ALGEBRA EXERCISES 2

1. Under what conditions on the real numbers a, b, c, d, e, f do the simultaneous equations

$$
a x+b y=e \quad \text { and } \quad c x+d y=f
$$

have (a) a unique solution, (b) no solution, (c) infinitely many solutions in x and y.
Select values of a, b, c, d, e, f for each of these cases, and sketch on separate axes the lines $a x+b y=e$ and $c x+d y=f$.
2. For what values of a do the simultaneous equations

$$
\begin{aligned}
x+2 y+a^{2} z & =0, \\
x+a y+z & =0, \\
x+a y+a^{2} z & =0,
\end{aligned}
$$

have a solution other than $x=y=z=0$. For each such a find the general solution of the above equations.
3. Do 2×2 matrices exist satisfying the following properties? Either find such matrices or show that no such exist.
(i) A such that $A^{5}=I$ and $A^{i} \neq I$ for $1 \leq i \leq 4$,
(ii) A such that $A^{n} \neq I$ for all positive integers n,
(iii) A and B such that $A B \neq B A$,
(iv) A and B such that $A B$ is invertible and $B A$ is singular (i.e. not invertible),
(v) A such that $A^{5}=I$ and $A^{11}=0$.
4. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { and let } A^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

be a 2×2 matrix and its transpose. Suppose that $\operatorname{det} A=1$ and

$$
A^{T} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Show that $a^{2}+c^{2}=1$, and hence that a and c can be written as

$$
a=\cos \theta \text { and } c=\sin \theta
$$

for some θ in the range $0 \leq \theta<2 \pi$. Deduce that A has the form

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

5. (a) Prove that

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

for any 2×2 matrices A and B.
(b) Let A denote the 2×2 matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Show that

$$
\begin{equation*}
A^{2}-(\operatorname{trace} A) A+(\operatorname{det} A) I=0 \tag{1}
\end{equation*}
$$

where

- $\operatorname{trace} A=a+d$ is the trace of A, that is the sum of the diagonal elements;
- $\operatorname{det} A=a d-b c$ is the determinant of A;
- I is the 2×2 identity matrix.
(c) Suppose now that $A^{n}=0$ for some $n \geq 2$. Prove that $\operatorname{det} A=0$. Deduce using equation (1) that $A^{2}=0$.

