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Lattice-Based Crypto

Lattice problems provides a strong fundation for Post-Quantum Crypto

Worst-case to average-case reduction [Ajtai, 1999, Regev, 2009]

SIS (Short Intreger Solution)

- - >
Worst-case Approx-SVP = { LWE (Learning With Error)

How hard is Approx-SVP ?
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Lattice-Based Crypto

Lattice problems provides a strong fundation for Post-Quantum Crypto

Worst-case to average-case reduction [Ajtai, 1999, Regev, 2009]

SIS (Short Intreger Solution)

- - >
Worst-case Approx-SVP = { LWE (Learning With Error)

How hard is Approx-SVP ? Depends on the Approximation factor .
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Lattices over Rings (Ideals, Modules)

Generic lattices are cumbersome! Key-size = O(n?).
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Lattices over Rings (Ideals, Modules)

Generic lattices are cumbersome! Key-size = O(n?).

NTRU Cryptosystems [Hoffstein et al., 1998, Hoffstein et al., 2003]

Use the convolution ring R = R[X]/(XP — 1), and module-lattices:

Ln={(x,y) € R?, hx+y=0mod g}

Same lattice dimension, Key-Size = O(n).
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Lattices over Rings (Ideals, Modules)

Generic lattices are cumbersome! Key-size = O(n?).

NTRU Cryptosystems [Hoffstein et al., 1998, Hoffstein et al., 2003]

Use the convolution ring R = R[X]/(XP — 1), and module-lattices:

Ln={(x,y) € R?, hx+y=0mod g}

Same lattice dimension, Key-Size = O(n). Later came variants with
worst-case fundations:

wc-to-ac reduction [Micciancio, 2007, Lyubashevsky et al., 2013]

Ring-SIS

_ _Ideal-SVP >
Worst-case Approx-ldeal-SVP > { Ring-LWE

Applicable for cyclotomic rings R = Z[wm] (wm a primitive m-th root of unity).

Denote n = deg R. In our cyclotomic cases: n = ¢(m) ~ m.
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Is Ideal-SVP as hard as general SVP 7

Are there other approach than lattice reduction (LLL,BKZ) ?
An algebraic approach was sketched in [Campbell et al., 2014]:
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Is Ideal-SVP as hard as general SVP 7

Are there other approach than lattice reduction (LLL,BKZ) ?
An algebraic approach was sketched in [Campbell et al., 2014]:

The Principal Ideal Problem (PIP)

Given a principal ideal ), recover a generator h s.t. hR = .

Solvable in quantum poly-time [Biasse and Song, 2016].
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Is Ideal-SVP as hard as general SVP 7

Are there other approach than lattice reduction (LLL,BKZ) ?
An algebraic approach was sketched in [Campbell et al., 2014]:

The Principal Ideal Problem (PIP)

Given a principal ideal ), recover a generator h s.t. hR = .

Solvable in quantum poly-time [Biasse and Song, 2016].

The Short Generator Problem (SGP)

Given a generator h, recover another short generator g s.t. gR = hR.

Also solvable in classical poly-time [Cramer et al., 2016] for
m = Pk, R = Zlom], o = exp(O(y/)).
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Are Ideal-SVP and Ring-LWE broken ?!

Not quite yet | 3 serious obstacle remains:

(i) Restricted to principal ideals.

(ii) The approximation factor in too large to affect Crypto.
(iii) Ring-LWE > Ideal-SVP, but equivalence is not known.

Approaches 7
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Are Ideal-SVP and Ring-LWE broken ?!

Not quite yet | 3 serious obstacle remains:

(i) Restricted to principal ideals.

(ii) The approximation factor in too large to affect Crypto.
(iii) Ring-LWE > Ideal-SVP, but equivalence is not known.

Approaches 7

(i) Solving the Close Principal Multiple problem (CPM) [This work !]
(i) Considering many CPM solutions [Plausible]
(iii) Generalization of LLL to non-euclidean rings [Seems tough]
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Our result: |deal-SVP in poly-time for large «

This work: CPM via Stickelberger Short Class Relation
= |deal-SVP solvable in Quantum poly-time, for

R = Z[‘*‘}m]v Q= exp(é(\/ﬁ))
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Our result: |deal-SVP in poly-time for large «

This work: CPM via Stickelberger Short Class Relation

= |deal-SVP solvable in Quantum poly-time, for

R =Zwm], a=exp(O(v/n)).
Better tradeoffs
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Our result: |deal-SVP in poly-time for large «

This work: CPM via Stickelberger Short Class Relation
= |deal-SVP solvable in Quantum poly-time, for

R = Z[Wm]v Q= exp(é(\/ﬁ))

Better tradeoffs Impact and limitations
Time

) > No schemes broken
ee(”)’

& » Hardness gap between
T SVP and Ideal-SVP

o)
3 > N r nalyti I

ee(ﬁ)“% ew cryptanalytic tools
O

poly(n) This Work o
poly(n) o&(vn)  o6(n)

Cramer, D., Wesolowski (Leiden, CWI, EPFL

Stickelberger V.S. Ideal-SVP



Our result: |deal-SVP in poly-time for large «

This work: CPM via Stickelberger Short Class Relation

= ldeal-SVP solvable in Quantum poly-time, for

R = Z[Wm]v Q= exp(é(ﬁ))

Better tradeoffs Impact and limitations

Time » No schemes broken

&(n)
e®(n) » Hardness gap between

Nz
> SVP and Ideal-SVP

e
a » N r nalyti I

B(/7) % ew cryptanalytic tools
O

= start favoring weaker
assumptions ?
poly(n) 4 2! e.g. Module-LWE
poly(n) O(vn)  ¢O(n) [Langlois and Stehlé, 2015]

This work
— o
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Ideals and Principal Ideals

Cyclotomic number field: K(= Q(wm)), ring of integer Ok (= Z[wm]).

Definition (Ideals)

» An integral ideal is a subset h C Ok closed under addition, and by
multiplication by elements of O,

» A (fractional) ideal is a subset §f C K of the form f = %h, where
X €7,

» A principal ideal is an ideal § of the form §f = g0k for some g € K.

In particular, ideals are lattices.

We denote Fi the set of fractional ideal,
and Pk the set of principal ideals.
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Class Group

Ideals can be multiplied, and remain ideals:
ab = {Za;bi, aj €a, b e b}.
finite
The product of two principal ideals remains principal:

(a(’)K)(bOK) = (ab)(’)K.
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Class Group

Ideals can be multiplied, and remain ideals:
ab = {Za;bi, aj €a, b e b}.
finite
The product of two principal ideals remains principal:

(a(’)K)(bOK) = (ab)(’)K.

Fx form an abelian group?!, Pk is a subgroup of it.

Definition (Class Group)

Their quotient form the class group Clx = Fk/Pk.
The class of a ideal a € Fi is denoted [a] € Clk.

An ideal a is principal iff [a] = [Ok].

lwith neutral element Ok
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From CPM to ldeal-SVP

Definition (The Close Principal Multiple problem)

» Given an ideal a, and an factor F
» Find a small integral ideal b such that [ab] = [Ok| and Nb < F

Note: Smallness with respect to the Algebraic Norm N of b,
(essentially the volume of b as a lattice).

Cramer, D., Wesolowski (Leiden, CWI, EPFL Stickelberger V.S. Ideal-SVP



From CPM to ldeal-SVP

Definition (The Close Principal Multiple problem)

» Given an ideal a, and an factor F
» Find a small integral ideal b such that [ab] = [Ok| and Nb < F

Note: Smallness with respect to the Algebraic Norm N of b,
(essentially the volume of b as a lattice).

» Solve CPM, and apply the previous results (PIP-SGP) to ab
» This will give a generator g of ab C a (so g € a) of length

L = N(ab)"/" - exp(O(v/n))

» This Ideal-SVP solution has an approx factor of

o~ L/N(a) = FY/" - exp(O(v/m))
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From CPM to ldeal-SVP

Definition (The Close Principal Multiple problem)

» Given an ideal a, and an factor F
» Find a small integral ideal b such that [ab] = [Ok| and Nb < F

Note: Smallness with respect to the Algebraic Norm N of b,
(essentially the volume of b as a lattice).

» Solve CPM, and apply the previous results (PIP-SGP) to ab
» This will give a generator g of ab C a (so g € a) of length

L = N(ab)"/" - exp(O(v/n))
» This Ideal-SVP solution has an approx factor of
o~ L/N(a) = FY/" - exp(O(v/m))

(T
CPM with F = exp(O(n®/2)) = Ideal-SVP with a = exp(O(y/n))
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Factor Basis, Class-Group Discrete-Log

Choose a factor basis B of integral ideals and search b of the form:

b= Hpep.

peB
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Factor Basis, Class-Group Discrete-Log

Choose a factor basis B of integral ideals and search b of the form:

b= Hpep.

peB

Theorem (Quantum CI-DL, Corollary of [Biasse and Song, 2016])

Assume ‘B generates the class-group. Given a and ®B, one can find in
quantum polynomial time a vector € € Z® such that:

L1 [p*] = [a7].

peB
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Factor Basis, Class-Group Discrete-Log

Choose a factor basis B of integral ideals and search b of the form:

b= Hpep.

peB

Theorem (Quantum CI-DL, Corollary of [Biasse and Song, 2016])

Assume ‘B generates the class-group. Given a and ®B, one can find in
quantum polynomial time a vector € € Z® such that:

L1 [p*] = [a7].

peB

This finds a b such that [ab] = [Ok], yet:
» b may not be integral (negative exponents, yet easy to solve)
> Nb ~ exp(||€]|1) may be huge (unbounded & want ||&]|; = O(n%/2)).
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Navigating the Class-Group

Cayley-Graph(G, A):
» A node for any element g € G
» Anarrow g > gaforanyge G, ac A

Figure: Cayley-Graph((Z/5Z,+),{1,2})

Rephrased Goal for CPM

Find a short path from [a] to [Ok] in Cayley-Graph(Cl, B).

» Using a few well chosen ideals in B, Cayley-Graph(Cl, ) is an
expander Graph [Jetchev and Wesolowski, 2015]: very short path exists.

» Finding such short path generically too costly: |Cl| > exp(n)
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A lattice problem

Cl is abelian and finite, so Cl = Z%//\ for some lattice A:

A= {Ee 7>, s.t.H[pS] = [OK]}

i.e. the (full-rank) lattice of class-relations in base B.

Figure: (Z/5Z,+) = Z{172}//\

Rephrased Goal for CPM: CVP in A

Find a short path from t € Z® to any lattice point v € A.
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A lattice problem

Cl is abelian and finite, so Cl = Z%//\ for some lattice A:

A= {Ee 7>, s.t.H[pS] = [OK]}

i.e. the (full-rank) lattice of class-relations in base B.

Figure: (Z/5Z,+) = Z{172}//\

Rephrased Goal for CPM: CVP in A

Find a short path from t € Z® to any lattice point v € A.

In general: very hard. But for good A, with a good basis, can be easy.

A
Why should we know anything special about A ?

Cramer, D., Wesolowski (Leiden, CWI, EPFL Stickelberger V.S. Ideal-SVP



Figure: Cayley-Graph(Z/5Z,{1,2}) ~ Z{%2H/A
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More than just a lattice

Let G denote the Galois group, it acts on ideals and therefore on classes:

[a]” = [o(a)]-
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More than just a lattice

Let G denote the Galois group, it acts on ideals and therefore on classes:

[a]” = [o(a)]-

Consider the group-ring Z[G] (formal sums on G), extend the G-action:

[a]® = H [o(a)]® where e = Z e, 0.

oeG
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More than just a lattice

Let G denote the Galois group, it acts on ideals and therefore on classes:

[a]” = [o(a)]-

Consider the group-ring Z[G] (formal sums on G), extend the G-action:

[a]® = H [o(a)]® where e = Z e, 0.

oeG

> Assume B = {p°,0 € G}

» G acts on B, and so it acts on Z® by permuting coordinates
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More than just a lattice

Let G denote the Galois group, it acts on ideals and therefore on classes:

[a]” = [o(a)]-

Consider the group-ring Z[G] (formal sums on G), extend the G-action:

[a]® = H [o(a)]® where e = Z e, 0.

oeG

> Assume B = {p°,0 € G}
» G acts on B, and so it acts on Z® by permuting coordinates
> the lattice A C Z% is invariant by the action of G !
i.e. A admits G as a group of symmetries

(0
A is more than just a lattice: it is a Z[G]-module
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Stickelberger's Theorem

In fact, we know much more about A !

Definition (The Stickelberger ideal)

The Stickelberger element 0 € Q[G] is defined as

0 = Z (i modl)a;1 where G 2 0, : w — W7
ac(z/mz)* m

The Stickelberger ideal is defined as S = Z[G] N 0Z[G].

Theorem (Stickelberger's theorem [Washington, 2012, Thm. 6.10])

The Stickelberger ideal annihilates the class group: Ve € S,a C K
[a°] = [Ok]-

In particular, if B = {p°,0 € G}, then S C A\.
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Geometry of the Stickelberger ideal

There exists an explicit (efficiently computable) short basis of S, precisely
it has binary coefficients.

Corollary

Given t € Z[G], one ca find x € S suh that ||x — t||; < n%/2.

Conclusion: back to CPM

The CPM problem can be solved with approx. factor F = exp(O(n*?)).
QED.
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Extra technicalities

Convenient simplifications/omissions made so far:

B = {p?,0 € G} generates the class group.

» can allow a few (say polylog) many different ideals and their
conjugates in ‘B
» Numerical computation says such B it should exists [Schoof, 1998]

» Theorem-Heuristic then says we can find such B efficiently

Eliminating minus exponents

» Easy when h™ = 1: [a~!] = [d], doable when h* = poly(n)
h* is the size of the class group of K, the maximal totally real subfield of K

» h™ = poly(n) already needed for previous result [Cramer et al., 2016]

» Justified by numerical computations and
heuristics [Buhler et al., 2004, Schoof, 2003]
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Open questions

Obstacle toward attacks Ring-LWE

(i) Restricted to principal ideals.

(i) The approximation factor in too large to affect Crypto.
(iii) Ring-LWE > Ideal-SVP, but equivalence is not known.
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