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Surface-tension- and injection-driven spreading
of a thin viscous film
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We consider the spreading of a thin viscous droplet, injected through a finite region of
a substrate, under the influence of surface tension. We neglect gravity and assume that
there is a precursor layer covering the whole substrate and that the rate of injection
is constant. We analyse the evolution of the film profile for early and late time, and
obtain power-law dependencies for the maximum film thickness at the centre of the
injection region and the position of an apparent contact line, which compare well
with numerical solutions of the full problem. We relax the conditions on the injection
rate to consider more general time-dependent and spatially varying forms. In the case
of power-law injection of the form tk, we observe a switch in the behaviour of the
evolution of the film thickness for late time from increasing to decreasing at a critical
value of k. We show that point-source injection can be treated as a limiting case
of a finite-injection slot and the solutions exhibit identical behaviours for late time.
Finally, we formulate the problem with thickness-dependent injection rate, discuss the
behaviour of the maximum film thickness and the position of the apparent contact line
and give power-law dependencies for these.

Key words: interfacial flows (free surface), low-Reynolds-number flows, thin films

1. Introduction

Surface-tension-driven thin-film flows arise in a wide range of physical applications.
For example, they are crucial in understanding the spreading of liquid films (Oron,
Davis & Bankoff 1997; Craster & Matar 2009; Zheng et al. 2018), drying of paints
(Howison et al. 1997), biological processes such as coating of the internal sides of the
airways (Halpern & Grotberg 1992), contact-lens manufacture (Murphy & Lee 2017),
a vast variety of coating processes in industry (Wilson 1982; Howell, Robinson &
Stone 2013) including spin coating (Fraysse & Homsy 1994; Wilson, Hunt & Duffy
2000) and spreading of chemical reaction fronts in liquids (Guzman & Vasquez 2016).
While the spreading of a fixed volume of fluid is well studied (see, e.g. Voinov 1976;
Hocking 1980, 1983, 1992; Lacey 1982; Cox 1986; Ehrhard & Davis 1991; King &
Bowen 2001; Bonn et al. 2009; Savva & Kalliadasis 2009, 2013; Howell 2010; Ajaev
2012), the analysis of thin-film flows with sources and sinks is much less common.

† Email address for correspondence: kristian.kiradjiev@maths.ox.ac.uk
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These flows arise in numerous interesting applications, such as oozing of lava from
a volcanic crater (Schwartz & Michaelides 1988), spreading of films on a porous
bed such as textile fabric (Davis & Hocking 1999, 2000; Mason & Momoniat 2004;
Thompson, Tseluiko & Papageorgiou 2015) and droplet spreading with evaporation
(Anderson & Davis 1995; Oliver et al. 2015; Saxton et al. 2016). Our interest in
thin-film flows with injection is motivated by studying the operation of a purification
device that removes gaseous chemicals from an airstream by converting them to
liquid through a surface reaction in part of the device. Such injection-spreading
problems have been studied in the case when gravity is the driving force for thin-film
source flow on an inclined plate (Smith 1973; Huppert 1982; Schwartz & Michaelides
1988; Lister 1992), and numerical and similarity solutions have been obtained for
the resulting film thickness profile. In particular, Huppert (1982) also considers the
case of a time-dependent source. Duffy & Moffatt (1997) study a three-dimensional
gravity-driven source flow down an almost vertical plane with surface-tension effects
included in the steady-flow regime. They find power-law dependencies on the distance
down the plane for the width and the height of the resulting film. Further analysis
of gravity-driven rivulet flow of Newtonian and power-law fluids down an inclined
plane is given in Yatim, Wilson & Duffy (2010), whereas shear-stress-driven flow is
considered in Yatim, Duffy & Wilson (2012). Corresponding travelling-wave similarity
solutions are found in Yatim, Duffy & Wilson (2013). Momoniat, Ravindran & Roy
(2010) consider a similar problem but for radially symmetric spreading with an
annular injection slot and investigate the flow behaviour numerically. In Mason &
Momoniat (2004) and Momoniat & Mason (2007), symmetry methods from Lie
algebras are used to study thin-film flow with injection/suction acting over a porous
bed. The related problem of the flow of a viscous film with injection on an inclined
porous plane is studied by Thompson et al. (2015). Here, both surface tension and
gravity are included, but the spatial variations of the source term are assumed to
be periodic and have zero mean, so that steady-state solutions can be analysed. In
addition, the linear stability of these steady states is considered, which reveals that
suction and blowing can either increase or decrease the critical Reynolds number
for linear stability of these steady states. A different problem is studied in Hocking
et al. (2011), where the blowing is present due to an air jet directed towards a thin
film of steel, with the goal of facilitating the coating process. Similar air-jet blowing
has been studied in Chilukuri, Aeling & Middleman (1984) and McKinley, Wilson
& Duffy (1999), for example. Problems involving thin-film flow with injection of
liquid are also studied in the context of elasticity. A concise treatment of the problem
of an elastic sheet over a continuously injected viscous fluid is presented in Lister,
Peng & Neufeld (2013). Here, the process under consideration is the peeling of
the sheet by bending and pulling at the front facilitated by the injected liquid, and
they derive specific propagation laws (governed by the effect of elasticity of the
covering membrane) with power-law dependence on time. They also assume the
viscous film is situated over a thin pre-wetted layer. A similar problem is considered
in Zheng, Griffiths & Stone (2015), where buoyancy-driven spreading of a thin film
over a membrane with constant injection of liquid is studied. Neglecting the effect
of surface tension, they obtain similarity solutions for the position of the liquid front
for late time.

A comprehensive review of thin-film equations and spreading is given in Myers
(1998), where various thin-film equations are derived. There is a well-known stress
singularity at the moving contact line, which is often resolved by assuming that
there is precursor layer that pre-wets the substrate and removes the singularity.
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Such precursor layers are also observed in many physical systems (Bonn et al.
2009; Ajaev 2012). A comparison between different regularizations (in particular,
slip and precursor regularizations) is presented in Savva & Kalliadasis (2011) and
Sibley et al. (2015). The authors conclude that, for certain parameter regimes, the
regularizations studied lead to equivalent droplet-spreading behaviours. Asymptotic
results for the depth and extent of a steady thin-film flow down an inclined plane
that is pre-wetted with a thin precursor layer are given in Benilov et al. (2010). In
our work, we will be guided by the results obtained in King & Bowen (2001), in
which they analyse a general mass-preserving surface-tension-dominated lubrication
equation with a very thin precursor layer. However, their results only hold for the
spreading of a fixed volume of fluid and do not account for injection of liquid. Lacey
(1982) takes a different approach by assuming a slip regularization, and derives
asymptotic results for the spreading of a viscous droplet due to surface tension
for late time. Anderson & Davis (1995) consider steady and unsteady spreading
of an evaporating droplet on a heated surface. They find a relationship between
the contact angle and the rate of evaporation, and use asymptotic analysis in the
large-capillary-number regime to determine the shape of the droplet. Oliver et al.
(2015) consider the surface-tension-driven spreading of a partially wetting drop,
assuming a slip regularization, with mass transfer along the entire free surface of
the resulting film and, in particular, at the contact line. This leads to appropriate
generalizations of Tanner’s law. Similar results are obtained in Saxton et al. (2016),
where the effect of evaporation on the evolution of the contact-set radius is studied.
In Saxton et al. (2017), vapour transport and kinetic effects are used to regularize
the mass-flux singularity at the contact line in an evaporating spreading droplet.

In this paper, we will study the surface-tension-driven flow of liquid from a finite-
width injection region over a precursor layer. We will explore the problem in which
the precursor thickness tends to zero. Initially, we will consider the situation where
the production rate is constant, and, therefore, the possibility of a steady state is
ruled out. In § 2, we formulate our model, explain and employ the precursor-layer
regularization and then non-dimensionalize. In § 3, we present our asymptotic analysis
of the problem for early and late times, and briefly consider the O(1)-time problem.
We will look for power-law predictions for the film thickness in the centre of the
injection region, where it attains its maximum, and for the position of the apparent
contact line in these temporal regimes. We will present numerical solutions to the full
problem and compare them with the asymptotic predictions in § 4. Finally, in §§ 5
and 6, we will consider generalizations to our problem, in which we take more general
time- and thickness-dependent source functions, respectively. Further, for power-law-
in-time injection, we will suggest a way of predicting the power-law exponent by
examining the film thickness profile and the position of the apparent contact line. We
draw conclusions and discuss future work in § 7.

2. Mathematical model
2.1. Formulation of the dimensional problem

We consider an infinite one-dimensional substrate, on which viscous liquid is injected
uniformly through the surface in the region |x̂| 6 L at a constant speed W. We let
x̂ measure the distance along the substrate and ẑ measure the distance perpendicular
to the substrate, and we show a schematic of the geometry under consideration
in figure 1. We expect the reduced Reynolds number to be very small for flows
of practical interest in purification devices, and so, we ignore the effect of inertia.
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-L L

Injection, W

z = h(x, t)̂ ̂ ̂ ̂

x̂

FIGURE 1. (Colour online) Schematic diagram of the thin-film flow problem with injection
in the region −L< x̂< L.

Further, assuming that gravity can also be neglected, the flow is surface-tension driven
and governed by Stokes’ equations

−∇p̂+µ∇2û= 0, (2.1)
∇ · û= 0, (2.2)

where û= (û, ŵ) is the fluid velocity, p̂ is the pressure and µ is the viscosity of the
liquid. We have the following no-slip, kinematic and stress boundary conditions,

û= 0 on ẑ= 0, (2.3)
ŵ=WΘ(L− |x̂|) on ẑ= 0, (2.4)

ŵ=
∂ ĥ
∂ t̂
+ û

∂ ĥ
∂ x̂

on ẑ= ĥ(x̂, t̂), (2.5)

n̂ · T̂ · n̂= γ (−∇ · n̂)= γ
∂2ĥ
∂ x̂2

1+

(
∂ ĥ
∂ x̂

)2
−3/2

on ẑ= ĥ(x̂, t̂), (2.6)

n̂ · T̂ · t̂= 0 on ẑ= ĥ(x̂, t̂), (2.7)

where Θ(x̂) is the Heaviside step function, t̂ and n̂ are the unit tangent and outward-
pointing normal vectors to the free surface ẑ= ĥ(x̂, t̂), defined by

t̂=

1+

(
∂ ĥ
∂ x̂

)2
−1/2 (

1,
∂ ĥ
∂ x̂

)
, n̂=

1+

(
∂ ĥ
∂ x̂

)2
−1/2 (

−
∂ ĥ
∂ x̂
, 1

)
, (2.8a,b)

γ is the (constant) surface tension and T̂ is the stress tensor, defined by

T̂ =


−p̂+ 2µ

∂ û
∂ x̂

µ

(
∂ û
∂ ẑ
+
∂ŵ
∂ x̂

)
µ

(
∂ û
∂ ẑ
+
∂ŵ
∂ x̂

)
−p̂+ 2µ

∂ŵ
∂ ẑ

 , (2.9)

and evaluated on the free surface.
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 h(x, t)̂ ̂ ̂

Liquid film

0 L x̂

Apparent contact line, â Precursor layer, h∞
̂

Injection, W

FIGURE 2. (Colour online) A schematic diagram of the thin-film problem on half-space
with injection and a precursor layer of thickness ĥ∞.

At the moving front, x̂ = â(t̂), say, we could impose zero-thickness and no-flux
conditions along with a slip law along the whole of the substrate. For late time, as
in the non-injection case we expect a quasi-static profile for the film thickness, where
the relationship between the dynamic contact angle, θd, and the speed of the contact
line, ˙̂a (where a dot (̇ ) denotes differentiation with respect to time), is given by a
version of Tanner’s law. For small contact angles, this can be written as

∂ ĥ
∂ x̂
= k̂ ˙̂a1/3, (2.10)

for some constant of proportionality k̂, depending on the system under consideration
(Tanner 1979; Myers 1998).

However, instead we choose to regularize the problem using a precursor-film
regularization. In this regularization, we assume that the whole substrate is initially
covered in a thin layer of liquid of thickness ĥ∞ (see figure 2). Thus, we assume
that

ĥ→ ĥ∞ as x̂→∞, (2.11)

and
ĥ= ĥ∞ at t̂= 0. (2.12)

This regularization is sufficient to close the problem (King & Bowen 2001), it
resolves the well-known stress singularity that occurs at the moving contact line in
film-spreading problems (Huh & Scriven 1971), and we will find that this recovers
a version of Tanner’s law describing the motion of the apparent contact line, â.
The position of the apparent contact line, which lies in a narrow region where the
film thickness adjusts to the precursor thickness, is sometimes defined as the point
where the curvature of the free surface attains a local maximum (see, for example,
Ajaev 2012; Carlson, Mandre & Mahadevan 2015). However, any point in the narrow
transition region can serve as a definition for the contact line. For concreteness, in
this analysis, as well as the numerical solutions, we define the position of the contact
line to be the smallest value of x̂ at which ĥ equals the precursor-layer thickness, ĥ∞
(see figure 2).
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Our final lateral boundary conditions are to assume symmetry at x̂= 0, i.e.

û=
∂ p̂
∂ x̂
=
∂ ĥ
∂ x̂
=
∂3ĥ
∂ x̂3
= 0 at x̂= 0. (2.13)

From now on, we assume x > 0 and will drop the modulus sign on the right-hand
side of (2.4).

2.2. Dimensionless model
We non-dimensionalize (2.1)–(2.7) using

(x̂, â)= L(x, a), (ẑ, ĥ)= (µWL4/γ )1/4(z, h),
û= (γW3/µ)1/4u, ŵ=Ww, t̂= (µL4/γW3)1/4t, p̂= (µWγ 3/L4)1/4p.

}
(2.14)

We note that we have chosen the intrinsic scale for ĥ that emerges as a result of
non-dimensionalizing (2.6) and balancing viscous forces in the normal direction
with surface-tension forces. We assume that the aspect ratio in the problem
ε = (µW/γ )1/4 � 1, and expand the dependent variables in asymptotic series in
powers of ε2. This gives the following leading-order dimensionless problem

−
∂p
∂x
+
∂2u
∂z2
= 0, (2.15)

−
∂p
∂z
= 0, (2.16)

∂u
∂x
+
∂w
∂z
= 0, (2.17)

together with

u= 0 on z= 0, (2.18)
w=Θ(L− x) on z= 0, (2.19)

w=
∂h
∂t
+ u

∂h
∂x

on z= h(x, t), (2.20)

p=−
∂2h
∂x2

on z= h(x, t), (2.21)

∂u
∂z
= 0 on z= h(x, t). (2.22)

Integrating (2.17), and using (2.15)–(2.16) together with (2.18)–(2.22), we find that h
satisfies the lubrication equation

∂h
∂t
+

1
3
∂

∂x

(
h3 ∂

3h
∂x3

)
=Θ(1− x). (2.23)

The dimensionless boundary and initial conditions become

∂h
∂x
=
∂3h
∂x3
= 0 at x= 0, (2.24)
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Surface-tension- and injection-driven spreading of a thin viscous film 771

h→ δ as x→∞, (2.25)
h= δ at t= 0, (2.26)

where δ = ĥ∞/(εL) � 1 is the dimensionless precursor-film thickness and the only
remaining parameter in the system. Although we have only three boundary conditions
for our fourth-order equation, the precursor-layer regularization (2.25) is enough to
ensure a unique solution (Myers 1998; King & Bowen 2001).

Integrating (2.23) with respect to both x and t and applying (2.24) and (2.26), we
obtain ∫

∞

0
(h(x, t)− δ) dx= t. (2.27)

Equation (2.27) is an alternative expression for global conservation of mass, but will
be convenient to use in the following analysis.

In the next section, we will explore the behaviour of the film thickness for early,
O(1), and late time, which will enable us to make substantial analytical progress with
the problem.

3. Asymptotic analysis in the limit δ� 1

We begin by considering the asymptotic behaviour in δ of (2.23)–(2.27) for early,
O(1), and late time, and will later compare the results with the full numerical solution.
We will find that (i) it is straightforward to determine the early-time behaviour, (ii) the
O(1)-time behaviour is identical to the case of zero injection and (iii) the interesting
injection-dependent behaviour occurs at late time.

3.1. Early-time behaviour
To examine the early-time behaviour of h, we rescale the thickness h with the initial
thickness, δ, and scale time to balance the film growth with the liquid supply, i.e. we
set

h= δh̃, t= δt̃. (3.1a,b)

We pose the asymptotic expansions

h̃(x, t̃)∼ h̃0(x, t̃)+ δh̃1(x, t̃)+ · · · as δ→ 0, (3.2)
a(t̃)∼ 1+ δa1(t̃)+ · · · as δ→ 0, (3.3)

and assume, following King & Bowen (2001), that on this time scale the apparent
contact line moves only an O(δ) distance from its original location at the end of the
injection region. Thus, to leading order we have

∂ h̃0

∂ t̃
=Θ(1− x), (3.4)

with initial condition
h̃0 = 1 at t̃= 0. (3.5)

The solution, in terms of the original variables, is

h0(x, t)= δ + tΘ(1− x). (3.6)
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We immediately note that, since this solution is spatially uniform on either side of x=
1, the boundary conditions (2.24) are automatically satisfied. The global conservation
of mass (2.27) also holds. However, there is a discontinuity in our solution at x= 1
and, to determine the smooth transition between the two solutions given in (3.6), we
need to consider a boundary layer near x= 1. Specifically, we rescale

x= 1+ δx̃. (3.7)

In this boundary layer, we obtain the following problem

∂ h̃
∂ t̃
+

1
3
∂

∂ x̃

(
h̃3 ∂

3h̃
∂ x̃3

)
=Θ(−x̃), (3.8)

subject to

h̃→ 1 as x̃→∞, (3.9)
h̃→ 1+ t̃ as x̃→−∞, (3.10)

h̃= 1 at t̃= 0. (3.11)

We will solve this boundary-layer problem numerically in § 4.
Before we focus on the behaviour of the thickness of the liquid film h(x, t) for late

time when we expect O(1) movement of the contact line, we look at the O(1)-time
problem and discuss the behaviour of the apparent contact line.

3.2. The O(1)-time behaviour
For O(1) time, all terms in (2.23) come into play, and analytical progress is difficult.
However, we will carefully analyse the motion of the apparent contact line with the
purpose of exploiting these results during the late-time analysis. The scalings that we
obtain in this section are identical to those used in the no-injection case considered in
King & Bowen (2001). They find that the apparent contact line is stationary for O(1)
time, which is supported by our numerical solutions found in § 4. We will focus on
the next-order correction to this leading-order behaviour. Following the work of King
& Bowen (2001), we note that the leading-order (in δ) solution for h in the injection
region has the following behaviour as x→ 1−

h0 ∼ A(t)(1− x) as x→ 1−, (3.12)

where A(t) > 0 is some function that can, in theory, be determined from solving the
leading-order problem

∂h0

∂t
+

1
3
∂

∂x

(
h3

0
∂3h0

∂x3

)
= 1, (3.13)

together with

∂h0

∂x
=
∂3h0

∂x3
= 0 at x= 0, (3.14)

h0 = 0 at x= 1, (3.15)
h0 = 0 at t= 0, (3.16)
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Surface-tension- and injection-driven spreading of a thin viscous film 773

and conservation of mass ∫ 1

0
h0(x, t) dx= t. (3.17)

In a transition region at the contact line near x= 1, we write

x= 1+ψc(t)+ ϕd(t)η, h= δH, (3.18a,b)

where we take d= ċ−1/3 for convenience in subsequent manipulations, and ψ =ψ(δ)
and ϕ=ϕ(δ) are anticipated to be small parameters, since the contact line is expected
to be close to x= 1. Noting that the spatial and time derivatives transform to

∂

∂t
→

∂

∂t
−

(
ψ ċ
ϕd
+
ηḋ
d

)
∂

∂η
,

∂

∂x
→

1
ϕd

∂

∂η
, (3.19a,b)

after rearranging, equation (2.23) becomes

δd4 ∂H
∂ t̄
−

(
δψ

ϕ
+ ηδḋd3

)
∂H
∂η
+
δ4

3ϕ4

∂

∂η

(
H3 ∂

3H
∂η3

)
= d4Θ (−ψc− ϕdη) . (3.20)

In order to obtain a non-trivial dominant balance in (3.20), we balance the second and
fourth terms, which requires

ψ =
δ3

ϕ3
, ϕ�ψ as δ→ 0. (3.21a,b)

The second condition tells us that for O(1) time, in the limit δ → 0, the apparent
contact line moves by an amount that is much greater in extent than the width of
the transition region. Thus, we may ignore injection in the transition region, and the
corresponding equation for H becomes

−
∂H
∂η
+

1
3
∂

∂η

(
H3 ∂

3H
∂η3

)
= 0. (3.22)

Analysing the behaviour of (3.22) as η→−∞, matching it to the outer solution (3.12),
as has been done in King & Bowen (2001), and using (3.21), we obtain the necessary
scalings for ψ and ϕ, namely

ψ =
1

log (1/δ)
, ϕ = δ log1/3 (1/δ). (3.23a,b)

We immediately note that (3.21) hold true. These scalings will be further verified
by the numerical solutions presented in § 4. Thus, we conclude that for O(1) time,
the contact line is indeed stationary to leading order in δ, and moves a distance
O(1/ log (1/δ)) at next order.
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Outer region

Transition region

Precursor layer

Capillary ripple

Injection
Apparent contact line

x

∂

h

FIGURE 3. A schematic diagram of the outer, transition and precursor-layer regions, and
the position of the apparent contact line. The film thicknesses are not drawn to scale.

3.3. Late-time behaviour
To explore the late-time behaviour of the system, we will rescale both time and
the film thickness appropriately to arrive at a limit in which the surface-tension
term in (2.23) is the only dominant term at leading order in the relevant asymptotic
parameter (which will be determined as part of the analysis). This leading-order
problem constitutes the solution in an outer region, the region to the left of the
moving apparent contact line (see figure 3). At this stage, though, the position of
the apparent contact line is an unknown function of time. We will solve for the
film thickness in the transition region near the apparent contact line and match the
solutions from the outer, transition and precursor-layer regions to obtain the full
profile of the film thickness and the leading-order solution for the location of the
moving boundary a(t). We will also see at the end of this section, and in § 5, that the
late-time behaviour of our model is a generalization of the classical droplet-spreading
problem when we allow the volume of liquid to be time dependent. However, unlike
the classical droplet-spreading problem, we will obtain unbounded growth of the film,
which is entirely due to the finite-width injection region. In § 5 we will consider some
generalizations to our injection-spreading problem, and we will see that unbounded
growth is not always guaranteed and depends on the functional form of the injection
rate.

3.3.1. The outer region
Unlike the spreading-droplet scenario considered in King & Bowen (2001), here we

anticipate that the injection results in a film thickness that is much larger than δ for
late time. Thus, we scale

t=
t̄
λ
, h=

h̄
λ
, (3.24a,b)

where λ= λ(δ)� 1 is to be determined. We note that we do not scale x, because we
anticipate that a will move by an O(1) amount on this time scale. After rearranging,
equation (2.23) becomes

λ4 ∂ h̄
∂ t̄
+

1
3
∂

∂x

(
h̄3 ∂

3h̄
∂x3

)
= λ4Θ(1− x). (3.25)
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Surface-tension- and injection-driven spreading of a thin viscous film 775

The surface-tension term in (3.25) is dominant to leading order in λ4. We assume
δ � λ4

� 1 as δ → 0, and will verify this assertion a posteriori. Expanding the
dependent variables as

h̄(x, t̄)∼ h̄0(x, t̄)+ λ4h̄1(x, t̄)+ · · · as λ→ 0, (3.26)
a(t̄)∼ a0(t̄)+ λ4a1(t̄)+ · · · as λ→ 0, (3.27)

the leading-order problem becomes

∂

∂x

(
h̄3

0
∂3h̄0

∂x3

)
= 0, (3.28)

with

∂ h̄0

∂x
=
∂3h̄0

∂x3
= 0 at x= 0, (3.29)

h̄0 = 0 at x= a0(t̄). (3.30)

The leading-order version of the conservation-of-mass equation (2.27) becomes

t̄=
∫ a0(t̄)

0
h̄0(x, t̄) dx. (3.31)

Equation (3.28) with conditions (3.29)–(3.31) has a parabolic solution, namely,

h̄0(x, t̄)=
3t̄(a2

0 − x2)

2a3
0

, (3.32)

where a0(t̄) is unknown. In order to determine a0(t̄), we will explore the solution in
the transition region near the moving boundary and then match to (3.32).

3.3.2. The transition region
In the transition region near the moving front, we write

t=
t̄
λ
, x= a0(t̄)+ νs(t̄)ξ , h= δH, (3.33a−c)

where ν � 1, and we set s(t̄) = ȧ−1/3
0 for convenience in subsequent manipulations.

With this change of variables, the spatial and time derivatives transform to

∂

∂ t̄
→

∂

∂ t̄
−

(
ȧ0

νs
+
ξ ṡ
s

)
∂

∂ξ
,

∂

∂x
→

1
νs

∂

∂ξ
. (3.34a,b)

Furthermore, from § 3.2, we know that a moves O(1/ log (1/δ)) away from the end
of the injection region for O(1) time. Therefore, assuming that ν � 1/ log (1/δ) as
δ→ 0 (to be verified a posteriori), the transition region will lie outside the injection
region for late time, and (2.23) becomes

λ

(
s4 ∂H
∂ t̄
−

(
1
ν
+ ξ ṡs3

)
∂H
∂ξ

)
+
δ3

3ν4

∂

∂ξ

(
H3 ∂

3H
∂ξ 3

)
= 0. (3.35)
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In order to obtain a non-trivial dominant balance in (3.35), we balance the second and
fourth terms, which requires that

ν =
δ

λ1/3
. (3.36)

After rearranging, equation (3.35) then becomes

ν

(
s4 ∂H
∂ t̄
− ξ ṡs3 ∂H

∂ξ

)
−
∂H
∂ξ
+

1
3
∂

∂ξ

(
H3 ∂

3H
∂ξ 3

)
= 0. (3.37)

We expand the dependent variables in powers of ν = ν(δ), assuming δ � ν � 1 as
δ→ 0, which we will also check a posteriori, and, thus, we write

H(ξ , t̄)∼H0(ξ , t̄)+ νH1(ξ , t̄)+ · · · as ν→ 0. (3.38)

Substituting (3.38) into (3.37), retaining leading-order terms, integrating once, and
applying the matching condition with the precursor layer

H0→ 1 as ξ→∞, (3.39)

we find that H0 satisfies

−H0 +
1
3

H3
0
∂3H0

∂ξ 3
=−1. (3.40)

To match with the outer solution, we need to understand the behaviour of the
transition-region solution as ξ → −∞. We assume the solution is of the form
H0∼B(−ξ)m logn (−ξ), as ξ→−∞, for some values of B,m and n. Choosing m= 1,
n = 1/3 and B = 91/3 gives the leading-order balance as ξ →−∞ between the two
terms on the left-hand side of (3.40). Thus, our second matching condition is

H0 ∼ 91/3(−ξ) log1/3 (−ξ) as ξ→−∞. (3.41)

We note that (3.40) has been solved by Duffy & Wilson (1997) for the case when
the right-hand side is zero. Furthermore, they also obtain the asymptotic behaviour
(3.41) (modulo the pre-factor), which confirms our result, since as ξ→−∞, H0→∞

and the right-hand side of (3.40), which is constant, does not appear in the dominant
balance. We solve for H0 using a shooting method. Specifically, we expand H0 using

H0 ∼ 1+ H̃0 as ξ→∞, (3.42)
where H̃0� 1. The equation for H̃0 is

1
3
∂3H̃0

∂ξ 3
− H̃0 = 0, (3.43)

which has a solution that is a combination of exponentials. Retaining only decaying
solutions and appropriately choosing the origin, we may write the solution as

H0 ∼ 1+ Ã exp (−31/3ξ/2) cos (35/6ξ/2) as ξ→∞. (3.44)

We then solve (3.40) by using H0, H′0, H′′0 given by (3.44) evaluated at some large
value of ξ (we used ξ = 10); Ã is our shooting parameter. We note that we can restrict
the interval for possible values for Ã to, for example, [1, exp (2π/

√
3)] (McEwan &

Taylor 1966; Tuck & Schwartz 1990). We vary Ã in order to match the behaviour as
ξ →−∞ specified by (3.41). As in Tuck & Schwartz (1990), we use the fact that
H0H′0H′′0→−3 as ξ→−∞ to provide us with an accurate indicator of how close we
are to the required solution.
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3.3.3. Matching
We first match the transition region with the outer region. We write (3.41) in outer

variables as

h̄0 ∼
91/3λ4/3(a0 − x) log1/3 (λ1/3(a0 − x)/(δs))

s

∼
91/3λ4/3(a0 − x) log1/3 (1/δ)

s
as δ→ 0. (3.45)

The leading-order term in the outer solution (3.32) is

h̄0 ∼
3t̄(a0 − x)

a2
0

as x→ a−0 . (3.46)

This suggests that, to match (3.45) and (3.46), the appropriate scaling for λ should be

λ=
1

log1/4 (1/δ)
. (3.47)

Thus, equation (3.36) gives

ν = δ log1/12 (1/δ). (3.48)

We note that this confirms the hypotheses that δ � ν � λ4
� λ � 1, as δ → 0.

Logarithmic scales also appear in similar problems described in Lacey (1982),
Hocking (1983) and King & Bowen (2001), for example. However, for the classical
problem of a spreading droplet, the relevant scale is 1/ log (1/δ) (King & Bowen
2001), which is asymptotically smaller (in the limit δ→ 0) than our result (3.47) in
the injection case. Matching (3.45) with (3.46), we obtain

ȧ0 =
3t̄ 3

a6
0
, (3.49)

which can be solved to determine a0(t̄). We also remark that (3.49) is a version of
Tanner’s law, since it follows that, at the contact line,

∂ h̄0

∂x
=−(9ȧ0)

1/3. (3.50)

We match the late-time behaviour for the contact line with the behaviour for O(1)
time, which results in imposing the initial condition a0→ 1 as t→ 0. Thus, equation
(3.49) can be solved to yield

a0(t̄)=

(
1+

21t̄ 4

4

)1/7

, (3.51)

and so,

h̄0(0, t̄)=
3t̄

2a0
=

3t̄
2

(
1+

21t̄ 4

4

)−1/7

. (3.52)
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In terms of the original variables, h0 = h̄0/λ and t= t̄/λ,

a0(t)=
(

1+
21λ4t4

4

)1/7

, h0(0, t)=
3t
2

(
1+

21λ4t4

4

)−1/7

for t=O(1/λ).

(3.53a,b)
We observe that, for late time, the apparent contact line moves much faster (∼t4/7)
than the classical non-injection case (∼t1/7) considered in King & Bowen (2001). We
also note that, through λ, the leading-order results (3.53) have a dependence on the
precursor thickness, δ. In physical systems where precursor layers are not observed, δ
can be treated as an adjustable parameter to be determined from experimental data.

As mentioned at the beginning of § 3, we can generalize the results from the
classical droplet-spreading problem (see, for example, Voinov 1976; Cox 1986; Bonn
et al. 2009) to the case of a time-dependent injection rate using the Cox–Voinov
law (Bonn et al. 2009) to obtain the full late-time (t� 1/λ) behaviour of the film
spreading (see appendix C for details).

We further note that we can also obtain the power-law dependence on time in (3.53)
using scaling arguments. The matching condition (3.49) can also simply be deduced
from a comparison of the slopes of h in the inner and outer regions obtained from
(3.45) and (3.46), respectively. Scaling x∼ a, the slope of the outer solution ∼ h/a∼
t/a2 from (3.32), while the inner region has height ∼δ and length ∼δȧ−1/3 from (3.33)
(with λ= 1) and, thus, has slope t/a2

∼ ȧ1/3 confirming the scalings a∼ t4/7 and h∼
t3/7. Furthermore, if we look for a similarity solution to the problem for late time
(essentially, away from the injection region) of the form tαf (x/tβ), for some exponents
α and β, we can recover α= 3/7 and β = 4/7 and the parabolic profile for the outer
solution. This, as we saw, is confirmed by the late-time asymptotic analysis. Thus, for
late time the aspect ratio given by h0(0, t)/a0(t)∼ t−1/7, so remains small for all time.

4. Numerical results and discussion
We now present numerical solutions to the system (2.23)–(2.26). We approximate

the boundary condition (2.25) by imposing

h= δ on x= l, (4.1)
∂h
∂x
= 0 on x= l, (4.2)

where l is some large number. We used l= 60.
We employ a transformation of the coordinates that yields an adaptive mesh, which

allows us to solve the problem for large time for a moderate computational cost (see
appendix A for details). We solve the problem using MATLAB with a linear implicit
Euler scheme. In figure 4(a), we show the numerical solutions for the spatial profile
of the thickness h(x, t) for various times where we have imposed a dimensionless
precursor-layer thickness of δ= 10−3. As anticipated, the film thickness increases with
time, and the front advances. We observe that the solutions appear self-similar, which
indeed is the case for late time as found at the end of § 3.3.3. In figure 4(b), we
show a zoom-in of the height profile near the apparent contact line, where we see
characteristic capillary ripples. In figure 4(c), we show the numerical solutions for the
spatial profile of the thickness h(x, t) for various early times with a zoom-in of the
apparent contact line near x= 1. We see that capillary ripples form on either side of
x= 1 and subsequently travel outwards in both directions. In § 3.1, we formulated the
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FIGURE 4. (Colour online) Plots of the film thickness, h(x, t), satisfying (2.23)–(2.26) (a)
at t= 1 (red), t= 10 (green), t= 100 (blue), t= 1000 (purple), (b) near h= δ and x= 1.2
for t= 1 and (c) at t= 0.005 (red), t= 0.0075 (green), t= 0.01 (blue). In (d), we show
the film thickness (solid blue) along with the solution to (3.8)–(3.11) (dashed red) near
x= 1 for t= 0.01. In all panels, δ = 10−3.

boundary-layer problem (3.8)–(3.11) for the transition between the spatially uniform
solutions for early time given in (3.6). In figure 4(d), we show a plot of the film
height near x= 1, found by solving (3.8)–(3.11) numerically, compared with the full
numerical solution. We see good agreement between the two solutions.

In figure 5, we compare the thickness profile of the film at time t = 10 with the
asymptotic predictions for late time for the outer- and transition-region profiles, given
by (3.32) and (3.40) respectively, for two different precursor-layer thicknesses. We see
excellent agreement between the numerical solution and the asymptotic solution as δ
decreases. We have shifted the asymptotic solution for the inner region to allow for
a detailed comparison with the numerical solution near the capillary ripple. This is
shown in the small panels in the figures. In general, the positions of x=a for the outer
and inner regions are expected to differ, because the corrections to the leading-order
outer solution for a are large compared to the length scale of the inner region. We note
that the predicted convergence is quite slow since our asymptotic sequence for h(x, t)
is logarithmic in nature. This slow logarithmic convergence is also present when slip
regularization is used (see, for example, Lacey 1982; Hocking 1983).

In figure 6, we show log–log plots of h(0, t) and the position of the apparent
contact line, a(t), given by the numerical solution to (2.23)–(2.26), together with our
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FIGURE 5. (Colour online) Plots of the film thickness, h, satisfying (2.23)–(2.26), at
t = 10: numerical solution (solid blue), asymptotic solution in the outer region (3.32)
(dashed red), asymptotic solution in the transition region (3.40) (dotted green) for (a)
δ = 10−2 and (b) δ = 10−3.
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FIGURE 6. (Colour online) Log–log plots of the numerical solution to (2.23)–(2.26) (solid
blue) for (a) h(0, t) and (b) a(t). The asymptotic predictions for early time, (3.6) (dotted
green), and late time, (3.53) (dashed red), are also shown. Here, δ = 10−3.

asymptotic predictions for early time, equation (3.6), and late time, equations (3.51)–
(3.52). The asymptotic solutions match well for the early and late time behaviours,
and, in fact, are valid for a much wider range of times than expected. We also note
that the contact line does not move to leading order in δ for early time, as shown in
§ 3.1, and moves O(1/ log (1/δ)) for O(1) time, as shown in § 3.2.

5. General injection rates

In this section, we extend the model to the case of non-constant injection by
replacing (2.4) with

ŵ= f̂ (x̂, t̂)Θ(L− x̂) on ẑ= 0, (5.1)

for some dimensional supply function f̂ (x̂, t̂).
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5.1. Power-law injection

We first consider the case in which f̂ has a power-law dependence in time, i.e. f̂ =
t̂kĝ(x̂), where ĝ is some integrable function on [0, 1], and k is some real exponent
whose range we will specify later on. We expect that k < 0 for physically sensible
models, such as a chemical reaction whose rate decreases with time. However, we
will also study the case k > 0. We note that, for −1 < k < 0, the injection rate is
singular at t = 0, but the volume of liquid (which is the time integral of the flux)
is still finite. The case k 6−1 corresponds to an infinite volume of liquid injected at
t= 0, which we exclude on physical grounds. For simplicity, in the following analysis
we assume that ĝ =W is constant, even though more general spatial variance could
be incorporated using the same approach. Thus, the boundary condition on the surface
ẑ= 0 becomes

ŵ=Wt̂kΘ(L− x̂) on ẑ= 0. (5.2)

In this case, we require a different non-dimensionalization and we use

(x̂, â)= L(x, a), (ẑ, ĥ)= (µW1/(k+1)L4/γ )(k+1)/(3k+4)(z, h),
û= (γW3L3k/µ)1/(3k+4)u, ŵ= (µW4/kL4/γ )k/(3k+4)w,

t̂= (µL4/γW3)1/(3k+4)t, p̂= (µk+1γ 2k+3W/L2k+4)1/(3k+4)p.

 (5.3)

We assume a long and thin geometry, i.e. that the aspect ratio

ε = (µW1/(k+1)Lk/k+1/γ )(k+1)/(3k+4)
� 1, (5.4)

and that we have a thin precursor film, i.e. δ= h∞/(εL)� 1. Following the same steps
as in § 2.2, we manipulate the dimensionless versions of (2.1)–(2.3), (2.5)–(2.7) and
(5.2) and we arrive at the evolution equation for h, namely

∂h
∂t
+

1
3
∂

∂x

(
h3 ∂

3h
∂x3

)
= tkΘ(1− x), (5.5)

together with the boundary conditions given by (2.24)–(2.26).
For early time, we use a scaling similar to (3.1), but take account of the exponent

k in the injection function by setting

h= δh̃, t= δ1/(k+1) t̃, (5.6a,b)

where, here, we restrict ourselves to considering k>−1 so that the scalings are valid
for early time. After asymptotically expanding h and a in powers of δ as before, we
arrive at a dominant balance between the first and third term in (5.5). Using the same
notation as in § 3, we obtain

h̃0(x, t̃)= 1+
t̃k+1

k+ 1
Θ(1− x). (5.7)

As in § 3.1, it is possible to obtain a problem for the boundary layer near x = 1,
analogous to (3.8)–(3.11), which smoothly joins the two solutions given in (5.7), but
we do not pursue that here. Instead, we point out that we can consider two distinct
temporal regimes in which more analytical progress can be made (see appendix B for
the details of this analysis).
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For late time, we scale

h=
h̄
λk
, t=

t̄

λ
1/(k+1)
k

, (5.8a,b)

where we assume λk � 1. Repeating the analysis in § 3.3, we find the appropriate
choice of λk is (cf. (3.47))

λk =
1

log(k+1)/(3k+4) (1/δ)
, (5.9)

which is indeed small for k > −1. Therefore, we obtain the following leading-order
results for the position of the apparent contact line and the maximum film thickness

a0(t̄)=
(

1+
21t̄ 3k+4

(k+ 1)3(3k+ 4)

)1/7

, (5.10)

h̄0(0, t̄)=
3t̄ k+1

2(k+ 1)a0
=

3t̄ k+1

2(k+ 1)

(
1+

21t̄ 3k+4

(k+ 1)3(3k+ 4)

)−1/7

. (5.11)

In an analogous way to § 3, we can use the Cox–Voinov law to obtain the full late-
time behaviour of the film spreading when t� 1/λ1/(k+1)

k .
We note that, in the case when k = 0, we recover the results (3.51) and (3.52).

Furthermore, when k = −3/4, h̄0 tends to a constant, i.e. injection is just enough
to balance the surface-tension flow. Consequently, for −1 < k < −3/4, injection can
no longer support a growing or constant film thickness, and, thus, the film thickness
decreases at large time. For very large time, we expect capillarity to force the film to
approach the thickness of the precursor layer again, and, thus, using the scaling from
(5.11), h∼ t(4k+3)/7 gives t= δ7/(4k+3)t? as the required scaling for t. We note that the
same scaling can be derived from the balance h− δ∼ tk+1/x, x∼ (δ3t)1/4 between the
growth and the surface-tension term in (5.5). We do not pursue this situation further.

In figure 7, we show log–log plots of the numerical solution and our asymptotic
predictions for the maximum film thickness at the origin and the position of the
apparent contact line as functions of time for different values of k. We see a good
agreement between the numerical solution and the asymptotic results for early and
late time.

Additionally, we observe that the aspect ratio, given by h0(0, t)/a0(t) ∼ t(k−1)/7,
grows in time if k > 1. In this case, for late time, the thin-film hypothesis will
eventually break down.

Finally, we note that the results (5.10)–(5.11) can be used in a simple inverse
problem, in which we can determine the exponent of the injection rate, assuming
it has a power-law dependence, by observing the spreading of the film front or the
evolution of its maximum thickness at the origin for late time. Thus, if the film front
is observed to spread like tσ for some exponent σ , then the exponent of the injection
rate is given by k = (7σ − 4)/3. For example, if experimental data reveal a linear
spread of the film front, then the liquid is also injected linearly in time.

5.2. Point-source injection
We now consider the case when liquid is injected at the origin, i.e. a point-source
injection with f̂ = Qδ(x̂) in (5.1), where Q is a given liquid flux. We note that, due
to the definition of the delta function, Q = 2WL in terms of the notation in § 3.
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FIGURE 7. (Colour online) Log–log plots of the numerical solution to (5.5) with (2.24)–
(2.26) (solid blue) for h(0, t) (a,c,e) and a(t) (b,d, f ) for (a,b) k = 1/2, (c,d) k = −1/2,
(e, f ) k =−3/4. The asymptotic predictions for early time, equation (5.7) (dotted green),
and late time, equations (5.10)–(5.11) (dashed red), are also shown. In all figures, δ=10−3.

The boundary condition on ẑ= 0 then becomes

ŵ=Qδ(x̂) on ẑ= 0. (5.12)

We non-dimensionalize using

(x̂, â)= (γQ3τ 4/µ)1/7(x, a), (ẑ, ĥ)= (µQ4τ 3/γ )1/7(z, h),
û= (γQ3/µτ 3)1/7u, ŵ= (µQ4/γ τ 4)1/7w, t̂= τ t, p̂= (µ3γ 4/Q2τ 5)1/7p,

}
(5.13)
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FIGURE 8. (Colour online) Log–log plots of the numerical solution to (5.19) with (5.20)
and (2.25)–(2.26) (solid blue), the numerical solutions to (5.18) with (2.24)–(2.26) with
Ls = 1 (orange), Ls = 0.1 (green) and Ls = 0.01 (purple) for (a) h(0, t) and (b) a(t),
compared with the asymptotic predictions for late time (3.53) (dashed red). Here, δ=10−3.

where we can choose the time scale τ = (h7
∞
γ /µQ4)1/3 so that the dimensionless

precursor-layer thickness δ = h∞(µQ4τ 3/γ )−1/7
= 1 and we remove all dimensionless

parameters from the model. However, we are interested in the situation where the film
thickness is much larger than the precursor thickness and a long time scale over which
the aspect ratio ε =

(
µ2Q/γ 2τ

)1/7
� 1 so that the thin-film hypothesis is valid. Thus,

we rescale our problem using

t→ Tt, (x, a)→ T4/7(x, a), (z, h)→ T3/7(z, h) (5.14a−c)

for some T� 1. The evolution equation for h becomes

∂h
∂t
+

1
3
∂

∂x

(
h3 ∂

3h
∂x3

)
= δ(x), (5.15)

together with (2.24)–(2.26), in which the dimensionless precursor thickness now
appears as δ = 1/T3/7

� 1, and where we have used the fact that δ(κx)= δ(x)/κ for
any κ > 0. We note that, the thin-film hypothesis will hold as long as the new aspect
ratio ε =

(
µ2Q/γ 2τT

)1/7
� 1, which is true for sufficiently large T . The appropriate

limit of the late-time analysis presented in § 3.3 holds in this case too, since the
width of the slot is asymptotically small for late time, and so, can be described by a
delta function. We, thus, recover the power-law dependencies

a0(t̄)=
(

21
32

)1/7
t̄ 4/7

, (5.16)

h̄0(0, t̄)= 3
4

(
32
21

)1/7
t̄ 3/7

, (5.17)

where, again, we can use the Cox–Voinov law, as mentioned in § 3, to obtain the full
late-time behaviour. However, we note that the numerical pre-factors are not the same
as those in (3.51) and (3.52), since the strength of the source in this case is half that
considered in § 3.3.

In figure 8, we show log–log plots of the maximum film thickness and the position
of the apparent contact line as functions of time for the case of point-source injection.
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To simulate the behaviour of the delta function, we have used two approaches. First,
we approximate a point-source injection using the original numerical solution with a
finite injection slot of small width L̂s= (γQ3τ 4/µ)1/7Ls, keeping the total flux of liquid
constant by increasing the injection rate, i.e. replacing (5.15) with

∂h
∂t
+

1
3
∂

∂x

(
h3 ∂

3h
∂x3

)
=
Θ(Ls − x)

2Ls
, (5.18)

where Ls� 1. Second, we prescribe the flux at the origin by solving the problem

∂h
∂t
+

1
3
∂

∂x

(
h3 ∂

3h
∂x3

)
= 0, (5.19)

subject to (2.25), (2.26), and

∂h
∂x
= 0,

1
3

h3 ∂
3h
∂x3
=

1
2

at x= 0. (5.20a,b)

We also plot the asymptotic results (5.16) and (5.17) across the entire t range (despite
them only being formally valid for t� 1). We see a very good agreement between the
numerical results obtained using the second approach and the asymptotic results for a
wider range of time than anticipated. The asymptotic results provide a good estimate
at early time, because, in this case, the slot has been shrunk to a point. For early time,
we observe a slight discrepancy between the numerical and the asymptotic results,
which can be explained by the finite precursor film, which is present everywhere on
the substrate at t= 0 and is not reflected by our ‘late-time’ results. We also see that,
as time increases, the numerical solution from the first approach converges to the
numerical solution from the second approach (as anticipated) and to the asymptotic
predictions (5.16) and (5.17), and the time to convergence decreases as Ls decreases.
To illustrate this, we consider the early-time behaviour. As before, we determine the
linear growth for early time by balancing the first and third terms in (5.18), which
gives

h= δ +
t

Ls
Θ(Ls − x). (5.21)

We obtain the range of validity of the early-time solution (5.21) by requiring that
the ‘discontinuous’ step that is initially at x = Ls has not spread to the origin. By
considering (5.21), we see that, if t� δLs, then h∼ δ, and the validity condition, found
using a scaling argument on (5.19), reads

(δ3t)1/4� Ls. (5.22)

If δLs� t� 1, then h∼ t/Ls from (5.21), and the validity condition is instead

(h3t)1/4� Ls. (5.23)

The two conditions (5.22) and (5.23) can be combined into a single range of validity,
t�min{L4

s/δ
3, L7/4

s }. We note that when Ls= 1, the validity condition becomes t� 1,
as seen in § 3.1.
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6. Thickness-inhibited injection
A final regime of interest is one in which the rate of injection decreases as the

liquid thickness grows. Such a scenario might arise when liquid forms through a
chemical reaction on the surface, which requires the chemical to diffuse through the
liquid film to reach the surface. This may be captured by considering a dimensional
supply flux W/ĥq, where q> 0 is a constant. We note that the case q= 1 corresponds
to standard diffusion with flux inversely proportional to the thickness of the film. The
boundary condition on ẑ= 0 then becomes

ŵ=
W

ĥq
Θ(L− x̂) on ẑ= 0. (6.1)

This time, we non-dimensionalize (2.1)–(2.3), (2.5)–(2.7) and (6.1) using

(x̂, â)= L(x, a), (ẑ, ĥ)= (µWL4/γ )1/(q+4)(z, h),
û= (γ q+1W3/µq+1L3q)1/(q+4)u, ŵ= (γW4/q/µL4)q/(q+4)w,
t̂= (µL4/γW3/(q+1))(q+1)/(q+4)t, p̂= (µγ q+3W/L2q+4)1/(q+4)p.

 (6.2)

We continue assuming a long and thin geometry, i.e. that the aspect ratio

ε = (µW/γLq)1/(q+4)
� 1, (6.3)

and that the precursor layer is thin, i.e. δ= h∞/(εL)� 1. The evolution equation for
h is then

∂h
∂t
+

1
3
∂

∂x

(
h3 ∂

3h
∂x3

)
=

1
hq
Θ(1− x), (6.4)

together with (2.24)–(2.26).
For early time, we rescale the film thickness and time according to

h= δh̃, t= δq+1 t̃. (6.5)

The leading-order (in δ) solution satisfies

∂ h̃0

∂ t̃
=

1

h̃q
0

Θ(1− x), (6.6)

with an initial condition given by

h̃0 = 1 at t̃= 0. (6.7)

The solution to (6.6) with (6.7) has a power-law behaviour in 06 x61 and is constant
in x> 1, with

h̃0(x, t̃)= (1+ (q+ 1)t̃Θ(1− x))1/(q+1). (6.8)

A boundary-layer analysis near x = 1 analogous to the one in § 3.1 provides a
continuous solution smoothly joining the film thicknesses on either side of x= 1, but
we do not examine it in this paper.

For late time, we scale

h=
h̄
λq
, t=

t̄

λ
q+1
q
, (6.9a,b)
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where we assume λq � 1. Repeating the analysis in § 3.3, we find the appropriate
choice of λq is (cf. (3.47))

λq =
1

log1/(q+4) (1/δ)
, (6.10)

which is indeed small for q> 0. We note that the analogue of (3.31) is

V(t̄)=
∫ t̄

0

∫ 1

0

1
h̄q

0(x, s)
dx ds=

∫ a0(t̄)

0
h̄0(x, t̄) dx, (6.11)

where V is the leading-order volume of the liquid.
Repeating the analysis in § 3.3, we obtain the outer solution for the leading-order

film thickness, h̄0
h̄0(x, t̄)= A(t̄)(a2

0 − x2), (6.12)

where A(t̄) satisfies

A(t̄)=
3V(t̄)

2a0(t̄)3
=

3
2a0(t̄)3

∫ t̄

0

∫ 1

0

1
A(s)q(a2

0(s)− x2)q
dx ds. (6.13)

In this case, we end up with the following integro-differential equation for a0(t̄)

ȧ0 =
8
9

a3
0A3
=

3V3

a6
0
=

3
a6

0

(∫ t̄

0

∫ 1

0

1
A(s)q(a2

0(s)− x2)q
dx ds

)3

. (6.14)

We note that setting q= 0 recovers (3.49).
In order to make further analytical progress, we first transform (6.14) into an

ordinary differential equation by differentiating both sides with respect to time and
using (6.13). We then obtain

ä0 =−6
ȧ2

0

a0
+ 4χ(t̄)

(
9ȧ0

8a3
0

)(2−q)/3

, (6.15)

where

χ(t̄ )=
∫ 1

0

1
(a0(t̄ )2 − x2)q

dx. (6.16)

Anticipating that a0� 1 for large t̄, we can approximate (6.15) by

ä0 =−6
ȧ2

0

a0
+ 4

(
9ȧ0

8a3
0

)(2−q)/3 1

a2q
0

. (6.17)

If we now try an ansatz of the form a0 =Ct̄ D, for some constants C,D, we find

D=
q+ 4
4q+ 7

, C=
(

23q31−2q(4q+ 7)q+4

(q+ 4)q+1(q+ 7)3

)1/(4q+7)

. (6.18a,b)

We, thus, obtain the power-law behaviour of the maximum film thickness and the
position of the apparent contact line for t̄� 1

h̄0(0, t̄)∼
(

9(q+ 4)
8(4q+ 7)

)1/3

C4/3 t̄ 3/(4q+7)
, (6.19)
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FIGURE 9. (Colour online) Log–log plots of the numerical solution to (6.4) with (2.24)–
(2.26) (solid blue) with q= 2 for (a) h(0, t) and (b) a(t), compared with the asymptotic
predictions for early time, (6.8) (dotted green), and late time, (6.22)–(6.23) (dashed red).
Here, δ = 10−3.

a0(t̄)∼Ct̄ (q+4)/(4q+7)
, (6.20)

where C is defined in (6.18). We see that setting q = 0 recovers (3.51) and (3.52).
We note that we can obtain the exponents of these power-law dependencies using the
scaling arguments, found at the end of § 3. Also, as mentioned in § 3, it is possible to
use the Cox–Voinov law in the case of thickness-dependent injection to obtain the true
late-time behaviour of the film spreading. In particular, our results (6.19) and (6.20)
are valid for 1 � t̄ = λqt � λq/δ

(4q+7)/3 (cf. comment immediately after (C 5) with
q = 0). We also remark that the aspect ratio for the problem is ε = h0/a0 ∼

t−(q+1)/(4q+7)
� 1 for large t and q> 0, and so, the thin-film hypothesis holds.

To illustrate our analysis for a particular value of q, we take q= 2, for which (6.15)
simplifies substantially, and we can perform the integration in (6.16):∫ 1

0

1
(a2

0 − x2)2
dx=

(a2
0 − 1) coth−1(a0)− a0

2a3
0(a

2
0 − 1)

∼
1
a4

0
for a0� 1. (6.21)

We then have

a0(t̄)∼
(

50
9

)1/5
t̄ 2/5

, (6.22)

h̄0(0, t̄)∼
(

5×91/3

4

)1/5
t̄ 1/5

. (6.23)

In figure 9, we show log–log plots of the maximum film thickness and the position
of the apparent contact line for the case of thickness-inhibited injection with q = 2.
We see a very good agreement between the numerical solutions and the predicted
asymptotic results for early time, given by (6.8), and late time, given by (6.22)–(6.23).

7. Conclusions and further work
In this paper, we have considered the problem of surface-tension-driven flow of

a viscous liquid along a flat surface with injection through part of the substrate.
Throughout our work, we assumed that gravity could be neglected. We initially
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focused on the situation in which the injection rate was constant. We derived
a fourth-order parabolic evolution equation for the thickness profile, along with
appropriate boundary conditions, reflecting the injection in a fixed region. We assumed
that a thin precursor layer was present initially along the surface, which resolved
the stress singularity at the moving contact line. We used asymptotic analysis for
early, O(1), and late time in order to examine the behaviour of the solution, and
obtained power-law dependencies on time for the maximum film thickness at the
centre of the injection region, h0(0, t), and the position of the apparent contact
line, a0(t). We recovered a version of Tanner’s law at the apparent contact line,
namely, ∂h0/∂x ∝ −(ȧ0)

1/3. For early time, we established a linear growth of the
film thickness in the injection region and no movement of the contact line to leading
order. We justified the absence of motion of the contact line to leading order for
O(1) time, while for late time, t, the maximum film thickness scales as t3/7 and the
position of the apparent contact line scales as t4/7. Up to a multiplicative constant,
the time-dependent aspect ratio is h0(0, t)/a0(t)∼ t−1/7, as t→∞, which is consistent
with the thin-film assumption. We observed that the leading-order results for h and
a depend on the precursor thickness, δ. We also showed how to generalize classical
results (such as the Cox–Voinov law) from the droplet-spreading problem in the case
of injection to obtain the full late-time behaviour of the film.

Finally, we considered three generalizations to the problem: a power-law, point-
source and thickness-dependent injection rate. In the first case, we looked at
injection of the form tk with an exponent in the range −1 < k < 1, and established
power-law behaviours for the maximum film thickness and the position of the
apparent contact line as functions of time. We showed that, for late time, the film
thickness increased for k >−3/4, tended to a constant for k =−3/4, and decreased
for k < −3/4. For k > 1, the aspect ratio of the problem grows unboundedly
with time and eventually invalidates the thin-film hypothesis. We also presented
a simple inverse problem for determining the exponent of the power-law injection
(assuming this exists) by observing the position of the apparent contact line, for
example. In the point-source case, we obtained the same late-time behaviour as in
the constant-injection-rate case. With regards to the thickness-dependent injection, we
formulated the problem with injection of the form 1/hq for some exponent q > 0.
We obtained an integro-differential equation for the position of the apparent contact
line for late time and simplified it to an ordinary differential equation. We found
power-law behaviours for the maximum thickness of the film and the position of
the apparent contact line, which were confirmed using scaling arguments. Unlike
the time-dependent injection case, we observed unbounded growth and spreading of
the film for all q > 0. We note that, as q increases, the exponents in the spreading
behaviour decrease, corresponding to a slowing down of the film growth and front
spreading. Furthermore, we see a close relationship between the behaviour for a(t)
and h(0, t) between the power-law injection and the thickness-inhibited injection
cases; they are identical if k=−3q/(4q+ 7). Interestingly, since q> 0, k→−3/4 as
q→∞. This recovers the critical exponent for time-dependent injection at which the
film thickness stops increasing for late time. This gives a relationship between the
qualitative behaviours for late time of the maximum film thickness and the position
of the apparent contact line with power-law-in-time and thickness-inhibited injection
rates.

There are various key extensions to this work that we believe would be interesting.
One would be to replace the flat substrate with a cylinder. This has the potential of
introducing the well-known Rayleigh–Plateau instability, and a key question would be
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how the two principal curvatures affect the flow. Also of interest would be to study
multiple fluid injection sites.

Our ultimate aim is to use the insight we have obtained by studying these surface-
tension- and injection-driven flows to provide a better understanding of the operation
of purification devices.
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Appendix A. A suitable change of coordinates for numerical solution
When solving numerically (2.23) together with (2.24)–(2.26), we employ the

following coordinate transformation

η=
x

t1/4
, τ = log (t). (A 1a,b)

In terms of η and τ , our problem for h(x, t)= F(η, τ ) becomes

∂F
∂τ
−

1
4
η
∂F
∂η
+

1
3
∂

∂η

(
F3 ∂

3F
∂η3

)
= eτΘ(1− eτ/4η), (A 2)

subject to

∂F
∂η
=
∂3F
∂η3
= 0 at η= 0, (A 3)

F→ δ as η→∞, (A 4)
F= δ at τ→−∞. (A 5)

If we discretize this problem using an implicit linear Euler scheme and a sufficiently
small time step, then our time domain for τ is much smaller than that for t due to
the exponential nature of the transformation in time. Thus, enlarging the τ -domain
marginally gives a much greater increase in the t-domain.

When solving the problem numerically, we require that the spatial step is bounded
by the film height in order to ensure that the region near the capillary ripple is well
resolved (Diez, Kondic & Bertozzi 2001). Clearly, this presents computational issues
as δ→ 0. We employ the transformation

F= eG, (A 6)

and the problem for G(η, τ ) becomes

∂G
∂τ
−

1
4
η
∂G
∂η
+

e−G

3
∂

∂η

(
e4G

((
∂G
∂η

)3

+ 3
∂G
∂η

∂2G
∂η2
+
∂3G
∂η3

))
= eτ−GΘ(1− eτ/4η),

(A 7)
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subject to

∂G
∂η
=
∂3G
∂η3
= 0 at η= 0, (A 8)

G→ log (δ)=Υ as η→∞, (A 9)
G= log (δ)=Υ at τ→−∞. (A 10)

Since |log(δ)| > δ, the requirement on the spatial step is less restrictive in the
transformed version of the problem (A 7)–(A 10) than in the original formulation
(A 2)–(A 5).

Appendix B. Early-time asymptotics for the power-law injection in the limit δ� 1

We can make analytical progress and gain some insight into the behaviour of the
film spreading in the boundary layer near x = 1 by considering different temporal
regimes. We begin by recalling the early-time result for the film thickness above the
injection slot, equation (5.7), namely

h(x, t)= δ +
tk+1

k+ 1
. (B 1)

For t � δ1/(k+1), we have h ∼ δ, and, thus, the inner solution satisfies the linear
hyperdiffusion equation

∂h
∂t
+
δ3

3
∂4h
∂x4
= tkΘ(1− x). (B 2)

Scaling analysis suggests a spreading rate of the form x− 1∼ (δ3t)1/4. Thus, we seek
a solution of the form

h∼ δ +
tk+1

k+ 1
H(ξ), (B 3)

where ξ = (1− x)/(δ3t)1/4, and H satisfies

(k+ 1)H−
1
4
ξ
∂H
∂ξ
+

1
3
∂4H
∂ξ 4
= (k+ 1)Θ(ξ), (B 4)

with H(ξ)→Θ(ξ) as ξ→±∞.
When t = O(δ1/(k+1)), both terms in (B 1) are comparable in magnitude, and the

nonlinearity of h3 in the original equation becomes important. For t � δ1/(k+1), we
can consider both regions x< 1 and x> 1 separately. In x< 1, h∼ tk+1/(k+ 1), and
the spreading rate is x− 1∼ (h3t)1/4∼ t(3k+4)/4/(k+ 1)3/4. We, thus, seek a solution of
the form

h∼
tk+1

k+ 1
H(ξ), (B 5)

where ξ = (1− x)/(t3k+4/(k+ 1)3)1/4, and H satisfies

(k+ 1)H−
3k+ 4

4
ξ
∂H
∂ξ
+

1
3
∂

∂ξ

(
H3 ∂

3H
∂ξ 3

)
= (k+ 1)Θ(ξ), (B 6)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f O

xf
or

d,
 o

n 
30

 D
ec

 2
01

8 
at

 2
3:

59
:4

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

93
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.934


792 K. B. Kiradjiev, C. J. W. Breward and I. M. Griffiths

with

H(ξ)→ 1 as ξ→∞, (B 7)
H=H3(∂3H/∂ξ 3)= 0 at ξ = 0. (B 8)

The first condition ensures that the two non-decaying modes H − 1 ∝ 1 and
exp((3/4)(3(3k+ 4)/4)1/3ξ 4/3) are excluded.

For ξ � 1 (i.e. near x = 1), we balance the capillary and injection terms in (B 6).
Assuming the solution is of the form H∝ ξ logp (ξ r), this yields

∂H
∂ξ
∼ (12(k+ 1))1/4 log1/4 (1/ξ), (B 9)

for which the first and second terms in (B 6) are indeed sub-dominant. Writing the
position of the apparent contact line a= 1+ b, we expect to find a quasi-static region
near x= 1 with an apparent contact line at x− 1= b. In this region, the capillary term
dominates and the profile of the film is linear to leading order, h∝ (1+ b− x), with
slope given by matching with (B 9), resulting in

∂h/∂x=−121/4tk/4 log1/4 (t(3k+4)/4/(b(k+ 1)3/4)). (B 10)

Using the Cox–Voinov law (see appendix C), we obtain the spreading speed (and, thus,
b) as

ḃ∼
123/4t3k/4 log3/4 (t(3k+4)/4/(b(k+ 1)3/4))

9 log (btk/4/δ)
. (B 11)

Appendix C. Full late-time asymptotics using the Cox–Voinov law
In this appendix, we show how to obtain the full late-time behaviour of our model.

Our starting point is the relationship between the apparent and microscopic contact
angles θo,i given by the well-known Cox–Voinov law (Bonn et al. 2009)

θ 3
o − θ

3
i =

9µȧ
γ

log (Lo/Li), (C 1)

where Lo,i are the length scales of the outer and inner regions of the problem (in
analogy to the terminology used in § 3). We use (3.32), (3.33) and (3.47)–(3.49) to
find that log (Lo/Li)= log (a0/νs)∼ log (t/δa0)= log (h(0, t)/δ) to leading order in δ.
Thus, with our non-dimensionalization and remembering that θi = 0 in our precursor-
film regularization, we write a0 = 1+ b to give

ḃ∼
θ 3

o

9 log (h0(0, t)/δ)
. (C 2)

For 1� t� 1/λ= log1/4 (1/δ), we linearize (3.53) and we find that

b∼
3t4

4 log (1/δ)
� 1. (C 3)

This can also be obtained from the Cox–Voinov law using (3.32) with a0 = 1, θo =

3t and h0(0, t) ∝ t, and noting that log (t/δ) ∼ log (1/δ) for the specified range of t.
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In the case where t = O(log1/4 (1/δ)), we have b = O(1), and the behaviour of the
film spreading is given by our result (3.53). For the late-time regime, t� log1/4 (1/δ),
a0 ∼ b� 1 and, using (C 1), but this time with θo = 3t/a2

0 and h0(0, t) ∝ t/a0 from
(3.32), we obtain

ȧ0 ∼
3t3

a6
0 log (t/δa0)

. (C 4)

Integrating the leading-order version of (C 4) in which we treat the logarithm as
constant (which can be confirmed a posteriori), we find that a0 scales as

a0 ∼

(
21t4

4 log (t3/7/δ)

)1/7

. (C 5)

We see that, for t � log1/4 (1/δ), a0(t) has a true power-law dependence on time,
provided t� 1/δ7/3.

In an analogous way, we can use the Cox–Voinov law in the case when the injection
rate (and, therefore, volume) varies with time to obtain the full late-time behaviour.
Again writing a0 = 1+ b and repeating the above analysis, we find that, for 1� t�
log1/(3k+4) (1/δ), b� 1 and is given by

b∼
3t3k+4

(k+ 1)3(3k+ 4) log (1/δ)
, (C 6)

which is the linearization of (5.10). For t=O(log1/(3k+4) (1/δ)), we have b=O(1), and
the behaviour of the film spreading is given by our result (5.10).

For the late-time regime, t� log1/(3k+4) (1/δ), a0 ∼ b� 1, and we have

a0 ∼

(
21t3k+4

(k+ 1)3(3k+ 4) log (t(4k+3)/7/δ)

)1/7

. (C 7)
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