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1. Project Background
This project, undertaken in collaboration with Culham Centre for Fusion Energy (CCFE),
the UK's national laboratory for fusion research, is motivated by the need to understand
the plasma behaviour in the process of generating fusion energy.

To get energy from fusion, gas made from a combination of deuterium and tritium (two
isotopes of hydrogen) is heated to very high temperatures (100 million degrees Celsius). At
this temperature, the gas becomes plasma. The plasma is confined in a toroidal reactor
known as a tokamak, where it is controlled with strong magnetic fields. In this process,
some physical phenomena have not been investigated from a mathematical point of view.

One such phenomenon is an edge localised mode (ELM), which is a magneto-
hydrodynamic instability occurring in plasma in the high confinement regime of the
tokamak. It is important to understand under what conditions these instabilities appear as
they can damage the tokamak installation. A deeper understanding of the dynamics leading
to an ELM would allow us to control it and to mitigate its effects.

In this project, we aim to investigate a potential cause of ELMs, by analysing the periodic
solutions of the underlying mathematical model of plasma behaviour.

2. Calculating Numerical Solutions of ODEs
In this report, we will combine two numerical techniques, the standard shooting method
and the deflation method, to calculate multiple periodic and stationary solutions of a
simplified ODE model for magneto-hydrodynamics. By incorporating our methods into a
continuation framework, we will be able to compute bifurcation diagrams that describe the
behaviour of the system for a given parameter configuration.

Glossary of Terms

For a system whose state at time � is given by vector �(�), and depends on a parameter �,
we define the following:

 Stationary solution: a solution whose derivative is zero. A stationary solution can be
stable (if a perturbation from it approaches zero as time approaches infinity) or
unstable (if a perturbation is amplified as time approaches infinity);

 Periodic solution: a solution where �(0) = 	�(�) for some positive time �;

 Phase plane: a plot showing the dependence between two state variables or one state
variable and its derivative

 Bifurcation point: a pair (��, ��) where the number of solutions changes when	�
passes through ��; a Hopf bifurcation connects stationary solutions to periodic
solutions

 Bifurcation diagram: a plot showing how the solutions change as the value of the
parameter � changes;

 Standard shooting method: the numerical method we use to calculate periodic
solutions (described in detail later);

 Deflation: the numerical method we use to calculate multiple solutions (described in
detail later);

 Continuation: the framework we use to compute the bifurcation diagram for a range
of parameter values [���� , ����].

This project is
motivated by the
need to understand
specific types of
plasma behaviour,
like Edge Localised
Modes.

We investigate a
numerical method
for calculating
periodic solutions of
a reduced model for
magneto-
hydrodynamics.
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Mathematical Model
We analyse a system ordinary differential equations (ODEs) of a conducting fluid in the
presence of a magnetic field for a layer of fluid confined between two fixed horizontal
planes. This model preserves the qualitative behaviour of more realistic magneto-
hydrodynamics partial differential equation (PDE) models and it is a simple enough model
to which we can apply our method without worrying about issues related to solving large-
scale systems of PDEs.

The unknowns in our model are the amplitudes of the velocity of the fluid, the
temperature, and the magnetic field. We visualise the results by looking primarily at the
amplitude of the velocity, denoted by �(�).

The system has five parameters, but the parameter of the system that we focus on is related
to the Rayleigh number, which is the ratio between heat transfer by convection and heat

transfer by conduction. We denote this parameter by �.

Our aim is to calculate all the periodic and stationary solutions of this system for a range of
values of the parameter �. It is a nonlinear system and finding its solutions cannot be done
analytically, so we combine two numerical methods (standard shooting and deflation) for
calculating all the solutions for a given value of �. We then repeat this process for each
value of � in the required range.

Standard Shooting
The method we use for calculating the periodic solutions of the system for a given
parameter value is called the standard shooting method.

This method applies a root finding algorithm (called the Newton’s method) to the residual
� defined as:

�(�(0),�) = �(0) − �(�)

The solutions that Newton’s method finds are the starting point of the periodic solution,
�(0), and the period � of the solution. This is an iterative process, meaning that it starts
from an initial guess of the state and period and it finds successive approximations to the
real solutions until a certain convergence is reached:

|�(0) − �(�)| < �.

At each iteration, we solve a linear system whose the matrix relates small changes in the
starting state �(0) and the period � of the periodic orbit to the resulting change in the
residual. This matrix is called the Jacobian. Calculating it is the main challenge of the
standard shooting method, as it can become quite computationally intensive for large-scale
systems.

Shooting methods
involve varying
(artificial)
parameters in order
to satisfy the
boundary
conditions.
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Deflation
The novel part of our approach is incorporating deflation, a technique used to calculate
multiple solutions of the system (periodic or stationary) for a given parameter
configuration.

We will introduce the idea of deflation using an example of polynomial root finding. Let us
assume we want to find the roots of the polynomial

�(�) = 	 �� − 1.

In most real-world applications, finding the solution of an equation analytically is not an
option, so we need to use a numeric approach. We apply, for example, Newton’s method,
to find one solution, �� = 1. Running the algorithm again on the same problem will give
the same solution; the key concept in deflation is to modify the polynomial slightly in order
to be able to find a new solution using the same method. The new polynomial, �(�), has
to satisfy two properties:

1. � has the same solutions as � except the one we have just found (��).
2. Our root finding algorithm cannot give �� as a solution to �.

We obtain a polynomial � that satisfies these two properties if we multiply � by
�

���
:

�(�) =
�� − 1

� − 1
.

We say that the solution �� has been deflated. Applying the root finding algorithm to �(�)
gives the second solution, �� = −1.

When applying deflation to systems of ODEs or PDEs for finding not only stationary, but
also periodic solutions, the term used to deflate solutions of such systems is adapted
accordingly, as we work with functions rather than numbers.

3. Results: Bifurcation Diagram
We are interested in the behaviour of our system as we change the parameter �. In order to
plot the bifurcation diagram, we need to choose a scalar value [�] that reflects the state of
the system, and we choose it to be the maximum amplitude of the velocity of the fluid.
Note that for a stationary solution, �(�) is constant for all values of �. We remind the
reader that the parameter � is a modified Rayleigh number. We compute the bifurcation
diagram for � ∈ [1,4] and show it in Figure 1.

For all values of �, we have the trivial stationary solution � = 0, where the fluid does not
move and the heat transfer takes place in the form of conduction. At � = 2.61, convection
sets in through a Hopf bifurcation, where two periodic solutions start to appear. These
solutions start by resembling a linear oscillator (see Figure 2), but as � grows, the
oscillations become more nonlinear (see Figure 3). The periodic branches continue towards
previously unseen stationary branches, with which they merge at � = 3.4. The stationary
branches start at � = 3.5 and have turning points at � = 3.1, where they change stability,
from unstable to stable. This is illustrated in Figure 4, where we see that a small
perturbation from a point on the unstable stationary branch causes its state to take a big
jump and go to the stable stationary branch.

Our method
successfully calculates
the bifurcation diagram
with all the periodic and
stationary solution for a
specific range of the
parameter.

Using deflation for
calculating multiple
periodic solution is the
novel aspect of our
approach.

Deflation involves
removing previously
found solutions so that
new solutions can be
found.
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Figure 1: Bifurcation diagram for � ∈ 	 [1,4]. Red represents periodic solutions and blue
represents stationary solutions.

One thing worth mentioning is that at � = 	3.1, by deflating all known solutions found on
the previously known branches for � < 	3.1 (the trivial stationary branch and the periodic
branches), we are able to find the turning points in the new stationary branches. This
means that deflation is able to find new unknown branches.

Figure 2: Periodic solution for � = 2.7, time series (left) and phase plane (right). The
solution is similar to linear oscillation.

Figure 3: Periodic solution for � = 3.36, time series (left) and phase plane (right). The
nonlinearity becomes more obvious.
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Figure 4: Stability of stationary non-trivial branch. At � = 3.45, there are two non-trivial

stationary solutions (with positive value of �), one with � = �� = 0.31 and one with

� = �� = 1.11. By starting from a perturbation near �� (by adding 0.001), the state of

the system jumps to ��, showing that �� is on an unstable branch and �� is on a stable
branch.

4. Conclusions and Further Work
We have investigated a new way of finding multiple stationary and periodic solutions in
systems of ODEs and applied it to a problem of interest to CCFE.

We combined the standard shooting method for finding periodic solutions with the
deflation method for finding multiple solutions and used them in a continuation
framework to obtain a complete overview of the behaviour of a system. We have shown
that our method can compute bifurcation diagrams for certain parameter configurations by
detecting multiple periodic solutions, which represent one of the potential explanations for
the physical phenomenon of edge localised modes at the edge region of the plasma inside
the tokamak.

The key benefit of our method is the use of deflation for finding multiple solutions at each
iteration in the continuation algorithm. It is a simple idea but very powerful, as it can be
used to detect disconnected branches in the bifurcation diagram. Its simplicity combined
with the fact that the shooting method is based on Newton iterations make our method
relatively easy to implement. This is important when implementing it in an existing code
base, especially if there is already an implementation of Newton's method, as is the case
when solving PDE systems.

Finally, there are two key extensions that could be considered. Firstly, we could apply the
method in our current implementation to a strange attractor like the Lorenz system, since
this is a more challenging problem. Secondly, the method should be extended to systems
of PDEs. This will impose a different set of challenges, for example, related to the
calculation of the Jacobian. Since the Jacobian can become very big in large-scale PDE
systems, the use of matrix-free methods for calculating the Newton step in the shooting
method should be investigated. Extending the method to systems of PDEs is of practical
importance to CCFE (and elsewhere) and this should be the obvious step forward.

We have shown that
deflation works beyond
the stationary case and
is able to find multiple
periodic solutions in
combination with the
standard shooting
method.
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5. Potential Impact
Once the method has been demonstrated to work on a PDE, it is likely to have widespread
impact on numerical work on oscillations, as there is a large community of people working
on such problems. For example, The Matlab numerical bifurcation analysis tool “Matcont”
had 600 downloads during one week alone.

Dr. Wayne Arter, Scientist and CCFE and industrial supervisor for this miniproject,
commented: “The work successfully demonstrated what should become a very powerful method for
attacking nonlinear oscillations seen in simulations of plasma physics and other experiments.”


