On continuous solutions to scalar balance laws

G. Alberti, L. Caravenna, S.B.

September 11, 2012
Introduction
 Statement of the problem

Distributional to broad
 Dafermos computation in the convex case
 The non convex case

Broad to distributional
 Monotone flow
 Entropy solution
 Continuity estimate of broad solutions

Identification of the source terms
 Uniqueness of the derivative along characteristics
 Existence of a universal source
 The uniformly convex case

Bibliography
Table of Contents

Introduction
 Statement of the problem

Distributional to broad
 Dafermos computation in the convex case
 The non convex case

Broad to distributional
 Monotone flow
 Entropy solution
 Continuity estimate of broad solutions

Identification of the source terms
 Uniqueness of the derivative along characteristics
 Existence of a universal source
 The uniformly convex case

Bibliography
Introduction

We consider the balance law

\[u_t + f(u)_x = g(t, x) \in L^\infty(\mathbb{R}^2), \quad u \in C(\mathbb{R}^2, \mathbb{R}), \quad f : \mathbb{R} \to \mathbb{R}. \quad (1) \]

If \(u \) is smooth and \(g \) continuous, then the PDE is equivalent to

\[u_t + \lambda(u)u_x = g, \quad \lambda := \frac{df}{du} \]

\[\frac{d\gamma}{dt} = \lambda(u), \quad \frac{d}{dt} u(t, \gamma(t)) = g(t, \gamma(t)). \quad (2) \]

The converse is also true: a smooth solution \(u = u(t, x) \) of the above ODE yields a solution to the PDE.
Introduction

We consider the balance law

\[u_t + f(u)_x = g(t, x) \in L^\infty(\mathbb{R}^2), \quad u \in C(\mathbb{R}^2, \mathbb{R}), \quad f : \mathbb{R} \to \mathbb{R}. \quad (1) \]

If \(u \) is smooth and \(g \) continuous, then the PDE is equivalent to

\[u_t + \lambda(u)u_x = g, \quad \lambda := \frac{df}{du} \]

\[\frac{d\gamma}{dt} = \lambda(u), \quad \frac{d}{dt} u(t, \gamma(t)) = g(t, \gamma(t)). \quad (2) \]

The converse is also true: a smooth solution \(u = u(t, x) \) of the above ODE yields a solution to the PDE.

We are interested what of the above equivalence is valid under the assumptions \(u \) continuous and \(g \) bounded Borel function.

Remark 1
By the finite speed of propagation, the results can be restated locally.
Problems we study

We will consider the relations among the following statements: for general smooth flux f

1. u distributional solution

$$u_t + f(u)_x = g(t, x) \in L^\infty(\mathbb{R}^2),$$

2. u broad solution

if $\gamma \left(\dot{\gamma} = \lambda(u(t, \gamma)) \right)$ \Rightarrow \frac{d}{dt} u \circ \gamma = \tilde{g}_\gamma(t) \in L^\infty(\mathbb{R}),$

3. there exists a universal Borel source $\hat{g} : \mathbb{R}^2 \rightarrow \mathbb{R}$

$$\int_{\mathbb{R}^2} |g - \hat{g}|L^2 = 0 \quad \text{and} \quad \int_{\mathbb{R}} |\tilde{g}_\gamma(t) - \hat{g}(t, \gamma(t))| dt = 0.$$
Table of Contents

Introduction
 Statement of the problem

Distributional to broad
 Dafermos computation in the convex case
 The non convex case

Broad to distributional
 Monotone flow
 Entropy solution
 Continuity estimate of broad solutions

Identification of the source terms
 Uniqueness of the derivative along characteristics
 Existence of a universal source
 The uniformly convex case

Bibliography
The case g continuous and f convex

If γ is a characteristic, the balance of $\text{div}_{t,x}(u, f(u))$ in the region

$$\Gamma^{\epsilon} := \{ t \in [t_1, t_2], \gamma(t) \leq x \leq \gamma(t) + \epsilon \}$$

yields

$$\int_{\Gamma^{\epsilon}} g(t, x) dtdx = \int_0^{\epsilon} \left(u(t_2, \gamma(t_2) + x) - u(t_1, \gamma(t_1) + x) \right) dx$$

$$+ \int_{t_1}^{t_2} \left[f(u(t, \gamma(t) + \epsilon)) - f(u(t, \gamma(t))) - \lambda(u(t, \gamma(t)))(u(t, \gamma(t) + \epsilon) - u(t, \gamma(t))) \right] dt$$

$$\geq \int_0^{\epsilon} \left(u(t_2, \gamma(t_2) + x) - u(t_1, \gamma(t_1) + x) \right) dx,$$

because $f(u') \geq f(u) + \lambda(u)(u' - u)$ by convexity.
The balance on the region

\[\Gamma^{-\epsilon} := \{ t \in [t_1, t_2], \gamma(t) - \epsilon \leq x \leq \gamma(t) \} \]

yields the opposite inequality

\[
\int_{\Gamma^{-\epsilon}} g(t, x) dtdx \leq \int_{-\epsilon}^{0} (u(t_2, \gamma(t_2) + x) - u(t_1, \gamma(t_1) + x)) dx.
\]

Dividing by \(\epsilon \) and letting \(\epsilon \to 0 \) one recovers

\[
u(t_2, \gamma(t_2)) - u(t_1, \gamma(t_1)) = \int_{t_1}^{t_2} g(t, \gamma(t)) dt,
\]

which implies

\[
\frac{d}{dt} u \circ \gamma = g(t, \gamma(t)).
\]

Proposition 1 (Dafermos)

If \(f \) convex, \(g \) continuous then \(\hat{g} = g \).
A counterexample

Let \(f \) be strictly increasing, and such that the set

\[
N := \{ u : f'(u) = f''(u) = 0 \}
\]

satisfies \(\mathcal{L}^1(N) > 0 \).

Define

\[
\tilde{f}(u) = f(u + \mathcal{L}^1(N \cap [0, u])), \quad \tilde{f}'(u) = f'(f^{-1}(\tilde{f}(u))).
\]

The function \(u(x) := f^{-1}(x) \) is a solution to \(u_t + f(u)_x = 1 \), and the curve \(\gamma(t) := \tilde{f}(t) \) is a characteristic:

\[
\dot{\gamma} = \tilde{f}'(t) = f'(f^{-1}(\tilde{f}(t))) = f'(u(\gamma(t))).
\]

However

\[
\frac{d}{dt}f^{-1}(\tilde{f}(t)) = \mathcal{L}^1 + f_\# \mathcal{L}^1 \perp N, \quad f_\# \mathcal{L}^1 \perp N \perp \mathcal{L}^1.
\]
Given f, partition \mathbb{R} into

1. a countable family of disjoint open sets $\{I_i = (u_i^-, u_i^+)\}_{i \in \mathbb{N}}$ where $f_{\perp I_i}$ is either convex or concave,

2. a residual set of inflection points \mathcal{I}.

Theorem 1

If $\mathcal{L}^1(\mathcal{I}) = 0$, then u is Lipschitz along each characteristic.
Given \(f \), partition \(\mathbb{R} \) into

1. a countable family of disjoint open sets \(\{ I_i = (u_i^-, u_i^+) \}_{i \in \mathbb{N}} \)
 where \(f_{|I_i} \) is either convex or concave,
2. a residual set of inflection points \(\mathcal{I} \).

Theorem 1

If \(L^1(\mathcal{I}) = 0 \), then \(u \) is Lipschitz along each characteristic.

Thus

\[u \text{ distributional solution} \quad \overset{L^1(\mathcal{I})=0}{\Rightarrow} \quad u \text{ broad solution} \]

otherwise counterexamples.
Proof.
Proposition 1 implies that

\[u \circ \gamma(t_1), u \circ \gamma(t_2) \in \overline{I}_i \left(|u \circ \gamma(t_2) - u \circ \gamma(t_1)| \leq |t_2 - t_1| \right). \]

Since \(\mathcal{L}^1(I) = 0 \), for \(v^t := u \circ \gamma(t), t_1 < t_2, l_{i_2} \ni v^{t_2} \geq v^{t_1} \in I_{i_1} \)

\[v^{t_2} - v^{t_1} = \mathcal{L}^1([v^{t_1}, v^{t_2}]) = \bigcup_{i} \mathcal{L}^1([v^{t_1}, v^{t_2}] \cap I_i) \]

\[= v^{t_2} - u_{i_2}^- + \sum_{l_i \subset [v^{t_1}, v^{t_2}]} (u_i^+ - u_i^-) + u_{i_1}^+ - v^{t_1} \]

\[= v^{t_2} - v^{t_{i_2}}^- + \sum_{l_i \subset [v^{t_1}, v^{t_2}]} (v_i^+ - v_i^-) + v_{i_1}^+ - v^{t_1} \]

\[\leq t_2 - t_{i_2}^- + \sum_{l_i \subset [v^{t_1}, v^{t_2}]} (t_i^+ - t_i^-) + t_{i_1}^+ - t_1 \leq t_2 - t_1. \]
Monotone flow

Consider the continuous ODE in \mathbb{R}

$$\dot{x} = \lambda(t, x). \quad (3)$$

Proposition 2

There exists a continuous flow $\chi(t, y)$ such that

1. $t \mapsto \chi(t, y)$ is a solution to (3),
2. $y \mapsto \chi(t, y)$ is increasing.

Proof.

For every point point (\bar{t}, \bar{x}) consider the curve

$$\gamma_{\bar{t}, \bar{x}}(t) := \begin{cases}
\max\{\gamma(t) : \gamma(\bar{t}) = \bar{x}\} & t \leq \bar{t}, \\
\min\{\gamma(t) : \gamma(\bar{t}) = \bar{x}\} & t \geq \bar{t},
\end{cases}$$

and choose suitable parameterization. \qed
Monotone approximations

Fix now two characteristics \(\chi(t, y_1) \leq \chi(t, y_2) \), solutions to \(\dot{x} = \lambda(u(t, x)) \), and define for \(u(t, \chi(t, y_1)) \leq u(t, \chi(t, y_2)) \)

\[
u'(t, x) = u(t, \chi(t, y_1)) \lor (u(t, x) \land u(t, \chi(t, y_2)))
\]

where \(\chi(t, y_1) \leq x \leq \chi(t, \bar{y}_2) \). Let now \(\chi' \) be the monotone flow for \(u' \) in this interval.
Monotone approximations

Fix now two characteristics \(\chi(t, y_1) \leq \chi(t, y_2) \), solutions to \(\dot{x} = \lambda(u(t, x)) \), and define for \(u(t, \chi(t, y_1)) \leq u(t, \chi(t, y_2)) \)

\[
u'(t, x) = u(t, \chi(t, y_1)) \lor (u(t, x) \land u(t, \chi(t, y_2)))
\]

where \(\chi(t, y_1) \leq x \leq \chi(t, \bar{y}_2) \). Let now \(\chi' \) be the monotone flow for \(u' \) in this interval. Fixing a characteristic curve \(\chi'(t, y') \) in between, define

\[
u''(t, x) = \begin{cases}
u'(t, x) \land \nu'(t, \chi'(t, y')) & \chi(t, y_1) \leq x \leq \chi'(t, y'), \\ \nu'(t, x) \lor \nu'(t, \chi'(t, y')) & \chi'(t, y') < x \leq \chi(t, y_2), \end{cases}
\]

and let \(\chi'' \) be the new monotone flow with \(\chi''(t, y') = \chi'(t, y') \).
Monotone approximations

Fix now two characteristics $\chi(t, y_1) \leq \chi(t, y_2)$, solutions to $\dot{x} = \lambda(u(t, x))$, and define for $u(t, \chi(t, y_1)) \leq u(t, \chi(t, y_2))$

$$u'(t, x) = u(t, \chi(t, y_1)) \lor (u(t, x) \land u(t, \chi(t, y_2)))$$

where $\chi(t, y_1) \leq x \leq \chi(t, \bar{y}_2)$. Let now χ' be the monotone flow for u' in this interval.

Fixing a characteristic curve $\chi'(t, y')$ in between, define

$$u''(t, x) = \begin{cases} u'(t, x) \land u'(t, \chi'(t, y')) & \chi(t, y_1) \leq x \leq \chi'(t, y'), \\ u'(t, x) \lor u'(t, \chi'(t, y')) & \chi'(t, y') < x \leq \chi(t, y_2), \end{cases}$$

and let χ'' be the new monotone flow with $\chi''(t, y') = \chi'(t, y')$.

By repeating countably many times, we obtain a function u_{mon} such that $x \mapsto u_{\text{mon}}(t, x)$ increasing, and

$$u \circ \gamma \ 1\text{-Lipschitz} \quad \Rightarrow \quad u_{\text{mon}} \circ \chi_{\text{mon}} \ 1\text{-Lipschitz}.$$
If χ_{mon}, u_{mon} are monotone, with $\dot{\chi}_{\text{mon}} = \lambda(u_{\text{mon}})$, then by writing

$$
\int dy u_{\text{mon}}(t) dt = \int \nu_y(dt) m(dy),
$$

one obtains $d_y \chi_{t_{\text{mon}}} = \lambda'(u_{\text{mon}})d_y u_{\text{mon}}(t) \in \mathcal{M}(\mathbb{R})$ and

$$
\int dy \chi_{\text{mon}}(t) dt = \int \left(\int_0^t \lambda'(u_{\text{mon}}(s)) d_y u_{\text{mon}}(s) ds \right) dt \\
= \int \left(\int_0^t \lambda'(u_{\text{mon}}(s)) \nu_y(ds) \right) m(dy) dt.
$$

Thus the disintegration of $\int dy \chi_{\text{mon}}(t) dt$ along characteristics is a.c. w.r.t. time.

Being the parameterization y arbitrary, we can take $m \leq \mathcal{L}^1$, and

$$
\chi_{\text{mon},a}(t, y) = \chi_{\text{mon}}(t, y) + ay \quad \text{(i.e. enlarging } [\chi(t, y_1), \chi(t, y_2)])
$$

we have $a \leq \chi_{y_{\text{mon}},a} \leq (1 + a)$.
The balance for $\phi(t, \chi^{-1}(t, x))$ is estimated by

\[
\int \left((\phi_t - \lambda \phi_x)u_{\text{mon}} + \phi_x f(u_{\text{mon}}) \right) dx dt \\
= \int \phi_t u_{\text{mon}} \chi_y dy dt + \int \phi_y (f(u_{\text{mon}}) - \lambda (u_{\text{mon}})u_{\text{mon}}) dy dt \\
= -\int \phi \frac{d}{dt} (u_{\text{mon}} \circ \chi_{\text{mon}}) \chi_y dy dt
\]

because if $u_y \in \mathcal{M}(\mathbb{R})$ then

\[
d_y (f(u) - \lambda(u)u) = -u \lambda'(u) d_y u = -ud_y \chi_t.
\]

Proposition 3

If u is a 1-Lipschitz broad solution such that $x \mapsto u(t, x)$ is monotone, then is it also a distributional solution with source term $g \in [-1, 1]$.
By repeating this procedure on locally finitely many sheets

\[\mathbb{R}^2 = \bigcup_{j \in \mathbb{N}} [\chi(t, y_j), \chi(t, y_{j+1})] \]

we obtain a family of continuous locally BV solutions \(u_{\{y_j\}} \) converging to \(u \) in \(C^0 \). Hence

Theorem 2

The function \(u \) is a distributional solution with source term \(g \) bounded by 1 in \(L^\infty \).
By repeating this procedure on locally finitely many sheets

$$\mathbb{R}^2 = \bigcup_{j \in \mathbb{N}} [\chi(t, y_j), \chi(t, y_{j+1})]$$

we obtain a family of continuous locally BV solutions $u^{\{y_j\}}$ converging to u in C^0. Hence

Theorem 2

The function u is a distributional solution with source term g bounded by 1 in L^∞.

Thus

$$u \text{ distributional solution} \iff u \text{ broad solution}.$$

Remark 2

Since $u^{\{y_j\}} \in \text{BV} \cap C^0$, then in the sense of measures

$$u_t^{\{y_j\}} + \lambda(u^{\{y_j\}})u_x^{\{y_j\}} = g^{\{y_j\}} L^2.$$
Entropy equation

For continuous BV solution we have for \(q' = \eta' \lambda \)

\[
\eta(u)_t + q(u)_x = \eta'(u)(u_t + \lambda(u)u_x) = \eta'(u)g(t,x), \quad (4)
\]

and since entropy solutions are stable w.r.t. strong convergence, we conclude that

Corollary 1

The solution \(u \) is entropic if \(L^1(I) = 0 \).
Entropy equation

For continuous BV solution we have for \(q' = \eta' \lambda \)

\[
\eta(u)_t + q(u)_x = \eta'(u)(u_t + \lambda(u)u_x) = \eta'(u)g(t, x),
\]

(4)

and since entropy solutions are stable w.r.t. strong convergence, we conclude that

Corollary 1

The solution \(u \) is entropic if \(L^1(I) = 0 \).

In the general case, the entropy equation (4) holds if \(\eta \) is linear in a neighborhood of \(I \). Since \(\text{int } I = \emptyset \), we can approximate every \(\eta \) with a family \(\eta^n \) linear in a neighborhood of \(I \), and thus

Proposition 4

If \(u \) is a continuous solution to a balance laws with \(L^\infty \) source term, then it is entropic.
Continuity estimate in the strictly convex case

Let \(u \) be a broad solution and \(f \) strictly convex, and consider

\[
u(t, x_1) = \bar{u} + v, \quad u(t, x_2) = \bar{u} - v, \quad x_1 < x_2, \quad v > 0.
\]

To avoid the shock formation, the best situation is

\[
u \circ \gamma_1(t + s) = \bar{u} + v - \|g\|_\infty s, \quad u \circ \gamma_2(t + s) = \bar{u} - v + \|g\|_\infty s
\]

\[
\gamma_1 = x_1 + f(\bar{u} + v) - f(u \circ \gamma_1(t + s)), \quad \gamma_2 = x_2 + f(u \circ \gamma_2(t + s)) - f(\bar{u} - v)
\]

At the meeting point \(u \circ \gamma_i = \bar{u} \), i.e.

\[
x_2 - x_1 \geq f(u_1) + f(u_2) - 2f\left(\frac{u_1 + u_2}{2}\right). \quad (5)
\]

Lemma 1

If \(f \) is strictly convex, then \(u \) satisfies (5). In particular, if \(f = u^2/2 \), then \(u \) is 1/2-Hölder continuous.
Table of Contents

Introduction
 Statement of the problem

Distributional to broad
 Dafermos computation in the convex case
 The non convex case

Broad to distributional
 Monotone flow
 Entropy solution
 Continuity estimate of broad solutions

Identification of the source terms
 Uniqueness of the derivative along characteristics
 Existence of a universal source
 The uniformly convex case

Bibliography
Uniqueness of $\{\tilde{g}_\gamma(t) : \gamma(t) = x\}$

The source term \tilde{g} is a priori a function of the characteristic,

$$\tilde{G}(t, x) := \{\tilde{g}_\gamma(t) : \gamma(t) = x\}$$

is a multifunction.

Theorem 3

Up to a residual set N negligible along each characteristic, it holds

$$\#\{\tilde{g}(t) : \gamma(t) = x\} \leq 1.$$ *

For the proof, we subdivide the each interval I_i of convexity/concavity into

- closed intervals with non empty interior where f is linear,
- open intervals where f is strictly convex.
Proof.
We have to consider 3 cases.

Inflection points.
Since $L_1(I, u \circ \gamma) = 0$, for all $u \circ \gamma$ Lipschitz $d\gamma dt u \circ \gamma \in L_1 - a.e.$.

Linear intervals.
Begin λ constant, the characteristic curves do not overlaps so that \tilde{g} is uniquely defined.

Strictly convex intervals.
If \tilde{g} is a Borel selection of \tilde{G}, since f is strictly convex, it is enough to prove that for fixed $\epsilon, \delta > 0$, $\bar{\gamma}$ the following set is negligible:

$$\left\{ t : \frac{d}{dt} \lambda(u \circ \bar{\gamma}(t + s)) \leq \lambda(u \circ \gamma(t)) + (\tilde{g} \circ \gamma(t) - \epsilon)s, |s| < \delta \right\}$$

The points in this set must have a distance of at least 2δ, otherwise at the crossing the curves $\tilde{\gamma}$ are transversal.
Proof.
We have to consider 3 cases.

Inflection points. Since $L^1(I) = 0$, for all $u \circ \gamma$ Lipschitz

$$\frac{d}{dt} u \circ \gamma \big|_{u \circ \gamma \in I} = 0 \quad L^1 - a.e.$$
Proof.
We have to consider 3 cases.

Inflection points. Since \(L^1(I) = 0 \), for all \(u \circ \gamma \) Lipschitz

\[
\frac{d}{dt} u \circ \gamma \big|_{u \circ \gamma \in I} = 0 \quad L^1 - \text{a.e.}
\]

Linear intervals. Begin \(\lambda \) constant, the characteristic curves do not overlaps so that \(\tilde{g} \) is uniquely defined.
Proof.
We have to consider 3 cases.

Inflection points. Since $L^1(I) = 0$, for all $u \circ \gamma$ Lipschitz

$$\frac{d}{dt} u \circ \gamma \quad \text{for all} \quad u \circ \gamma \in I = 0 \quad L^1 - \text{a.e.}$$

Linear intervals. Begin λ constant, the characteristic curves do not overlaps so that \tilde{g} is uniquely defined.

Strictly convex intervals. If \tilde{g} is a Borel selection of \tilde{G}, since f is strictly convex, it is enough to prove that for fixed $\epsilon, \delta > 0$, $\bar{\gamma}$ the following set is negligible:

$$\left\{ t : \frac{d}{dt} \lambda(u \circ \bar{\gamma}(t + s)) \leq \lambda(u \circ \gamma(t) + (\tilde{g} \circ \gamma(t) - \epsilon)s), |s| < \delta \right\}.$$

the derivative of $u \circ \gamma$ is $\leq \tilde{g} - \epsilon$ in a neighborhood of size δ

The points in this set must have a distance of at least 2δ, otherwise at the crossing the curves $\tilde{\gamma}$ are transversal.
Broad solution not differentiable L^2-a.e. (t, x)

Since $g \in L^\infty$, then $g(t, \gamma(t))$ is meaningless, so that one cannot compute directly \tilde{g} from g.
Since $g \in L^\infty$, then $g(t, \gamma(t))$ is meaningless, so that one cannot compute directly \tilde{g} from g.

On the other hand, it is possible to construct a solution u of the balance law with strictly convex flux f and source $g \in L^\infty$ such that

$$L^2\left(\left\{(t, x) : \not\exists \gamma \left(\dot{\gamma} = \lambda(u), \gamma(t) = x, \exists \frac{du \circ \gamma}{dt}(t)\right)\right\}\right) > 0.$$

Hence in general we cannot compute g directly from \tilde{g}, and the function g, \tilde{g} live on different sets.
Existence of a universal source \hat{g}

However the two functions are compatible: define in fact

$$\hat{g}(t, x) := \begin{cases} \tilde{g}(t, x) & \exists \tilde{g}(t, x), \\ g(t, x) & \text{otherwise.} \end{cases}$$

Theorem 4

It holds $\|\hat{g} - g\|_\infty = 0$.

Existence of a universal source \(\hat{g} \)

However the two functions are compatible: define in fact

\[
\hat{g}(t, x) := \begin{cases}
\tilde{g}(t, x) & \exists \tilde{g}(t, x), \\
g(t, x) & \text{otherwise}.
\end{cases}
\]

Theorem 4

It holds \(\| \hat{g} - g \|_\infty = 0 \).

Hence

there exists a universal source \(\hat{g} \).
Proof.
Since \(y \) is an arbitrary parameterization, we can assume that

\[
(t, \chi^{-1}(t, y))\#\mathcal{L}^2 = \int \xi_y(t)m(dy), \quad m(dy) \leq \mathcal{L}^1.
\]

Thus the sets, where we need to compare \(g \) and \(\tilde{g} \) are the sets which are not negligible for both, which means

\[
d_y\chi(t, \chi^{-1}(t, x)) \sim a \in (0, \infty),
(t, x), (t, y = \chi^{-1}(t, x)) \text{ density point of } g, \tilde{g}, \text{ respectively.}
\]
Proof.
Since \(y \) is an arbitrary parameterization, we can assume that

\[
(t, \chi^{-1}(t, y)) \# \mathcal{L}^2 = \int \xi_y(t)m(dy), \quad m(dy) \leq \mathcal{L}^1.
\]

Thus the sets, where we need to compare \(g \) and \(\tilde{g} \) are the sets which are not negligible for both, which means

\[
d_y\chi(t, \chi^{-1}(t, x)) \sim a \in (0, \infty),
\]

\((t, x), (t, y = \chi^{-1}(t, x))\) density point of \(g, \tilde{g} \), respectively.

For \(\epsilon \ll 1 \), in the set \((t, x) + [-\epsilon, \epsilon]^2\) one thus has

\[
\lim_{h \to 0} \frac{1}{ah} \int_{-\epsilon}^{\epsilon} \chi(t + s, y \pm h) - \chi(t + s, y)ds = \pm 2\epsilon(1 + \mathcal{O}(\sqrt{\delta})),
\]

\[
\lim_{h \to 0} \frac{1}{ah} \left| \int_{-\epsilon}^{\epsilon} \int_{\chi(t, y)} g(t + s, z) - g(t, x)dzds \right| = \mathcal{O}(\sqrt{\delta}),
\]

up to a set of \(y \) of measure \(\leq \mathcal{O}(\sqrt{\delta}) \), hence \(\tilde{g} \) is close to \(g \).
The uniformly convex case

In the case \(f \) is uniformly convex outside a \(\mathcal{L}^1 \)-negligible set, then \(\tilde{g} \) determines \(g \) completely.

Theorem 5 (Rademacher)

If \(f \) uniformly convex, then the set where \(\tilde{g} \) is defined is of full Lebesgue measure in \((t, x) \).

Remark 3

The set where \(p > 1 \) has Lebesgue measure 0. Hence \(f \) uniformly convex \(\implies \tilde{g} = \hat{g} \) \(L^2 \)-a.e.
The uniformly convex case

In the case f is uniformly convex outside a \mathcal{L}^1-negligible set, then \tilde{g} determines g completely.

Theorem 5 (Rademacher)

If f uniformly convex, then the set where \tilde{g} is defined is of full Lebesgue measure in (t, x).

The above theorem can be extended to the following situation: there exists $p \geq 1$ such that for $\epsilon \ll 1$

\[
\frac{1}{\epsilon^{2p}} (f(u + \epsilon v) - f(u) - \epsilon f'(u)v) \sim c_2 \, v^{2p}
\]

Remark 3

The set where $p > 1$ has Lebesgue measure 0.
The uniformly convex case

In the case f is uniformly convex outside a \mathcal{L}^1-negligible set, then \tilde{g} determines g completely.

Theorem 5 (Rademacher)

If f uniformly convex, then the set where \tilde{g} is defined is of full Lebesgue measure in (t, x).

The above theorem can be extended to the following situation: there exists $p \geq 1$ such that for $\epsilon \ll 1$

\[
\frac{1}{\epsilon^{2p}} (f(u + \epsilon v) - f(u) - \epsilon f'(u)v) \sim_{c^2} v^{2p}
\]

Remark 3

The set where $p > 1$ has Lebesgue measure 0.

Hence

\[
f \text{ uniformly convex } \implies \tilde{g} = \hat{g} \mathcal{L}^2 - \text{a.e.}
\]
Proof for Burgers equation.

Step 1. The covering $Q_\epsilon t, x := \{ t \leq s \leq t + \epsilon/2, \chi(s, y - \epsilon x) \leq x \leq \chi(s, y + \epsilon x) \}$ satisfies Besicovitch covering property: in particular,
\[
\lim_{\epsilon \to 0} \frac{1}{L^2(Q_\epsilon t, x)} \int_{Q_\epsilon t, x} |g(s, z) - g(t, x)| \, ds \, dz = 0 \quad L^2 - \text{a.e. } (t, x).
\]

Step 2. In the above points, being $u(t, x)$ Lipschitz along characteristics and $1/2$-Hölder in x, the rescaling
\[
u_\epsilon(\tau, z) := \frac{1}{\epsilon} (u(t + \epsilon s, x + \epsilon/2 z) - u(t, x))
\] converges strongly to a solution to $u + (u^2/2)z = g(t, x)$.

Step 3. Dafermos computation applies.
Proof for Burgers equation.

Step 1. The covering

\[Q_{t,x}^\epsilon := \left\{ t \leq s \leq t + \epsilon/2, \chi(s, y_{x-\epsilon}) \leq x \leq \chi(s, y_{x+\epsilon}) \right\} \]

satisfies Besicovitch covering property: in particular,

\[\lim_{\epsilon \to 0} \frac{1}{\mathcal{L}^2(Q_{t,x}^\epsilon)} \int_{Q_{t,x}^\epsilon} |g(s, z) - g(t, x)| dsdz = 0 \quad \mathcal{L}^2 \text{ a.e. } (t, x). \]
Proof for Burgers equation.

Step 1. The covering

\[Q^\epsilon_{t,x} := \left\{ t \leq s \leq t + \epsilon/2, \chi(s, y_{x-\epsilon}) \leq x \leq \chi(s, y_{x+\epsilon}) \right\} \]

satisfies Besicovitch covering property: in particular,

\[\lim_{\epsilon \to 0} \frac{1}{\mathcal{L}^2(Q^\epsilon_{t,x})} \int_{Q^\epsilon_{t,x}} |g(s,z) - g(t,x)| \, ds \, dz = 0 \quad \mathcal{L}^2 - \text{a.e. \,(t,x)}. \]

Step 2. In the above points, being \(u(t, x) \) Lipschitz along characteristics and 1/2-Hölder in \(x \), the rescaling

\[u^\epsilon(\tau, z) := \frac{1}{\epsilon} \left(u(t + \epsilon \tau, x + \epsilon^2 z) - u(t, x) \right) \]

converges strongly to a solution to

\[u_s + (u^2/2)_z = g(t, x). \]
Proof for Burgers equation.

Step 1. The covering

\[Q^\epsilon_{t,x} := \left\{ t \leq s \leq t + \epsilon/2, \chi(s, y_{x-\epsilon}) \leq x \leq \chi(s, y_{x+\epsilon}) \right\} \]

satisfies Besicovitch covering property: in particular,

\[\lim_{\epsilon \to 0} \frac{1}{\mathcal{L}^2(Q^\epsilon_{t,x})} \int_{Q^\epsilon_{t,x}} |g(s, z) - g(t, x)| dsdz = 0 \quad \mathcal{L}^2 - \text{a.e.} \ (t, x). \]

Step 2. In the above points, being \(u(t, x) \) Lipschitz along characteristics and 1/2-Hölder in \(x \), the rescaling

\[u^\epsilon(\tau, z) := \frac{1}{\epsilon} \left(u(t + \epsilon \tau, x + \epsilon^2 z) - u(t, x) \right) \]

converges strongly to a solution to

\[u_s + \left(u^2 / 2 \right)_z = g(t, x). \]

Step 3. Dafermos computation applies.
Table of Contents

Introduction
 Statement of the problem

Distributional to broad
 Dafermos computation in the convex case
 The non convex case

Broad to distributional
 Monotone flow
 Entropy solution
 Continuity estimate of broad solutions

Identification of the source terms
 Uniqueness of the derivative along characteristics
 Existence of a universal source
 The uniformly convex case

Bibliography

F. Bigolin, L. Caravenna, and F. Serra Cassano. Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation.

F. Bigolin, and F. Serra Cassano. Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non linear first-order PDEs.

F. Bigolin, and F. Serra Cassano. Distributional solutions of Burgers equation and Intrinsic regular graphs in Heisenberg groups.

C. Dafermos. Continuous solutions for balance laws.

B. Franchi, R. Serapioni, and F. Serra Cassano. Differentiability of intrinsic Lipschitz Functions within Heisenberg groups.