ALGEBRA EXERCISES 1

1. (a) Find the remainder when $n^{2}+4$ is divided by 7 for $0 \leq n<7$.

Deduce that $n^{2}+4$ is not divisible by 7 , for every positive integer n. [Hint: write $n=7 k+r$ where $0 \leq r<7$.]
(b) Now k is an integer such that $n^{3}+k$ is not divisible by 4 for all integers n. What are the possible values of k ?
2. (i) Prove that if a, b are positive real numbers then

$$
\sqrt{a b} \leq \frac{1}{2}(a+b)
$$

(ii) Now let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers. Let $S=a_{1}+a_{2}+\cdots+a_{n}$ and $P=a_{1} a_{2} \cdots a_{n}$.

Suppose that a_{i} and a_{j} are distinct. Show that replacing a_{i} and a_{j} with $\left(a_{i}+a_{j}\right) / 2$ and $\left(a_{i}+a_{j}\right) / 2$ increases P without changing S.

Deduce that

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}
$$

3. (i) Let n be a positive integer. Show that

$$
x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right) .
$$

(ii) Let a also be a positive integer. Show that if $a^{n}-1$ is prime then $a=2$ and n is prime.

Is it true that if n is prime then $2^{n}-1$ is also prime?
4. Let a, b, r, s be rational numbers with $s \neq 0$. Suppose that the number $r+s \sqrt{2}$ is a root of the quadratic equation

$$
x^{2}+a x+b=0
$$

Show that $r-s \sqrt{2}$ is also a root.
5. (i) The cubic equation $a x^{3}+b x^{2}+c x+d=0$ has roots α, β, γ, and so factorises as

$$
a(x-\alpha)(x-\beta)(x-\gamma)
$$

Determine

$$
\alpha+\beta+\gamma, \quad \alpha \beta+\beta \gamma+\gamma \alpha, \quad \alpha \beta \gamma
$$

in terms of a, b, c, d. What does $\alpha^{2}+\beta^{2}+\gamma^{2}$ equal?
(ii) Show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
(iii) By considering the roots of the equation $4 x^{3}-3 x-\cos 3 \theta=0$ deduce that

$$
\cos \theta \cos (\theta+2 \pi / 3) \cos (\theta+4 \pi / 3)=\frac{\cos (3 \theta)}{4}
$$

What do

$$
\cos \theta+\cos (\theta+2 \pi / 3)+\cos (\theta+4 \pi / 3) \text { and } \cos ^{2} \theta+\cos ^{2}(\theta+2 \pi / 3)+\cos ^{2}(\theta+4 \pi / 3)
$$

equal?

