
EPSRC Centre for Doctoral Training in

Industrially Focused Mathematical

Modelling

Shape Optimization in Stokes Flow

Florian Wechsung

1

Contents
1. Introduction ...2

Background ..2

Finite vs Infinite Dimensional

optimization ..2

2. Drag Minimization in Stokes flow.........3

The Shape Derivative3

Comments ..4

3. Steepest Descent and Limited Memory

BFGS ..4

4. Numerical Results5

Surface vs Volume Form of the Shape

Derivative...6

Extension to three dimensions6

5. Conclusion and future research goals6

References ...7

2

1. Introduction

Background
Aerodynamics play a crucial role in the design of modern cars, aeroplanes and many other
objects subject to moving air and fluid flow. In particular, in the case of cars the
minimization of drag forces is a key factor in order to make a vehicle that is as fuel
efficient or as fast as possible.

The classic procedure when designing a car or aeroplane has been the following: an
engineer uses his experience in aerodynamics and his intuition to design a prototype. This
prototype is then tested in a wind tunnel and, based on the observations, the engineer
changes his design - this process gets repeated until an optimal shape is believed to be
found. Optimal means that the shape minimizes or maximizes a quantity or functional of
interest subject to constraints; common examples are minimization of drag on an object or
the maximization of lift or down force that is generated. With the improvements of
Computational Fluid Dynamics (CFD), the prototypes in the wind tunnel have mostly
been replaced by Computer-Aided design (CAD) and CFD simulations; however, the trial-
and-error aspect often remains.

Our goal, together with London Computational Solutions, is to use the theory of shape
optimization to automate this procedure and to guarantee that the optimal shape is found
by using techniques from PDE-constrained optimization and geometry.

Finite vs Infinite Dimensional optimization
One possible way to automate shape optimization is the parametrization of the object in a
finite dimensional shape space, e.g. by a certain type of polynomials or splines. This

enables us to use classic and well understood optimization routines in ℝ� to find the
optimal coefficients for the parametrization of the shape. However, since every functional
evaluation requires a costly solve of the governing PDE, using an optimization routine that
uses not just functional values but also derivative information is crucial in order to reduce
the number of iterations needed. This derivative can either be obtained via finite
differencing, which is only feasible for very simple parametrizations, or by using the chain
rule and first calculating the sensitivity of the functional with respect to shape
deformations and then the sensitivity of the shape with respect to coefficient changes in

the parametrization. Once this is done, fast optimization methods in ℝ� like the Conjugate
Gradient algorithm or Quasi-Newton methods can be used to find the optimal coefficients
in few iterations.

Among the advantages of this method is that it is relatively easy and intuitive to use once
software that can calculate the derivative as described above has been created.
Furthermore, since we only search in the parametrization space, a good choice of
parametrization can guarantee that only sensible shapes are found and it is relatively easy to
include constraints like the minimum thickness of an object or maximum amount of
deformation of the original shape into the problem.

There are, however, two disadvantages to this approach which motivate the following
work. Using a parametrization means that we are only searching in a finite dimensional
space of shapes, which cannot contain all possible shapes and is likely to not contain the
optimal shape. As an example: if we parametrize a shape by a polynomial, we will never be
able to find a shape that contains sharp edges or kinks; any solution will only be an
approximation. The second problem is that the optimization routine is not aware that it is
optimizing over a space of shapes, instead it thinks of the problem as a finite dimensional
problem over real numbers. While this makes the optimization easier, since we can just
reuse existing routines, it also means that we lose the inherent structure of shape spaces.
This means that increasing the number of coefficients in our parametrization usually leads
to poor conditioning of the problem, i.e. an increasing number of necessary iterations of
the optimization routine as one increases the number of coefficients. To be able to solve
large problems it is hence necessary to analyse the problem in a general, infinite
dimensional shape space.

The goal of shape
optimization is to
automate the
process of
designing objects
with ideal
properties.

3

Instead of parametrizing the shape of interest and calculating the derivative of the
functional with respect to finitely many coefficient changes, we calculate the derivative
with respect to general domain deformations. This derivative can then be used to obtain
the deformation direction of our shape that reduces the functional as much as possible.
This means that the optimization is done over general, infinite dimensional shape spaces
and does not depend on a parametrization. The approximation is only done at the last step,
when the domain and the deformation functions are represented by meshes and finite
element functions respectively. However, it is crucial that the analysis and the conditioning
of our problem does not depend of the resolution of the chosen discretization.

The second advantage of this approach is that we search in a larger shape space and that
we retain the structure of the optimization problem. Since we do not restrict ourselves to a
particular parametrization, the space of shapes that we consider is significantly larger and
the algorithm might suggest shapes that were not considered by the engineer and hence
cannot be represented by the chosen parametrization.

The main disadvantage however is the analytical difficulty - while optimizing in finite
dimensional spaces is very well understood, optimization over shape spaces is far more
subtle and there remain many opportunities for fundamental research.

2. Energy Minimisation in Stokes flow
We consider the following test problem as introduced in [1]. Liquid flows through a
channel containing an obstacle in the centre, as shown in Figure 1. Given an obstacle ��,
we denote the fluid containing part of the channel by �� ; this means that a deformation of
the obstacle �� directly corresponds to a change of �� . Assuming either small velocity,
high viscosity or small length scales in the problem we know that the fluid flow satisfies
the Stokes equations (and so inertia is neglected). This means that, for a given geometry,
we can use finite element methods to solve for the velocity field �	of the fluid.

Figure 1: Sketch of the geometry under consideration in two dimensions. In three dimensions, we
rotate this geometry along the central, horizontal axis.

Once we have obtained the velocity field it is possible to calculate the energy that is
dissipated in the fluid by integrating the square of the norm of the gradient of the velocity
field over the channel. Our goal is to deform the object in the centre of the channel to
minimize this energy. However, it is intuitively clear that without any constraints one can
minimize the energy lost around the obstacle by simply making it smaller and smaller until
it vanishes. Hence we add the constraint that the volume should remain constant.

The Shape Derivative
There are various options how a volume constraint can be incorporated and we will not
focus on this here. However, in order to minimize a function or functional quickly we need
derivative information, as this will enable us to find the best descent directions at every
iteration. In this case it is not immediately clear how the derivative with respect to a shape
should be defined. In shape calculus, we consider deformations represented by vector
fields � and the shape derivative in direction of a deformation is defined by how much
the functional changes if the domain is deformed in direction of the vector. An example
for such a deformation can be seen in Figure 2.

4

Figure 2: Left: Initial domain (circle) with arrows indicating the deformation direction�. Right:
Deformed domain. The colours indicate the magnitude of the velocity field; red represents faster

flow, blue stands for slower flow.

In the case of the energy functional for Stokes flow, the shape derivative in direction �
can be expressed by two equivalent formulas. The first one is called the volume form of
the derivative, and can be expressed by an integral over the channel, and the second form
is the surface form and is given by an integral over the surface of the obstacle.

Assume that our current geometry is given by �� and we want to know how the drag
changes if we apply a deformation �. Then we need to solve Stokes equations to obtain
the velocity fields � and then evaluate either the volume integral or the surface integral for
the shape derivative. Though theoretically equivalent, the second form is often the
preferred form, as it is more intuitive since it supports our intuition that a deformation
field that does not change the boundary of the object has no influence on the objective.
The volume form appears is often more complicated but it has been noticed (cf. [2]) in the
past that it has numerical advantages and is more accurate than the surface form when
implemented using finite elements.

Comments
• Since the velocity field � depends on the domain we need to include the fact that

�	solves the Stokes equations implicitly when deriving the shape derivative. This
means, that for other fluid models like Navier-Stokes, Bernoulli or Reynolds-
averaged Navier-Stokes the expression for the shape derivative will be different.

3. Steepest Descent and Limited Memory BFGS
Once we have obtained the shape derivative we are able to calculate the shape gradient
using the structure on the shape space defined in [1, 3]. The shape gradient is a function
defined on the boundary of the domain that tells us how much to deform the boundary in
the normal direction to reduce the objective as much as possible. Since we do not want to
regenerate the mesh in our domain, we extend this deformation function into the rest of
the volume to obtain a deformation vector field that we can apply onto the mesh nodes.

A simple steepest descent algorithm now works as follow: solve the Stokes equations to
obtain the fluid flow; calculate the shape gradient using either the surface or the volume
form of the shape derivative; extend the deformation into the volume; deform the mesh;
repeat.

For optimization algorithms over real numbers, it is possible to significantly increase
convergence speeds to superlinear convergence by including information about the second
derivative of the function being minimised. However, often calculating or storing the
inverse of the second derivative is not feasible and in those cases one can build an estimate
of the second derivatives using the previous iteration steps. One of the most popular
algorithms that does this is the BFGS algorithm. The problem with this algorithm is that,
as the algorithm progresses and the number of past iterations increases, the complexity and

It is possible to
calculate the shape
derivative for other
quantities, e.g. lift
or downforce.

5

memory requirements of the algorithm increase since each iteration must take into account
all previous iterations. The Limited-Memory BFGS algorithms counters this problem by
only storing a fixed number of previous iteration steps and hence does not suffer from
ever increasing iteration cost. This algorithm is well understood and has been used
successfully for optimization problems over real numbers and has been previously adapted
to our case of optimization over shape spaces (see [1, 3]).

4. Numerical Results
We have implemented the solver for Stokes equations and the two optimization algorithms
using the firedrake software. In Figure 2, we show, both the initial shape (left), and the
optimal shape that minimized the energy dissipation (right), where we have held the area of
the obstacle constant.

Figure 2: Initial shape (left) and final, optimal shape (right). The colours indicate the magnitude of
the velocity field; red represents faster flow, blue stands for slower flow.

Steepest Descent vs L-BFGS

We begin by comparing the convergence speed of the two optimization algorithms. In
Figure 3, we show that L-BFGS has essentially converged after about 40 iterations. It
makes significantly more progress per iteration when compared against the steepest
descent method, which we see requires significantly more iterations and still has not
converged after more than 300 iterations. Since L-BFGS is a more complicated algorithm
requiring multiple calculations to find the descent direction, each iteration is
computationally more expensive than a simple steepest descent iteration. However, in
practice this is negligible as the main cost of each iteration lies in the solve of the fluid
equations, especially when the governing equations and the geometry under consideration
become more complicated.

Figure 3: Functional value at each iteration of the two optimization algorithms.

L-BFGS increases
convergence speed
significantly at small
extra cost per iteration.

6

Surface vs Volume Form of the Shape Derivative
We now compare the two different formulations of the shape derivative of the energy
functional. As already explained, the surface form is more commonly used but the volume
form often has better numerical properties when approximated using finite elements. It
turns out that in our case the same holds true, especially for geometries that are not
smooth but contain kinks. We illustrate this by considering as an initial shape a square that
has been turned by 45 degrees so that it appears to stand on one of its kinks.

We use the L-BFGS algorithm to compare the final shape obtained when using the surface
form and the volume form of the derivative and we show the results in Figure 4. We can
see that the surface form struggles to flatten out the top and bottom kinks whereas the
volume form has no problems. We have observed similar behaviour when facing the
opposite task of creating a kink in a smooth surface. In that case the volume form was able
to create a kink consistently, the surface form however would have stump kinks or overly
sharp kinks, depending on parameter choice.

Figure 4: Top side of the final shape when using the volume form (left) or the surface form (right)
of the shape derivative.

Extension to three dimensions
In order to show applicability of our work to real-world problems, we now extend the
problem under consideration to three dimensions. This means that we consider fluid flow
in a pipe around an object whose energy we want to minimize. In Figure 5, we show the
optimal shape found using the volume form of the derivative. We ran this simulation on a
16 core CPU within a few hours and only about 3% of the computational effort was spent
in the optimization. This supports our previous statement that, for realistic geometries, the
extra cost due to L-BFGS compared to Steepest Descent is negligible.

Figure 5: Optimal shape for the energy minimization problem in three dimensional Stokes flow,
where the volume of the obstacle is preserved.

5. Discussion, conclusions and
recommendations

To summarize, we draw two main conclusions: the L-BFGS optimization algorithm
converges significantly faster than the Steepest Descent algorithm at little extra cost per
iteration. Furthermore, the volume form generally appears to be a better choice than the
surface form, since in our studies we have demonstrated that it is significantly more stable
than the surface formulation.

7

We have identified a variety of future goals that can be broadly grouped into two
categories. On the one hand we need to do more fundamental work into understanding the
structure of the shape space better which will then hopefully enable us to formulate full
Newton optimization schemes. This should lead to faster converging optimization
algorithms. Deflation has previously been used successfully to find multiple solutions to a
range of optimization problems that have more than one solution, but has yet to be used
for shape spaces. Formulating a Newton method for shape optimization should allow us to
adapt the theory of Deflation to shapes. The goal is to be able to find not just one but a
range of optimal shapes (if more than one exists) which can then be suggested to an
engineer who can pick the shape that is the most cost efficient, easiest to manufacture or
pleasant to look at.

On the other hand, we need to make the fluid model and the geometries more realistic. In
a first step this means deriving the shape derivative for the full Navier-Stokes equations on
parts of a car and eventually the goal is to model the flow using the Reynolds-averaged
Navier-Stokes equations with a turbulence model for the complete geometry of a car.

Potential Impact

Mark Taylor, CEO of London Computational Solutions, commented: “Florian has shown an
immediate grasp of the engineering problem we are trying to solve. LCS are determined to bring these
powerful mathematical approaches to bear on real-world engineering problems which we know will be based
on fundamental understanding of the equations and how they behave when being solved efficiently. I am
really excited about working with Florian on his PhD project and feel certain that this will yield a
commercial impact and see these techniques improving engineering products in the real world.”

References

1. V. Schulz and M. Siebenborn (2016) Computational comparison of surface metrics for
PDE constrained shape optimization. arXiv:1509.08601

2. R. Hiptmair, A. Paganini and S. Sargeheini (2015) Comparison of approximate shape
gradients. BIT, 55(2):459-485.

3. V. Schulz, M. Siebenborn and K. Welker (2016) Efficient PDE constrained shape
optimization based on Steklov-Poincaré type metric. arXiv:1506.02244.

