
Metric geometry and analysis on boundaries of Gromov
hyperbolic spaces, and applications
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Overview

Theory of boundaries is at the intersection of many areas:

Metric geometry.

Geometric group theory.

Geometric mapping theory.

Analysis on metric spaces.

Dynamical systems.

PDE and PDR.

Goals:

Motivation for current research.

Cover some of the foundations.

Survey some advanced results.



Geometric group theory: a quick primer

Problem: Understand groups. Infinite groups, usually finitely
generated.

Example: Surface group.

Van Kampen: Generators and relations.

Combinatorial group theory. Manipulate presentations.
(Normal forms, word problem, conjugacy problem,
isomorphism problem...).

Geometric group theory: use tools from geometry (and
topology, analysis, dynamics...) to understand groups.

Geometrization 1: solvability of the word problem is directly
related to the isoperimetric inequality on the surface.

Geometrization 2: hyperbolic metric.



Groups as metric spaces

Let G be a finitely generated group.

Let Σ ⊂ G be a symmetric finite generating set, Σ−1 = Σ.

Let Γ = Γ(G ,Σ) be the Cayley graph of G with respect to Σ: the
vertex set is G , and g1, g2 ∈ G are joined by an edge iff

g1 = g2σ

for some σ ∈ Σ.

Give Γ the path metric where edges have length 1. Left translation
induces an isometric action G y Γ.

Thus we have associated a metric space with the group G .



Examples:

Zk . Rank k free abelian group.

Fk . Rank k free nonabelian group.

Surface group.



The Cayley graph depends on the choice of Σ.

Any two Cayley graphs are quasi-isometric.



Definition. A map f : X → Y between metric spaces is a
quasi-isometry if there are constants L ∈ [1,∞), A ∈ [0,∞), such
that

For all x1, x2 ∈ X ,

L−1d(x1, x2)− A ≤ d(f (x1), f (x2)) ≤ Ld(x1, x2) + A

For every y ∈ Y ,
d(y , Im(f )) < A .

Two metric spaces are quasi-isometric if there is a quasi-isometry
between them.



Some facts about quasi-isometries

L = 1, A = 0 ⇐⇒ isometry.

A = 0 iff L-bilipschitz.

f , g qi =⇒ f ◦ g qi.

Quasi-inverses.

QI(X ).

X
qi∼ Y iff they contain bilipschitz equivalent nets.

Examples. Rn, Hn.

We have a canonical quasi-isometry class of metric spaces
associated with a finitely generated group G .



The Fundamental Lemma of GGT. (Milnor-Svarc)
If X is a proper geodesic space, and G y X is a discrete,
cococompact, isometric action, then G is quasi-isometric to X .

Cor. If M is a compact connected Riemannian manifold, then
π1(M) is quasi-isometric to the universal cover M̃.

If G y Hn is a discrete, cocompact, isometric action, then G is
quasi-isometric to Hn.



Problem: understand metric geometry of groups.

Q: How much is encoded in the QI class?

Classify groups up to QI.

Geometric mapping theory: construct/obstruct/classify QIs.

QI invariants and QI invariant structure.
I Growth.
I Isoperimetric inequalities.
I Negative curvature (aka hyperbolicity).

Exercises:

Ek qi∼ E` iff k = `.

Show that any quasi-isometry f : Hk → H` is at finite sup
distance from a continuous quasi-isometry f̂ : Hk → H`.

Hk qi∼ H` iff k = `.
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Negative curvature 1: hyperbolic space

Quadric model (upper sheet, projective picture).

Ball model, upper halfspace model, normal coordinates.

Area growth of balls, Gauss-Bonnet, slimness of triangles.
↓ Lecture 1

↓ Lecture 2

Projection to geodesic.

Sphere at infinity. “Ideal boundary”.

n ≥ 3. Isom(Hn) ' Mob(Sn−1) ' Conf(Sn−1). (Exercise:
verify this.)

Hyperbolic manifolds and discrete subgroups.



Negative curvature 2: Riemannian manifolds

Let M be complete, simply connected, with sectional curvature
≤ −1

Examples.
I Complex hyperbolic space.
I Homogeneous negatively curved manifolds.
I Gromov-Thurston examples.

Triangle comparison.

Boundary at infinity.

∂Hn, ∂CHn.

Exercise: ∠∞p (γ1, γ2) ∼ e−R(γ1,γ2).



Negative curvature 3: CAT(−1) spaces

Examples:

Trees.

2-complexes.

Convex subsets C ⊂ Hn.

Hyperbolic manifolds with totally geodesic boundary.



Negative curvature 4: Gromov hyperbolic spaces

Definition.

Hyperbolic groups.

Thm. Quasi-isometry invariance of hyperbolicity.



Thm. (Approximation by trees)

For every δ ∈ [0,∞), n ∈ N there is a constant A = A(δ, n) with
the following property.

Suppose X is δ-hyperbolic, and Y = {y1, . . . , yn} ⊂ X . Then there
is a simplicial tree T and a (1,A)-quasi-isometric embedding

f : T → X

such that

T has at most 2n vertices.

Y ⊂ f (T ).

f (T ) is A-quasiconvex.



Def. A map f : X → Y between metric spaces is an
(L,A)-quasi-isometric embedding if

L−1d(x1, x2)− A ≤ d(f (x1), f (x2)) ≤ Ld(x1, x2) + A

for all x1, x2 ∈ X .

An (L,A)-quasigeodesic is a quasi-isometric embedding
f : I → Y where I is a connected subset of R.



Morse Lemma. For every δ, (L,A) there is a D = D(δ, L,A)
with the following property.

If γ : [a, b]→ X is an (L,A)-quasigeodesic and γ̄ : [a, b]→ X is a
geodesic with the same endpoints, then

Hd(Im(γ), Im(γ̄)) < D .

Similar statements hold for quasigeodesics I → X when I = [0,∞)
or I = R.

Cor. (QI invariance of hyperbolicity)

If X and Y are quasi-isometric geodesic metric spaces, then X is
hyperbolic iff Y is hyperbolic.



The boundary

Def. Two unit speed geodesic rays γ1, γ2 : [0,∞)→ X are
asymptotic if

sup
t∈[0,∞

d(γ1(t), γ2(t)) <∞ .

or equivalently, if their images have finite Hausdorff distance. This
defines an equivalence relation on rays.

The (ideal) boundary of X is the set of equivalence classes,
denoted ∂X .

Lem. The set of rays leaving the basepoint p contains a
representative from every equivalence class.



If γ1, γ2 are rays leaving p, their overlap is

(γ1 | γ2) = lim
t→∞

1

2
(d(γ1(t), p) + d(γ2(t), p)− d(γ1(t), γ2(t)))

∈ [0,∞) ∪ {∞} .

When X is proper, there will exist a geodesic η : R→ X which is
asymptotic to γ1 as t → −∞, and to γ2 as t →∞.

Then (γ1 | γ2) agrees with d(p, η) up to error 4δ.



Def. A visual metric is a distance function

d : ∂X × ∂X → [0,∞)

such that for every pair of rays γ1, γ2 leaving p,

C−1 e−a(γ1|γ2) ≤ d(γ1, γ2) ≤ C e−a(γ1|γ2)

If X is CAT(−1) then ∠∞p is a visual metric with parameter 1.

For a sufficiently small, visual metrics always exist.



Properties of visual metrics

Suppose G y X is a discrete, cocompact, isometric action on a
proper hyperbolic metric space. Then with respect to any visual
metric on ∂X :

∂X is a compact metric space.

∂X is approximately self-similar. There is an L ∈ [1,∞)
such that for all r ∈ (0, diam(∂X )), and every x ∈ ∂X , the
rescaled ball 1

r B(x , r) is L-bilipschitz to an open set U ⊂ ∂X
of unit size.

∂X is Ahlfors Q-regular for some Q. There is a C ∈ (0,∞)
such that for every ball B(x , r) ⊂ ∂X ,

C−1rQ ≤ HQ(B(p, r)) ≤ CrQ

if r ∈ [0, diam(∂X )].



QIs and visual metrics

Thm. Any qi f : X → X ′ between Gromov hyperbolic spaces
induces a quasisymmetric homeomorphism ∂f : ∂X → ∂X ′.

Def. A homeomorphism Z
φ→ Z ′ between metric spaces is

quasisymmetric if there is a homeomorphism η : [0,∞)→ [0,∞)
such that for all triples of distinct points p, x , y ∈ Z , we have

d(φ(p), φ(x))

d(φ(p), φ(y))
≤ η

(
d(p, x)

d(p, y)

)

Examples.

Any bilipschitz homeomorphism is quasisymmetric.

The map [0,∞)→ [0,∞) given by x 7→ xα, where α > 0.



Thm. An (L,A)-quasi-isometry f : X → Y between hyperbolic
spaces induces an η-quasi-Mobius homeomorphism ∂f : ∂X → ∂Y ,
where η = η(L,A).

Def. If Z is a metric space, and x , y , z ,w ∈ Z are distinct points,
the metric cross-ratio is

[x , y , z ,w ] =
d(x , z)

d(x ,w)

d(y ,w)

d(y , z)
.

Def. A homeomorphism f : Z → Z ′ between metric spaces is
quasi-Mobius if there is a homeomorphism η : [0,∞)→ [0,∞)
such that for every 4-tuple of distinct points {x , y , z ,w} ⊂ Z ,

[f (x), f (y), f (z), f (w)] ≤ η([x , y , z ,w ]) .



Exercises on QS/QM/QC

QS =⇒ QM =⇒ QC, quantitatively.

Compositions/inverses of QS/QM are QS/QM.

QS sends balls to quasiballs.

QM =⇒ QS (nonquantitatively) in compact spaces.



Sketch of proof

Suppose f : X → Y is a quasi-isometry.

Step 1. There is an induced bijection ∂f : ∂X → ∂Y .

Step 2. ∂f respects distances between geodesics.

Step 3. ∂f quasi-preserves additive cross-ratios.

〈1, 2, 3, 4〉 = (1, 3)− (1, 4) + (2, 4)− (2, 3)

Step 4. ∂f quasi-preserves metric cross-ratios.
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Metric geometry of groups:

Q: How much is encoded in the QI class?

Classify groups up to QI.

Geometric mapping theory: construct/obstruct/classify QIs.

QI invariants and QI invariant structure.

Thm. If X , Y are hyperbolic and f : X → Y is a QI, then there is
an induced QM homeomorphism f : ∂X → ∂Y .

Q: How much is encoded in the QM class?

Classify boundaries (of groups) up to QM homeomorphism.

Geometric mapping theory: construct/obstruct/classify QM
homeomorphisms.

QM invariants and QM invariant structure.

Q: So what?



Thm. (Mostow rigidity, three versions of the hyperbolic case)

Suppose n ≥ 3.

Suppose M1, M2 are closed hyperbolic n-manifolds. If
π1(M1) ' π1(M2), then M1 is isometric to M2.

Any two discrete, cocompact, isometric actions G y Hn are
isometrically conjugate.

Any two Mobius actions G y Sn−1 which are discrete and
cocompact on triples of points are conjugate by a Mobius
transformation.



Corollaries.

Every conjugacy invariant of the action G y Hn may be
viewed as an invariant of the group G . Example: geometric
invariants of Hn/G , such as volume, lengths of closed
geodesics, etc.

Suppose G y Hn is faithful, so G ↪→ Isom(Hn). Every
automorphism G → G is induced by conjugation by an
isometry φ : Hn → Hn which normalizes G . Therefore

Aut(G ) ' N(G , Isom(Hn))

Out(G ) = Aut(G )/ Inn(G ) ' N(G , Isom(Hn))/G .

|Out(G )| <∞.



There is an K = K (G ) such that if G is a finite index
subgroup of a torsion-free group Ĝ , then

[Ĝ : G ] < K

The abstract commensurator of G coincides with the
commensurator in Isom(Hn):

Comm(G ) ' Comm(G , Isom(Hn)) .



Thm. (Sullivan, Gromov, Tukia, Cannon-Swenson) Suppose G
is a finitely generated group, and G is quasi-isometric to Hn, n ≥ 3.

Then there is a discrete, cocompact, isometric action G y Hn.

Thus Isom(Hn) is a single group which (virtually) contains any
finitely generated group in the quasi-isometry class of Hn.

Remark. In fact, the proof provides (by analysis) a construction of
Isom(Hn) ' Mob(Sn−1) just starting from G .



Properties of quasiMöbius homeomorphisms between open
subsets of Sn, n ≥ 2:

(Differentiability) If f : U → V is a QM homeomorphism,
then for a.e. x ∈ U, Df (x) is defined and nonsingular.

QM homeomorphisms are absolutely continuous w.r.t.
Lebesgue measure:

|X | = 0 ⇐⇒ |f (X )| = 0 .

(“Liouville” theorem) If f : Sn → Sn is QM and Df (x) is
conformal for a.e. x ∈ Sn, then f ∈ Mob(Sn).



(Uniformization) If g is a measurable Riemannian metric on
S2 such that

C−1gS2 ≤ g ≤ CgS2

a.e., then g is conformally equivalent to gS2 by a QM
homeomorphism f : S2 → S2:

Df (x) : (TxS
2, gS2(x))→ (Tf (x)S

2, g(x))

is conformal for a.e. x ∈ S2.

(Compactness) If {fk : Sn → Sn} is a sequence of η-QM
homeomorphisms, then a subsequence either (a) converges
uniformly to an η-QM homeomorphism, or (b) converges
uniformly to a constant map in compact subsets of Sn \ {x},
for some x ∈ Sn.



Sketch of proof of Mostow rigidity

Suppose

G
1y Hn, G

2y Hn

are two discrete, cocompact, isometric actions.

Thus we have two associated Mobius actions

G
1y Sn−1, G

2y Sn−1

Step 1. There is a quasi-isometry

f : Hn → Hn

which is G -equivariant for the respective G -actions.



Step 2. There is an induced boundary homeomorphism

∂f : Sn−1 → Sn−1

which is QC, and G -equivariant for the respective Mobius actions

G
1y Sn−1, G

2y Sn−1

Step 3. Suppose D(∂f )(x) is not conformal almost everywhere.
Then on the set where D(∂f )(x) is not conformal, one has a
measurable subbundle

V ⊂ TSn−1

corresponding to the maximal stretch subspace of D(∂f ). This will
be G -invariant w.r.t. the action

G
1y Sn−1 .



Step 4. If x0 ∈ Sn−1 is a point of approximate continuity of V , we
may use the expanding dynamics of the action

G
1y Sn−1

to see that in some upper half-space model for Hn, the subbundle
V has constant coefficients. Then V extends canonically to a
smooth subbundle except at one singular point y ∈ Sn−1. Then y
must be fixed by G , which is a contradiction. Thus D(∂f )(x) is
conformal for a.e. x ∈ Sn−1.

Step 5. By the Liouville theorem, ∂f is a Mobius transformation,
i.e. ∂f = ∂ f̄ for a unique isometry f̄ : Hn → Hn. Since ∂ f̄ is
equivariant w.r.t. the two Mobius actions

G
1y Sn−1, G

2y Sn−1

it follows that f̄ is equivariant w.r.t. the two isometric actions

G
1y Hn, G

2y Hn



Sullivan, Gromov, Tukia rigidity

G finitely generated, with Cayley graph Γ.

G QI to Hn.

G
f→ Hn QI.

G y Γ left action on the Cayley graph Γ.

G y ∂G boundary action. This is η-QM.

Conjugate by ∂f : ∂G → ∂Hn ' Sn−1

 G y Sn−1 η′-QM action.

[gSn−1 ] standard conformal structure.

{g · [gSn−1 ] | g ∈ G} G -orbit.

[h] center of mass.

G y (Sn−1, h) is a conformal action.

Apply uniformization n = 3, or use blow-up argument (n ≥ 3).



Motivating questions

One would like to have analogs of Mostow rigidity and the
Sullivan/Gromov/Tukia rigidity theorem for other groups.

Q: Can one find canonical geometries for (some classes) of groups?

For non-hyperbolic groups, a variety of structures can be used to
prove rigidity theorems – coarse topology, topology of asymptotic
cones, coarse differentiation.

In the hyperbolic case, the only known approach is typically via
analysis on the boundary.
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Motivating questions

One would like to have analogs of Mostow rigidity and the
Sullivan/Gromov/Tukia rigidity theorem for other groups.

Q: Can one find canonical geometries for (some classes) of groups?

For non-hyperbolic groups, a variety of structures can be used to
prove rigidity theorems – coarse topology, topology of asymptotic
cones, coarse differentiation.

In the hyperbolic case, the only known approach is typically via
analysis on the boundary.



Q’s:

Which metric spaces have a good theory of QM/QS/QC
homeomorphisms?

What are some QM invariants?



Properties of QM/QS/QC homeomorphisms between open
subsets of Sn, n ≥ 2:

Every quasi-isometry Hn+1 → Hn+1 induces a QM
homeomorphism Sn → Sn, and conversely.

Compositions and inverses of QM homeomorphisms are QM.

QM homeomorphisms belong to W 1,n
loc .

(Differentiability) If f : U → V is a QM homeomorphism,
then for a.e. x ∈ U, Df (x) is defined and nonsingular.



QM homeomorphisms are absolutely continuous w.r.t.
Lebesgue measure:

|X | = 0 ⇐⇒ |f (X )| = 0 .

(Compactness) If {fk : Sn → Sn} is a sequence of uniformly
QM homeomorphisms, then some subsequence either (a)
converges uniformly to a quasiconformal homeomorphism, or
(b) converges uniformly to a constant map in compact subsets
of Sn \ {x}, for some x ∈ Sn.

(Liouville theorem) If f : Sn → Sn is QM and Df (x) is
conformal for a.e. x ∈ Sn, then f is a Mobius transformation.



(Uniformization) If g is a measurable Riemannian metric on
S2 such that

C−1g0 ≤ g ≤ Cg

a.e., then g is conformally equivalent to g0 by a
quasiconformal homeomorphism f : S2 → S2:

Df (x) : (TxS
2, g0(x))→ (Tf (x)S

2, g(x))

is conformal for a.e. x ∈ S2.

If f : Sn → Sn is a homeomorphism, then TFAE:
I f is QM.
I f is QC.
I f quasi-preserves n-energy.
I f quasi-preserves n-capacity.
I f ∈W 1,n and ∃K > 0 such that

Jf (x) := det(Df (x)) > K ‖Df (x)‖

for a.e. x .



Some motivation and observations

Let Z be a Riemannian manifold.

If u ∈ C 1(Z ) the n-energy is:

E (u) :=

∫
Z
|∇u|n dV

A C 1 diffeomorphism Sn ⊃ X → Y ⊂ Sn is conformal iff it
preserves n-energy.

A C 1 diffeomorphism Sn ⊃ X → Y ⊂ Sn is quasiconformal iff
it quasipreserves n-energy.



f : X → Y conformal, u ∈ C 1(Y ). Then

Jf := | detDf | = ‖Df ‖n , |∇(u ◦ f )| = (|∇u| ◦ f )‖Df ‖

E (u) =

∫
Y
|∇u|n dL

=

∫
X

(|∇u|n ◦ f ) Jf dL

=

∫
X

(|∇u|n ◦ f ) ‖Df ‖n dL

=

∫
X
|∇(u ◦ f )|n dL

= E (u ◦ f ) .



Def. If E ,F ⊂ Sn are disjoint compact subsets, let

Cap(E ,F ) := inf{E (u) | u|
E
≡ 0 ; u|

F
≡ 1} .

This is quasipreserved by quasiconformal diffeomorphisms.



The Loewner property

For compact connected sets, the capacity is equivalent to a
geometry quantity – the relative distance.

Def. If Z is a metric space, and E ,F ⊂ Z , then the relative
distance between E and F is

reldist(E ,F ) =
d(E ,F )

min(diam(E ), diam(F ))
.

Loewner property:

α(reldist(E ,F )) ≤ Cap(E ,F ) ≤ β(reldist(E ,F ))

where
α : [0,∞)→ (0,∞)

β : [0,∞)→ [0,∞) ∪ {∞}
is a function with

lim
t→∞

β(t) = 0



Let Z be a connected Riemannian n-manifold for n ≥ 2.

If Z is compact, it has the Loewner property.

The Ferrand cross-ratio of a 4-tuple x , y , z ,w is

inf{Cap(E ,F ) | {x , y} ⊂ E , {z ,w} ⊂ F ,

E ,F ⊂ Z compact, connected}

A quasiconformal homeomorphism quasipreserves this cross-ratio.

If the Loewner property holds, one can relate the Ferrand
cross-ratio with the metric cross-ratio, and conclude that a K -QC
homeomorphism is η-QM, where η = η(K ,Z ).

Lichnerowicz Conjecture. (Ferrand) If the conformal group of a
compact Riemannian manifold Z is noncompact, then Z is
conformally equivalent to the standard sphere.



Modulus in metric measure spaces

Let Z be a metric space, and suppose µ is a Borel measure on Z .

Let Γ be a family of paths in Z .

Let
ρ : Z → [0,∞) ∪ {∞}

be a Borel measurable function.



Def. The ρ-length of a path γ : I → Z is

lengthρ(γ) =

∫
γ
ρ ds .

The Q-mass of ρ is

MassQ(ρ) =

∫
Z
ρQ dµ .

ρ is Γ-admissible if
lengthρ(γ) ≥ 1

for every rectifiable path γ ∈ Γ.



Def. The Q-modulus of Γ is the infimal mass of Γ-admissible
functions:

ModQ(Γ) = inf { MassQ(ρ) | ρ is Γ-admissible}

The Q-modulus of a pair of subsets E ,F ⊂ Z is the Q-modulus
of the family of paths joining E to F .



Suppose (Z , µ), (Z ′, µ′) are Riemannian n-manifolds equipped with
Riemannian measures.

Let Γ be a path family in Z , f : Z → Z ′ be a diffeomorphism, and

Γ′ = {f ◦ γ | γ ∈ Γ} .

If f is conformal, then

Modn(Γ′) = Modn(Γ) .

If f is K -quasiconformal, then

K−n Modn(γ) ≤ Modn(Γ′) ≤ Kn Modn(Γ) .



Recall:

A metric space is Q-regular if an r -ball has Q-dimensional
Hausdorff measure comparable to rQ .



Modulus bounds

Lem. Suppose Z is Ahlfors Q-regular. Then the Q-modulus of the
pair

(B(p, r) , Z \ B(p,R))

is

≤ C

(log R
r )Q−1

if R ∈ [2r ,∞).

Proof. Use an admissible function of the form

ρ(x) =
c

d(x , p)
.



Def. If Z is a metric space, and E ,F ⊂ Z , then the relative
distance between E and F is

reldist(E ,F ) =
d(E ,F )

min(diam(E ), diam(F ))
.

Lem. Suppose Z is Ahlfors Q-regular, and E ,F ⊂ Z are disjoint
subsets. Then

ModQ(E ,F ) ≤ β(reldist(E ,F )) ,

where
β : [0,∞)→ [0,∞) ∪ {∞}

is a function with
lim
t→∞

β(t) = 0

which depends only on the regularity constant of Z .



Def. A compact Ahlfors Q-regular space Z is Q-Loewner if
Q > 1 and there is a function

α : [0,∞)→ (0,∞)

such that for every pair of closed connected subsets E ,F ⊂ Z ,

ModQ(E ,F ) ≥ α(reldist(E ,F )) .

For brevity, a metric space is Loewner if it is Q-regular and
Q-Loewner for some Q.

Much of the classical theory of quasiconformal homeomorphisms
carries over to Loewner spaces.



Examples

Sn.

S2n−1 with the standard Carnot/subRiemannian metric.

(Semmes) n-regular linearly locally contractible n-manifolds.

Noncollapsed limits of manifolds with a lower Ricci curvature
bound.

Fuchsian buildings.

Inverse limits of graphs.



Properties of Loewner spaces

(Quasiconvexity) There is an L ∈ [1,∞) such that any two
points p, q ∈ Z can be joined by a path of length at most
L d(p, q).

There is a λ ∈ (0, 1) such that if p ∈ Z , r ∈ (0, diam(Z )),
then any two points in

Z \ B(p, r)

can be joined by a path in

Z \ B(p, λr) .



Thm. Suppose Z ,Z ′ are compact Q-regular, Q-Loewner spaces.
Then every quasiconformal homeomorphism Z → Z ′ is QM.
Moreover, the distortion function depends only on the
quasiconformality constant.

Outline of proof.

Step 1: If E ,F ⊂ Z are compact connected subsets, then

reldist(f (E ), f (F )) ≤ φ(reldist(E ,F )) .

for some function
φ : [0,∞)→ (0,∞) .

Step 2: The above condition implies that f is QM.



Thm. Q-modulus is QM quasi-invariant, among compact
Q-regular spaces.

Corollary. The Loewner property is QM invariant, among
Q-regular spaces.



Thm. Suppose Z ,Z ′ are Q-Loewner spaces. Then every QM
homeomorphism Z → Z ′ is absolutely continuous w.r.t.
Q-dimensional Hausdorff measure.

In other words, the HQ measure class is QM invariant.

Thm. Suppose Z ,Z ′ are Q-Loewner spaces, and f : Z → Z ′ is
QM.

Then f ∈W 1,Q(Z ,Z ′). In particular, there is a Borel measurable
function

ρ : Z → [0,∞) ∪ {∞}

with ρ ∈ LQ(Z ) such that for every curve

γ : I → Z

d(f (γ(1)), f (γ(0)) ≤
∫
γ
ρ ds .



Thm. (QM Uniformization)

Suppose Z is a Q-Loewner metric space homeomorphic to S2.
Then Q = 2 and Z is QM homeomorphic to S2.



Differentiable structures on metric measure spaces

Def. Suppose Z is a metric space. A function u : Z → R is
constant to first order at p ∈ Z if

u(z)− u(p) = o(d(z , p)) near p .

A set of functions u1, . . . , uk : Z → R is dependent (to first
order) at p if there is a nontrivial linear combination

a1u1 + . . .+ akuk

which is constant to first order at p.

Note: A function u : Rn → R is constant to first order at p iff
Du(p) = 0 at p. u1, . . . , uk : Rn → R are dependent to first order
at p ∈ Rn if some nontrivial linear combination has zero derivative
at p.



Thm.

Suppose Z is a Loewner space.

Then there is a canonically associated normed measurable vector
bundle T ∗Z , and a bounded linear map

d : lip(Z )→ ΓL∞(T ∗Z )

such that for every u ∈ lip(Z ),

{z ∈ Z | du(z) = 0} = {z ∈ Z | u is constant to first order at z}

up to null sets.



Lecture 5



Recall. A metric space Z is Loewner if for some Q > 1:

Z is Ahlfors Q-regular.

ModQ(E ,F ) is quantatively equivalent to relative distance,
for E ,F ⊂ Z compact connected disjoint subsets.

Loewner spaces have a good theory of QM/QC homeomorphisms.

Examples:

Riemannian and sub-Riemannian manifolds.

Boundaries of some negatively curved homogeneous spaces.

Boundaries of Fuchsian buildings.

Some self-similar spaces.



Nonexamples



Thm. Q-modulus is QM quasi-invariant, among compact
Q-regular spaces.

Cor. The Loewner property is QM invariant, among Q-regular
spaces.

Thm. Suppose Z ,Z ′ are Q-Loewner spaces.

Then every QM homeomorphism Z → Z ′ is absolutely continuous
w.r.t. Q-dimensional Hausdorff measure.



Thm. If Z is Q-regular and ModQ is nontrivial, then any metric
space Z ′ QM homeomorphic to Z has Hausdorff dimension ≥ Q.

Def. The Ahlfors regular conformal dimension of Z is:

ConfDim(Z ) := inf{Q ′ | Z ′ QM−→ Z , Z ′ Q ′-regular}

By the above:

If Z is Q-regular and Q-modulus is nontrivial then
Q = ConfDim(Z ).

Suppose f : Z → Z ′ is QM, where Z is Loewner and Z ′ is
Ahlfors regular. Then ConfDim(Z ′) ≥ ConfDim(Z ) with
equality only if Z ′ is Loewner and f preserves measure classes.

Thm. Suppose Z is QM to the boundary of a hyperbolic group.

If Z is Q-regular and Q = ConfDim(Z ), then Z is Loewner.



Needle in a haystack

Let M be a compact hyperbolic manifold with metric g .

Let d be a visual metric on ∂M̃.

Perturb g to another negatively curved metric g ′, and look at the
corresponding visual metric d ′ on ∂M̃.

Then unless g ′ has constant curvature, the measure classes of d
and d ′ will be mutually singular.



Necessary conditions to be QM to a Loewner space

Def. A metric space Z is LLC if there is an L such that for all
p ∈ Z , 0 < r ≤ diam(X ), the inclusions

B(p, r)→ B(p, Lr), X \ B(p, r) −→ X \ B
(
p,

r

L

)
induce the zero homomorphism on reduced 0-dimensional
homology.

Lem. LLC is a QS invariant property.

Lem. Loewner spaces are LLC.



Cor. The Sierpinski gasket is not QM to a Loewner space.



Open problem: Are the Sierpinski-carpet and Menger-sponge QM
to Loewner spaces? What is their conformal dimension?



Cor. If G is a hyperbolic group, and ∂G is QM homeomorphic to a
Loewner space, then ∂G is LLC.

In particular, ∂G is connected, locally connected, and has no local
cut points.

Hence G cannot virtually split over a virtually cyclic group.

Thm. The above conditions are necessary, but not sufficient, for
∂G to be QM to a Loewner space.



There is a combinatorial version of modulus for a compact
doubling metric space Z , defined using discrete approximations.

The combinatorial analog of the Loewner condition is called the
Combinatorial Loewner Property.

Every Loewner space has the CLP.

Conj. Every compact (self-similar) space with the CLP is QM to a
Loewner space.

Thm. The S-carpet and M-sponge have the CLP. So do many
hyperbolic Coxeter groups.



QM invariant function spaces

Let G be a hyperbolic group, with Cayley graph Γ.

The boundary ∂Γ compactifies Γ:

Γ̄ := Γ ∪ ∂Γ .

Pick p > 1, and consider the collection of continuous functions
u ∈ C (∂Γ) which have continuous extensions

ū : Γ→ R

with p-summable gradient, i.e.∑
g∈G ,σ∈Σ

|u(g)− u(gσ)|p <∞ .



This space is QM invariant.

Let p6=0 be the infimal exponent for which the function space is
nontrivial,

and psep be the infimal p for which the function space separates
points.

Thm.

psep = ConfDim(∂Γ).

If ∂G is QM to a Loewner space, then p6=0 = psep.



Open problems

Rigidity for random groups.

Rigidity for Gromov-Thurson examples.

CLP implies Loewner.

S-carpet and M-sponge are Loewner. Conformal dimension?

Good G -invariant measure class on ∂G if G doesn’t virtually
split over a virtually cyclic group.


	Loewner spaces

