonal dominance in 𝐴𝑝𝑝. To the minimisation problems in LSQ, we 

add a linear constraint on the coefficients adapted from the DRS condition. We denote this 
method LSQDRS.  

We can generalise both the QI and LSQ approaches by using concepts for sparse 
approximate inverse (SPAI) preconditioners, a method for the approximation of a matrix 
inverse given a specific sparsity pattern. Indeed, the LSQ decoupling operator can be 

obtained by minimising the norm of 𝐴𝑝𝑠 while fixing the sparsity pattern of the decoupling 

operator to be block diagonal. By also considering only the terms in 𝐴𝑝𝑠 and 𝐴𝑠𝑠 within 

the block diagonal sparsity pattern, we recover QI.    

Reservoir simulations currently undertaken by the oil industry include very large domains 
where the properties of the rock and fluids can vary greatly. Consequently, different 
decoupling operators may be appropriate for different parts of the reservoir. This implies 
using a different decoupling strategy per row. In our case, we test a strategy where QI is 
used on some rows and LSQDRS on the others, depending on the properties of those 
rows. We denote this method QI-LSQDRS. 

Another reason why the usual decoupling approaches fail may be that pressure is not the 
correct variable to decouple. For example, there are thermal cases where temperature can 
have a significant influence on the flow. In those cases, one option may simply be to use 
temperature instead of pressure as the primary variable to be decoupled. Temperature 
usually has a global influence in the reservoir, resulting in similar properties to those of 
pressure. The hope for AMG is that the newly considered block of temperature 
coefficients satisfies the M-matrix properties usually satisfied by the pressure block.  
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3. Results 
In this section, we discuss some of the performance tests that were done for the reservoir 
simulator. We start by looking at the change of performance when using a different row 
scaling, and we then compare the performance of the newly introduced decoupling 
operators. Finally, we look at some of the properties of the system obtained from the 
decoupling in a case where the original QI and TI decoupling operators struggle.  

Row Scaling 
In order to prevent the decoupling operator from creating great variations in the pressure 
residual, we apply a row scaling. Since reservoir simulation models are constantly becoming 
more complex, it is important to consider adapting the previously used row scaling. To 
evaluate our new scaling, we have implemented 10 test simulations which are 
representative of various client cases. We calculate the time it takes to complete the 
simulation in each case, divide these by the time taken to run each test without our scaling, 
and then show the results in Figure 1. We see that we have improved the performance of 
the simulator in almost all cases; the best improvement (seen in Case 3) was 31%. 

Figure 1: Relative elapsed time to solve the test cases using the new scaling (dark) and the 
original scaling (light). 

Test Case 
We now compare the performance of the reservoir simulator using some of the new 
decoupling operators for a single test case. The test case is a black-oil model with three 
phases present: oil, water and gas. During the simulation, water is injected in the reservoir 
to increase pressure. This part of the simulation is called the injection phase. We test the 
following decoupling operators: LSQ, LSQDRS, and QI-LSQDRS and compare them to 
the original TI and QI. In Figure 2, we illustrate the cumulative number of linear iterations 
needed to solve the test case at each point in the simulation.  We observe that the 
LSQDRS decoupling operator does not perform as well as the others in the long term. We 
also see that QI-LSQDRS performs slightly better than QI, which is the second most 
efficient method. For this case, TI does not perform as well as QI, as it struggles more 
during the injection phase, represented by the step in the number of iterations, seen in the 
left-hand side of the data. The performance of the LSQ decoupling operator is not 
illustrated in Figure 2, because it fails to converge multiple times within the convergence 
criteria of the linear solver.  
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Figure 2: For a black-oil thermal model, comparison of the performance (number of linear 
iterations) of decoupling operators LSQDRS (dotted), TI (dashed), QI (solid) and QI-LSQDRS 
(dash-dot), as the reservoir simulation progresses in time. The numbers have been removed for 
confidentiality reasons. 

Properties of the System  
We now investigate the properties of a linear system from the test case. We choose a 
specific system where the linear solver performs better without the CPR preconditioning. 
In this case, using no decoupling results in convergence in a lower number of linear 
iterations than by using the QI or TI decoupling operators 

We find that LSQ weakens couplings in the pressure system the most (small norm of 𝐴𝑝𝑠), 

followed closely by QI. The parameters chosen for the DRS constraints are very stringent, 
which may explain why the couplings for LSQDRS and QI-LSQDRS are not weakened 
significantly. As for the decoupling of temperature, the reduction in the strength of the 
couplings is lower, but this can be explained by the fact that these couplings were not as 
strong to begin with.  

We also observe (results not shown) that the pressure block obtained from the LSQ 
decoupling operator has many violations of M-matrix properties. This explains its poor 
performance because AMG was used to solve the pressure system. Nonetheless, these 
properties are not as important for other solvers. The other decoupling operators mostly 
satisfy M-matrix properties. Decoupling temperature instead of pressure also results in a 
temperature block that does not satisfy M-matrix properties for every row. This indicates 
that the temperature variable does not satisfy elliptic-like properties everywhere in the 
reservoir. 

After investigating all the desirable properties a decoupling operator should have, we came 
to the realisation that poor performance of CPR might not be due to the violation of those 
properties. Indeed, we discovered a correlation between poor performance and an 
additional property that had not been considered before. This property is relative to how 

much the decoupling operator modifies the pressure residual 𝑏𝑝. We observe (results not 

shown) that the QI, TI and LSQ decoupling operators modify the pressure residual 
substantially. This discrepancy in the size of residuals may cause problems in the 
convergence of iterative solution methods. Because the LSQDRS approach allows us to 
put bounds on the size of the coefficients of the decoupling operator, the pressure residual 
retains much of its original magnitude. This was also observed for the QI-LSQDRS 
decoupling operator, which retains both good qualities of the QI and LSQDRS decoupling 
operators. Decoupling temperature also results in a decoupled system where the pressure 
residual is similar to the original one. 
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4. Discussion, Conclusions and 
Recommendations 

In this report, we investigated the role of decoupling operators in the CPR preconditioner. 
We developed several decoupling operators which reduce the couplings in the pressure 
equation while retaining desirable properties for iterative solution methods such as AMG. 
During that process, we discovered an additional property related to the pressure residual, 
which provided an indicator of performance. Furthermore, we investigated the 
performance of the newly introduced decoupling operators, as well as the properties of the 
resulting linear systems. 

Conserving the Pressure Residual 
The goal of this project was to create decoupling operators that induce the desirable 

properties (small 𝐴𝑝𝑠, M-Matrix) on the resulting system. However, satisfying these 

properties was not enough to improve the performance of the solver, which indicates that 
other considerations have to be taken into account. Indeed, we discovered a correlation 
between poor performance and how much the decoupling modifies the pressure residual. 
Further study will determine exactly what this property is, and how to measure and enforce 
it in a decoupling operator. One early finding from the LSQDRS decoupling suggests that 
bounds on the size of the coefficients in the decoupling operator may make it more robust. 

Row-Dependent Decoupling Strategy 
A key conclusion is that using different decoupling strategies for different rows is 
promising in order to tackle the properties of new reservoir models. The performance of 
the QI-LSQDRS decoupling operator in the thermal case indicates that this technique is 
viable. Additionally, the implementation and choice of parameters for the LSQDRS 
decoupling operator, as well as the choice of the condition to switch from QI to LSQDRS 
were not optimised by any means. Further investigation is needed into the choice of 
parameters for the multiple newly introduced decoupling operators. One advantage of this 
row-dependent decoupling approach is that its implementation does not require much 
change in the structure of the current implementation. Another simple alternative is to 
automate the use of different decoupling operators at different times in the simulation. 
Testing of different flavours of this method should be given priority.  

Non-Pressure Decoupling 
For thermal cases, temperature has a global influence in some cases. The original goal of 
CPR was to concentrate the global properties of the system inside the pressure block, so 
that global preconditioning can be done for this block and local preconditioning be done 
for the non-pressure system. Therefore, ignoring temperature or other variables with 
global influence may result in the local preconditioning being insufficient to conserve 
global properties. Although promising, the implementation of thermal decoupling would 
take considerable effort, and thus further testing should be done. 

5. Potential Impact 
Schlumberger is interested in increasing the performance of its reservoir simulation 
software and making it more robust to the various cases presented by its clients. Revisiting 
how the decoupling is done in CPR is essential for the software to remain cutting edge.  

Tom Jönsthövel, Senior Scientific Software Engineer, Schlumberger, commented, “The 
research on the algebraic decoupling has led to valuable insights in how to further optimise the performance 
of our simulators and to make even better use of available computational resources which is key to our 
clients.” 

Christopher Lemon, Software Engineer, Schlumberger, commented, “The highly focused 
investigation has highlighted areas of potential development for our simulators. One of these has already 
shown promise for offering improved performance, and will be taken forward in a future release.” 


