Metric geometry and analysis on boundaries of Gromov hyperbolic spaces, and applications

Lecture 1

Overview

Theory of boundaries is at the intersection of many areas:

- Metric geometry.
- Geometric group theory.
- Geometric mapping theory.
- Analysis on metric spaces.
- Dynamical systems.
- PDE and PDR.

Goals:

- Motivation for current research.
- Cover some of the foundations.
- Survey some advanced results.

Geometric group theory: a quick primer

- Problem: Understand groups. Infinite groups, usually finitely generated.
- Example: Surface group.
- Van Kampen: Generators and relations.
- Combinatorial group theory. Manipulate presentations. (Normal forms, word problem, conjugacy problem, isomorphism problem...).
- Geometric group theory: use tools from geometry (and topology, analysis, dynamics...) to understand groups.
- Geometrization 1: solvability of the word problem is directly related to the isoperimetric inequality on the surface.
- Geometrization 2: hyperbolic metric.

Groups as metric spaces

Let G be a finitely generated group.

Let $\Sigma \subset G$ be a symmetric finite generating set, $\Sigma^{-1} = \Sigma$.

Let $\Gamma = \Gamma(G, \Sigma)$ be the Cayley graph of G with respect to Σ : the vertex set is G, and $g_1, g_2 \in G$ are joined by an edge iff

$$g_1 = g_2 \sigma$$

for some $\sigma \in \Sigma$.

Give Γ the path metric where edges have length 1. Left translation induces an isometric action $G \curvearrowright \Gamma$.

Thus we have associated a metric space with the group G.

Examples:

- \mathbb{Z}^k . Rank k free abelian group.
- F_k . Rank k free nonabelian group.
- Surface group.

The Cayley graph depends on the choice of Σ .

Any two Cayley graphs are quasi-isometric.

Definition. A map $f : X \to Y$ between metric spaces is a **quasi-isometry** if there are constants $L \in [1, \infty)$, $A \in [0, \infty)$, such that

• For all $x_1, x_2 \in X$,

$$L^{-1}d(x_1, x_2) - A \le d(f(x_1), f(x_2)) \le Ld(x_1, x_2) + A$$

• For every
$$y \in Y$$
, $d(y, \operatorname{Im}(f)) < A$.

Two metric spaces are **quasi-isometric** if there is a quasi-isometry between them.

Some facts about quasi-isometries

- L = 1, $A = 0 \iff$ isometry.
- A = 0 iff *L*-bilipschitz.
- f,g qi \implies $f \circ g$ qi.
- Quasi-inverses.
- QI(X).
- $X \stackrel{q_i}{\sim} Y$ iff they contain bilipschitz equivalent nets.

Examples. \mathbb{R}^n , \mathbb{H}^n .

We have a canonical quasi-isometry class of metric spaces associated with a finitely generated group G.

The Fundamental Lemma of GGT. (Milnor-Svarc) If X is a proper geodesic space, and $G \curvearrowright X$ is a discrete, cococompact, isometric action, then G is quasi-isometric to X.

Cor. If *M* is a compact connected Riemannian manifold, then $\pi_1(M)$ is quasi-isometric to the universal cover \tilde{M} .

If $G \curvearrowright \mathbb{H}^n$ is a discrete, cocompact, isometric action, then G is quasi-isometric to \mathbb{H}^n .

Problem: understand metric geometry of groups.

- Q: How much is encoded in the QI class?
- Classify groups up to QI.
- Geometric mapping theory: construct/obstruct/classify Qls.
- QI invariants and QI invariant structure.
 - Growth.
 - Isoperimetric inequalities.
 - Negative curvature (aka hyperbolicity).

Exercises:

- $\mathbb{E}^k \stackrel{qi}{\sim} \mathbb{E}^\ell$ iff $k = \ell$.
- Show that any quasi-isometry f : ℍ^k → ℍ^ℓ is at finite sup distance from a continuous quasi-isometry f̂ : ℍ^k → ℍ^ℓ.
- $\mathbb{H}^k \stackrel{qi}{\sim} \mathbb{H}^\ell$ iff $k = \ell$.

Lecture 2

Negative curvature 1: hyperbolic space

- Quadric model (upper sheet, projective picture).
- Ball model, upper halfspace model, normal coordinates.
- Area growth of balls, Gauss-Bonnet, slimness of triangles.
 ↓ Lecture 1

 \downarrow Lecture 2

- Projection to geodesic.
- Sphere at infinity. "Ideal boundary".
- $n \geq 3$. $\mathsf{Isom}(\mathbb{H}^n) \simeq \mathsf{Mob}(S^{n-1}) \simeq \mathsf{Conf}(S^{n-1})$. (Exercise: verify this.)
- Hyperbolic manifolds and discrete subgroups.

Negative curvature 2: Riemannian manifolds

Let M be complete, simply connected, with sectional curvature ≤ -1

- Examples.
 - Complex hyperbolic space.
 - Homogeneous negatively curved manifolds.
 - Gromov-Thurston examples.
- Triangle comparison.
- Boundary at infinity.
- $\partial \mathbb{H}^n$, $\partial \mathbb{C} \mathbb{H}^n$.
- Exercise: $\angle_p^{\infty}(\gamma_1, \gamma_2) \sim e^{-R(\gamma_1, \gamma_2)}$.

Negative curvature 3: CAT(-1) spaces

Examples:

- Trees.
- 2-complexes.
- Convex subsets $C \subset \mathbb{H}^n$.
- Hyperbolic manifolds with totally geodesic boundary.

Negative curvature 4: Gromov hyperbolic spaces

- Definition.
- Hyperbolic groups.
- Thm. Quasi-isometry invariance of hyperbolicity.

Thm. (Approximation by trees) For every $\delta \in [0, \infty)$, $n \in \mathbb{N}$ there is a constant $A = A(\delta, n)$ with the following property.

Suppose X is δ -hyperbolic, and $Y = \{y_1, \ldots, y_n\} \subset X$. Then there is a simplicial tree T and a (1, A)-quasi-isometric embedding

$$f: T \to X$$

such that

- T has at most 2n vertices.
- $Y \subset f(T)$.
- f(T) is A-quasiconvex.

Def. A map $f : X \to Y$ between metric spaces is an (L, A)-quasi-isometric embedding if

$$L^{-1}d(x_1, x_2) - A \le d(f(x_1), f(x_2)) \le Ld(x_1, x_2) + A$$

for all $x_1, x_2 \in X$.

An (L, A)-quasigeodesic is a quasi-isometric embedding $f : I \rightarrow Y$ where I is a connected subset of R.

Morse Lemma. For every δ , (L, A) there is a $D = D(\delta, L, A)$ with the following property.

If $\gamma : [a, b] \to X$ is an (L, A)-quasigeodesic and $\overline{\gamma} : [a, b] \to X$ is a geodesic with the same endpoints, then

 $Hd(Im(\gamma), Im(\bar{\gamma})) < D$.

Similar statements hold for quasigeodesics $I \to X$ when $I = [0, \infty)$ or I = R.

Cor. (QI invariance of hyperbolicity)

If X and Y are quasi-isometric geodesic metric spaces, then X is hyperbolic iff Y is hyperbolic.

The boundary

Def. Two unit speed geodesic rays $\gamma_1, \gamma_2 : [0, \infty) \to X$ are **asymptotic** if

$$\sup_{t\in[0,\infty)} d(\gamma_1(t),\gamma_2(t)) < \infty.$$

or equivalently, if their images have finite Hausdorff distance. This defines an equivalence relation on rays.

The **(ideal) boundary** of X is the set of equivalence classes, denoted ∂X .

Lem. The set of rays leaving the basepoint p contains a representative from every equivalence class.

If γ_1, γ_2 are rays leaving p, their overlap is

$$egin{aligned} &(\gamma_1 \mid \gamma_2) = \lim_{t o \infty} \; rac{1}{2} (d(\gamma_1(t), p) + d(\gamma_2(t), p) - d(\gamma_1(t), \gamma_2(t))) \ &\in [0,\infty) \cup \{\infty\} \,. \end{aligned}$$

When X is proper, there will exist a geodesic $\eta : \mathbb{R} \to X$ which is asymptotic to γ_1 as $t \to -\infty$, and to γ_2 as $t \to \infty$.

Then $(\gamma_1 \mid \gamma_2)$ agrees with $d(p, \eta)$ up to error 4δ .

Def. A visual metric is a distance function

$$d: \partial X \times \partial X \to [0,\infty)$$

such that for every pair of rays γ_1, γ_2 leaving p,

$$\mathcal{C}^{-1}\,e^{-\mathsf{a}(\gamma_1|\gamma_2)}\leq \mathsf{d}(\gamma_1,\gamma_2)\leq \mathcal{C}\,e^{-\mathsf{a}(\gamma_1|\gamma_2)}$$

• If X is CAT(-1) then \angle_p^{∞} is a visual metric with parameter 1.

• For a sufficiently small, visual metrics always exist.

Properties of visual metrics

Suppose $G \curvearrowright X$ is a discrete, cocompact, isometric action on a proper hyperbolic metric space. Then with respect to any visual metric on ∂X :

- ∂X is a compact metric space.
- ∂X is approximately self-similar. There is an $L \in [1, \infty)$ such that for all $r \in (0, \operatorname{diam}(\partial X))$, and every $x \in \partial X$, the rescaled ball $\frac{1}{r}B(x, r)$ is *L*-bilipschitz to an open set $U \subset \partial X$ of unit size.
- ∂X is **Ahlfors** *Q*-regular for some *Q*. There is a $C \in (0, \infty)$ such that for every ball $B(x, r) \subset \partial X$,

$$C^{-1}r^Q \leq \mathcal{H}^Q(B(p,r)) \leq Cr^Q$$

if $r \in [0, \operatorname{diam}(\partial X)]$.

QIs and visual metrics

Thm. Any qi $f : X \to X'$ between Gromov hyperbolic spaces induces a quasisymmetric homeomorphism $\partial f : \partial X \to \partial X'$.

Def. A homeomorphism $Z \xrightarrow{\phi} Z'$ between metric spaces is **quasisymmetric** if there is a homeomorphism $\eta : [0, \infty) \to [0, \infty)$ such that for all triples of distinct points $p, x, y \in Z$, we have

$$\frac{d(\phi(p),\phi(x))}{d(\phi(p),\phi(y))} \leq \eta\left(\frac{d(p,x)}{d(p,y)}\right)$$

Examples.

- Any bilipschitz homeomorphism is quasisymmetric.
- The map $[0,\infty) \rightarrow [0,\infty)$ given by $x \mapsto x^{\alpha}$, where $\alpha > 0$.

Thm. An (L, A)-quasi-isometry $f : X \to Y$ between hyperbolic spaces induces an η -quasi-Mobius homeomorphism $\partial f : \partial X \to \partial Y$, where $\eta = \eta(L, A)$.

Def. If Z is a metric space, and $x, y, z, w \in Z$ are distinct points, the **metric cross-ratio** is

$$[x, y, z, w] = \frac{d(x, z)}{d(x, w)} \frac{d(y, w)}{d(y, z)}$$

Def. A homeomorphism $f : Z \to Z'$ between metric spaces is **quasi-Mobius** if there is a homeomorphism $\eta : [0, \infty) \to [0, \infty)$ such that for every 4-tuple of distinct points $\{x, y, z, w\} \subset Z$,

$$[f(x), f(y), f(z), f(w)] \le \eta([x, y, z, w]).$$

Exercises on QS/QM/QC

- $\bullet \ \mathsf{QS} \ \implies \ \mathsf{QM} \ \Longrightarrow \ \mathsf{QC}, \ \mathsf{quantitatively}.$
- Compositions/inverses of QS/QM are QS/QM.
- QS sends balls to quasiballs.
- QM \implies QS (nonquantitatively) in compact spaces.

Sketch of proof

Suppose $f : X \to Y$ is a quasi-isometry.

Step 1. There is an induced bijection $\partial f : \partial X \to \partial Y$.

Step 2. ∂f respects distances between geodesics.

Step 3. ∂f quasi-preserves additive cross-ratios.

$$\langle 1,2,3,4 \rangle = (1,3) - (1,4) + (2,4) - (2,3)$$

Step 4. ∂f quasi-preserves metric cross-ratios.

Lecture 3

Metric geometry of groups:

- Q: How much is encoded in the QI class?
- Classify groups up to QI.
- Geometric mapping theory: construct/obstruct/classify Qls.
- QI invariants and QI invariant structure.

Thm. If X, Y are hyperbolic and $f : X \to Y$ is a QI, then there is an induced QM homeomorphism $f : \partial X \to \partial Y$.

- Q: How much is encoded in the QM class?
- Classify boundaries (of groups) up to QM homeomorphism.
- Geometric mapping theory: construct/obstruct/classify QM homeomorphisms.
- QM invariants and QM invariant structure.
- Q: So what?

Thm. (Mostow rigidity, three versions of the hyperbolic case) Suppose $n \ge 3$.

- Suppose M_1 , M_2 are closed hyperbolic *n*-manifolds. If $\pi_1(M_1) \simeq \pi_1(M_2)$, then M_1 is isometric to M_2 .
- Any two discrete, cocompact, isometric actions $G \curvearrowright \mathbb{H}^n$ are isometrically conjugate.
- Any two Mobius actions G ∼ Sⁿ⁻¹ which are discrete and cocompact on triples of points are conjugate by a Mobius transformation.

Corollaries.

- Every conjugacy invariant of the action G
 ¬ ℍⁿ may be viewed as an invariant of the group G. Example: geometric invariants of ℍⁿ/G, such as volume, lengths of closed geodesics, etc.
- Suppose G → ℍⁿ is faithful, so G → Isom(ℍⁿ). Every automorphism G → G is induced by conjugation by an isometry φ : ℍⁿ → ℍⁿ which normalizes G. Therefore

 $\operatorname{Aut}(G) \simeq N(G, \operatorname{Isom}(\mathbb{H}^n))$

 $\operatorname{Out}(G) = \operatorname{Aut}(G) / \operatorname{Inn}(G) \simeq N(G, \operatorname{Isom}(\mathbb{H}^n)) / G$.

• $|\operatorname{Out}(G)| < \infty$.

 There is an K = K(G) such that if G is a finite index subgroup of a torsion-free group Ĝ, then

$$[\hat{G}:G] < K$$

The abstract commensurator of G coincides with the commensurator in lsom(ℍⁿ):

 $\operatorname{Comm}(G) \simeq \operatorname{Comm}(G, \operatorname{Isom}(H^n)).$

Thm. (Sullivan, Gromov, Tukia, Cannon-Swenson) Suppose G is a finitely generated group, and G is quasi-isometric to \mathbb{H}^n , $n \ge 3$.

Then there is a discrete, cocompact, isometric action $G \curvearrowright \mathbb{H}^n$.

Thus $Isom(\mathbb{H}^n)$ is a single group which (virtually) contains any finitely generated group in the quasi-isometry class of \mathbb{H}^n .

Remark. In fact, the proof provides (by analysis) a construction of $Isom(\mathbb{H}^n) \simeq Mob(S^{n-1})$ just starting from *G*.

Properties of quasiMöbius homeomorphisms between open subsets of S^n , $n \ge 2$:

- (Differentiability) If $f : U \to V$ is a QM homeomorphism, then for a.e. $x \in U$, Df(x) is defined and nonsingular.
- QM homeomorphisms are absolutely continuous w.r.t. Lebesgue measure:

$$|X|=0 \quad \iff \quad |f(X)|=0\,.$$

• ("Liouville" theorem) If $f : S^n \to S^n$ is QM and Df(x) is conformal for a.e. $x \in S^n$, then $f \in Mob(S^n)$.

• (Uniformization) If g is a measurable Riemannian metric on S^2 such that

$$C^{-1}g_{S^2} \leq g \leq Cg_{S^2}$$

a.e., then g is conformally equivalent to g_{S^2} by a QM homeomorphism $f: S^2 \rightarrow S^2$:

$$Df(x): (T_xS^2, g_{S^2}(x)) \to (T_{f(x)}S^2, g(x))$$

is conformal for a.e. $x \in S^2$.

(Compactness) If {f_k : Sⁿ → Sⁿ} is a sequence of η-QM homeomorphisms, then a subsequence either (a) converges uniformly to an η-QM homeomorphism, or (b) converges uniformly to a constant map in compact subsets of Sⁿ \ {x}, for some x ∈ Sⁿ.

Sketch of proof of Mostow rigidity

Suppose

$$G \stackrel{1}{\curvearrowright} H^n, \quad G \stackrel{2}{\curvearrowright} H^n$$

are two discrete, cocompact, isometric actions.

Thus we have two associated Mobius actions

$$G \stackrel{1}{\frown} S^{n-1}, \quad G \stackrel{2}{\frown} S^{n-1}$$

Step 1. There is a quasi-isometry

$$f:\mathbb{H}^n\to\mathbb{H}^n$$

which is G-equivariant for the respective G-actions.

Step 2. There is an induced boundary homeomorphism

$$\partial f: S^{n-1} \to S^{n-1}$$

which is QC, and G-equivariant for the respective Mobius actions

$$G \stackrel{1}{\frown} S^{n-1}, \quad G \stackrel{2}{\frown} S^{n-1}$$

Step 3. Suppose $D(\partial f)(x)$ is not conformal almost everywhere. Then on the set where $D(\partial f)(x)$ is not conformal, one has a measurable subbundle

$$V \subset TS^{n-1}$$

corresponding to the maximal stretch subspace of $D(\partial f)$. This will be *G*-invariant w.r.t. the action

$$G \stackrel{1}{\curvearrowright} S^{n-1}$$

Step 4. If $x_0 \in S^{n-1}$ is a point of approximate continuity of V, we may use the expanding dynamics of the action

$$G \stackrel{1}{\curvearrowright} S^{n-1}$$

to see that in some upper half-space model for H^n , the subbundle V has constant coefficients. Then V extends canonically to a smooth subbundle except at one singular point $y \in S^{n-1}$. Then y must be fixed by G, which is a contradiction. Thus $D(\partial f)(x)$ is conformal for a.e. $x \in S^{n-1}$.

Step 5. By the Liouville theorem, ∂f is a Mobius transformation, i.e. $\partial f = \partial \overline{f}$ for a unique isometry $\overline{f} : \mathbb{H}^n \to \mathbb{H}^n$. Since $\partial \overline{f}$ is equivariant w.r.t. the two Mobius actions

$$G \stackrel{1}{\frown} S^{n-1}, \quad G \stackrel{2}{\frown} S^{n-1}$$

it follows that \overline{f} is equivariant w.r.t. the two isometric actions

$$G \stackrel{1}{\curvearrowleft} \mathbb{H}^n, \quad G \stackrel{2}{\curvearrowleft} \mathbb{H}^n$$

Sullivan, Gromov, Tukia rigidity

- G finitely generated, with Cayley graph Γ .
- G QI to \mathbb{H}^n .
- $G \xrightarrow{f} \mathbb{H}^n \mathbb{Q}$ I.
- $G \curvearrowright \Gamma$ left action on the Cayley graph Γ .
- $G \curvearrowright \partial G$ boundary action. This is η -QM.
- Conjugate by $\partial f : \partial G \to \partial \mathbb{H}^n \simeq S^{n-1}$ $\rightsquigarrow \quad G \curvearrowright S^{n-1} \quad \eta'$ -QM action.
- $[g_{S^{n-1}}]$ standard conformal structure.
- $\{g \cdot [g_{S^{n-1}}] \mid g \in G\}$ G-orbit.
- [h] center of mass.
- $G \curvearrowright (S^{n-1}, h)$ is a conformal action.
- Apply uniformization n = 3, or use blow-up argument $(n \ge 3)$.

Motivating questions

One would like to have analogs of Mostow rigidity and the Sullivan/Gromov/Tukia rigidity theorem for other groups.

Q: Can one find canonical geometries for (some classes) of groups?

For non-hyperbolic groups, a variety of structures can be used to prove rigidity theorems – coarse topology, topology of asymptotic cones, coarse differentiation.

In the hyperbolic case, the only known approach is typically via analysis on the boundary.

Lecture 4

Motivating questions

One would like to have analogs of Mostow rigidity and the Sullivan/Gromov/Tukia rigidity theorem for other groups.

Q: Can one find canonical geometries for (some classes) of groups?

For non-hyperbolic groups, a variety of structures can be used to prove rigidity theorems – coarse topology, topology of asymptotic cones, coarse differentiation.

In the hyperbolic case, the only known approach is typically via analysis on the boundary.

Q's:

- $\bullet\,$ Which metric spaces have a good theory of QM/QS/QC homeomorphisms?
- What are some QM invariants?

Properties of QM/QS/QC homeomorphisms between open subsets of S^n , $n \ge 2$:

- Every quasi-isometry $\mathbb{H}^{n+1} \to \mathbb{H}^{n+1}$ induces a QM homeomorphism $S^n \to S^n$, and conversely.
- Compositions and inverses of QM homeomorphisms are QM.
- QM homeomorphisms belong to $W_{loc}^{1,n}$.
- (Differentiability) If f : U → V is a QM homeomorphism, then for a.e. x ∈ U, Df(x) is defined and nonsingular.

• QM homeomorphisms are absolutely continuous w.r.t. Lebesgue measure:

$$|X|=0 \quad \iff \quad |f(X)|=0.$$

- (Compactness) If {f_k : Sⁿ → Sⁿ} is a sequence of uniformly QM homeomorphisms, then some subsequence either (a) converges uniformly to a quasiconformal homeomorphism, or (b) converges uniformly to a constant map in compact subsets of Sⁿ \ {x}, for some x ∈ Sⁿ.
- (Liouville theorem) If $f: S^n \to S^n$ is QM and Df(x) is conformal for a.e. $x \in S^n$, then f is a Mobius transformation.

 (Uniformization) If g is a measurable Riemannian metric on S² such that

$$C^{-1}g_0 \leq g \leq Cg$$

a.e., then g is conformally equivalent to g_0 by a quasiconformal homeomorphism $f: S^2 \to S^2$:

$$Df(x): (T_xS^2, g_0(x)) \rightarrow (T_{f(x)}S^2, g(x))$$

is conformal for a.e. $x \in S^2$.

- If $f: S^n \to S^n$ is a homeomorphism, then TFAE:
 - ► f is QM.
 - ► f is QC.
 - ► f quasi-preserves *n*-energy.
 - ► f quasi-preserves n-capacity.
 - $f \in W^{1,n}$ and $\exists K > 0$ such that

$$J_f(x) := \det(Df(x)) > K \|Df(x)\|$$

for a.e. x.

Some motivation and observations

Let Z be a Riemannian manifold.

If $u \in C^1(Z)$ the *n*-energy is:

$$E(u) := \int_Z |\nabla u|^n \, dV$$

- A C¹ diffeomorphism Sⁿ ⊃ X → Y ⊂ Sⁿ is conformal iff it preserves *n*-energy.
- A C¹ diffeomorphism Sⁿ ⊃ X → Y ⊂ Sⁿ is quasiconformal iff it quasipreserves *n*-energy.

 $f: X \to Y$ conformal, $u \in C^1(Y)$. Then

$$J_f := |\det Df| = \|Df\|^n, \quad |\nabla(u \circ f)| = (|\nabla u| \circ f)\|Df|$$

$$E(u) = \int_{Y} |\nabla u|^{n} d\mathcal{L}$$

= $\int_{X} (|\nabla u|^{n} \circ f) J_{f} d\mathcal{L}$
= $\int_{X} (|\nabla u|^{n} \circ f) ||Df||^{n} d\mathcal{L}$
= $\int_{X} |\nabla (u \circ f)|^{n} d\mathcal{L}$
= $E(u \circ f)$.

Def. If $E, F \subset S^n$ are disjoint compact subsets, let

$$\mathsf{Cap}(E,F) := \inf \{ E(u) \mid u \big|_E \equiv 0 ; u \big|_F \equiv 1 \}.$$

This is quasipreserved by quasiconformal diffeomorphisms.

The Loewner property

For compact connected sets, the capacity is equivalent to a geometry quantity – the relative distance.

Def. If Z is a metric space, and $E, F \subset Z$, then the **relative distance** between E and F is

$$reldist(E,F) = \frac{d(E,F)}{\min(\operatorname{diam}(E),\operatorname{diam}(F))}$$
.

Loewner property:

$$\alpha(\mathit{reldist}(E,F)) \leq \mathsf{Cap}(E,F) \leq \beta(\mathit{reldist}(E,F))$$

where

$$\alpha: [0,\infty) \to (0,\infty)$$
$$\beta: [0,\infty) \to [0,\infty) \cup \{\infty\}$$

is a function with

 $\lim_{t\to\infty}\beta(t)=0$

Let Z be a connected Riemannian *n*-manifold for $n \ge 2$.

If Z is compact, it has the Loewner property.

The **Ferrand cross-ratio** of a 4-tuple x, y, z, w is

$$\inf\{\mathsf{Cap}(E,F) \mid \{x,y\} \subset E, \ \{z,w\} \subset F, \\ E,F \subset Z \text{ compact, connected}\}$$

A quasiconformal homeomorphism quasipreserves this cross-ratio.

If the Loewner property holds, one can relate the Ferrand cross-ratio with the metric cross-ratio, and conclude that a K-QC homeomorphism is η -QM, where $\eta = \eta(K, Z)$.

Lichnerowicz Conjecture. (Ferrand) If the conformal group of a compact Riemannian manifold Z is noncompact, then Z is conformally equivalent to the standard sphere.

Modulus in metric measure spaces

Let Z be a metric space, and suppose μ is a Borel measure on Z.

Let Γ be a family of paths in Z.

Let

$$\rho: Z \to [0,\infty) \cup \{\infty\}$$

be a Borel measurable function.

Def. The ρ -length of a path $\gamma: I \to Z$ is

$$\operatorname{length}_{\rho}(\gamma) = \int_{\gamma} \rho \, ds$$
.

The Q-mass of ρ is

$$\operatorname{Mass}_Q(\rho) = \int_Z \rho^Q d\mu.$$

 ρ is $\Gamma\text{-admissible}$ if

 $\operatorname{length}_{\rho}(\gamma) \geq 1$

for every rectifiable path $\gamma \in \Gamma$.

Def. The *Q*-modulus of Γ is the infimal mass of Γ -admissible functions:

$$\operatorname{Mod}_{Q}(\Gamma) = \inf \{ \operatorname{Mass}_{Q}(\rho) \mid \rho \text{ is } \Gamma \text{-admissible} \}$$

The *Q*-modulus of a pair of subsets $E, F \subset Z$ is the *Q*-modulus of the family of paths joining *E* to *F*.

Suppose (Z, μ) , (Z', μ') are Riemannian *n*-manifolds equipped with Riemannian measures.

Let Γ be a path family in $Z, f: Z \rightarrow Z'$ be a diffeomorphism, and

 $\Gamma' = \{ f \circ \gamma \mid \gamma \in \Gamma \} \,.$

If f is conformal, then

$$\operatorname{Mod}_n(\Gamma') = \operatorname{Mod}_n(\Gamma)$$
.

If f is K-quasiconformal, then

 $\mathcal{K}^{-n} \operatorname{Mod}_n(\gamma) \leq \operatorname{Mod}_n(\Gamma') \leq \mathcal{K}^n \operatorname{Mod}_n(\Gamma).$

Recall:

A metric space is Q-regular if an r-ball has Q-dimensional Hausdorff measure comparable to r^Q .

Modulus bounds

Lem. Suppose Z is Ahlfors Q-regular. Then the Q-modulus of the pair

$$(B(p,r), Z \setminus B(p,R))$$

is

$$\leq \frac{C}{(\log \frac{R}{r})^{Q-1}}$$

if $R \in [2r, \infty)$.

Proof. Use an admissible function of the form

$$\rho(x)=\frac{c}{d(x,p)}.$$

Def. If Z is a metric space, and $E, F \subset Z$, then the **relative distance** between E and F is

$$reldist(E,F) = \frac{d(E,F)}{\min(\operatorname{diam}(E),\operatorname{diam}(F))}$$
.

Lem. Suppose Z is Ahlfors Q-regular, and $E, F \subset Z$ are disjoint subsets. Then

$$\operatorname{Mod}_Q(E,F) \leq \beta(\operatorname{reldist}(E,F)),$$

where

$$\beta: [0,\infty) \to [0,\infty) \cup \{\infty\}$$

is a function with

$$\lim_{t\to\infty}\beta(t)=0$$

which depends only on the regularity constant of Z.

Def. A compact Ahlfors *Q*-regular space *Z* is *Q*-Loewner if Q > 1 and there is a function

 $\alpha: [0,\infty) \to (0,\infty)$

such that for every pair of closed connected subsets $E, F \subset Z$,

 $\operatorname{Mod}_Q(E,F) \geq \alpha(\operatorname{reldist}(E,F)).$

For brevity, a metric space is **Loewner** if it is Q-regular and Q-Loewner for some Q.

Much of the classical theory of quasiconformal homeomorphisms carries over to Loewner spaces.

Examples

• S^n .

- S^{2n-1} with the standard Carnot/subRiemannian metric.
- (Semmes) *n*-regular linearly locally contractible *n*-manifolds.
- Noncollapsed limits of manifolds with a lower Ricci curvature bound.
- Fuchsian buildings.
- Inverse limits of graphs.

Properties of Loewner spaces

- (Quasiconvexity) There is an L ∈ [1,∞) such that any two points p, q ∈ Z can be joined by a path of length at most L d(p,q).
- There is a λ ∈ (0,1) such that if p ∈ Z, r ∈ (0, diam(Z)), then any two points in

$$Z \setminus B(p, r)$$

can be joined by a path in

 $Z \setminus B(p, \lambda r)$.

Thm. Suppose Z, Z' are compact Q-regular, Q-Loewner spaces. Then every quasiconformal homeomorphism $Z \rightarrow Z'$ is QM. Moreover, the distortion function depends only on the quasiconformality constant.

Outline of proof.

Step 1: If $E, F \subset Z$ are compact connected subsets, then

$$reldist(f(E), f(F)) \le \phi(reldist(E, F)).$$

for some function

$$\phi: [0,\infty) \to (0,\infty)$$
.

Step 2: The above condition implies that *f* is QM.

Thm. *Q*-modulus is QM quasi-invariant, among compact *Q*-regular spaces.

Corollary. The Loewner property is QM invariant, among *Q*-regular spaces.

Thm. Suppose Z, Z' are Q-Loewner spaces. Then every QM homeomorphism $Z \rightarrow Z'$ is absolutely continuous w.r.t. Q-dimensional Hausdorff measure.

In other words, the \mathcal{H}^Q measure class is QM invariant.

Thm. Suppose Z, Z' are Q-Loewner spaces, and $f : Z \to Z'$ is QM.

Then $f \in W^{1,Q}(Z, Z')$. In particular, there is a Borel measurable function

 $\rho: Z \to [0,\infty) \cup \{\infty\}$

with $\rho \in L^Q(Z)$ such that for every curve

$$\gamma: I \to Z$$

$$d(f(\gamma(1)), f(\gamma(0)) \leq \int_{\gamma}
ho \ ds$$

Thm. (QM Uniformization)

Suppose Z is a Q-Loewner metric space homeomorphic to S^2 . Then Q = 2 and Z is QM homeomorphic to S^2 .

Differentiable structures on metric measure spaces

Def. Suppose Z is a metric space. A function $u : Z \rightarrow R$ is constant to first order at $p \in Z$ if

$$u(z) - u(p) = o(d(z, p))$$
 near p .

A set of functions $u_1, \ldots, u_k : Z \to R$ is **dependent (to first** order) at p if there is a nontrivial linear combination

$$a_1u_1 + \ldots + a_ku_k$$

which is constant to first order at *p*.

Note: A function $u : \mathbb{R}^n \to \mathbb{R}$ is constant to first order at p iff Du(p) = 0 at p. $u_1, \ldots, u_k : \mathbb{R}^n \to \mathbb{R}$ are dependent to first order at $p \in \mathbb{R}^n$ if some nontrivial linear combination has zero derivative at p.

Thm.

Suppose Z is a Loewner space.

Then there is a canonically associated normed measurable vector bundle T^*Z , and a bounded linear map

$$d: \operatorname{lip}(Z) \to \Gamma_{L^{\infty}}(T^*Z)$$

such that for every $u \in lip(Z)$,

 $\{z \in Z \mid du(z) = 0\} = \{z \in Z \mid u \text{ is constant to first order at } z\}$

up to null sets.

Lecture 5

Recall. A metric space Z is **Loewner** if for some Q > 1:

- Z is Ahlfors Q-regular.
- Mod_Q(E, F) is quantatively equivalent to relative distance, for E, F ⊂ Z compact connected disjoint subsets.

Loewner spaces have a good theory of QM/QC homeomorphisms.

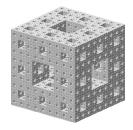
Examples:

- Riemannian and sub-Riemannian manifolds.
- Boundaries of some negatively curved homogeneous spaces.
- Boundaries of Fuchsian buildings.
- Some self-similar spaces.

Nonexamples

***************	**********
	00 00 00 0
<u>aoa aoaaca ac</u>	2000 000
سلا استخلاصات اشتلا	الاسلا الاساقلا
	9999(wwJ999
<u>a aa aa a</u>	0 00 00 0
MAM 1494	MA MA
M-M M-M	KAN KAN
0 00 00 0	0 00 00 0

	الالالمتر المتر المت
	8444/**^44 4
<u> </u>	79678 678
000 000000 00	0000 000
0 00 00 00 00 00	



Thm. *Q*-modulus is QM quasi-invariant, among compact *Q*-regular spaces.

Cor. The Loewner property is QM invariant, among *Q*-regular spaces.

Thm. Suppose Z, Z' are *Q*-Loewner spaces.

Then every QM homeomorphism $Z \rightarrow Z'$ is absolutely continuous w.r.t. *Q*-dimensional Hausdorff measure.

Thm. If Z is Q-regular and Mod_Q is nontrivial, then any metric space Z' QM homeomorphic to Z has Hausdorff dimension $\geq Q$.

Def. The Ahlfors regular conformal dimension of Z is:

$$\mathsf{ConfDim}(Z) := \inf\{Q' \mid Z' \xrightarrow{QM} Z, \quad Z' \quad Q'\text{-regular}\}$$

By the above:

- If Z is Q-regular and Q-modulus is nontrivial then
 Q = ConfDim(Z).
- Suppose $f : Z \to Z'$ is QM, where Z is Loewner and Z' is Ahlfors regular. Then ConfDim $(Z') \ge ConfDim(Z)$ with equality only if Z' is Loewner and f preserves measure classes.

Thm. Suppose Z is QM to the boundary of a hyperbolic group.

If Z is Q-regular and Q = ConfDim(Z), then Z is Loewner.

Needle in a haystack

Let M be a compact hyperbolic manifold with metric g.

Let *d* be a visual metric on $\partial \tilde{M}$.

Perturb g to another negatively curved metric g', and look at the corresponding visual metric d' on $\partial \tilde{M}$.

Then unless g' has constant curvature, the measure classes of d and d' will be mutually singular.

Def. A metric space Z is **LLC** if there is an L such that for all $p \in Z$, $0 < r \le \text{diam}(X)$, the inclusions

$$B(p,r) \rightarrow B(p,Lr), \quad X \setminus B(p,r) \longrightarrow X \setminus B\left(p,\frac{r}{L}\right)$$

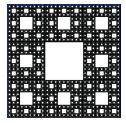
induce the zero homomorphism on reduced 0-dimensional homology.

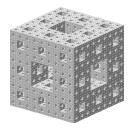
Lem. LLC is a QS invariant property.

Lem. Loewner spaces are LLC.

Cor. The Sierpinski gasket is not QM to a Loewner space.

Open problem: Are the Sierpinski-carpet and Menger-sponge QM to Loewner spaces? What is their conformal dimension?





Cor. If G is a hyperbolic group, and ∂G is QM homeomorphic to a Loewner space, then ∂G is LLC.

In particular, ∂G is connected, locally connected, and has no local cut points.

Hence G cannot virtually split over a virtually cyclic group.

Thm. The above conditions are necessary, but not sufficient, for ∂G to be QM to a Loewner space.

There is a combinatorial version of modulus for a compact doubling metric space Z, defined using discrete approximations.

The combinatorial analog of the Loewner condition is called the **Combinatorial Loewner Property.**

Every Loewner space has the CLP.

Conj. Every compact (self-similar) space with the CLP is QM to a Loewner space.

Thm. The S-carpet and M-sponge have the CLP. So do many hyperbolic Coxeter groups.

QM invariant function spaces

Let G be a hyperbolic group, with Cayley graph Γ .

The boundary $\partial \Gamma$ compactifies Γ :

 $\bar{\Gamma}:=\Gamma\cup\partial\Gamma\,.$

Pick p > 1, and consider the collection of continuous functions $u \in C(\partial\Gamma)$ which have continuous extensions

$$\bar{u}:\Gamma \to \mathbb{R}$$

with *p*-summable gradient, i.e.

$$\sum_{g\in G,\sigma\in\Sigma}|u(g)-u(g\sigma)|^p<\infty\,.$$

This space is QM invariant.

Let $p_{\neq 0}$ be the infimal exponent for which the function space is nontrivial,

and p_{sep} be the infimal p for which the function space separates points.

Thm.

- $p_{sep} = \text{ConfDim}(\partial \Gamma).$
- If ∂G is QM to a Loewner space, then $p_{\neq 0} = p_{sep}$.

Open problems

- Rigidity for random groups.
- Rigidity for Gromov-Thurson examples.
- CLP implies Loewner.
- S-carpet and M-sponge are Loewner. Conformal dimension?
- Good G-invariant measure class on ∂G if G doesn't virtually split over a virtually cyclic group.