Metric geometry and analysis on boundaries of Gromov
hyperbolic spaces, and applications
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Overview

Theory of boundaries is at the intersection of many areas:

Metric geometry.
Geometric group theory.
Geometric mapping theory.
Analysis on metric spaces.
Dynamical systems.

PDE and PDR.

Goals:

@ Motivation for current research.
@ Cover some of the foundations.

@ Survey some advanced results.



Geometric group theory: a quick primer

Problem: Understand groups. Infinite groups, usually finitely
generated.

Example: Surface group.
Van Kampen: Generators and relations.

Combinatorial group theory. Manipulate presentations.
(Normal forms, word problem, conjugacy problem,
isomorphism problem...).

Geometric group theory: use tools from geometry (and
topology, analysis, dynamics...) to understand groups.

Geometrization 1: solvability of the word problem is directly
related to the isoperimetric inequality on the surface.

Geometrization 2: hyperbolic metric.



Groups as metric spaces
Let G be a finitely generated group.
Let ¥ C G be a symmetric finite generating set, ¥ 1 = ¥

Let I =T(G, X) be the Cayley graph of G with respect to ¥: the
vertex set is G, and g1, 8> € G are joined by an edge iff

81 = 820

for some o € .

Give I the path metric where edges have length 1. Left translation
induces an isometric action G ~ .

Thus we have associated a metric space with the group G.



Examples:

@ 7ZX. Rank k free abelian group.
@ Fi. Rank k free nonabelian group.

@ Surface group.



The Cayley graph depends on the choice of X.

Any two Cayley graphs are quasi-isometric.



Definition. A map f : X — Y between metric spaces is a
quasi-isometry if there are constants L € [1,00), A € [0, 0), such
that

@ Forall xi,x € X,

L7 d(x1,x0) — A< d(f(x1), f(x2)) < Ld(x1,x2) + A

@ Foreveryy €Y,
d(y,Im(f)) < A.

Two metric spaces are quasi-isometric if there is a quasi-isometry
between them.



Some facts about quasi-isometries

L=1 A=0 <= isometry.
A = 0 iff L-bilipschitz.
f,g qi = fog qi

Quasi-inverses.
e QI(X).
o X kY Y iff they contain bilipschitz equivalent nets.

Examples. R”, H".

We have a canonical quasi-isometry class of metric spaces
associated with a finitely generated group G.



The Fundamental Lemma of GGT. (Milnor-Svarc)
If X is a proper geodesic space, and G ~ X is a discrete,
cococompact, isometric action, then G is quasi-isometric to X.

Cor. If M is a compact connected Riemannian manifold, then
m1(M) is quasi-isometric to the universal cover M.

If G ~H" is a discrete, cocompact, isometric action, then G is
quasi-isometric to H".



Problem: understand metric geometry of groups.

@ Q: How much is encoded in the QI class?
o Classify groups up to Ql.

e Geometric mapping theory: construct/obstruct/classify Qls.

@ QI invariants and QI invariant structure.

> Growth.
> Isoperimetric inequalities.
» Negative curvature (aka hyperbolicity).

Exercises:
o BEX LR iff k = 0.

@ Show that any quasi-isometry f : HK — HF is at finite sup
distance from a continuous quasi-isometry f : HK — HY.

o H< L H iff k = ¢.
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Negative curvature 1: hyperbolic space

@ Quadric model (upper sheet, projective picture).
o Ball model, upper halfspace model, normal coordinates.

@ Area growth of balls, Gauss-Bonnet, slimness of triangles.
J Lecture 1

J Lecture 2
@ Projection to geodesic.

@ Sphere at infinity. “Ideal boundary”.

e n> 3. Isom(H") ~ Mob(5§""1) ~ Conf(S"1). (Exercise:
verify this.)

@ Hyperbolic manifolds and discrete subgroups.



Negative curvature 2: Riemannian manifolds

Let M be complete, simply connected, with sectional curvature
< -1
@ Examples.

» Complex hyperbolic space.
» Homogeneous negatively curved manifolds.
» Gromov-Thurston examples.

Triangle comparison.
Boundary at infinity.
OH", OCH".

Exercise: Z5°(v1,72) ~ e~ R(2)

e 6 ¢ o



Negative curvature 3: CAT(—1) spaces

Examples:
o Trees.
@ 2-complexes.
o Convex subsets C C H".
@ Hyperbolic manifolds with totally geodesic boundary.



Negative curvature 4: Gromov hyperbolic spaces

@ Definition.
@ Hyperbolic groups.
@ Thm. Quasi-isometry invariance of hyperbolicity.



Thm. (Approximation by trees)

For every § € [0,00), n € N there is a constant A = A(J, n) with
the following property.

Suppose X is d-hyperbolic, and Y = {yi,...,yn} C X. Then there
is a simplicial tree T and a (1, A)-quasi-isometric embedding

f:T =X

such that

@ T has at most 2n vertices.
e Y C(T).

e f(T) is A-quasiconvex.



Def. A map f : X — Y between metric spaces is an
(L, A)-quasi-isometric embedding if

L7 d(x1,x0) — A < d(f(x1), f(x2)) < Ld(x1,x2) + A
for all xq1,x € X.

An (L, A)-quasigeodesic is a quasi-isometric embedding
f: 1 — Y where | is a connected subset of R.



Morse Lemma.  For every 0, (L, A) thereisa D = D(4, L, A)
with the following property.

If v :[a,b] — X is an (L, A)-quasigeodesic and 7 : [a, b] — X is a
geodesic with the same endpoints, then

Hd(Im(~),Im(%)) < D.

Similar statements hold for quasigeodesics | — X when | = [0, c0)
or | =R.

Cor. (QI invariance of hyperbolicity)

If X and Y are quasi-isometric geodesic metric spaces, then X is
hyperbolic iff Y is hyperbolic.



The boundary

Def. Two unit speed geodesic rays 71,72 : [0,00) — X are
asymptotic if
sup  d(y1(t),72(t)) < oo.
te[0,00
or equivalently, if their images have finite Hausdorff distance. This
defines an equivalence relation on rays.

The (ideal) boundary of X is the set of equivalence classes,
denoted 0X.

Lem. The set of rays leaving the basepoint p contains a
representative from every equivalence class.



If v1,72 are rays leaving p, their overlap is

(711 72) %(d(vl(t)m) + d(72(t), p) — d(71(t),72(¢)))

= lim
t—o00

€ [0,00) U {o0}.

When X is proper, there will exist a geodesic n : R — X which is
asymptotic to 1 as t — —o0, and to 7 as t — oo.

Then (71 | 72) agrees with d(p,n) up to error 44.



Def. A visual metric is a distance function
d:0X x 90X — [0,00)
such that for every pair of rays v1,v2 leaving p,

C1e2nh2) < d(y1,72) < C e—¥ml2)

o If X is CAT(—1) then Z/3° is a visual metric with parameter 1.

e For a sufficiently small, visual metrics always exist.



Properties of visual metrics

Suppose G ~ X is a discrete, cocompact, isometric action on a
proper hyperbolic metric space. Then with respect to any visual
metric on 0X:

@ OX is a compact metric space.

e 0X is approximately self-similar. There is an L € [1, 00)
such that for all r € (0,diam(9X)), and every x € 90X, the
rescaled ball %B(X, r) is L-bilipschitz to an open set U C 90X
of unit size.

e 0X is Ahlfors Q-regular for some Q. Thereis a C € (0, 00)
such that for every ball B(x, r) C 90X,

C R <HQB(p,r)) < Cr?
if r € [0,diam(0X)].



QIs and visual metrics

Thm. Any qi f : X — X’ between Gromov hyperbolic spaces
induces a quasisymmetric homeomorphism 9f : 9X — 9X'.

Def. A homeomorphism Z f) Z' between metric spaces is
quasisymmetric if there is a homeomorphism 7 : [0, 00) — [0, c0)
such that for all triples of distinct points p, x,y € Z, we have

d(é(p), o(x)) d(p,x)
d(o(p), o(r)) =" (d(p,y)>

Examples.

@ Any bilipschitz homeomorphism is quasisymmetric.

@ The map [0,00) — [0, 00) given by x — x®, where a > 0.



Thm. An (L, A)-quasi-isometry f : X — Y between hyperbolic
spaces induces an 7-quasi-Mobius homeomorphism 0f : X — 3Y,
where n = n(L, A).

Def. If Z is a metric space, and x,y,z, w € Z are distinct points,
the metric cross-ratio is

x,y,z,w] =

Def. A homeomorphism f : Z — Z' between metric spaces is
quasi-Mobius if there is a homeomorphism 7 : [0, 00) — [0, c0)
such that for every 4-tuple of distinct points {x,y,z,w} C Z,

[F(x), f(y), f(2), f(w)] < n([x,y, 2, w]).



Exercises on QS/QM/QC

e QS = QM = QC(, quantitatively.

e Compositions/inverses of QS/QM are QS/QM.

@ QS sends balls to quasiballs.

e QM = QS (nonquantitatively) in compact spaces.



Sketch of proof

Suppose f : X — Y is a quasi-isometry.
Step 1. There is an induced bijection 0f : 90X — JY.
Step 2. Jf respects distances between geodesics.

Step 3. Of quasi-preserves additive cross-ratios.

(1,2,3,4) =(1,3) — (1,4) + (2,4) — (2,3)

Step 4. Of quasi-preserves metric cross-ratios.



Lecture 3



Metric geometry of groups:
@ Q: How much is encoded in the QI class?
o Classify groups up to Ql.
e Geometric mapping theory: construct/obstruct/classify Qls.

@ QI invariants and QI invariant structure.

Thm. If X, Y are hyperbolic and f : X — Y is a Ql, then there is
an induced QM homeomorphism f : X — 9Y.

@ Q: How much is encoded in the QM class?

o Classify boundaries (of groups) up to QM homeomorphism.

e Geometric mapping theory: construct/obstruct/classify QM
homeomorphisms.

@ QM invariants and QM invariant structure.

Q: So what?



Thm. (Mostow rigidity, three versions of the hyperbolic case)
Suppose n > 3.

@ Suppose My, M, are closed hyperbolic n-manifolds. If
m1(My) ~ m1(M>), then My is isometric to Ma.

@ Any two discrete, cocompact, isometric actions G ~ H" are

isometrically conjugate.

@ Any two Mobius actions G ~ $"~ which are discrete and
cocompact on triples of points are conjugate by a Mobius
transformation.



Corollaries.

@ Every conjugacy invariant of the action G ~ H" may be
viewed as an invariant of the group G. Example: geometric
invariants of H"/G, such as volume, lengths of closed
geodesics, etc.

@ Suppose G ~ H" is faithful, so G < Isom(H"). Every
automorphism G — G is induced by conjugation by an
isometry ¢ : H” — H" which normalizes G. Therefore

Aut(G) ~ N(G, Isom(H"))

Out(G) = Aut(G)/ Inn(G) ~ N(G,lsom(H"))/G .

e |Out(G)| < 0.



@ There is an K = K(G) such that if G is a finite index
subgroup of a torsion-free group G, then

[6:Gl <K

@ The abstract commensurator of G coincides with the
commensurator in Isom(H"):

Comm(G) ~ Comm(G, Isom(H")) .



Thm. (Sullivan, Gromov, Tukia, Cannon-Swenson)  Suppose G
is a finitely generated group, and G is quasi-isometric to H", n > 3.

Then there is a discrete, cocompact, isometric action G ~ H".

Thus Isom(H?") is a single group which (virtually) contains any
finitely generated group in the quasi-isometry class of H".

Remark. In fact, the proof provides (by analysis) a construction of
Isom(IH") ~ Mob(S"~1) just starting from G.



Properties of quasiMobius homeomorphisms between open
subsets of S”, n > 2:

o (Differentiability) If f: U — V is a QM homeomorphism,
then for a.e. x € U, Df(x) is defined and nonsingular.

@ QM homeomorphisms are absolutely continuous w.r.t.
Lebesgue measure:

IX|=0 <<= [f(X)|=0.

@ (“Liouville" theorem) If f:S5" — S™is QM and Df(x) is
conformal for a.e. x € S”, then f € Mob(5").



@ (Uniformization) If g is a measurable Riemannian metric on
S? such that
C'gs2 < g < Cgs2

a.e., then g is conformally equivalent to gs2 by a QM
homeomorphism f : §? — S

Df(x) : (TxS% g52(x)) = (Tr(S% g(x))

is conformal for a.e. x € §2.

o (Compactness) If {f, : S" — S"} is a sequence of n-QM
homeomorphisms, then a subsequence either (a) converges
uniformly to an 7-QM homeomorphism, or (b) converges
uniformly to a constant map in compact subsets of S” \ {x},
for some x € S".



Sketch of proof of Mostow rigidity

Suppose
1 2
GAH"', GAH"
are two discrete, cocompact, isometric actions.

Thus we have two associated Mobius actions

GA st A st

Step 1. There is a quasi-isometry
f:H" — H"

which is G-equivariant for the respective G-actions.



Step 2. There is an induced boundary homeomorphism
of : "t — 571

which is QC, and G-equivariant for the respective Mobius actions

GA st A st

Step 3. Suppose D(0f)(x) is not conformal almost everywhere.
Then on the set where D(0f)(x) is not conformal, one has a
measurable subbundle

VcTsTt

corresponding to the maximal stretch subspace of D(0f). This will
be G-invariant w.r.t. the action

GA S,



Step 4. If xo € S" L is a point of approximate continuity of V, we
may use the expanding dynamics of the action
G A S

to see that in some upper half-space model for H”, the subbundle
V has constant coefficients. Then V extends canonically to a
smooth subbundle except at one singular point y € S 1. Then y
must be fixed by G, which is a contradiction. Thus D(9f)(x) is
conformal for a.e. x € S™1.

Step 5. By the Liouville theorem, a_f is a Mobius transfor_mation,
i.e. Of = Of for a unique isometry f : H” — H". Since Of is
equivariant w.r.t. the two Mobius actions

1 2
GRS GA ST
it follows that f is equivariant w.r.t. the two isometric actions

GAH" GAH



Sullivan, Gromov, Tukia rigidity

o G finitely generated, with Cayley graph I'.
o G QI to H".
o GLmr QL
@ G T left action on the Cayley graph I'.
@ G ~ 0G boundary action. This is n-QM.

Conjugate by Of : 0G — OH" ~ S"1
~ G~ S 1/-QM action.

@ [ggn-1] standard conformal structure.
o {g [gsn-1] | g€ G} G-orbit.

@ [h] center of mass.

e G~ (S"1 h)is a conformal action.

@ Apply uniformization n = 3, or use blow-up argument (n > 3).



Motivating questions

One would like to have analogs of Mostow rigidity and the
Sullivan/Gromov/Tukia rigidity theorem for other groups.

Q: Can one find canonical geometries for (some classes) of groups?

For non-hyperbolic groups, a variety of structures can be used to
prove rigidity theorems — coarse topology, topology of asymptotic
cones, coarse differentiation.

In the hyperbolic case, the only known approach is typically via
analysis on the boundary.
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Motivating questions

One would like to have analogs of Mostow rigidity and the
Sullivan/Gromov/Tukia rigidity theorem for other groups.

Q: Can one find canonical geometries for (some classes) of groups?

For non-hyperbolic groups, a variety of structures can be used to
prove rigidity theorems — coarse topology, topology of asymptotic
cones, coarse differentiation.

In the hyperbolic case, the only known approach is typically via
analysis on the boundary.



Q’s:
@ Which metric spaces have a good theory of QM/QS/QC
homeomorphisms?

@ What are some QM invariants?



Properties of QM/QS/QC homeomorphisms between open
subsets of S", n > 2:

o Every quasi-isometry H"1 — H"™?! induces a QM
homeomorphism S” — 5", and conversely.

@ Compositions and inverses of QM homeomorphisms are QM.

@ QM homeomorphisms belong to Wli’c".

o (Differentiability) If f: U — V is a QM homeomorphism,
then for a.e. x € U, Df(x) is defined and nonsingular.



@ QM homeomorphisms are absolutely continuous w.r.t.
Lebesgue measure:

IX|=0 <« [f(X)|=0.

o (Compactness) If {f,: S™ — S"} is a sequence of uniformly
QM homeomorphisms, then some subsequence either (a)
converges uniformly to a quasiconformal homeomorphism, or
(b) converges uniformly to a constant map in compact subsets
of $”\ {x}, for some x € §".

o (Liouville theorem) If f:S" — S™is QM and Df(x) is
conformal for a.e. x € §", then f is a Mobius transformation.



@ (Uniformization) If g is a measurable Riemannian metric on
S? such that
Clg<g<Cg

a.e., then g is conformally equivalent to gp by a
quasiconformal homeomorphism f : §? — S

Df (x) : (TX52,gg(x)) — (T,c(x)52,g(x))

is conformal for a.e. x € S2.

o If f: 5" — S"is a homeomorphism, then TFAE:
» fis QM.

f is QC.

f quasi-preserves n-energy.

f quasi-preserves n-capacity.

f € WH" and 3K > 0 such that

vV vy vy

Jr(x) := det(Df (x)) > K || Df (x)||

for a.e. x.



Some motivation and observations

Let Z be a Riemannian manifold.

If u€ CY(Z) the n-energy is:

E(u) ::/Z|Vu|” dv

e A C! diffeomorphism S”" > X — Y C S" is conformal iff it
preserves n-energy.

e A C! diffeomorphism S” 5 X — Y C S” is quasiconformal iff
it quasipreserves n-energy.



f: X — Y conformal, u € C(Y). Then

Jr = |det Df| = ||Df||", |V(uof)|=(|Vul|of)|Df|

E(u) :/ |Vu|" dL
Y
:/(]Vu]”of)Jf dr
X
— [(vuronofP o
X

:/ V(uo )" dL
X
=E(uof).



Def. If E,F C S" are disjoint compact subsets, let

Cap(E, F) :=inf{E(u) | u|p = 0;ul, =1}.

This is quasipreserved by quasiconformal diffeomorphisms.



The Loewner property

For compact connected sets, the capacity is equivalent to a
geometry quantity — the relative distance.

Def. If Z is a metric space, and E, F C Z, then the relative
distance between E and F is

d(E,F)
min(diam(E),diam(F))

reldist(E, F) =

Loewner property:
afreldist(E, F)) < Cap(E, F) < B(reldist(E, F))
where
a:[0,00) — (0,00)
B :]0,00) — [0,00) U {0}
is a function with

lim 5(t) =0

t—o0



Let Z be a connected Riemannian n-manifold for n > 2.
If Z is compact, it has the Loewner property.

The Ferrand cross-ratio of a 4-tuple x,y,z, w is

inf{Cap(E,F) | {x,y} C E, {z,w} CF,
E,F C Z compact, connected}

A quasiconformal homeomorphism quasipreserves this cross-ratio.

If the Loewner property holds, one can relate the Ferrand
cross-ratio with the metric cross-ratio, and conclude that a K-QC
homeomorphism is 7-QM, where n = n(K, Z2).

Lichnerowicz Conjecture. (Ferrand) If the conformal group of a
compact Riemannian manifold Z is noncompact, then Z is
conformally equivalent to the standard sphere.



Modulus in metric measure spaces

Let Z be a metric space, and suppose p is a Borel measure on Z.

Let [ be a family of paths in Z.

Let
p:Z—[0,00)U {0}

be a Borel measurable function.



Def. The p-length of a path v:/ — Z is

length ,(v) = /p ds.
gl

The @-mass of p is

MaSSQ(p):/Z pdp.

p is [-admissible if
length,(v) > 1

for every rectifiable path v € T.



Def. The Q-modulus of T is the infimal mass of -admissible
functions:

Modg(l) = inf { Massg(p) | p is T-admissible}

The @-modulus of a pair of subsets E, F C Z is the Q-modulus
of the family of paths joining E to F.



Suppose (Z, ), (Z', ') are Riemannian n-manifolds equipped with
Riemannian measures.

Let I be a path family in Z, f : Z — Z’ be a diffeomorphism, and

M={foy|vyerl}.

If f is conformal, then

Mod, (") = Mod,(T).

If fis K-quasiconformal, then

K~"Mod,(v) < Mod,(I") < K" Mod,(I).



Recall:

A metric space is @Q-regular if an r-ball has Q-dimensional
Hausdorff measure comparable to r€.



Modulus bounds

Lem. Suppose Z is Ahlfors Q-regular. Then the @Q-modulus of the

pair
(B(p,r), Z\ B(p,R))
is ) c
" (log )@t
if R € [2r,0).

Proof. Use an admissible function of the form

d(x,p)

p(x) =



Def. If Z is a metric space, and E, F C Z, then the relative
distance between E and F is

d(E, F)
min(diam(E), diam(F))

reldist(E, F) =

Lem. Suppose Z is Ahlfors Q-regular, and E, F C Z are disjoint
subsets. Then

Modg(E, F) < [(reldist(E, F)),
where
B :10,00) = [0, 00) U {oo}
is a function with

lim 5(t) =0

t—o0

which depends only on the regularity constant of Z.



Def. A compact Ahlfors Q-regular space Z is Q-Loewner if
@ > 1 and there is a function

a:[0,00) = (0,00)
such that for every pair of closed connected subsets E, F C Z,

Modg(E, F) > a(reldist(E, F)) .

For brevity, a metric space is Loewner if it is Q-regular and
Q-Loewner for some Q.

Much of the classical theory of quasiconformal homeomorphisms
carries over to Loewner spaces.



Examples

sn.
$2n=1 with the standard Carnot/subRiemannian metric.

(Semmes) n-regular linearly locally contractible n-manifolds.

Noncollapsed limits of manifolds with a lower Ricci curvature
bound.

Fuchsian buildings.

Inverse limits of graphs.



Properties of Loewner spaces

@ (Quasiconvexity) There is an L € [1,00) such that any two
points p,q € Z can be joined by a path of length at most

L d(p, q).

@ Thereisa A € (0,1) such that if p € Z, r € (0,diam(Z)),
then any two points in

Z\ B(p,r)
can be joined by a path in

Z\ B(p,\r).



Thm. Suppose Z,Z’ are compact Q-regular, Q-Loewner spaces.
Then every quasiconformal homeomorphism Z — Z’ is QM.
Moreover, the distortion function depends only on the
quasiconformality constant.

Outline of proof.

Step 1: If E, F C Z are compact connected subsets, then
reldist(f(E), f(F)) < ¢(reldist(E, F)).

for some function
¢ :[0,00) = (0,00).

Step 2: The above condition implies that f is QM.



Thm. Q-modulus is QM quasi-invariant, among compact
Q-regular spaces.

Corollary. The Loewner property is QM invariant, among
Q-regular spaces.



Thm. Suppose Z,Z" are Q-Loewner spaces. Then every QM
homeomorphism Z — Z' is absolutely continuous w.r.t.
Q-dimensional Hausdorff measure.

In other words, the H® measure class is QM invariant.

Thm. Suppose Z,Z" are Q-Loewner spaces, and f : Z — Z' is
QM.

Then f € WHQ(Z,Z'). In particular, there is a Borel measurable
function
p:Z —[0,00)U{oc}

with p € L®(Z) such that for every curve

S 4

d(F(+(1)), F(1(0)) < / ) ds.

Y



Thm. (QM Uniformization)

Suppose Z is a Q-Loewner metric space homeomorphic to S2.
Then @ =2 and Z is QM homeomorphic to S2,



Differentiable structures on metric measure spaces

Def. Suppose Z is a metric space. A function u: Z — R is
constant to first order at p € Z if

u(z) — u(p) = o(d(z,p)) nearp.
A set of functions uy,...,ux : Z — R is dependent (to first
order) at p if there is a nontrivial linear combination
ajuy + ...+ akug

which is constant to first order at p.

Note: A function u: R” — R is constant to first order at p iff
Du(p) =0 at p. u1,...,ux : R" — R are dependent to first order
at p € R” if some nontrivial linear combination has zero derivative
at p.



Thm.
Suppose Z is a Loewner space.

Then there is a canonically associated normed measurable vector
bundle T*Z, and a bounded linear map

d:1ip(Z) = T1=(T*2)
such that for every u € lip(Z),
{z€ Z|du(z) =0} = {z € Z| uis constant to first order at z}

up to null sets.
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Recall. A metric space Z is Loewner if for some Q > 1:

e Z is Ahlfors Q-regular.
e Modg(E, F) is quantatively equivalent to relative distance,

for E, F C Z compact connected disjoint subsets.
Loewner spaces have a good theory of QM/QC homeomorphisms.

Examples:

@ Riemannian and sub-Riemannian manifolds.
@ Boundaries of some negatively curved homogeneous spaces.
@ Boundaries of Fuchsian buildings.

@ Some self-similar spaces.



Nonexamples




Thm. Q-modulus is QM quasi-invariant, among compact
Q-regular spaces.

Cor. The Loewner property is QM invariant, among Q-regular
spaces.

Thm. Suppose Z, 7" are Q-Loewner spaces.

Then every QM homeomorphism Z — Z’ is absolutely continuous
w.r.t. @-dimensional Hausdorff measure.



Thm. If Z is Q-regular and Mod is nontrivial, then any metric
space Z' QM homeomorphic to Z has Hausdorff dimension > Q.

Def. The Ahlfors regular conformal dimension of Z is:

ConfDim(Z) := inf{Q" | Z' Mz, Z Q'-regular}

By the above:

e If Zis Q-regular and @-modulus is nontrivial then
Q = ConfDim(Z).

@ Suppose f: Z — Z' is QM, where Z is Loewner and Z’ is
Ahlfors regular. Then ConfDim(Z’) > ConfDim(Z) with
equality only if Z’ is Loewner and f preserves measure classes.

Thm. Suppose Z is QM to the boundary of a hyperbolic group.

If Zis Q-regular and @ = ConfDim(Z), then Z is Loewner.



Needle in a haystack

Let M be a compact hyperbolic manifold with metric g.
Let d be a visual metric on M.

Perturb g to another negatively curved metric g/, and look at the
corresponding visual metric d’ on M.

Then unless g’ has constant curvature, the measure classes of d
and d’ will be mutually singular.



Necessary conditions to be QM to a Loewner space

Def. A metric space Z is LLC if there is an L such that for all
pe€ Z, 0<r<diam(X), the inclusions

B(p.r) = B(p,Lr), X\B(p,r) — X\ B (p,])

induce the zero homomorphism on reduced 0-dimensional
homology.

Lem. LLC is a QS invariant property.

Lem. Loewner spaces are LLC.



Cor. The Sierpinski gasket is not QM to a Loewner space.




Open problem: Are the Sierpinski-carpet and Menger-sponge QM
to Loewner spaces? What is their conformal dimension?




Cor. If G is a hyperbolic group, and 0G is QM homeomorphic to a
Loewner space, then 9G is LLC.

In particular, G is connected, locally connected, and has no local
cut points.

Hence G cannot virtually split over a virtually cyclic group.

Thm. The above conditions are necessary, but not sufficient, for
0G to be QM to a Loewner space.



There is a combinatorial version of modulus for a compact
doubling metric space Z, defined using discrete approximations.

The combinatorial analog of the Loewner condition is called the
Combinatorial Loewner Property.

Every Loewner space has the CLP.

Conj. Every compact (self-similar) space with the CLP is QM to a
Loewner space.

Thm. The S-carpet and M-sponge have the CLP. So do many
hyperbolic Coxeter groups.



QM invariant function spaces

Let G be a hyperbolic group, with Cayley graph I'.

The boundary dI' compactifies I':

r=ruar.

Pick p > 1, and consider the collection of continuous functions
u € C(9I) which have continuous extensions

og:M—R
with p-summable gradient, i.e.

Y lulg) —u(go)lP < co.

geG,oex



This space is QM invariant.

Let p.o be the infimal exponent for which the function space is
nontrivial,

and psep be the infimal p for which the function space separates
points.
Thm.

® psep = ConfDim(0r).
e If 9G is QM to a Loewner space, then p.o = psep.



Open problems

Rigidity for random groups.

Rigidity for Gromov-Thurson examples.

CLP implies Loewner.

S-carpet and M-sponge are Loewner. Conformal dimension?

Good G-invariant measure class on G if G doesn't virtually
split over a virtually cyclic group.
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