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Abstract. We are concerned with free boundary problems arising from the analysis of multidimen-
sional transonic shock waves for the Euler equations in compressible fluid dynamics. In this expository
paper, we survey some recent developments in the analysis of multidimensional transonic shock waves
and corresponding free boundary problems for the compressible Euler equations and related nonlinear
partial differential equations (PDEs) of mixed type. The nonlinear PDEs under our analysis include the
steady Euler equations for potential flow, the steady full Euler equations, the unsteady Euler equations
for potential flow, and related nonlinear PDEs of mixed elliptic-hyperbolic type. The transonic shock
problems include the problem of steady transonic flow past solid wedges, the von Neumann problem
for shock reflection-diffraction, and the Prandtl-Meyer problem for unsteady supersonic flow onto solid
wedges. We first show how these longstanding multidimensional transonic shock problems can be for-
mulated as free boundary problems for the compressible Euler equations and related nonlinear PDEs of
mixed type. Then we present an effective nonlinear method and related ideas and techniques to solve
these free boundary problems. The method, ideas, and techniques should be useful to analyze other
longstanding and newly emerging free boundary problems for nonlinear PDEs.
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1. Introduction

We are concerned with free boundary problems arising from the analysis of multidimensional tran-
sonic shock waves for the Euler equations in compressible fluid dynamics. The purpose of this expository
paper is to survey some recent developments in the analysis of multidimensional (M-D) transonic shock
waves and corresponding free boundary problems for the Euler equations and related nonlinear partial
differential equations (PDEs) of mixed type. We show how several M-D transonic shock problems can
be formulated as free boundary problems for the compressible Euler equations and related nonlinear
PDEs of mixed-type, and then present an efficient nonlinear method and related ideas and techniques
to solve these free boundary problems.

Shock waves are steep wavefronts, which are fundamental in high-speed fluid flows (e.g., [8, 9, 20,
35, 52, 53, 63, 90, 92, 103, 104, 109]). Such flows are governed by the compressible Euler equations in
fluid dynamics. The time-dependent compressible Euler equations are a second-order nonlinear wave
equation for potential flow, or a first-order nonlinear system of hyperbolic conservation laws for full
Euler flow (e.g., [21,35,52,53]). One of the main features of such nonlinear PDEs is that, no mater how
smooth the given initial data start with, the solution develops singularity in a finite time to form shock
waves (shocks, for short) generically, so that the classical notion of solutions has to be extended to the
notion of entropy solutions in order to accommodate such discontinuity waves for physical variables,
that is, the weak solutions satisfying the entropy condition that is consistent with the second law of
thermodynamics (cf. [35, 52,53,73]).

General entropy solutions involving shocks for such PDEs have extremely complicated and rich
structures. On the other hand, many fundamental problems in physics and engineering concern steady
solutions (i.e., time-independent solutions) or self-similar solutions (i.e., the solutions depend only on
the self-similar variables with form x

t for the space variables x and time-variable t); see [35, 52, 53, 63]
and the references cited therein. Such solutions are governed by the steady or self-similar compressible
Euler equations for potential flow, or full Euler flow. These governing PDEs in the new forms are
time-independent and often are of mixed elliptic-hyperbolic type.

Mathematically, M-D transonic shocks are codimension-one discontinuity fronts in the solutions of
the steady or self-similar Euler equations and related nonlinear PDEs of mixed elliptic-hyperbolic type,
which separate two phases: one of them is supersonic phase (i.e., the fluid speed is larger than the
sonic speed) which is hyperbolic; the other is subsonic phase (i.e., the fluid speed is smaller than
the sonic speed) which is elliptic for potential flow, or elliptic-hyperbolic composite for full Euler flow
(i.e., elliptic equations coupled with some hyperbolic transport equations). They are formed in many
physical situations, for example, by smooth supersonic flows or supersonic shock waves impinging onto
solid wedges/cones or passing through de Laval nozzles, around supersonic or near-sonic flying bodies,
or other physical processes. The mathematical analysis of shocks at least dates back to Stokes [101] and
Riemann [95], starting from the one-dimensional (1-D) case. The mathematical understanding of M-D
transonic shocks has been one of the most challenging and longstanding scientific research directions
(cf. [35, 47, 51–53, 63, 65]). Such transonic shocks can be formulated as free boundary problems (FBPs)
in the mathematical theory of nonlinear PDEs involving mixed elliptic-hyperbolic type.

Generally speaking, a free boundary problem is a boundary value problem for a PDE or system
of PDEs which is defined in a domain, a part of whose boundary is a priori unknown; this part is
accordingly named as a free boundary. The mathematical problem is then to determine both the
location of the free boundary and the solution of the PDE/system in the resulting domain, which
requires to combine analysis and geometry in sophisticated ways. The mathematical analysis of FBPs
is one of the most important research directions in the analysis of PDEs, with wide applications across
the sciences and real-world problems. On the other hand, it is widely regarded as a truly challenging
field of mathematics. See [13,14,40,54,60,70] and the references cited therein.

Transonic shock problems for steady or self-similar solutions are typically formulated as boundary
value problems for a nonlinear PDE or system of mixed elliptic-hyperbolic type, whose type at a point
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is determined by the solution, as well as its gradient for some cases. For a system, the type is more com-
plicated and may be either hyperbolic or mixed-composite elliptic-hyperbolic (also called mixed, for the
sake of brevity when no confusion arises). General solutions of such nonlinear PDEs can be nonsmooth
and of complicated structures (e.g. [17–19,21,35,63,72,75,78,97,98,114,116]), so that even the unique-
ness issue has not been settled in many cases. However, in many problems, especially those motivated
by physical phenomena, the expected structures of solutions are known from experimental/numerical
results and underlying physics. The solutions are expected to be piecewise smooth, with some hyper-
bolic/elliptic regions separated by shocks, or sonic curves/surfaces of continuous type-transition (i.e.,
the type of equations changes continuously in the physical variables such as the velocity, density, etc.).
In this paper, we present the problems in which the hyperbolic part of the solution is a priori known,
or can be determined separately from the elliptic part, in some larger regions. Then the problem is
reduced to determining the region in which the underlying PDE is elliptic, with the transonic shock as
a part of its boundary and the elliptic solution in that region. In other words, we need to solve a free
boundary problem for the elliptic phase of the solution, with the transonic shock as a free boundary.
Since the type of equations depends on the solution itself, the ellipticity in the region is a part of the
results to be established. We remark that, in some other problems involving shocks, FBPs also need to
be solved in order to find the hyperbolic part of the solution, which is beyond the scope of this paper.

For several problems under our discussion below, the PDEs involved are single second-order quasi-
linear PDEs, whose coefficients and types (elliptic, hyperbolic, or mixed) depend on the gradient of the
solution. In the other problems, the PDEs are first-order nonlinear systems, whose types are hyperbolic
or composite-mixed elliptic-hyperbolic, and are determined by the solution only. In all the problems,
the PDEs (or parts of the systems) are expected to be elliptic for our solutions in the regions determined
by the free boundary problems. That is, we solve an expected elliptic free boundary problem. However,
the available methods and approaches of elliptic FBPs do not directly apply to our problems, such as
the variational methods of Alt-Caffarelli [1] and Alt-Caffarelli-Friedman [2–4], the Harnack inequality
approach of Caffarelli [10–12], and other methods and approaches in many further works. The main
reason is that the type of equations needs to be first controlled in order to apply these methods, which
requires some strong estimates a priori. To overcome the difficulties, we exploit the global structure
of the problems, which allows us to derive certain properties of the solution (such as the monotonicity,
etc.) so that the type of equations and the geometry of the problem can be controlled. With this, we
solve the free boundary problem by the iteration procedure.

Notice that the existence of multiple wild solutions for the Cauchy problem of the compressible Euler
equations has been shown; see [50, 71] and the references cited therein for both the isentropic and full
Euler cases. In this paper, we focus on the solutions of specific structures motivated by underlying
physics; for these solutions, the uniqueness can be shown for all the cases as we discuss below. Since we
are interested in the solutions of specific structures, we construct the solution in a carefully chosen class
of solutions, called admissible solutions. This class of solutions needs to be defined with two somewhat
opposite features: the conditions need not only to be flexible enough so that this class contains all
possible solutions of the problem which are of the desired structure, but also to be rigid enough to force
the desired structure of the solutions with the sufficient analytic and geometric control such that the
expected estimates for these solutions can be derived, so that eventually a solution can be constructed
in this class by the iteration procedure. In order to define such a class, we start with the solutions near
some background solutions:

(i) to make sure that the solutions obtained are still in the same desired structure via careful
estimates, which is the structure of transonic shock solutions in our application;

(ii) to gain the insight and motivation for the structure and properties of the solutions that are
not near the background solution but have the required configuration to form the conditions on
which the a priori estimates and fixed point argument are based.
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In several problems, we consider only the solutions near the background solution, as in §2–§3 below.
In the other problems, say in §4–§5, we carry out both steps described above and construct admissible
solutions which are not close to any known background solution.

Furthermore, we emphasize that the elliptic and hyperbolic regions may be separated not only by
shocks, which are discontinuity fronts of physical variables such as the velocity and the density, but also
by sonic curves/surfaces where the type of equations changes continuously in the physical variables,
as pointed out earlier. This means that the ellipticity and hyperbolicity degenerate near the sonic
curves/surfaces. This presents additional difficulties in the analysis of such solutions. Moreover, the
sonic curves/surfaces may intersect the transonic shocks (see e.g. Fig. 4.1, point P1) so that, near such
points, the analysis of solutions is even more involved.

The organization of this paper is as follows: In §2, we start with our presentation of M-D transonic
shocks and free boundary problems for the compressible Euler equations for potential flow in a setup
as simple as possible, and show how a transonic shock problem can be formulated as a free boundary
problem for the corresponding nonlinear PDEs of mixed elliptic-hyperbolic type. Then we describe an
efficient nonlinear method and related ideas and techniques, first developed in Chen-Feldman [29], with
focus on the key points in solving such free boundary problems through this simplest setup. In §3, we
describe how they can be applied to establishing the existence, stability, and asymptotic behavior of
2-D steady transonic flows with transonic shocks past curved wedges for the full Euler equations, by
reformulating the problems as free boundary problems via two different approaches. In §4, we describe
how the nonlinear method and related ideas and techniques presented in §2–3 can be extended to the
case of self-similar shock reflection/diffraction for the compressible Euler equations for potential flow,
including the von Neumann problem for shock reflection-diffraction and the Prandtl-Meyer problem for
unsteady supersonic flow onto solid wedges, where the solutions have the sonic arcs in addition to the
transonic shocks. In §5, we discuss some recent developments in the analysis of geometric properties of
transonic shocks as free boundaries in the 2-D self-similar coordinates for compressible fluid flows with
focus on the convexity properties of the self-similar transonic shocks obtained in §4.

2. Multidimensional Transonic Shocks and Free Boundary Problems for the Steady
Euler Equations for Potential Flow

For clarity, we start with our presentation of M-D transonic shocks and free boundary problems for
the compressible Euler equations in a setup as simple as possible, and show how a transonic shock
problem can be formulated as a free boundary problem for the corresponding nonlinear PDEs of mixed
elliptic-hyperbolic type. Then we describe a method first developed in Chen-Feldman [29], with focus
on the key points to solve such free boundary problems through this simplest setup.

The steady Euler equations for potential flow, consisting of the conservation law of mass and the
Bernoulli law for the velocity, can be written as the following second-order nonlinear PDE of mixed
elliptic-hyperbolic type for the velocity potential ϕ : Rd Ñ R (i.e., u � Dϕ is the velocity):

div pρp|Dϕ|2qDϕq � 0, (2.1)

by scaling so that the density function ρpq2q has the form:

ρpq2q � �
1� γ � 1

2
q2
� 1
γ�1 , (2.2)

where γ ¡ 1 is the adiabatic exponent and D :� pBx1 , . . . , Bxdq is the gradient with respect to x �
px1, . . . , xdq P Rd.

Equation (2.1) can be written in the non-divergence form:

ḑ

i,j�1

�
ρp|Dϕ|2qδij � 2ρ1p|Dϕ|2qϕxiϕxj

�
ϕxixj � 0, (2.3)
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where the coefficients of the second-order nonlinear PDE (2.3) depend on Dϕ, the gradient of the
unknown function ϕ.

The nonlinear PDE (2.1), or equivalently (2.3) for smooth solutions, is strictly elliptic at Dϕ with
|Dϕ| � q if

ρpq2q � 2q2ρ1pq2q ¡ 0, (2.4)

and is strictly hyperbolic if
ρpq2q � 2q2ρ1pq2q   0. (2.5)

In fluid dynamics, the elliptic regions of equation (2.1) correspond to the subsonic flow, the hyperbolic
regions of (2.1) to the supersonic flow, and the regions with ρpq2q � 2q2ρ1pq2q � 0 for q � |Dϕ| to the
sonic flow.

2.1. Steady Transonic Shocks and Free Boundary Problems. Let Ω � Rd be a domain (i.e.,
simply connected open subset). A function ϕ PW 1,8pΩq is a weak solution of (2.1) in Ω if

(i) |Dϕpxq| ¤
a

2{pγ � 1q a.e. x P Ω, that is, the physical region so that ρp|Dϕpxq|2q is well
defined via (2.2) for a.e. x P Ω;

(ii) for any test function ζ P C8
0 pΩq,»

Ω
ρp|Dϕ|2qDϕ �Dζ dx � 0. (2.6)

We are interested in the weak solutions with shocks (i.e., the surfaces of jump discontinuity of Dϕ of
the solution ϕ with codimension one) satisfying the physical entropy condition that is consistent with
the Second Law of Thermodynamics in Continuum Physics. More precisely, let Ω� and Ω� be open
nonempty subsets of Ω such that

Ω� X Ω� � H, Ω� Y Ω� � Ω,

and S :� BΩ�zBΩ. Let ϕ PW 1,8pΩq be a weak solution of (2.1) so that ϕ P C2pΩ�qXC1pΩ�q and Dϕ
has a jump across S.

We now derive the necessary conditions on S that is a C1–surface of codimension one. First, the
requirement that ϕ is in W 1,8pΩq yields curlpDϕq � 0 in the sense of distributions, which implies

ϕ�τ � ϕ�τ on S, (2.7)

where
ϕ�τ :� Dϕ� � pDϕ� � νqν

are the trace values of the tangential gradients of ϕ on S in the tangential space with pd�1q-dimension
on the Ω� sides, respectively, and ν is the unit normal to S from Ω� to Ω�. Then we simply write
ϕτ :� ϕ�τ on S and choose

ϕ� � ϕ� on S (2.8)

to be consistent with the W 1,8–requirement of ϕ.

Now, for ζ P C8
0 pΩq, we use (2.6) to compute

0 �
�»

Ω�

�
»

Ω�



ρp|Dϕ|2qDϕ �Dζ dx

� �
»
BΩ�

ρp|Dϕ|2qDϕ � ν ζ dHd�1 �
»
BΩ�

ρp|Dϕ|2qDϕ � ν ζ dHd�1

�
»
S

��ρp|Dϕ�|2qDϕ� � ν � ρp|Dϕ�|2qDϕ� � ν� ζ dHd�1,

where Hd�1 is the pd�1q-D Hausdorff measure, i.e., the surface area measure. Thus, the other condition
on S, which measures the trace jump of the normal derivative of ϕ across S, is

ρp|Dϕ�|2qϕ�ν � ρp|Dϕ�|2qϕ�ν on S, (2.9)
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where ϕ�ν � Dϕ� � ν are the trace values of the normal derivative of ϕ along S on the Ω� sides, and

ρp|Dϕ�|2q �
�

1� γ � 1

2

�|ϕ�τ |2 � |ϕ�ν |2
�	 1

γ�1
,

respectively.
Conditions (2.8)–(2.9) are called the Rankine-Hugoniot conditions for potential flow in fluid dynam-

ics. On the other hand, it can also be shown that any ϕ P C2pΩ�q X C1pΩ�q that is a C2–solution of
(2.1) in Ω� respectively, such that Dϕ has a jump across S satisfying the Rankine-Hugoniot conditions
(2.8)–(2.9), must be a weak solution of (2.1) in the whole domain Ω. Therefore, the necessary and

sufficient conditions for ϕ P C2pΩ�q X C1pΩ�q that is a solution of (2.1) in Ω� respectively to be a
weak solution of (2.1) in the whole domain Ω are the Rankine-Hugoniot conditions (2.8)–(2.9).

For given K ¡ 0, consider the function:

ΦKppq :� �
K � γ � 1

2
p2
� 1
γ�1 p for p P r0,

a
2K{pγ � 1qs. (2.10)

Then ΦK P Cpr0,
a

2K{pγ � 1qsq and

ΦKppq ¡ 0 for p P p0,
a

2K{pγ � 1qq, ΦKp0q � ΦKp
a

2K{pγ � 1qq � 0, (2.11)

0   Φ1
Kppq ¤ K

1
γ�1 for p P p0, pKsonicq, (2.12)

Φ1
Kppq   0 for p P ppKsonic,

a
2K{pγ � 1qq, (2.13)

Φ
2

Kppq   0 for p P p0, pKsonics, (2.14)

where

pKsonic :�
a

2K{pγ � 1q. (2.15)

By direct calculation, condition (2.4) is equivalent to Φ1
1pqq ¡ 0, and condition (2.5) is equivalent to

Φ1
1pqq   0. Thus, using (2.12), we obtain that PDE (2.1) is strictly elliptic at Dϕ if |Dϕ|   p1

sonic and
is strictly hyperbolic if |Dϕ| ¡ p1

sonic, where we have used notation (2.15).

Suppose that ϕpxq is a solution satisfying

|Dϕ|   p1
sonic �

a
2{pγ � 1q in Ω�, |Dϕ| ¡ p1

sonic in Ω�, (2.16)

and

Dϕ� � ν ¡ 0 on S, (2.17)

besides (2.8) and (2.9). Then ϕpxq is a transonic shock solution with transonic shock S that divides
the subsonic region Ω� from the supersonic region Ω�. In addition, ϕpxq satisfies the physical entropy
condition (see Courant-Friedrichs [52]; also see [53,73]):

ρp|Dϕ�|2q   ρp|Dϕ�|2q, (2.18)

which implies, by (2.17), that the density ρ increases in the flow direction; that is, the transonic shock
solution is an entropy solution. Note that equation (2.1) is elliptic in the subsonic region Ω� and
hyperbolic in the supersonic region Ω�.

For clarity of presentation of the nonlinear method, first developed in Chen-Feldman [29], we focus
first on the free boundary problem in the simplest setup, while the method and related ideas and
techniques have been applied to more general free boundary problems involving transonic shocks for
the nozzle problems and other important problems, some of which will be discussed in §3–§5.

Let px1, xdq be the coordinates of Rd with x1 � px1, � � � , xd�1q P Rd�1 and xd P R. From now on, in
this section, we focus on Ω :� p0, 1qd�1 � p�1, 1q for simplicity, without loss of our main objectives.
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Let q� P pp1
sonic,

a
2{pγ � 1qq and ϕ�0 pxq :� q�xd. Then ϕ�0 is a supersonic solution in Ω. From

(2.11)–(2.14), there exists a unique q� P p0, p1
sonicq such that�

1� γ � 1

2
pq�q2� 1

γ�1 q� � �
1� γ � 1

2
pq�q2� 1

γ�1 q�. (2.19)

In particular, q�   q�. Define ϕ�0 pxq :� q�xd in Ω. Then the function:

ϕ0pxq � minpϕ�0 pxq, ϕ�0 pxqq (2.20)

is a transonic shock solution in Ω, in which Ω�
0 � txd ¤ 0u X Ω and Ω�

0 � txd ¥ 0u X Ω are the
supersonic and subsonic regions of ϕ0pxq, respectively. Also, the boundary condition: pϕ0qν � 0 holds
on Bp0, 1qd�1 � r�1, 1s.

We start with perturbations of the background solution ϕ0pxq defined in (2.20). We use the following
Hölder norms: For α P p0, 1q and any non-negative integer k,

rusk,0,Ω �
¸
|β|�k

sup
xPΩ

|Dβupxq|, rusk,α,Ω �
¸
|β|�k

sup
x,yPΩ,x�y

|Dβupxq �Dβupyq|
|x� y|α , (2.21)

}u}k,0,Ω �
ķ

j�0

rusj,0,Ω, }u}k,α,Ω � }u}k,0,Ω � rusk,α,Ω,

where β � pβ1, � � � , βdq, βl ¥ 0 integers, Dβ � Bβ1x1 � � � Bβdxd , and |β| � β1 � � � � � βd.

Then the transonic shock problem can be formulated as the following problem:

Problem 2.1. Given a supersonic solution ϕ� of (2.1) in Ω, which is a C2,α–perturbation of ϕ�0 :

}ϕ� � ϕ�0 }2,α,Ω ¤ σ (2.22)

for some α P p0, 1q with small σ ¡ 0 and satisfies

ϕ�ν � 0 on Bp0, 1qd�1 � r�1, 1s, (2.23)

find a transonic shock solution ϕ in Ω such that

ϕ � ϕ� in Ω� :� ΩzΩ�,

where Ω� :� tx P Ω : |Dϕpxq|   p1
sonicu is the subsonic region of ϕ, which is the complementary set

of the supersonic region of ϕ in Ω, and$'&'%
pϕ,ϕxnq � pϕ�, ϕ�xnq on p0, 1qd�1 � t�1u,
ϕ � ϕ�0 on p0, 1qd�1 � t1u,
ϕν � 0 on Bp0, 1qd�1 � r�1, 1s.

(2.24)

Since ϕ � ϕ� in Ω�, |Dϕ|   p1
sonic   |Dϕ�| in Ω�, |Dϕ�| ∼ Bxdϕ� ¡ p1

sonic in Ω, and it is expected
that Ω� � txd ¡ fpx1qu X Ω and |Dϕ| ∼ Bxdϕ   p1

sonic in Ω� with (2.8) across the transonic shock
S � txd � fpx1qu X Ω, then ϕ should satisfy

ϕpxq ¤ ϕ�pxq for x P Ω. (2.25)

This motivates the following reformulation of Problem 2.1 as a free boundary problem for the subsonic
(elliptic) part of the solution:

Problem 2.2 (Free Boundary Problem). Find ϕ P CpΩq such that

(i) ϕ satisfies (2.25) in Ω and (2.24) on BΩ;

(ii) ϕ P C2,αpΩ�q is a solution of (2.1) in Ω� � tx P Ω : ϕpxq   ϕ�pxqu, the non-coincidence set;
(iii) the free boundary S � BΩ� X Ω is given by xd � fpx1q for x1 P p0, 1qd�1 so that Ω� � txd ¡

fpx1q : x1 P p0, 1qd�1u with f P C2,αpr0, asd�1q;
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(iv) the free boundary condition (2.9) holds on S.

In the free boundary problem (Problem 2.2) above, phase ϕ� is not required to be a solution of (2.1)
and ϕ is not necessary to be subsonic in Ω�, although we require the subsonicity in Problem 2.1 so
that the free boundary is a transonic shock.

It is proved in Chen-Feldman [29] that, if perturbation ϕ� � ϕ�0 is small enough in C2,α, then the
free boundary problem (Problem 2.2) has a solution that is subsonic on Ω�, so that Problem 2.1 has a
transonic shock solution. Furthermore, the transonic shock is stable under any small C2,α–perturbation
of ϕ�.

Theorem 2.1 (Chen-Feldman [29]). Let q� P p0, p1
sonicq and q� P pp1

sonic,
a

2{pγ � 1qq satisfy (2.19).
Then there exist positive constants σ0, C1, and C2 depending only on pq�, d, γq and Ω such that, for
every σ ¤ σ0 and any function ϕ� satisfying (2.22)–(2.23), there exists a unique solution ϕ of the free
boundary problem, Problem 2.2, satisfying

}ϕ� ϕ�0 }2,α,Ω� ¤ C1σ

and |Dϕ|   p1
sonic in Ω�. Moreover, Ω� � txd ¡ fpx1qu X Ω with f : Rd�1 Ñ R satisfying

}f}2,α,Rd�1 ¤ C2σ, Dx1fpx1q � 0 on Bp0, 1qd�1,

that is, the free boundary S � tpx1, xdq : xd � fpx1q,x1 P Rd�1u X Ω is in C2,α and orthogonal to BΩ
at their intersection points.

In particular, we obtain

Corollary 2.1. Let q� be as in Theorem 2.1, and let σ0 be the constant defined in Theorem 2.1.
If ϕ�pxq is a supersonic solution of (2.1) satisfying (2.22)–(2.23) with σ ¤ σ0, then there exists a
transonic shock solution ϕ of Problem 2.1 with shock S � tpx1, xdq : xd � fpx1q,x1 P Rd�1u X Ω such
that ϕ and f satisfy the properties stated in Theorem 2.1.

Indeed, under the conditions of Corollary 2.1, solution ϕ of Problem 2.2 obtained in Theorem 2.1,
along with the free boundary S � tpx1, xdq : xd � fpx1q,x1 P Rd�1u X Ω, forms a transonic shock
solution of Problem 2.1.

The following features of equation (2.1) and the free boundary condition (2.9) are employed in the
proof of Theorem 2.1.

(i) The nonlinear equation (2.1) is uniformly elliptic only if |Dϕ|   p1
sonic� ε in Ω� for some ε ¡ 0;

(ii) |Dϕ�| � �|ϕ�ν |2 � |ϕτ |2
�1{2

on S is subsonic only if ϕτ is sufficiently small;
(iii) The free boundary condition (2.9) is uniformly non-degenerate (i.e., ϕ�ν � ϕ�ν is bounded from

below by a positive constant on S) only if ϕ�ν ¡ pKsonic � ε on S for some ε ¡ 0 with K �
1� γ�1

2 |ϕτ |2.

By (2.22), these conditions hold if, for any x P S, the unit normal νpxq to S is sufficiently close to
being orthogonal to txd � 0u.
2.2. A Nonlinear Method for Solving the Free Boundary Problems for Nonlinear PDEs
of Mixed Elliptic-Hyperbolic Type. We now describe a nonlinear method and related ideas and
techniques, developed first in Chen-Feldman [29], for the construction of solutions of the free boundary
problems for nonlinear PDEs of mixed elliptic-hyperbolic type, through Problem 2.2 as the simplest
setup. We present the version of the method that is restricted to this setup. The key ingredient is
an iteration scheme, based on the non-degeneracy of the free boundary condition: the jump of the
normal derivative of solutions across the free boundary has a strict lower bound. Since the PDE is of
mixed type, we make a cutoff (truncation) of the nonlinearity near the value related to the background
solution in order to fix the type of equation (to make it elliptic everywhere) and, at the fixed point
of the iteration, we remove the cutoff eventually by a required estimate. The iteration set consists
of the functions close to the background solution – in the C2,α–norm in the present case. Then, for
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each function from the iteration set, the nondegeneracy allows of using one of the Rankine-Hugoniot
conditions, equality (2.8), to define the iteration free boundary, which is a smooth graph. In domain Ω�
determined by the iteration free boundary, we solve a boundary value problem with the truncated PDE,
the condition on the shock derived from the other Rankine-Hugoniot condition (2.9) by a truncation
(similar to the truncation of the PDE) and other appropriate modifications to achieve the uniform
obliqueness, and the same boundary conditions as in the original problem for the iteration problem on
the other parts of the boundary of the iteration domain. The solution of this iteration problem defines
the iteration map. We exploit the estimates for the iteration problem to prove the existence of a fixed
point of the iteration map, and then we show that a fixed point is a solution of the original problem.

In some further problems, we look for the solutions that are not close to a known background solution.
Some of these problems, as well as the corresponding versions of the nonlinear method described above,
are discussed in §4. A related method for the construction of perturbations of transonic shocks for the
steady transonic small disturbance model was proposed in [16], in which the type of equation depends
on the solution only (but not on its gradient) so that the ellipticity can be controlled by the maximum
principle; also see [15].

2.2.1. Subsonic Truncations – Shiffmanization. In order to solve the free boundary problem,
we first reformulate Problem 2.2 as a truncated one-phase free boundary problem, motivated by the
argument introduced originally in Shiffman [100], now so called the shiffmanization (cf. Lax [74]);
also see [4, pp. 87–90]. This is achieved by modifying both the nonlinear equation (2.1) and the free
boundary condition (2.9) to make the equation uniformly elliptic and the free boundary condition non-
degenerate. Then we solve the truncated one-phase free boundary problem with the modified equation
in the downstream region, the modified free boundary condition, and the given hyperbolic phase in
the upstream region. By a careful gradient estimate later on, we prove that the solution in fact solves
the original problem. We note that, for the steady potential flow equation (2.1), the coefficients of its
non-divergent form (2.3) depend on Dϕ, so the type of equation depends on Dϕ.

We first recall that the ellipticity condition for (2.1) at |Dϕ| � q is (2.4), which is equivalent to

Φ1
1pqq ¡ 0, (2.26)

where ΦKppq is the function defined in (2.10). By (2.12), inequality (2.26) holds for q P p0, p1
sonicq.

The truncation is done by modifying Φ1pqq so that the new function Φ̃1pqq satisfies (2.26) uniformly

for all q ¡ 0 and, around q�, Φ̃1pqq � Φ1pqq. More precisely, the procedure consists of the following
steps:

1. Denote ε :� p1sonic�q�
2 . Let y � c0q � c1 be the tangent line of the graph of y � Φ1pqq at

q � p1
sonic � ε. Then, using (2.12), we obtain c0 � Φ1

1pp1
sonic � εq ¡ 0. Define Φ̃1 : r0,8q Ñ R as

Φ̃1pqq �
#

Φ1pqq if 0 ¤ q   p1
sonic � ε,

c0q � c1 if q ¡ p1
sonic � ε,

(2.27)

which satisfies Φ̃1 P C1,1pr0,8qq.
2. Define

ρ̃psq � Φ̃1p
?
sq?
s

for s P r0,8q. (2.28)

Then ρ̃ P C1,1pr0,8qq and

ρ̃pq2q � ρpq2q if 0 ¤ q   p1
sonic � ε. (2.29)

By (2.12)–(2.14) and the definition of Φ̃1 in (2.27),

0   c0 � Φ1
1pp1

sonic � εq ¤ Φ̃1
1pqq � ρ̃pq2q � 2q2ρ̃1pq2q ¤ C for q P p0,8q

for some constant C ¡ 0. Then the equation:

L̃ϕ :� div pρ̃p|Dϕ|2qDϕq � 0 (2.30)
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is uniformly elliptic, with ellipticity constants depending only on q� and γ.

3. We also do the corresponding truncation of the free boundary condition (2.9):

ρ̃p|Dϕ|2qϕν � ρp|Dϕ�|2qDϕ� � ν on S. (2.31)

On the right-hand side of (2.31), we use the non-truncated function ρ since ρ � ρ̃ on the range of
|Dϕ�|2. Note that (2.31), with the right-hand side considered as a known function, is the conormal
boundary condition for the uniformly elliptic equation (2.30).

4. Introduce the function:
u :� ϕ� � ϕ.

Then, by (2.25), the problem is to find u P CpΩq with u ¥ 0 such that

(i) u P C2,αpΩ�q is a solution of

divApDu,xq � F pxq in Ω� :� tu ¡ 0u X Ω (the non-coincidence set), (2.32)

ApDu,xq � ν � Gpν,xq on S :� BΩ�zBΩ, (2.33)

and the boundary condition on BΩ determined by (2.24) and ϕ�pxq:$'&'%
u � 0 on p0, 1qd�1 � t�1u,
u � ϕ� � ϕ�0 on p0, 1qd�1 � t1u,
uν � 0 on Bp0, 1qd�1 � r�1, 1s,

(2.34)

where ν is the unit normal to S towards the unknown phase and

ApP,xq � ρ̃p|Dϕ�pxq � P |2qpDϕ�pxq � P q � ρ̃p|Dϕ�pxq|2qDϕ�pxq for P P Rd,
F pxq � �div pρ̃p|Dϕ�pxq|2qDϕ�pxqq,
Gpν,xq � �

ρp|Dϕ�pxq|2q � ρ̃p|Dϕ�pxq|2q�Dϕ�pxq � ν.
Note that condition (2.23) has been used to determine the third condition in (2.34).

(ii) the free boundary S :� BΩ�XΩ � txd � fpx1q : x1 P p0, 1qd�1u so that Ω� � txd ¡ fpx1quXΩ
with f P C2,αpr0, asd�1q and Dx1f � 0 on Bpp0, 1qd�1 � r�1, 1sq.

2.2.2. Domain Extension. We then extend domain Ω of the truncated free boundary problem in
§2.2.1 above to domain Ωe, so that the whole free boundary lies in the interior of the extended domain.
This is possible owing to the simple geometry of the domain, as considered in this section.

Notice that, for a function φ P C2,αpΩq with Ω :� p0, 1qd�1 � p�1, 1q satisfying

φν � 0 on Bp0, 1qd�1 � r�1, 1s, (2.35)

we can extend φ to Rd�1 � r�1, 1s so that the extension (still denoted) φ satisfies

φ P C2,αpRd�1 � r�1, 1sq,
and, for every m � 1, � � � , n� 1, and k � 0,�1,�2, � � � ,

φpx1, � � � , xm�1, k � z, xm�1, � � � , xdq � φpx1, � � � , xm�1, k � z, xm�1, � � � , xdq, (2.36)

that is, φ is symmetric with respect to every hyperplane txm � ku. Indeed, for k � pk1, � � � , kd�1, 0q
with integers kj , j � 1, � � � d� 1, we define

φpx� kq � φpηpx1, k1q, � � � , ηpxd�1, kd�1q, xdq for x P p0, 1qd�1 � r�1, 1s
with

ηpt, kq �
#
t if k is even,

1� t if k is odd.

It follows from (2.36) that φpx1, xdq is 2-periodic in each variable of px1, � � � , xd�1q:
φpx� 2emq � φpxq for x P Rd�1 � r�1, 1s, m � 1, � � � , d� 1,
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where em is the unit vector in the direction of xm.
Thus, with respect to the 2-periodicity, we can consider φ as a function on Ωe :� Td�1 � r�1, 1s,

where Td�1 is a flat torus in d� 1 dimensions with its coordinates given by cube p0, 2qd�1. Note that
(2.36) represents an extra symmetry condition, in addition to φ P C2,αpTd�1 � r�1, 1sq, and (2.36)
implies (2.35).

Then we can extend ϕ� in the same way by (2.23), that is, ϕ� P C2,αpΩeq satisfies (2.36). Notice that
ϕ�0 can also be considered as the functions in Ωe satisfying (2.36), since ϕ�0 pxq � q�xd in Rd�1�r�1, 1s
which are independent of x1.

Therefore, we have reduced the transonic shock problem, Problem 2.2, into the following free bound-
ary problem:

Problem 2.3. Find u P CpΩeq with u ¥ 0 such that

(i) u P C2,αpΩ�
e q is a solution of (2.32) in Ω�

e :� tupxq ¡ 0u X Ωe, the non-coincidence set;
(ii) the first two conditions in (2.34) hold on BΩe, i.e., u � 0 on BΩe X txn � �1u and

u � ϕ� � ϕ�0 on BΩe X txn � 1u; (2.37)

(iii) the free boundary S � BΩ� X Ωe is given by xd � fpx1q for x1 P Td�1 so that Ω� � txd ¡ fpx1q :
x1 P Td�1u with f P C2,αpTd�1q;

(iv) the free boundary condition (2.33) holds on S.

As indicated in §1, one of the main difficulties for solving the modified free boundary problem,
Problem 2.3, is that the methods presented in the previous works for elliptic free boundary problems
do not directly apply. Indeed, equation (2.32) is quasilinear, uniformly elliptic, but does not have a
clear variational structure, while Gpν,xq in the free boundary condition (2.33) depends on ν. Because
of these features, the variational methods in [1,3] do not directly apply to Problem 2.3. Moreover, the
nonlinearity in our problem makes it difficult to apply the Harnack inequality approach of Caffarelli
in [10–12]. In particular, a boundary comparison principle for positive solutions of elliptic equations
in Lipschitz domains is unavailable in our case that the nonlinear PDEs are not homogeneous with
respect to pD2u,Du, uq here. Therefore, a different method is required to overcome these difficulties
for solving Problem 2.3.

2.2.3. Iteration Scheme for Solving Free Boundary Problems. The iteration scheme, developed
in Chen-Feldman [29], is based on the non-degeneracy of the free boundary condition: the jump of the
normal derivative of a solution across the free boundary has a strictly positive lower bound.

Denote u0 :� ϕ� � ϕ�0 . Note that u0 satisfies the nondegeneracy condition: Bxdu0 � q� � q� ¡ 0 in

Ωe. Assume that (2.22) holds with σ ¤ q��q�
10 . Let a function w on Ωe be given such that }w � pϕ� �

ϕ�0 q}C2,αpΩeq ¤
q��q�

10 , which implies that w satisfies the nondegeneracy condition: Bxdw ¥ q��q�
2 ¡ 0

in Ωe. Define domain Ω�pwq :� tw ¡ 0u � Ωe. Then

Ω�pwq � txd ¡ fpx1q : x1 P Td�1u, Spwq :� BΩ�pwqzBΩe � txd � fpx1q : x1 P Td�1u
with f P C2,αpTd�1q. We solve the oblique derivative problem (2.32)–(2.33) and (2.37) in Ω�pwq to

obtain a solution u P C2,αpΩ�pwqq. However, u is not identically zero on Spwq in general, so that u is
not a solution of the free boundary problem. Next, the estimates for problem (2.32)–(2.33) and (2.37)
in Ω�pwq show that }u� pϕ��ϕ�0 q}C2,αpΩ�pwqq is small. Then we extend u to the whole domain Ωe so

that }u�pϕ��ϕ�0 q}C2,αpΩeq is small. This defines the iteration map: w ÞÑ u. The fixed point u � w of

this process determines a solution of the free boundary problem, since u is a solution of (2.32)–(2.33)
and (2.37) in Ω�puq, and u satisfies u � w ¡ 0 on Ω�puq � Ω�pwq :� tw ¡ 0u and u � w � 0 on
S :� BΩ�pwqzBΩe. Then it remains to show the existence of a fixed point. Since the right-hand side of
the free boundary condition (2.33) depends on ν, we need to exploit the structure of our problem, in
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addition to the elliptic estimates, to obtain the better estimates for the iteration and prove the existence
of a fixed point. More precisely, the nonlinear method can be described in the following five steps:

1. Iteration set. Let M ¥ 1. Set

KM :�  
w P C2,αpΩeq : w satisfies (2.36) and }w � pϕ� � ϕ�0 q}2,α,Ωe ¤Mσ

(
, (2.38)

where ϕ�0 pxq � q�xd. Then KM is convex and compact in C2,βpΩeq for 0   β   α.
Let w P KM . Since q� ¡ q�, it follows that, if

σ ¤ q� � q�

10pM � 1q , (2.39)

then combining (2.22) and (2.38) with (2.39) implies

wxdpxq ¥
q� � q�

2
¡ 0. (2.40)

By the implicit function theorem, Ω�pwq :� twpxq ¡ 0u X Ωe has the form:

Ω�pwq � txd ¡ fpx1q : x1 P Td�1u, }f}2,α,Td�1 ¤ CMσ   1, (2.41)

where C depends on q��q�, and the last inequality is obtained by choosing small σ. The corresponding
unit normal on Spwq :� txd � fpx1qu is

νpx1q � p�Dx1fpx1q, 1qa
1� |Dx1fpx1q|2

P C1,αpTd�1; Sd�1q

with

}ν � ν0}1,α,Rd�1 ¤ CMσ, (2.42)

where ν0 is defined by

ν0 :� Dpϕ�0 � ϕ�0 q
|Dpϕ�0 � ϕ�0 q|

� p0, � � � , 0, 1qJ. (2.43)

Also, νp�q can be considered as a function on Spwq. Since Ω�pwq � twpxq ¡ 0uXΩe, from the definition
of fpx1q in (2.41), it follows that, for x P Spwq,

νpxq � Dwpxq
|Dwpxq| . (2.44)

By the definition of KM and (2.39) with (2.22), νpxq can be extended to Ωe via formula (2.44) and

}ν � ν0}1,α,Ωe ¤ CMσ (2.45)

with C � Cpq�, q�q. Motivated by the free boundary condition (2.31), we define a function Gw on Ωe:

Gwpxq :� �
ρp|Dϕ�pxq|2q � ρ̃p|Dϕ�pxq|2q�Dϕ�pxq � νpxq, (2.46)

where νp�q is defined by (2.44).
We now solve the following fixed boundary value problem for u in domain Ω�pwq:

divApDu,xq � F pxq in Ω� :� tw ¡ 0u, (2.47)

ApDu,xq � ν � Gwpxq on Spwq :� BΩ�pwqzBΩe, (2.48)

u � ϕ� � q� on txd � 1u � BΩ�pwqzSpwq, (2.49)

and show that its unique solution u can be extended to the whole domain Ωe so that u P KM .

2. Existence and uniqueness of the solution for the fixed boundary value problem (2.47)–
(2.49). We establish the existence and uniqueness of solution u for problem (2.47)–(2.49) and show

that u is close in C2,αpΩ�pwqq to the unperturbed subsonic solution ϕ� � ϕ�0 : For M ¥ 1, there is
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σ0 ¡ 0, depending only on pM, q�, d, γ,Ωq, such that, if σ P p0, σ0q, ϕ� satisfies (2.22), and w P KM ,

there exists a unique solution u P C2,αpΩ�pwqq of problem (2.47)–(2.49) satisfying (2.36) and

}u� pϕ� � ϕ�0 q}2,α,Ω�pwq ¤ Cσ, (2.50)

where C depends only on pq�, d, γ,Ωq and is independent of M , w P KM , and σ P p0, σ0q.
To achieve this, it requires to combine the existence arguments with careful Schauder estimates

for nonlinear oblique boundary value problems for nonlinear elliptic PDEs, based on the results in
[61, 80, 81, 102] and the references cited therein. Moreover, the independence of C from M is achieved
by employing a cancellation based on the structure in (2.48) with the explicit expressions of ApDu,xq
and Gwpxq and on the Rankine-Hugoniot condition for the background solution.

3. Construction and continuity of the iteration map. We now construct the iteration map by
an extension of the unique solution of (2.47)–(2.49), which satisfies (2.50), and show the continuity of
the iteration map: Let w P KM , and let upxq be a solution of problem (2.47)–(2.49) in domain Ω�pwq
established in Step 2 above. Then upxq can be extended to the whole domain Ωe in such a way that
this extension, denoted as Pwupxq, satisfies the following two properties:

(i) There exists C0 ¡ 0, which depends only on pq�, d, γ,Ωq and is independent of pM,σq and wpxq,
such that

}Pwu� pϕ� � ϕ�0 q}2,α,Ωe ¤ C0σ. (2.51)

(ii) Let β P p0, αq. Let wj P KM converge in C2,βpΩeq to w P KM . Let uj P C2,αpΩ�pwjqq and

u P C2,αpΩ�pwqq be the solutions of problems (2.47)–(2.49) for wjpxq and wpxq, respectively.

Then Pwjuj Ñ Pwu in C2,βpΩeq.
Define the iteration map J : KM Ñ C2,αpΩeq by

Jw :� Pwu, (2.52)

where upxq is the unique solution of problem (2.47)–(2.49) for wpxq. By (ii), J is continuous in the
C2,βpΩeq–norm for any positive β   α.

Now we denote by upxq both the function upxq in Ω�pwq and its extension Pwupxq. Choose M to
be the constant C0 from (2.51). Then, for w P KM , we see that u :� Jw P KM if σ ¡ 0 is sufficiently
small, depending only on pq�, d, γ,Ωq, since M is now fixed. Thus, (2.52) defines the iteration map
J : KM Ñ KM and, from (2.51), J is continuous on KM in the C2,βpΩeq–norm for any positive β   α.

4. Existence of a fixed point of the iteration map. We then prove the existence of solutions
of the free boundary problem, Problem 2.2.

First, in order to solve Problem 2.3, we seek a fixed point of map J . We use the Schauder fixed point
theorem (cf. Gilbarg-Trudinger [61, Theorem 11.1]) in the following setting:

Let σ ¡ 0 satisfy the conditions in Step 2 above. Let β P p0, αq. Since Ωe is a compact manifold with
boundary and KM is a bounded convex subset of C2,αpΩeq, it follows that KM is a compact convex
subset of C2,βpΩeq. We have shown that JpKM q � KM , and J is continuous in the C2,βpΩeq–norm.
Then, by the Schauder fixed point theorem, J has a fixed point ϕ P KM .

If upxq is such a fixed point, then

ũpxq :� maxp0, upxqq
is a classical solution of Problem 2.3, and Spuq is its free boundary.

It follows that ϕ :� ϕ� � ũ is a solution of Problem 2.2, provided that σ is small enough so that

(2.50) implies that |Dϕ| � |Dpϕ� � uq|   p1
sonic � ε on Ω�puq, where ε � psonic�q�

2 defined in §2.2.1.
Indeed, then (2.29) implies that ϕpxq lies in the non-truncated region for equation (2.30). Note also
that the boundary condition ϕν � 0 on Bp0, 1qd�1 � r�1, 1s is satisfied because u and ϕ� satisfy (2.36)
on Td�1 � r�1, 1s.

For such values of σ, if ϕ�pxq is a supersonic solution of (2.1) satisfying the conditions stated in
Problem 2.1, the defined function ϕpxq is a solution of Problem 2.1. Indeed, |Dϕ| � |Dpϕ� � ũq|  
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p1
sonic � ε on Ω�pϕq :� tϕ   ϕ�u � tũpxq ¡ 0u since ũ � u on Ω�pũq and |Dϕ| � |Dϕ�| ¡ p1

sonic on
ΩzΩ�pϕq, equation (2.1) is satisfied in both Ω�pϕq and ΩzΩ�pϕq, and the Rankine-Hugoniot conditions
(2.8)–(2.9) are satisfied on S � BΩ�pϕqzBΩ.

This completes the construction of the global solution. The uniqueness and stability of the solution
of the free boundary problem are obtained by using the regularity and nondegeneracy of solutions.

Remark 2.2. For clarity, in this section, we focus on the simplest setup of the domain as Ω �
p0, 1qd�1 � p�1, 1q, which can be extended directly to ΩR � Πd�1

j�1p0, ajq � p�1, Rq for any R ¡ 0, then

to Ω8 � Πd�1
j�1p0, ajq � p�1,8q by analyzing the asymptotic behavior of the solution when R Ñ 8, as

well as to Ω � Rd�1 � p�1,8q; see Chen-Feldman [29–31]. See also Chen [46] for the extension to the
isentropic Euler case.

If the hyperbolic phase is C8, then the solution and its corresponding free boundary in Theorem 2.1
are also C8. Furthermore, our results can be extended to the problem with a steady C1,α–perturbation
of the upstream supersonic flow and/or general Dirichlet data hpx1q,x1 P Rd�1, at xd � 1 satisfying

}h� ϕ�0 }1,α,Rd�1 ¤ Cσ for α P p0, 1q.
Also, the Dirichlet data in Problem 2.2 may be replaced by the corresponding Neumann data satisfying
the global solvability condition.

The global uniqueness of piecewise constant transonic shocks in straight ducts modulo translations
was analyzed in [41, 58].

Remark 2.3. The domains in the setup of Problems 2.1–2.2 have also been extended to M-D infinite
nozzles of arbitrary cross-section in Chen-Feldman [32]; also see Xin-Yin [111], Yuan [113], and the
references cited therein for the 2-D case with the downstream pressure exit. For the analysis of geometric
effects of the nozzles on the uniqueness and stability of steady transonic shocks, see [7,42,76,86,87] and
the references cited therein.

Remark 2.4. The iteration scheme can also be reformulated in a way such that the free boundary
normal ν is unknown in the iteration by replacing the known function w in (2.44) by the unknown u,
that is, by replacing νpxq in (2.44) via

νpxq � Dupxq
|Dupxq| . (2.53)

Note that (2.53) coincides with (2.44) at the fixed point u � w, i.e., defines the normal to S. Using
expression (2.53) for ν in the iteration boundary condition, we improve the regularity and structure
of the boundary condition; in particular, it is made independent of the regularity and constants in
the iteration set. This is useful in many cases, see e.g. [33]. Moreover, this allows us to obtain the
compactness of the iteration map, which has been used in [35].

This nonlinear method and related ideas and techniques described above for free boundary problems
have played a key role in many recent developments in the analysis of M-D transonic shock problems,
as shown in §3–§5 below.

3. Two-Dimensional Transonic Shocks and Free Boundary Problems for the Steady
Full Euler Equations

We now describe how the nonlinear method and related ideas and techniques presented in §2 can
be applied to establish the existence, stability, and asymptotic behavior of 2-D steady transonic flows
with transonic shocks past curved wedges for the full Euler equations, by reformulating the problems
as free boundary problems, via two different approaches.
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The 2-D steady Euler equations for polytropic gases are of the form (cf. [35, 52]):$'&'%
divpρuq � 0,

divpρub uq �∇p � 0,

div
�
ρupE � p

ρq
� � 0,

(3.1)

where u � pu1, u2q is the velocity, ρ the density, p the pressure, and E � 1
2 |u|2 � e the total energy

with internal energy e.
Choose pressure p and density ρ as the independent thermodynamical variables. Then the constitu-

tive relations can be written as

pe, T, Sq � pepp, ρq, T pp, ρq, Spp, ρqq
governed by

TdS � de� p

ρ2
dρ,

where T and S represent the temperature and the entropy, respectively. For a polytropic gas,

e � epp, ρq � p

pγ � 1qρ, T � T pp, ρq � p

pγ � 1qcvρ, S � Spp, ρq � cv lnp p
κρ
q, (3.2)

where γ ¡ 1 is the adiabatic exponent, cv ¡ 0 the specific heat at constant volume, and κ ¡ 0 any
constant under scaling.

System (3.1) can be written as a first-order system of conservation laws:

Bx1F pUq � Bx2GpUq � 0, U � pu, p, ρq P R4. (3.3)

Solving detpλ∇UF pUq �∇UGpUqq � 0 for λ, we obtain four eigenvalues:

λ1 � λ2 � u2

u1
, λj � u1u2 � p�1qjc

a
|u|2 � c2

u2
1 � c2

for j � 3, 4,

where

c �
c
γp

ρ
(3.4)

is the sonic speed of the flow for a polytropic gas.
The repeated eigenvalues λ1 and λ2 are real and correspond to the two linear degenerate characteristic

families which generate vortex sheets and entropy waves, respectively. The eigenvalues λ3 and λ4 are
real when the flow is supersonic (i.e., |u| ¡ c), and complex when the flow is subsonic (i.e., |u|   c) in
which case the corresponding two equations are elliptic.

For a transonic flow in which both the supersonic and subsonic phases occur in the flow, system
(3.1) is of mixed-composite hyperbolic-elliptic type, which consists of two equations of mixed elliptic-
hyperbolic type and two equations of hyperbolic type (i.e., two transport-type equations).

In the regimes with ρ|u| ¡ 0, from the first equation in (3.1), in any domain containing the origin,
there exists a unique stream function ψ such that

Dψ � p�ρu2, ρu1q with ψp0q � 0. (3.5)

We use the following Lagrangian coordinate transformation:

px1, x2q Ñ py1, y2q � px1, ψpx1, x2qq, (3.6)

under which the original curved streamlines become straight. In the new coordinates y � py1, y2q, we
still denote the unknown variables Upxpyqq by Upyq for simplicity of notation. Then the original Euler
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Figure 3.1. The shock polar in the u-plane and uniform steady (weak/strong) shock
flows (see [22])

equations in (3.1) become the following equations in divergence form:� 1

ρu1

�
y1
� �u2

u1

�
y2
� 0, (3.7)�

u1 � p

ρu1

�
y1
� �pu2

u1

�
y2
� 0, (3.8)

pu2qy1 � py2 � 0, (3.9)�1

2
|u|2 � γp

pγ � 1qρ
�
y1
� 0. (3.10)

One of the advantages of the Lagrangian coordinates is to straighten the streamlines so that the
streamline may be employed as one of the coordinates to simplify the formulations, since the Bernoulli
variable is conserved along the streamlines. Note that the entropy is also conserved along the streamlines
in the continuous part of the flow.

3.1. Steady Supersonic Flow onto Solid Wedges and Free Boundary Problems. For an up-
stream steady uniform supersonic flow past a symmetric straight-sided wedge (see Fig. 3.1):

W :� tx � px1, x2q P R2 : |x2|   x1 tan θw, x1 ¡ 0u (3.11)

whose angle θw is less than the detachment angle θd
w, there exists an oblique shock emanating from the

wedge vertex. Since the upper and lower subsonic regions do not interact with each other, it suffices
to study the upper part. More precisely, if the upstream steady flow is a uniform supersonic state, we
can find the corresponding constant downstream flow along the straight-sided upper wedge boundary,
together with a straight shock separating the two states. The downstream flow is determined by the
shock polar whose states in the phase space are governed by the Rankine-Hugoniot conditions and
the entropy condition; see Fig. 3.1. Indeed, Prandtl in [94] first employed the shock polar analysis to
show that there are two possible steady oblique shock configurations when the wedge angle θw is less
than the detachment angle θd

w — The steady weak shock with supersonic or subsonic downstream flow
(determined by the wedge angle that is less or larger than the sonic angle θs

w) and the steady strong
shock with subsonic downstream flow, both of which satisfy the entropy condition, provided that no
additional conditions are assigned at downstream. See also [9, 22, 52, 91, 94] and the references cited
therein.

The fundamental issue – whether one or both of the steady weak and strong shocks are physically
admissible – has been vigorously debated over the past seven decades (cf. [22, 52, 88, 99, 107, 108]).
Experimental and numerical results have strongly indicated that the steady weak shock solution would
be physically admissible, as Prandtl conjectured in [94]. One natural approach to single out the phys-
ically admissible steady shock solutions is via the stability analysis: the stable ones are physical. See
Courant-Friedrichs [52] and von Neumann [107,108]; see also [88,99].

A piecewise smooth solution U � pu, p, ρq P R4 separated by a front S :� tx : x2 � σpx1q, x1 ¥ 0u
becomes a weak solution of the Euler equations (3.1) as in §2.1 if and only if the Rankine-Hugoniot
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conditions are satisfied along S:$'''''&'''''%

σ1px1qr ρu1 s � r ρu2 s,
σ1px1qr ρu2

1 � p s � r ρu1u2 s,
σ1px1qr ρu1u2 s � r ρu2

2 � p s,
σ1px1qr ρu1pE � p

ρq s � r ρu2pE � p
ρq s,

(3.12)

where r � s denotes the jump between the quantities of two states across front S as before.
Such a front S is called a shock if the entropy condition holds along S: The density increases in the

fluid direction across S.

For given state U�, all states U that can be connected with U� through the relations in (3.12) form
a curve in the state space R4; the part of the curve whose states satisfy the entropy condition is called
the shock polar. The projection of the shock polar onto the u–plane is shown in Fig. 3.1. In particular,
for an upstream uniform horizontal flow U�

0 � pu�10, 0, p
�
0 , ρ

�
0 q past the upper part of a straight-sided

wedge whose angle is θw, the downstream constant flow can be determined by the shock polar (see
Fig. 3.1). Note that the downstream flow must be parallel to the wedge, and the upstream flow is
parallel to the axis of wedge, so the angle between the upstream and downstream flow is equal to the
(half) wedge angle. According to the shock polar, the two flow angles (or, equivalently, wedge angles)
are particularly important:

One is the detachment angle θd
w such that line u2 � u1 tan θd

w is tangential to the shock polar at
point T and there is no intersection between line u2 � u1 tan θw and the shock polar when θw ¡ θd

w.
For any wedge angle θw P p0, θd

wq, there are two intersection points of line u2 � u1 tan θw and the shock
polar: one intersection point is on arc �TH which determines velocity usg � pusg

1 , u
sg
2 q of the downstream

flow corresponding to the strong shock, and the other intersection point is on arc �TQ which determines
velocity uwk � puwk

1 , uwk
2 q of the downstream flow corresponding to the weak shock. Thus, for any

wedge angle θw P p0, θd
wq, the shock polar ensures the existence of two attached shocks at the wedge:

strong versus weak.
Since each point on the shock polar defines a downstream flow that is a constant state, we can use

(3.4) to compute its sonic speed c0 and then determine whether this downstream state is subsonic
or supersonic. It can be shown that there exists the unique point S on the shock polar so that all
downstream states are subsonic for the points on �HSztSu, supersonic for the points of �SQztSu, and
sonic for the state at S. Moreover, S lies in the interior of arc TQ. Then, denoting by θs

w the angle
corresponding to point S, we see that θs

w   θd
w. The wedge angle θs

w is called the sonic angle. Point
T divides arc �HS, which corresponds to the transonic shocks, into the two open arcs �TS and �TH; see
Fig. 3.1. The nature of these two cases, as well as the case for arc �SQ, is very different. When the
wedge angle θw is between θs

w and θd
w, there are two subsonic solutions (corresponding to the strong

and weak shocks); while, for the wedge angle θw is smaller than θs
w, there are one subsonic solution

(for the strong shock) and one supersonic solution (for the weak shock). Such an oblique shock S0 is
straight, described by x2 � s0x1 with s0 as its slope. The question is whether the steady oblique shock
solution is stable under a perturbation of both the upstream supersonic flow and the wedge boundary.

Since we are interested in determining the downstream flow, we can restrict the domain to the first
quadrant; see Fig. 3.2. Fix a constant upstream flow U�

0 , a wedge angle θw P p0, θd
wq, and a constant

downstream state U�
0 which is one of the downstream states (weak or strong) determined by the shock

polar for the chosen upstream flow and wedge angle. States U�
0 and U�

0 determine the oblique shock
x2 � s0x1, and the transonic shock solution U0 in tx : x1 ¡ 0, x2 ¡ 0uzW such that U0 � U�

0 in
Ω�

0 � tx P R2 : x2 ¡ s0x1, x1 ¡ 0u and U0 � U�
0 in Ω�

0 � tx P R2 : x1 tan θw   x2   s0x1, x1 ¡ 0u;
see Fig. 3.1. We refer to this solution as a constant transonic solution pU�

0 , U
�
0 q.

Assume that the perturbed upstream flow U�
I is close to U�

0 (so that U�
I is supersonic and almost

horizontal) and that the perturbed wedge is close to a straight-sided wedge. Then, for any suitable
wedge angle (smaller than the detachment angle), it is expected that there should be a shock attached
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Figure 3.2. The leading steady shock x2 � σpx1q as a free boundary under the per-
turbation (see [22])

to the wedge vertex; see Fig. 3.2. We now use a function bpx1q ¥ 0 to describe the upper perturbed
wedge boundary:

BW � tx P R2 : x2 � bpx1q, x1 ¡ 0u with bp0q � 0. (3.13)

Then the wedge problem can be formulated as the following problem:

Problem 3.1 (Initial-Boundary Value Problem). Find a global solution of system (3.1) in Ω :� tx2 ¡
bpx1q, x1 ¡ 0u such that the following conditions hold:

(i) Cauchy condition at x1 � 0:

U |x1�0 � U�
I px2q; (3.14)

(ii) Boundary condition on BW as the slip boundary:

u � νw|BW � 0, (3.15)

where νw is the outer unit normal vector to BW .

Note that the background shock is the straight line given by x2 � σ0px1q with σ0px1q :� s0x1.
When the upstream steady supersonic perturbation U�

I px2q at x1 � 0 is suitably regular and small
under some natural norm, the upstream steady supersonic smooth solution U�pxq exists in region
Ω� � tx : x2 ¡ s0

2 x1, x1 ¥ 0u, beyond the background shock, and U� in Ω� is still close to U�
0 .

Assume that the shock-front S to be determined is

S � tx : x2 � σpx1q, x1 ¥ 0u with σp0q � 0 and σpx1q ¡ 0 for x1 ¡ 0. (3.16)

The domain for the downstream flow behind S is denoted by

Ω � tx P R2 : bpx1q   x2   σpx1q, x1 ¡ 0u. (3.17)

Then Problem 3.1 can be reformulated into the following free boundary problem with S as a free
boundary:

Problem 3.2 (Free Boundary Problem; see Fig. 3.2). Let pU�
0 , U

�
0 q be a constant transonic solution

for the wedge angle θw P p0, θd
wq with transonic shock S0 :� tx2 � σ0px1q : x1 ¡ 0u for σ0px1q :� s0x1.

For any upstream flow U� for system (3.1) in domain Ω� which is a small perturbation of U�
0 , and

any wedge boundary function bpx1q that is a small perturbation of b0px1q � x1 tan θw, find a shock S
as a free boundary x2 � σpx1q and a solution U in Ω, which are small perturbations of S0 and U�

0
respectively, such that

(i) U satisfies (3.1) in domain Ω,
(ii) The slip condition (3.15) holds along the wedge boundary,

(iii) The Rankine-Hugoniot conditions in (3.12) as free boundary conditions hold along the transonic
shock-front S.
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There are three subcases based on U�
0 : For a weak supersonic shock S0 given by U�

0 corresponding
to a supersonic state on arc �SQ, we denote the problem by Problem 3.2(WS); for a weak transonic
shock S0 given by U�

0 corresponding to a subsonic state on arc �TS, we denote the problem by Problem
3.2(WT); finally, for a strong transonic shock S0 given by U�

0 corresponding to a subsonic state on arc�TH, we denote the problem by Problem 3.2(ST).

In general, the uniqueness for the initial-boundary value problem (Problem 3.1) is not known (as it is
a problem for a nonlinear system of a composite elliptic-hyperbolic type), so it may not yet be excluded
that Problem 3.1 has solutions which are not of steady oblique shock structure, i.e., are not solutions
of Problem 3.2. On the other hand, the global solution of the free boundary problem (Problem 3.2)
provides the global structural stability of the steady oblique shock, as well as more detailed structure
of the solution.

Supersonic (i.e., supersonic-supersonic) shocks correspond to arc �SQ which is a weaker shock (see
Fig. 3.1). The local stability of such shocks was first established in [64,79,96]. The global stability of the
supersonic shocks for potential flow past piecewise smooth perturbed curved wedges was established
in Zhang [115]; also see [45, 48, 49] and the references therein. The global stability and uniqueness
of the supersonic shocks for the full Euler equations, Problem 3.2(WS), were solved for more general
perturbations of both the initial data and wedge boundary even in BV in Chen-Zhang-Zhu [43] and
Chen-Li [39].

For transonic (i.e., supersonic-subsonic) shocks, the strong shock case corresponding to arc �TH was
first studied in Chen-Fang [48] for the potential flow (see Fig. 3.1). In Fang [57], the full Euler equations
were studied with a uniform Bernoulli constant for both weak and strong transonic shocks. Because
the framework is a weighted Sobolev space, the asymptotic behavior of the shock slope or subsonic
solution was not derived. In Yin-Zhou [112], the Hölder norms were used for the estimates of solutions
of the full Euler equations with the assumption on the sharpness of the wedge angle, which means that
the subsonic state is near point H in the shock polar, by Approach I introduced first in [23] which is
described in §3.2 below. In Chen-Chen-Feldman [24], the weaker transonic shock, which corresponds
to arc �TS, was first investigated by Approach I as described in §3.2 below. Then, in [25], the weak and
strong transonic shocks, which correspond to arcs �TS and �TH, respectively, were solved, by Approach
II which is described in §3.3 below, so that the existence, uniqueness, stability, and asymptotic behavior
of subsonic solutions of both Problem 3.2(WT) and Problem 3.2(ST) in a weighted Hölder space were
obtained.

We now describe two approaches for the wedge problem, based on the nonlinear method and related
ideas and techniques presented in §2. First, we need to introduce the weighed Hölder norms in the
subsonic domain Ω, where Ω is either a truncated triangular domain or an unbounded domain with the
vertex at origin O and one side as the wedge boundary. There are two weights: One is the distance
function to origin O and the other is to the wedge boundary BW . For any x,x1 P Ω, define

δo
x :� minp|x|, 1q, δo

x,x1 :� minpδo
x, δ

o
x1q, δw

x :� minpdistpx, BW q, 1q, δw
x,x1 :� minpδw

x , δ
w
x1q,

∆x :� |x| � 1, ∆x,x1 :� minp∆x,∆x1q, r∆x :� distpx, BW q � 1, r∆x,x1 :� minpr∆x, r∆x1q.
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Let α P p0, 1q and l1, l2, γ1, γ2 P R with γ1 ¥ γ2, and let k ¥ 0 be an integer. Let k � pk1, k2q be an
integer-valued vector, where k1, k2 ¥ 0, |k| � k1 � k2, and Dk � Bk1x1Bk2x2 . We define

rf spγ1;Oqpγ2;BW q
k,0;pl1,l2q;Ω � sup

xPΩ
|k|�k

 pδo
xqγ̂0pδw

x qmaxtk�γ2,0u ∆l1
x
r∆l2�k
x |Dkfpxq|(, (3.18)

rf spγ1;Oqpγ2;BW q
k,α;pl1,l2q;Ω � sup

x,x1PΩ
x�x1,|k|�k

!
pδo

x,x1qγ̂αpδw
x,x1qmaxtk�α�γ2,0u∆l1

x,x1
r∆l2�k�α
x,x1

|Dkfpxq �Dkfpx1q|
|x� x1|α

)
, (3.19)

}f}pγ1;Oqpγ2;BW q
k,α;pl1,l2q;Ω �

ķ

i�0

rf spγ1;Oqpγ2;BW q
i,0;pl1,l2q;Ω � rf spγ1;Oqpγ2;BW q

k,α;pl1,l2q;Ω , (3.20)

where γ̂β � maxtγ1 � mintk � β,�γ2u, 0u for β P r0, 1q. Similarly, the Hölder norms for a function
of one variable on R� :� p0,8q with the weight near t0u and the decay at infinity are denoted by

}f}pγ2;0q
k,α;plq;R� .

For a vector-valued function f � pf1, f2, � � � , fnq, we define

}f}pγ1;Oqpγ2;BW q
k,α;pl1,l2q;Ω �

ņ

i�1

}fi}pγ1;Oqpγ2;BW q
k,α;pl1,l2q;Ω .

Let

C
k,α;pl1,l2q
pγ1;Oqpγ2;BW qpΩq �

!
f : }f}pγ1;Oqpγ2;BW q

k,α;pl1,l2q;Ω   8
)
. (3.21)

The requirement γ1 ¥ γ2 in the definition above means that the regularity up to the wedge boundary
is no worse than the regularity up to the wedge vertex. When γ1 � γ2, the δo–terms disappear so
that pγ1, Oq can be dropped in the superscript. If there is no weight pγ2, BW q in the superscript, the

δ–terms for the weights should be understood as pδo
xqmaxtk�γ1,0u and pδo

xqmaxtk�α�γ1,0u in (3.18) and
(3.19), respectively. Moreover, when no weight appears in the superscripts of the seminorms in (3.18)
and (3.19), it means that neither δo nor δw is present. For a function of one variable defined on p0,8q,
the weighted norm }f}pγ1;0q

k,α;plq;R� is understood in the same as the definition above with the weight to

t0u and the decay at infinity.
In the study of Problem 3.2 for a transonic solution pU�

0 , U
�
0 q with wedge angle θw, the variables in

U are expected to have different levels of regularity. Thus, we distinguish these variables by defining

U1 � pu � τ 0
w, ρq, U2 � pw, pq with w � u�ν0

w
u�τ0

w
, (3.22)

where ν0
w � p� sin θw, cos θwq and τ 0

w � pcos θw, sin θwq. We note that, for the solutions under our
consideration, the denominator in the definition of w is strictly positive, since it is a positive constant
for the background solution.

Note that U�
10 � p|u�0 |, ρ�0 q and U�

20 � p0, p�0 q are the corresponding quantities for the background
subsonic state. Moreover, ν0

w is the interior (for Ω0) unit normal to BW0, and τ 0
w is the tangential

unit vector to BW0, where BW0 and Ω0 are defined by (3.13) and (3.17) for the background solution
pU�

0 , U
�
0 q, i.e., u �τ 0

w and u �ν0
w are the components u1 and u2 of u in the coordinates rotated clockwise

by angle θw, so that the background downstream flow becomes horizontal.

Theorem 3.1 (Chen-Chen-Feldman [25]). Let pU�
0 , U

�
0 q be a constant transonic solution for the

wedge angle θw P p0, θd
wq. There are positive constants α, β, C0, and ε, depending only on the background

states pU�
0 , U

�
0 q, such that

(i) If pU�
0 , U

�
0 q corresponds to the state on arc �TS, and

}U� � U�
0 }2,α;p1�β,0q;Ω� � }b1 � tan θw}p�α;0q

1,α;p1�βq;R�   ε, (3.23)
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then there exist a solution pU, σq of Problem 3.2(WT) and a function U8pxq � pu81 , 0, p�0 , ρ8qpxq �
Z8p�x1 sin θw � x2 cos θwq with Z8 : r0,8q Ñ R4 of form Z8 � pz1, 0, p

�
0 , z4q such that U1 and

U2 defined by (3.22) satisfy

}U1 � U8
1 }p�α;BW q

2,α;pβ,1q;Ω � }U2 � U�
20}p�α;Oqp�1�α;BW q

2,α;p1�β,0q;Ω � }σ1 � s0}p�α;0q
2,α;p1�βq;R� � }Z8

1 � U�
10}p�α;0q

2,α;p1�βq;r0,8q

¤ C0

�
}U� � U�

0 }2,α;p1�β,0q;Ω� � }b1 � tan θw}p�α;0q
1,α;p1�βq;R�

	
, (3.24)

where we have denoted U8
1 :� pu8 � τ 0

w, ρ
8q � pu81 cos θw, ρ

8q and Z8
1 :� pz1 cos θw, z4q;

(ii) If pU�
0 , U

�
0 q corresponds to the state on arc �TH and

}U� � U�
0 }2,α;pβ,0q;Ω� � }b1 � tan θw}p�α�1;0q

2,α;pβq;R�   ε, (3.25)

then there exists a solution pU, σq of Problem 3.2(ST) such that U1 and U2 defined by (3.22) satisfy

}U1 � U�
10}p�1�α;BW q

2,α;p0,βq;Ω � }U2 � U�
20}p�1�α;Oq

2,α;pβ,0q;Ω � }σ1 � s0}p�1�α;0q
2,α;pβq;R�

¤ C0

�
}U� � U�

0 }2,α;pβq;Ω� � }b1 � tan θw}p�1�α;0q
2,α;pβq;R�

	
.

(3.26)

The solution pU, σq is unique within the class of solutions for each of Problem 3.2(WT) and Problem
3.2(ST) when the left-hand sides of (3.24) for Problem 3.2(WT) and (3.26) for Problem 3.2(ST) are
less than C0ε correspondingly.

The dependence of constants α, β, C0, and ε in Theorem 3.1 is as follows: α and β depend on
pU�

0 , U
�
0 q but are independent of pC0, εq, C0 depends on pU�

0 , U
�
0 , α, βq but is independent of ε, and ε

depends on all pU�
0 , U

�
0 , α, β, C0q.

The difference in the results of the two problems is that the solution of Problem 3.2(WT) has less
regularity at corner O and decays faster with respect to |x| (or the distance from the wedge boundary)
than the solution of Problem 3.2(ST).

Notice that part (i) of Theorem 3.1 gives the asymptotics of solution U as |x| Ñ 8 within Ω, and
U8 is an asymptotic profile. Moreover, the convergence of U2 to U8

2 � U�
20 as |x| Ñ 8 is of polynomial

rate |x|�pβ�1q that is faster than the convergence rate of U1, which is |x|�β. However, as x2 Ñ 8,

both U1 and U2 decay to U�
10 and U�

20, respectively, with the decay rate x
�pβ�1q
2 , which can be seen by

combining the estimates of the first and last terms on the right-hand side of (3.24) for U1. Part (ii) of
Theorem 3.1 does not give the asymptotic limit of U1 as |x| Ñ 8, while U2 converges to U�

20 with the
decay rate |x|�β. Also, as x2 Ñ8, both U1 and U2 decay to U�

10 and U�
20, respectively, with the decay

rate x�β2 for part (ii).
Furthermore, for both parts (i) and (ii) of Theorem 3.1, the asymptotic profile in the Lagrangian

coordinates is given in Theorem 3.3.

3.2. Approach I for Problem 3.2(WT). We now describe Approach I for solving Problem 3.2(WT).
We work in the Lagrangian coordinates introduced in (3.6). From the slip condition (3.15) on the wedge
boundary BW , it follows that BW is a streamline so that BW becomes the half-line L1 � tpy1, y2q :
y1 ¡ 0, y2 � 0u in the Lagrangian coordinates. Let S � ty2 � σ̂py1qu be a shock-front. Then, from
equations (3.7)–(3.10), we can derive the Rankine-Hugoniot conditions along S:

σ̂1py1q
� 1

ρu1

� � ��u2

u1

�
, (3.27)

σ̂1py1q
�
u1 � p

ρu1

� � ��pu2

u1

�
, (3.28)

σ̂1py1qru2 s � r p s, (3.29)�1

2
|u|2 � γp

pγ � 1qρ
� � 0. (3.30)
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The background shock-front in the Lagrangian coordinates is S0 � ty2 � s1y1u with s1 � ρ�0 u
�
10ps0 �

tan θ0q ¡ 0.
Without loss of generality, we assume that, in the Lagrangian coordinates, the supersonic solution

U� exists in domain D� defined by

D� �
!
y : y2 ¡ s1

2
y1, y1 ¡ 0

)
. (3.31)

For a given shock function σ̂py1q, let

D�
σ̂ �  

y : y2 ¡ σ̂py1q, y1 ¡ 0
(
, (3.32)

Dσ̂ �  
y : 0   y2   σ̂py1q, y1 ¡ 0

(
. (3.33)

Then Approach I consists of three steps:

1. Potential function φpyq. We first use a potential function to reduce the full Euler equations
(3.7)–(3.10) to a scalar second-order nonlinear elliptic PDE in the subsonic region. This method was
first proposed in [23] in which the advantage of the conservation properties of the Euler system is taken
for the reduction.

More precisely, since ρu1 � 0 in either the supersonic or subsonic region, it follows from (3.7) that
there exists a potential function of the vector field pu2u1 , 1

ρu1
q such that

Dφ � pu2

u1
,

1

ρu1
q with φp0q � 0. (3.34)

Equation (3.10) implies the Bernoulli law:

1

2
q2 � γp

pγ � 1qρ � Bpy2q, (3.35)

where q � |u| �
a
u2

1 � u2
2, and B � Bpy2q is completely determined by the given incoming flow U� at

the initial position I because of the Rankine-Hugoniot condition (3.30).
From equations (3.7)–(3.10), we find � p

ργ

	
y1
� 0, (3.36)

which implies

p � Apy2qργ in the subsonic region Dσ̂. (3.37)

With equations (3.34) and (3.37), we can rewrite the Bernoulli law (3.35) as

φ2
y1 � 1

2φ2
y2

� γ

γ � 1
Aργ�1 � Bρ2. (3.38)

In the subsonic region, q � |u|   c �
b

γp
ρ . Therefore, the Bernoulli law (3.35) implies

ργ�1 ¡ 2pγ � 1qB
γpγ � 1qA. (3.39)

Condition (3.39) guarantees that ρ can be solved from (3.38) as a smooth function of pDφ,A,Bq.
Assume that A � Apy2q has been determined. Then pu, p, ρq can be expressed as functions of Dφ:

ρ � ρpDφ,A,Bq, u � p 1

ρφy2
,
φy1
ρφy2

q, p � Aργ , (3.40)

since B � Bpy2q is given by the incoming flow.
Similarly, in the supersonic region D�, we employ the corresponding variables pφ�, A�, Bq to replace

U�, where B is the same as in the subsonic region because of the Rankine-Hugoniot condition (3.30).
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We now choose (3.9) to derive a second-order nonlinear elliptic equation for φ so that the full Euler
system (3.7)–(3.10) is reduced to the following nonlinear PDE in the subsonic region:�

N1pDφ,A,Bq�
y1
� �

N2pDφ,A,Bq�
y2
� 0, (3.41)

where pN1, N2qpDφ,A,Bq � pu2, pqpDφ,A,Bq are given by

N1pDφ,A,Bq � φy1
φy2ρpDφ,Apy2q, Bpy2qq , N2pDφ,A,Bq � Apy2q

�
ρpDφ,Apy2q, Bpy2qq

�γ
. (3.42)

Then a careful calculation shows that

N1
φy1
N2
φy2

�N1
φy2
N2
φy1

� c2ρ2u2
1

c2 � q2
¡ 0 (3.43)

in the subsonic region with ρu1 � 0. Therefore, when φ is sufficiently close to φ�0 (determined by the
subsonic background state U�

0 ) in the C1–norm, equation (3.41) is uniformly elliptic, and the Euler
system (3.7)–(3.10) is reduced to the elliptic equation (3.41) in domain Dσ̂, where σ̂ is the function for
the free boundary (transonic shock).

The boundary condition for φ on the wedge boundary ty2 � 0u is derived from the fact that
φpy1, y2q � x2py1, y2q by (3.5)–(3.6) and (3.34). Then, recalling that BW � tx : x2 � bpx1q, x1 ¡ 0u in
the x–coordinates which is ty : y2 � 0, y1 ¡ 0u in the y–coordinates and using y1 � x1 by (3.6), we
obtain

φpy1, 0q � bpy1q. (3.44)

The condition on S is derived from the Rankine-Hugoniot conditions (3.27)–(3.29). Condition (3.27)
is equivalent to the continuity of φ across S:

rφs|S � 0, (3.45)

which, by (3.34), gives

σ̂1py1q � �rφy1srφy2s
py1, σ̂py1qq. (3.46)

Replacing σ̂1py1q in (3.28)–(3.29) by (3.46) and using (3.37) give rise to the conditions on S:

GpDφ,A,U�q � rφy1s
� 1

ρφy2
�Aργφy2

�� rφy2srAργφy1s � 0, (3.47)

HpDφ,A,U�q � rφy1srN1s � rφy2srN2s � 0. (3.48)

We now combine the above two conditions into the boundary condition for (3.41) by eliminating A.
Taking the partial derivative of G and H with respect to A respectively and making careful calculation,
we have

GA � rφy1s
�N1

A

φy1
� φy2N

2
A

	
� rφy2sφy1N2

A

�
u2ρ

γpq2 � c2

γ�1q
u1pc2 � q2q

�
1

ρu1

�
� ργ�1

u1pc2 � q2q
�
u2

2 �
c2 � u2

1

γ � 1


�
u2

u1

�
  0,

and

HA � N1
Arφy1s �N2

Arφy2s �
γ

γ � 1

ργ�1u2

c2 � q2

�
u2

u1

�
�
ργpq2 � c2

γ�1q
c2 � q2

�
1

ρu1

�
¡ 0,

since r 1
ρu1

s   0 and u�2 is close to 0. Therefore, both equations (3.47) and (3.48) can be solved for A to

obtain A � g1pDφ,U�q and A � g2pDφ,U�q, respectively. With these, we obtain our desired condition
on the free boundary (i.e., the shock-front):

ḡpDφ,U�q :� pg2 � g1qpDφ,U�q � 0. (3.49)
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Then the original free boundary problem, Problem 3.2, is reduced to the following free boundary
problem for the elliptic equation (3.41):

Problem 3.3 (Free Boundary Problem). Seek pσ̂, φ,Aq such that φ is a solution of the elliptic equation
(3.41) in the region with the fixed boundary condition (3.44) and conditions (3.45) and (3.47)–(3.49)
on S.

2. Hodograph transformation and fixed boundary value problem. In order to solve the free
boundary problem, we employ the hodograph transformation so that the shock-front becomes a fixed
boundary by using the free boundary conditions (3.45) and (3.49). This allows us to find φ for each A
from an appropriately chosen set. After that, we only need to perform an iteration for the unknown
function A to satisfy (3.47)–(3.48).

Note that the expected solutions in Theorem 3.1 satisfy that }U �U�
0 }L8pΩq ¤ C0ε. Then, denoting

by φ�0 the potential function (3.34) for the subsonic background state U�
0 , we obtain that φ is close to

φ�0 in C1 on the closure of the subsonic region. On the iteration, we consider (and eventually obtain)

solutions U for which the same property holds. Thus, we assume that φ is close to φ�0 in C1pDσ̂q below;
see (3.33).

We now extend the domain of φ� from D� to the first quadrant D� Y Dσ̂. Let

φ�0 � 1

ρ�0 u
�
20

y2,

which is the potential function (3.34) for the supersonic background state U�
0 . Then φ� is close to φ�0

in C1pD�q since U� is close to U�
0 in L8 (and in the stronger norm; see Theorem 3.1). We can extend

φ� into D� Y Dσ̂ so that it remains close to φ�0 in C1 on the closure of D� Y Dσ̂. We then use the
following partial hodograph transformation:

py1, y2q Ñ pz1, z2q � pφ� φ�, y2q. (3.50)

Note that By1pφ�0 � φ�0 q � u�20
u�10

¡ 0 by using (3.34), where pu�10, u
�
20q is the velocity of the background

subsonic state U�
0 and the fact that u�20 � 0 has been used. Since φ and φ� are close to φ�0 and φ�0 in

the C1–norm respectively, transformation (3.50) is invertible, so that y1 is a function of z :� pz1, z2q,
denoted as y1 � ϕpzq.

Let

M1pDφ,A,U�q � N1pDφ,A,Bq �N2pDφ,A,Bqrφy2srφy1s
, M2pDφ,A,U�q � N2pDφ,A,Bq

rφy1s
,

and

M
ipDϕ,ϕ,A, zq � �M ipBy1φ�pϕ, z2q � 1

ϕz1
, By2φ�pϕ, z2q � ϕz2

ϕz1
, A, U�pϕ, z2qq, i � 1, 2.

Then equation (3.41) becomes�
M

1pDϕ,ϕ,A, zq�
z1
� �

M
2pDϕ,ϕ,A, zq�

z2
� 0. (3.51)

Notice that

M
1
ϕz1

M
2
ϕz2

� 1

4

�
M

1
ϕz2

�M
2
ϕz1

�2 � rφy1s2
�
N1
φy1
N2
φy2

� pN1
φy2
q2� ¡ 0,

which implies that equation (3.51) is uniformly elliptic, for any solution ϕ that is close to ϕ�0 (determined
by (3.50) with φ � φ�0 ) in the C1–norm.

Under transform (3.50), the unknown shock-front S becomes a fixed boundary, which is the z2-axis,

where we have used that φ is close in C1 to φ�0 in Dσ̂ and to φ�0 in D�
σ̂ in order to conclude that φ is
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Lipschitz across S from (3.34) and then that φ � φ� on S but φ � φ� in Dσ̂zS. Along the z2-axis,
condition (3.49) is now

g̃pDϕ,ϕ, zq :� ḡpBy1φ�pϕ, z2q � 1

ϕz1
, By2φ�pϕ, z2q � ϕz2

ϕz1
, U�pϕ, z2qq

� 0 on tz1 � 0, z2 ¡ 0u. (3.52)

We also convert condition (3.48) into the z–coordinates: Along the z2-axis,

rHpDϕ,ϕ,A, zq :� HpBy1φ�pϕ, z2q � 1

ϕz1
, By2φ�pϕ, z2q � ϕz2

ϕz1
, A, U�pϕ, z2qq � 0. (3.53)

The condition on the z1-axis can be derived from (3.44) as follows: Restricted on z2 � 0, the
coordinate transformation (3.50) becomes

z1 � bpy1q � φ�py1, 0q.
Then y1 can be expressed in terms of z1 as y1 � rbpz1q so that ϕpz1, 0q � y1 becomes

ϕpz1, 0q � rbpz1q on L1 :� tz2 � 0, z1 ¡ 0u. (3.54)

Therefore, the original wedge problem has now been reduced to the following problem on the first
quadrant Q.

Problem 3.4 (Fixed Boundary Value Problem). Seek pϕ,Aq such that ϕ is a solution of the second-
order nonlinear elliptic equation (3.51) in the unbounded domain Q with the boundary conditions (3.52)
and (3.54), and such that (3.53) holds.

3. Solution to the fixed boundary value problem – Problem 3.4. Through the shock polar,
we can determine the values of U at the origin so that Ap0q is fixed, depending on the values of U�p0q
and b1p0q. Then we solve (3.53) to obtain a unique solution Ã � hpz, φ,Dφq that defines the iteration
map.

This is achieved by the following fixed point argument. Consider a Banach space:

X � tA : Ap0q � 0, }A}p�αq;t0u
1,α;p1�βq;R�   8u.

Then we define our iteration map J : X ÝÑ X through the following:

First, we define a smooth cutoff function χ on r0,8q such that

χpsq �
#

1 for 0 ¤ s   1,

0 for s ¡ 2.

Set
Ap0q :� tpωp0q, b1p0qq for ω � U� � U�

0 , (3.55)

where t is a function determined by the Rankine-Hugoniot conditions (3.47)–(3.48). Then we define
wtpz2q as

wtpz2q :� A�
0 �

�
tpωp0q, b1p0qq �A�

0

�
χpz2q, (3.56)

where A�
0 � p�0

pρ�0 qγ
.

Consider any A � Apz2q so that A� wt P X satisfying

}A�A�
0 }p�αq;t0u1,α;p1�βq;R� ¤ C0ε (3.57)

for some fixed constant C0 ¡ 0. With this A, we solve equation (3.51) for ϕ � ϕA in the unbounded
domain Q with the boundary conditions (3.52) and (3.54), and with the asymptotic condition ϕÑ ϕ8
as x Ñ8, where the limit is understood in the appropriate sense, ϕ8 is the solution of

z1 � pφ8 � φ�qpϕ8, z2q, (3.58)
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with φ8 � u�20
u�10
y1 � lpy2q, and lpy2q is determined by the Bernoulli law (3.38), via replacing φ and ρ by

their asymptotic values φ8 and ρ8py2q �
� p�0
Apy2q

� 1
γ and noting that B � Bpy2q is determined by the

upstream state U�. More specifically, we show the existence of a solution ϕ of (3.51)–(3.52) and (3.54)
in the set:

Σδ �
 
ϕ : }ϕ� ϕ8}p�1�αq;L1

2,α;pβ,0q;Q ¤ δ
(

for sufficiently small δ ¡ 0,

which is a compact and convex subset of the Banach space:

B �  
ϕ : }ϕ� ϕ8}p�1�α1q;L1

2,α1;pβ1,0q;Q   8(
with 0   α1   α and 0   β1   β.

For ϕ P Σδ, equation (3.51) is uniformly elliptic if δ ¡ 0 is small. This allows us to solve the problem
for ϕ � ϕA P Σδ by the Schauder fixed point theorem if the perturbation is small, i.e., if ε is small in
(3.57) and the conditions of Theorem 3.1. Then, with this ϕ � ϕA, we solve (3.53) to obtain a unique

Ã that defines the iteration map J by J pA� wtq :� Ã� wt.

Finally, by the implicit function theorem, we prove that J has a fixed point A � wt, for which A
satisfies (3.57).

For more details for this approach, see Chen-Chen-Feldman [23, 24]. This approach can also be
applied to Problem 3.2(ST); see [112] for the case when the wedge angle is sufficiently small.

3.3. Approach II for Problem 3.2(ST) and Problem 3.2(WT). We now describe the second
approach, Approach II. It allows us to handle both cases in Theorem 3.1: Problem 3.2(WT) and
Problem 3.2(ST). In particular, for Problem 3.2(WT), this approach yields a better asymptotic decay
rate, as stated in (3.24).

It is convenient to rotate the x–coordinates clockwise by the wedge angle θw, so that the background
downstream flow becomes horizontal, as discussed in the paragraph before Theorem 3.1. We still use the
same notations in the rotated coordinates when no confusion arises; in particular, we write x � px1, x2q
and u � pu1, u2q in the rotated basis. Then, in the new coordinates,

u�20

u�10

� � tan θw, U�
0 � pu�10, �u�10 tan θw, p

�
0 , ρ

�
0 q, U�

0 � pu�10, 0, p�0 , ρ
�
0 q. (3.59)

Since the velocity components pu1, u2q are now in the basis pτ 0
w,ν

0
wq, i.e., u1 � u � τ 0

w and u2 � u � ν0
w,

we see that, by (3.22),

U1 � pu1, ρq, U2 � pw, pq with w � u2
u1

(3.60)

in the new coordinates. Furthermore, we obtain from (3.13) and (3.23) or (3.25) with small ε that, in
the rotated coordinates,

BW � tx P R2 : x2 � brotpx1q, brotp0q � 0u, (3.61)

and function brotpx1q satisfies the estimates in (3.63) or (3.65) below, respectively, with Cε instead of
ε when ε is small, where C depends only on bp�q. For the background solution, brot,0 � 0, i.e., BW0 is
the positive x1-axis.

We now construct a solution with a shock-front S expressed as (3.16) in the rotated coordinates
with a function σ̃px1q. The background shock is now expressed as S0 :� tx2 � σ̃0px1q : x1 ¡ 0u for
σ̃0px1q :� s̃0x1, where s̃0 � tanparctan s0 � θwq. Then the subsonic region of the solution has the form:

Ω � tx P R2 : brotpx1q   x2   σ̃px1q, x1 ¡ 0u. (3.62)

We can assume that the upstream steady supersonic smooth solution U�pxq exists in region Ω� � tx :
s̃0
2 x1   x2   2s̃0x1, x1 ¥ 0u, beyond the background shock, but is still close to U�

0 . Moreover, in part
(i) of Theorem 3.1, U8 is independent of x1 and U8 � Z8 in the rotated coordinates.

More specifically, we establish the following theorem in the rotated coordinates:
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Theorem 3.2 (Chen-Chen-Feldman [25]). Let pU�
0 , U

�
0 q, given by (3.59), be a constant transonic

solution for the wedge angle θw P p0, θd
wq. There are positive constants α, β, C0, and ε depending only

on the background states pU�
0 , U

�
0 q such that

(i) If pU�
0 , U

�
0 q corresponds to the state on arc �TS and

}U� � U�
0 }2,α;p1�β,0q;Ω� � }b1rot}p�α;0q

1,α;p1�βq;R�   ε, (3.63)

then there exist a solution pU, σ̃q of Problem 3.2(WT) and a function

U8px2q � pu81 px2q, 0, p�0 , ρ8px2qq
so that U1 and U2 defined by (3.22) satisfy

}U1 � U8
1 }p�α;BW q

2,α;pβ,1q;Ω � }U2 � U�
20}p�α;Oqp�1�α;BW q

2,α;p1�β,0q;Ω � }σ̃1 � s̃0}p�α;0q
2,α;p1�βq;R� � }U8

1 � U�
10}p�α;0q

2,α;p1�βq;r0,8q

¤ C0

�
}U� � U�

0 }2,α;p1�β,0q;Ω� � }b1rot}p�α;0q
1,α;p1�βq;R�

	
, (3.64)

where U8
1 � pu81 , ρ8q.

(ii) If pU�
0 , U

�
0 q corresponds to the state on arc �TH, and

}U� � U�
0 }2,α;pβ,0q;Ω� � }b1rot}p�α�1;0q

2,α;pβq;R�   ε, (3.65)

then there exists a solution pU, σ̃q of Problem 3.2(ST) so that U1 and U2 defined by (3.22) satisfy

}U1 � U�
10}p�1�α;BW q

2,α;p0,βq;Ω � }U2 � U�
20}p�1�α;Oq

2,α;pβ,0q;Ω � }σ̃1 � s̃0}p�1�α;0q
2,α;pβq;R�

¤ C0

�
}U� � U�

0 }2,α;pβq;Ω� � }b1rot}p�1�α;0q
2,α;pβq;R�

	
.

(3.66)

The solution pU, σ̃q is unique within the class of solutions for each of Problem 3.2(WT) and Problem
3.2(ST) when the left-hand sides of (3.24) for Problem 3.2(WT) and (3.26) for Problem 3.2(ST) are
less than C0ε correspondingly.

Clearly, Theorem 3.1 follows from Theorem 3.2 if ε is small so that, from the estimates of σ̃ in (3.64)
or (3.66), the shock remains a graph of C1 function: x2 � σpx1q after rotating the coordinates back.

To prove Theorem 3.2, we work in the Lagrangian coordinates (3.6) defined for the rotated coordinates
x � px1, x2q. Then, as in the previous case, using the fact that the wedge boundary BW is a streamline
due to the slip condition (3.15) on BW , we obtain that, in the present Lagrangian coordinates, BW
becomes the half-line:

L1 � tpy1, y2q : y1 ¡ 0, y2 � 0u.
The background shock-front S0 is now given by S0 � ty2 � s1y1, y1 ¡ 0u with s1 � ρ�0 u

�
10s̃0. We can

assume that, in the Lagrangian coordinates, the supersonic solution U� exists in domain D� defined
by (3.31). Shock S is given by y2 � σ̂py1q for y1 ¡ 0, where function σ̂ differs from the one in Approach
I because the Lagrangian coordinates are now defined differently. The supersonic region D�

σ̂ and the
subsonic region Dσ̂ of the solution are given by (3.32) and (3.33) respectively, with the present function
σ̂.

We first present the existence and estimates of the solution in the Lagrangian coordinates:

Theorem 3.3. Let pU�
0 , U

�
0 q be a constant transonic solution for the wedge angle θw P p0, θd

wq. There
are positive constants α, β, C0, and ε depending only on the background states pU�

0 , U
�
0 q such that, if

BW in (3.61) and U� satisfy

(i) (3.63) for Problem 3.2(WT),

(ii) (3.65) for Problem 3.2(ST),
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then there exist a transonic shock SL � ty2 � σ̂py1q, y1 ¡ 0u and a subsonic solution U � Upyq of (3.7)–
(3.10) in Dσ̂, satisfying the Rankine-Hugoniot conditions (3.27)–(3.30) along SL with U� expressed in
the Lagrangian coordinates in D�

σ̂ and the slip condition w|L1
� b1rot, as well as there exists a function

U8py2q � pu81 py2q, 0, p�0 , ρ8py2qq, such that Upyq satisfies the following estimates:

(i) For Problem 3.2(WT),

}U1 � U8
1 }p�α;L1q

2,α;p1�β,0q;Dσ̂ � }U2 � U�
20}p�α;Oqp�1�α;L1q

2,α;p1�β,0q;Dσ̂ � }σ̂1 � s1}p�α;0q
2,α;p1�βq;R� � }U8

1 � U�
10}p�α;0q

2,α;p1�βq;R�

¤ C0

�
}U� � U�

0 }2,α;p1�β,0q;D�σ̂ � }b1rot}p�α;0q
1,α;p1�βq;R�

	
; (3.67)

(ii) For Problem 3.2(ST),

}U1 � U8
1 }p�1�α;L1q

2,α;pβ,0q;Dσ̂ � }U2 � U�
20}p�1�α;Oq

2,α;pβ,0q;Dσ̂ � }σ̂1 � s1}p�1�α;0q
2,α;pβq;R� � }U8

1 � U�
10}p�1�α;0q

2,α;pβq;R�

¤ C0

�
}U� � U�

0 }2,α;pβq;D�σ̂ � }b1rot}p�1�α;0q
2,α;pβq;R�

	
, (3.68)

where U8
1 py2q :� pu81 py2q, ρ8py2qq.

The solution U is unique within the class of solutions for each of Problem 3.2(WT) and Problem
3.2(ST) when the left-hand sides of (3.67) for Problem 3.2(WT) and (3.68) for Problem 3.2(ST) are
less than C0ε correspondingly.

We remark that function U8py2q can be understood as the asymptotic limit of Upyq as y1 Ñ8.

Now we describe the proof of Theorem 3.3, which is the main part of Approach II. Rewrite system
(3.7)–(3.10) into the following nondivergence form for U � pu, p, ρq P R4:

ApUqUJ
y1 �BpUqUJ

y2 � 0, (3.69)

where

ApUq �

������
� 1
ρu21

0 0 � 1
ρ2u1

1� p
ρu21

0 1
ρu1

� p
ρ2u1

0 1 0 0

u1 u2
γ

pγ�1qρ � γp
pγ�1qρ2

������ , BpUq �

�����
u2
u21

� 1
u1

0 0
pu2
u21

� p
u1

�u2
u1

0

0 0 1 0

0 0 0 0

����� .
Solving detpλA�Bq � 0 for λ, we obtain four eigenvalues:

λ1 � λ2 � 0 (real), λj � � cρ

c2 � u2
1

�
cu2 � p�1qju1

a
c2 � q2i

�
for j � 3, 4 (complex),

where q �
a
u2

1 � u2
2   c in the subsonic region and i � ?�1. The corresponding left eigenvectors are

l1 � p0, 0, 0, 1q, l2 � p�pu1, u1, u2,�1q,

l3,4 � pppγp� ρu2
1q

pγ � 1qρu1
λ3,4 � γp2u2

pγ � 1qu1
, �pu1 � γp

pγ � 1qρu1
qλ3,4 � γpu2

pγ � 1qu1
,

γp

γ � 1
� u2λ3,4, λ3,4q.

Then

(i) Multiplying equations (3.69) from the left by l1 leads to the same equation (3.10). This, together
with the Rankine-Hugoniot condition (3.30), implies the Bernoulli law (3.35) to be held in both
supersonic and subsonic domains, as well as across the shock-front. Therefore, Bpy2q can be
computed from the upstream flow U�. If u1 is a small perturbation of u�10, then u1 ¡ 0.
Therefore, we can solve (3.35) for u1:

u1 �

b
2
�
B � 2γp

pγ�1qρ
�

?
1� w2

with w � u2
u1
. (3.70)
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(ii) Multiplying system (3.69) from the left by l2 also gives (3.36).

(iii) Multiplying equations (3.69) from the left by l3 and separating the real and imaginary parts of
the equation lead to the elliptic system:

DRw � hDIp � 0,

DIw � hDRp � 0,
(3.71)

where DR � By1 � λRBy2 , DI � λIBy2 , λR � � c2ρu2
c2�u21

, λI � cρu1
?
c2�q2

c2�u21
, and h �

?
c2�q2
cρu21

.

Therefore, system (3.7)–(3.10) is decomposed into (3.70)–(3.71).
We solve this problem by iteration. Given U� that is close to U�

0 as defined in Theorem 3.3, we
solve the problem for U in the Lagrangian coordinates. However, since U8 is not known, we cannot
directly solve Problem 3.2(WT) for U satisfying (3.67), or Problem 3.2(ST) for U satisfying (3.68).
Instead, we solve Problem 3.2(ST) for U that is close to U�

0 as in (3.26), and Problem 3.2(WT) for U
in similar norms with appropriate growths, but using these norms in the Lagrangian coordinates (more
precisely, the z � pz1, z2q–coordinates defined by (3.75) below). Note that these norms are weaker than
the ones in (3.67) or (3.68) respectively; in particular, they do not determine any limit for U1 � pu1, ρq
as |y| Ñ 8 within the subsonic region. On the other hand, these norms determine that pw, pq have
the limit: p0, p�0 q at infinity within the subsonic region; this asymptotic condition is sufficient to make
the iteration problem well-defined (in fact, we use only the asymptotic decay of w) and to obtain the
existence and uniqueness for the iteration problem. After the unique solution U of the problem stated
in Theorem 3.3 is obtained by iteration, we identify U8

1 � pρ8, u81 q and show the faster convergence of
pρ, u1q to pρ8, u81 q, which lead to (3.67) and (3.68), respectively. Note that, in the estimates discussed
above, U �U�

0 (rather than U itself) lies in the weighted spaces (3.21). For this reason, it is convenient
to perform the iteration in terms of

δU1 � U1 � U�
10, δU2 � U2 � U�

20, δσ̂ � σ̂ � σ̂0 � σ̂ � s1y1, (3.72)

where U1 and U2 are defined by (3.60). Then we follow the steps below to solve this problem:

1. Introduce a linear boundary value problem for the iteration. For a given shock-front σ̂,
the subsonic domain Dσ̂ is fixed, depending on σ̂. We make the coordinate transformation to transform
the domain from Dσ̂ to D, where D � Dσ̂0 with σ̂0py2q � s1y1 is the domain corresponding to the
background solution:

D �  
y : 0   y2   s1y1

(
(3.73)

with BD � L1 Y L2, where

L1 � tpy1, y2q : y1 ¡ 0, y2 � 0u, L2 � tpy1, y2q : y1 ¡ 0, y2 � s1y1u. (3.74)

This transformation is:

y � py1, y2q Ñ z � pz1, z2q :� py1, y2 � δσ̂py1qq, (3.75)

where δσ̂py1q � σ̂py1q� σ̂0py1q. In the z–coordinates, L1 corresponds to BW , and L2 corresponds to BS.
Also, Upyq becomes Uσ̂pzq depending on σ̂. Then the upstream flow U� involves an unknown variable
explicitly depending on σ̂:

U�
σ̂ pzq � U�pz1, z2 � δσ̂pz1qq, (3.76)

where U� is the given upstream flow in the y–coordinates. Equations (3.71) in D in the z-coordinates
are: # rDRw � h rDIp � 0,rDIw � h rDRp � 0,

(3.77)

where rDR � Bz1 � pλR � δσ̂1qBz2 and rDI � λIBz2 . Since U�
0 is a constant vector and w�

0 � 0, the
same system holds for pδp, δwq, where we have used notation (3.72). Moreover, since the iteration:
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pδU, δwq Ñ pδŨ , δw̃q is considered, we use U :� U�
0 � δU to determine the coefficients in (3.77) and

pδp̃, δw̃q for the unknown functions. Thus, we have# rDRδw̃ � h rDIδp̃ � 0,rDIδw̃ � h rDRδp̃ � 0.
(3.78)

We use system (3.78) in D as a linear system for the iteration.
In the z–coordinates, the Rankine-Hugoniot conditions (3.27)–(3.30) keep the same form, except

that σ̂1py1q is replaced by σ̂1pz1q and U� is replaced by U�
σ̂ along line z2 � s1z1. Among the four

Rankine-Hugoniot conditions, (3.30) is used in the Bernoulli law. From condition (3.29), we have

σ̂1pz1q � rps
ru1wspz1, s1z1q, (3.79)

which is used to update the shock-front later. Now, because of (3.70), we can use Ū � pw, p, ρq as the
unknown variables along z2 � s1z1. Using (3.79) to eliminate σ̂1 in conditions (3.27)–(3.28) gives

G1pU�
σ̂ , Ūq :� rps

� 1

ρu1

�
� rwsru1ws � 0, (3.80)

G2pU�
σ̂ , Ūq :� rps

�
u1 � p

ρu1

�
� rpwsru1ws � 0, (3.81)

on L2. We use conditions (3.80)–(3.81) to define the linear conditions for the iteration: Ū Ñ r̄U such

that, at a fixed point Ū � r̄U , these iteration conditions imply that the original conditions (3.80)–(3.81)
hold. Specifically, we define the conditions:

∇ŪGipU�
0 , Ū

�
0 q � δ r̄U � ∇ŪGipU�

0 , Ū
�
0 q � δŪ �GipU�

σ̂ , Ūq on L2 (3.82)

for i � 1, 2, which can be written as

bi1δw̃ � bi2δp̃� bi3δρ̃ � gipU�
σ̂ , Ūq on L2, (3.83)

where pbi1, bi2, bi3q :� ∇ŪGipU�
0 , Ū

�
0 q and

gipU�
σ̂ , Ūq :� ∇ŪGipU�

0 , Ū
�
0 q � δŪ �GipU�

σ̂ , Ūq for i � 1, 2.

Since there are two conditions in (3.83), i � 1, 2, we can eliminate δρ̃ to obtain

δw̃ � b1δp̃ � g3 on L2, (3.84)

where

b1 � b12b23 � b22b13

b11b23 � b21b13
, g3 � b23g1 � b13g2

b11b23 � b21b13
(3.85)

with

b11b23 � b21b13 � p�u�20qrp0s
�

γp�0
pγ � 1qpρ�0 q2u�10

� p�0
u�10

� 1

pρ�0 q2
� γp�0
pγ � 1qpρ�0 q3pu�10q2

�
 ¡ 0.

Notice that the shock polar is a one-parameter curve determined by the Rankine-Hugoniot conditions.
If p is used as the parameter, by equation (3.84), we obtain that δw � �b1δp � g3pδpq, which shows
that �b1δp is the linear term and g3pδpq is the higher order term. We know from Fig. 3.3 that wppq is
decreasing in p on arc �TH and increasing on �TS. Therefore, it is easy to see that

b1 ¡ 0 corresponds to the state on arc �TH, b1   0 to �TS, and b1 � 0 at the tangent point T . (3.86)

This difference in the sign of b1 is the reason for the different rates of decay at infinity and near the
origin in the two different cases (i) and (ii) of Theorems 3.1 and 3.3.

It can be checked that

b13 � �rp0s
�

p�0
pρ�0 q2u�10

� γp�0
pγ � 1qpρ�0 q3pu�10q3



  0.
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O

w = u2
u1

p

T

p0

H

S

Figure 3.3. The shock polar in the pw, pq–variables (cf. [25])

Thus, condition (3.83) for i � 1 can be rewritten as

δρ̃ � g4 � b2δw̃ � b3δp̃ on L2, (3.87)

where g4 � g1
b13
, b2 � b11

b13
, and b3 � b12

b13
.

We notice that conditions (3.84)–(3.87) are equivalent to conditions (3.83) for i � 1, 2. The boundary
condition on L1 comes from the slip condition (3.15) on BW . Specifically, using (3.15) and (3.61), we
obtain that w � b1rot on BW . Then, in the z–coordinates, this must hold on L1. Also, for the background
solution, brot � 0 by (3.61). Then we prescribe

δw̃ � b1rot on L1. (3.88)

2. Design the iteration map Q and prove the existence of a fixed point for Q. We perform
the iteration in terms of δUk, k � 1, 2, and δσ̂ as defined by (3.72), in the z-coordinates defined in
(3.75). In fact, for σ̂, we only need σ̂1 since σ̂p0q � 0, i.e., the shock is attached to the wedge vertex.
Note also that δσ̂1 � σ̂1 � s1. We thus denote V � pU1, U2, δσ̂

1q and perform the following iteration:

δV Ñ δṼ . For a given δV , we determine V :� δV � V �
0 . Then we find Ṽ by solving the linear system

(3.78) in D with the boundary conditions (3.84) and (3.88), to determine pw̃, p̃q and then determine u1

from (3.70) and ρ from (3.36) (which holds in the z–coordinates without change), and the boundary
condition (3.87). The final step is to use solution pδu1, δρ, δw, δpq and U�

σ̂ defined by (3.76) on the

right-hand side of (3.79) to update δσ̂1. This defines the iteration map Q from V to Ṽ , except that
we discuss below how the boundary value problem for (3.78) with the boundary conditions (3.84) and
(3.88) is solved in D.

As we discussed above, we perform the iteration in the spaces from (3.68) for Problem 3.2(ST) and
similar norms with appropriate growths for Problem 3.2(WT), expressed in the z–coordinates (3.75).
We focus below on the case of Problem 3.2(WT), since the other case is similar.

For τ ¡ 0, define

Στ
1 � tv : }v}p�α;L1q

2,α;p0,1�βq;D � }vz1}p1�α;L1q
2,α;p1�β,1q;D ¤ τu,

Στ
2 � tv : }v}p�α;Oqp�1�α;L1q

2,α;p1�β,0q;D ¤ τu, Στ
3 � tv : }v}p�α;0q

2,α;p1�βq;R� ¤ τu,
Στ � tpδU1, δU2, δσ̂

1q : δU1 P Στ
1 � Στ

1 , δU2 P Στ
2 � Στ

2 , δσ̂1 P Στ
3u.

(3.89)

The condition on vz1 in Στ
1 is added for technical reasons.
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It remains to discuss how we find pδw̃, δp̃q P ΣC0ε
2 � ΣC0ε

2 that solves (3.78) in D with the boundary
conditions (3.84) and (3.88). From system (3.78), we obtain

pδp̃qz1 �
λR � δσ̂1

hλI
pδw̃qz1 �

pλR � δσ̂1q2 � λ2
I

hλI
pδw̃qz2 , (3.90)

pδp̃qz2 � � 1

hλI
pδw̃qz1 �

λR � δσ̂1

hλI
pδw̃qz2 . (3.91)

Now, differentiating and subtracting the equations, we eliminate δp̃ to obtain a second-order PDE for
δw̃ of the form:

2̧

i,j�1

paijpδw̃qzj qzi � 0, (3.92)

where the coefficients are computed explicitly from (3.90)–(3.91). Note that, at the subsonic background
solution (3.59), we have

λR0 � 0, λI0 ¡ 0, h0 ¡ 0,

where the left-hand sides are constants and δσ̂0 � 0. Then, computing the coefficients at the background
solution, equation (3.92) becomes

1

λI0
pδw̃qz1z1 � λI0pδw̃qz2z2 � 0,

that is, the equation is uniformly elliptic. Then, for the coefficients computed at pU�
10 � δU1, U

�
20 �

δU2, δσ̂
1q for pδU1, δU2, δσ̂

1q P ΣC0ε, equation (3.92) is uniformly elliptic if ε is small. This allows us to

obtain the unique solution δw̃ P ΣC0ε
2 of (3.92) in D with the boundary conditions (3.84) and (3.88).

Note that the inclusion δw̃ P ΣC0ε
2 involves the asymptotic condition at infinity, which makes the

boundary value problem well-defined and allows us to prove the uniqueness. After δw̃ is determined,
we determine δp̃ by the z2–integration from (3.91) with the initial condition (3.84), where it can be

shown that b1 � 0. Then we show that δp P ΣC0ε
2 . This completes the definition of the iteration map.

The iteration set for Problem 3.2(WT) is ΣC0ε. We first show that QpΣC0εq � ΣC0ε when ε is small,
and then obtain a fixed point by the Schauder fixed point theorem, via showing that ΣC0ε is a compact
subset in the Banach space defined by replacing α via α1 P p0, αq in the norms used in the definition of
Στ and showing that map Q is continuous in this norm.

3. Asymptotic limit of the fixed point in the y–coordinates. Let pδU1, δU2, δσ̂
1q P ΣC0ε be a

fixed point of the iteration map, and let pU1, U2, σ̂
1q � pU�

10 � δU1, U
�
20 � δU2, δσ̂

1q.
We change from the z– to y–coordinates by inverting (3.75):

z :� pz1, z2q Ñ y :� py1, y2q � pz1, z2 � δσ̂pz1qq.
Since δσ̂1 P ΣC0ε

3 , then both (3.75) and its inverse are close to the identity map in C2,αpDσ̂;R2q and

C2,αpD;R2q, respectively. Then it follows that, in the y–coordinates, pδU1, δU2, δσ̂
1q P Σ̃2C0ε if ε is

small, where

Σ̃τ
1 � tv : }v}p�α;L1q

2,α;p0,1�βq;Dσ̂ � }vz1}p1�α;L1q
2,α;p1�β,1q;Dσ̂ ¤ τu, Σ̃τ

2 � tv : }v}p�α;Oqp�1�α;L1q
2,α;p1�β,0q;Dσ̂ ¤ τu,

Σ̃τ � tpδU1, δU2, δσ̂
1q : δU1 P Σ̃τ

1 � Σ̃τ
1 , δU2 P Σ̃τ

2 � Σ̃τ
2 , δσ̂1 P Στ

3u.
(3.93)

In particular, this leads to the estimates of the second and third terms on the left-hand side of (3.67).

Note that, if v P Σ̃τ
2 , then v Ñ 0 as |y| Ñ 8 in Dσ̂, with decay rate |y|�pβ�1q. However, for v P Σ̃τ

1 ,
no asymptotic limit as |y| Ñ 8 in Dσ̂ is defined.

Then, from (3.59)–(3.60), it follows that U2 � pw, pq Ñ p0, p�0 q as |y| Ñ 8 in D; however, for
U1 � pu1, ρq, the limit is not determined by space Στ

1 , and pu1, ρq does not converge to pu�10, ρ
�
0 q in

general, as we see below. Thus, we have to determine the limiting profiles pu81 py2q, ρ8py2qq.
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To determine ρ8py2q, we first obtain (3.36) from (3.7)–(3.10), which implies (3.37). Since σ̂py1q is
determined, then Apy2q in (3.37) is determined by the upstream state U�pyq from the Rankine-Hugoniot
conditions (3.27)–(3.30). Then, noting that pÑ p80 , we obtain formally

ρÑ ρ8py2q �
� p�0
Apy2q

	 1
γ

as |y| Ñ 8 in Dσ̂.

Similarly, we use (3.70) to obtain

u1 Ñ u81 py2q �
d

2
�
Bpy2q � γp�0

pγ � 1qρ8py2q
	

as |y| Ñ 8 in Dσ̂.

Defining U8py2q � pu81 py2q, 0, p�0 , ρ8py2qq, we can show that the estimates of the first and the last
terms on the left-hand side of (3.67) hold. This completes the argument for case (i) of Theorem 3.3.

Case (ii) is handled similarly. Note that the slower decay at infinity for case (ii), i.e., |y|�β, is
from the elliptic estimates, even if the faster decay at infinity in (3.25) is required. The reason for the
difference in the rates for cases (i) and (ii) is (3.86).

4. Return to the x-coordinates. We obtain Theorem 3.2 directly from Theorem 3.3 by changing
the coordinates. Recall that, when the Lagrangian coordinates are defined for Theorem 3.3, we have
used the rotated coordinates x in (3.6); see the discussion in the paragraph before Theorem 3.3.

From the estimates in Theorem 3.3, it follows that, in the Lagrangian coordinates, |U � U�
0 | ¤ Cε

in Dσ̂, where C depends only on pU�
0 , U

�
0 q. Thus, the same is true in the x–coordinates in Ω. Then it

follows from (3.5)–(3.6) and (3.59) for positive u�10 and ρ�0 that the change of coordinates x Ñ y given
by (3.6) is bi-Lipschitz. Then (3.66) follows from (3.68) directly.

Similarly, the estimates of the second and third terms on the left-hand side of (3.64) follow from
(3.67) directly. In order to obtain the estimates of the remaining terms on the left-hand side of (3.64),
we need to identify U8px2q.

Note that, on shock S, using (3.6) and the estimate of the third term on the left-hand side of (3.64),
we see that, for small ε,

BτSψ � ρu � νS ¥ ρu�0 � νS0 � Cε ¥ 1

2
ρu�0 � νS0 ¡ 0.

Recall also that ψp0q � 0 by (3.5). Then, for each y2 ¡ 0, there exists a unique xinpy2q � pxin
1 py2q, xin

2 py2qq P
S such that ψpxinpy2qq � y2 and

}xin}C2,αpr0,8qq ¤ C, pxinq1 ¥ C�1 ¡ 0 on r0,8q.
From this and (3.5), it follows that, for each y2 ¡ 0,

ΩX tx : ψpxq � y2u � tpx1, x
�
2px1; y2qq : x1 ¡ xin

1 py2qu,
where x�2p�; y2q is the solution of the initial value problem for the differential equation:#

Bx1x�2px1; y2q � wpx1, x
�
2px1; y2qq,

x�2pxin
1 py2q; y2q � xin

2 py2q,
(3.94)

where w � u2
u1

(cf. (3.60)). Since we have obtained the estimate of the second term on the left-hand

side of (3.24), using (3.59), we have

|Dkwpxq| ¤ C0εp1� |x|q�1�β in Ω, for k � 0, 1, 2. (3.95)

In particular, for each y2 ¥ 0 and k � 0, 1, 2,» 8

xin1 py2q
|Dkwpx1, x

�
2px1; y2qq| dx1 ¤ C0ε

» 8

0
p1� x1q�1�β dx1 ¤ Cε. (3.96)

Applying this with k � 1, we conclude that limx1Ñ8 x�2px1; y2q exists for each y2 ¥ 0, which is denoted
as x82 py2q.
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Recall the structure of Ω in (3.62), where brotpx1q Ñ 0 and σ̃px1q Ñ 8 as x1 Ñ 8 by (3.63) and
the estimate of the third term in (3.64). Differentiating (3.94) twice with respect to y2 and using the
C2–estimate of xin and (3.96), we obtain that }x�2px1; �q}C2prbrotpx1q,σ̃px1qsq ¤ C for each x1 ¡ 0. From
this, we have

x�2px1; �q Ñ x82 p�q in C1 on compact subsets on r0,8q as x1 Ñ8, (3.97)

with }x82 }C2pr0,8qq ¤ C. Also, by a similar argument, using the C2,α–regularity of xin and the estimate

of w in the second term in (3.64), we obtain that x82 P C2,αpr0,8qq.
Furthermore, for the background solution, the potential functions ψ�0 of U�

0 , ψ�0 of U�
0 , and ψ0 of

the transonic shock solution pU�
0 , U

�
0 q in tx1 ¡ 0, x2 ¡ 0u are:

ψ�0 pxq � ρ�0 u
�
10px1 � x2 tan θwq, ψ�0 pxq � ρ�0 u

�
10x1, ψ0pxq �

#
ψ�0 pxq if x2   s̃x1,

ψ�0 pxq if x2 ¡ s̃x1,

by using (3.59), where ψ0 is Lipschitz. Then, estimating ψ�ψ�0 in Ω� via (3.63) (where the polynomial
decay is of degree �p1�βq so that the calculations similar to (3.96) can be used) and using the Rankine-
Hugoniot conditions on S, we obtain

|pxinq1 � pxin
0 q1| ¤ Cε on r0,8q,

where xin
0 py2q � y2

ρ�0 u
�
10

p1, s̃0q that is the corresponding function xin of the background solution.

Denote by x�20px1; y2q the corresponding function x�2px1; y2q of the background solution. Then

x�20px1; y2q � y2

ρ�0 u
�
10

on x1 ¡ y2
ρ�0 u

�
10s̃0

for each y2 ¥ 0.

Thus, x�20px1; y2q is independent of x1, so that x�20px1; y2q � x�20py2q. Then, denoting

gpx1; y2q � x�2px1; y2q � x�20py2q,
we see that g satisfies #

Bx1gpx1; y2q � wpx1, x
�
2px1; y2qq,

|gpxin
1 py2q; y2q| ¤ Cε.

(3.98)

From this and (3.96)–(3.97), we obtain that |px82 q1�px820q1| ¤ Cε, where px820q1py2q � px�20q1py2q � 1
ρ�0 u

�
10

.

Therefore, we have

px82 q1 ¥
1

2ρ�0 u
�
10

on r0,8q,

if ε is small. In particular, noting that x82 p0q � 0 since BW is a streamline corresponding to ψ � 0 and
limx1Ñ8 brotpx1q � 0 by (3.63), we obtain x82 pr0,8qq � r0,8q. Then there exists the inverse function
y�2 : r0,8q Ñ r0,8q to x82 p�q such that y�2 P C2,αpr0,8qq with y�2 p0q � 0 and py�2 q1 ¥ 1

C ¡ 0.
Finally, defining U8px2q � U8py�2 px2qq, we obtain (3.64) from (3.67).

For more details, see Chen-Chen-Feldman [25].

Remark 3.1. For the global stability of weak transonic shocks for the 3-D wedge problem, see [26,28];
also see the instability phenomenon for strong transonic shocks for the 3-D wedge problem in [77]. For
the global stability of conical shocks for the M-D conic problem, see [27] for the transonic shock case
and [38, 49,82] for the supersonic shock case.
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4. Two-Dimensional Transonic Shocks and Free Boundary Problems for the
Self-Similar Euler Equations for Potential Flow

In §2–§3, we have discussed the free boundary problems for steady transonic shock solutions of the
compressible Euler equations. Now we discuss free boundary problems for time-dependent solutions.

Time-dependent solutions with shocks of the Cauchy problem for the compressible Euler system may
exhibit non-uniqueness in general; see [50,71] and the references cited therein. On the other hand, many
fundamental physical phenomena, including shock reflection/diffraction, are determined by the time-
dependent solutions of self-similar structure; moreover, the uniqueness can be established in a carefully
chosen class of self-similar solutions with shocks. In this section, we focus on this case; more precisely,
we describe transonic shocks and free boundary problems for self-similar shock reflection/diffraction
for the Euler equations for potential flow.

The two-dimensional compressible potential flow is governed by the conservation law of mass and
the Bernoulli law for the density function ρ and the velocity potential Φ (i.e., u � ∇Φ):

Btρ�∇x � pρ∇xΦq � 0, (4.1)

BtΦ� 1

2
|∇xΦ|2 � hpρq � B (4.2)

for t P R� :� p0,8q and x P R2, where B is the Bernoulli constant, and hpρq is given by

hpρq � ργ�1 � 1

γ � 1
for the adiabatic exponent γ ¡ 1. (4.3)

By (4.2)–(4.3), ρ can be expressed as

ρpBtΦ,∇xΦq � h�1pB � BtΦ� 1

2
|∇xΦ|2q. (4.4)

Then system (4.1)–(4.2) can be rewritten as the following second-order nonlinear wave equation:

BtρpBtΦ,∇xΦq �∇x �
�
ρpBtΦ,∇xΦq∇xΦ

� � 0 (4.5)

with ρpBtΦ,∇xΦq determined by (4.4).
Note that equation (4.4) is invariant under the self-similar scaling:

pt,xq Ñ pαt, αxq, Φ Ñ Φ

α
for α � 0, (4.6)

and thus it admits self-similar solutions in the form of

Φpt,xq � tφpξq for ξ � x

t
. (4.7)

Then the pseudo-potential function

ϕpξq � φpξq � 1

2
|ξ|2

satisfies the following equation:

divpρp|Dϕ|2, ϕqDϕq � 2ρp|Dϕ|2, ϕq � 0 (4.8)

for

ρp|Dϕ|2, ϕq � �
B0 � pγ � 1qp1

2
|Dϕ|2 � ϕq� 1

γ�1 , (4.9)

where B0 � pγ � 1qB � 1, and the divergence div and gradient D are with respect to ξ P R2.
Equation (4.8) written in the non-divergence form is

pc2 � ϕ2
ξ1qϕξ1ξ1 � 2ϕξ1ϕξ2ϕξ1ξ2 � pc2 � ϕ2

ξ2qϕξ2ξ2 � 2c2 � |Dϕ|2 � 0, (4.10)

where the sonic speed c � cp|Dϕ|2, ϕq is determined by

c2p|Dϕ|2, ϕq � ργ�1p|Dϕ|2, ϕq � B0 � pγ � 1q�1

2
|Dϕ|2 � ϕ

�
. (4.11)



36 GUI-QIANG G. CHEN AND MIKHAIL FELDMAN

Another form of (4.10), which uses both the potential φ and the pseudo-potential ϕ, is

pc2 � ϕ2
ξ1qφξ1ξ1 � 2ϕξ1ϕξ2φξ1ξ2 � pc2 � ϕ2

ξ2qφξ2ξ2 � 0. (4.12)

Equation (4.8) is a nonlinear PDE of mixed elliptic-hyperbolic type. It is elliptic at ξ if and only if

|Dϕ|   cp|Dϕ|2, ϕq at ξ, (4.13)

and is hyperbolic if the opposite inequality holds. This can be seen more clearly from the rotational
invariance of (4.10), by fixing ξ and choosing coordinates pξ1, ξ2q so that ξ1 is along the direction of
Dϕpξq.

Moreover, from (4.10)–(4.11), equation (4.8) satisfies the Galilean invariance property: If ϕpξq is a
solution, then its shift ϕpξ�ξ0q for any constant vector ξ0 is also a solution. Furthermore, ϕpξq�const .
is a solution of (4.8) with adjusted constant B correspondingly in (4.9) and (4.11).

One class of solutions of (4.8) is that of constant states that are the solutions with constant velocity
v P R2. This implies that the pseudo-potential of a constant state satisfies Dϕ � v � ξ so that

ϕpξq � �1

2
|ξ|2 � v � ξ � C, (4.14)

where C is a constant. For such ϕ, the expressions in (4.9) and (4.11) imply that the density and sonic
speed are positive constants ρ and c, i.e., independent of ξ. Then, from (2.4) and (4.14), the ellipticity
condition for the constant state is

|ξ � v|   c.

Thus, for a constant state v, equation (4.8) is elliptic inside the sonic circle, with center v and radius
c, and hyperbolic outside this circle.

We also note that, if density ρ is a constant, then the solution is a constant state; that is, the
corresponding pseudo-potential ϕ is of form (4.14).

Since the problem involves transonic shocks, we have to consider weak solutions of equation (4.8),
which admit shocks. As in [33], the weak solutions are defined in the distributional sense in a domain
Λ in the ξ–coordinates.

Definition 4.1. A function ϕ PW 1,1
loc pΛq is called a weak solution of (4.8) if

(i) B0 � pγ � 1qp1
2 |Dϕ|2 � ϕq ¥ 0 a.e. in Λ,

(ii) pρp|Dϕ|2, ϕq, ρp|Dϕ|2, ϕq|Dϕ|q P pL1
locpΛqq2,

(iii) For every ζ P C8
c pΛq,»

Λ

�
ρp|Dϕ|2, ϕqDϕ �Dζ � 2ρp|Dϕ|2, ϕqζ�dξ � 0. (4.15)

A shock is a curve across which Dϕ is discontinuous. If Λ� and Λ�p:� ΛzΛ�q are two nonempty
open subsets of a domain Λ � R2, and S :� BΛ� X Λ is a C1-curve where Dϕ has a jump, then
ϕ P C1pΛ� Y Sq X C2pΛ�q is a global weak solution of (4.8) in Λ if and only if ϕ is in W 1,8

loc pΛq and
satisfies equation (4.8) and the Rankine-Hugoniot condition on S:

ρp|Dϕ|2, ϕqDϕ � ν|Λ�XS � ρp|Dϕ|2, ϕqDϕ � ν|Λ�XS . (4.16)

Note that the condition ϕ PW 1,8
loc pΛq requires that

ϕΛ�XS � ϕΛ�XS , (4.17)

which is consistent with curlpDϕq � 0 in the distributional sense.
A piecewise smooth solution with the discontinuities is called an entropy solution of (4.8) if it sat-

isfies the entropy condition: density ρ increases in the pseudo-flow direction of DϕΛ�XS across any
discontinuity. Then such a discontinuity is called a shock.
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4.1. The von Neumann Problem for Shock Reflection-Diffraction. We now describe the von
Neumann problem for shock reflection-diffraction, proposed for mathematical analysis first in [105–107].
When a vertical planar shock perpendicular to the flow direction x1 and separating two uniform states
(0) and (1), with constant velocities u0 � p0, 0q and u1 � pu1, 0q and constant densities ρ0   ρ1 (state
(0) is ahead or to the right of the shock, and state (1) is behind the shock), hits a symmetric wedge:

W :�  px1, x2q : |x2|   x1 tan θw, x1 ¡ 0
(

head-on at time t � 0, a reflection-diffraction process takes place when t ¡ 0. Then a fundamental
question is what types of wave patterns of reflection-diffraction configurations may be formed around the
wedge. The complexity of reflection-diffraction configurations was first reported by Ernst Mach [89]
in 1878, who first observed two patterns of reflection-diffraction configurations: Regular reflection
(two-shock configuration; see e.g. Figs. 4.1–4.2) and Mach reflection (three-shock/one-vortex-sheet
configuration); also see [8, 35, 52, 103]. The issues remained dormant until the 1940s when John von
Neumann [105–107], as well as other mathematical/experimental scientists (cf. [8, 35, 52, 63, 103] and
the references cited therein), began extensive research into all aspects of shock reflection-diffraction
phenomena, due to its importance in applications. It has been found that the situations are much
more complicated than what Mach originally observed: The Mach reflection can be further divided
into more specific sub-patterns, and various other patterns of shock reflection-diffraction configurations
may occur such as the double Mach reflection, the von Neumann reflection, and the Guderley reflection;
see [8,35,52,63,65,103] and the references cited therein. Then the fundamental scientific issues include:

(i) Structures of the shock reflection-diffraction configurations;
(ii) Transition criteria among the different patterns of shock reflection-diffraction configurations;

(iii) Dependence of the patterns upon the physical parameters such as the wedge angle θw, the
incident-shock-wave Mach number, and the adiabatic exponent γ ¡ 1.

In particular, several transition criteria among the different patterns of shock reflection-diffraction
configurations have been proposed, including the sonic conjecture and the detachment conjecture by
von Neumann [105–107].

A careful asymptotic analysis has been made for various reflection-diffraction configurations in
Lighthill [83, 84], Keller-Blank [69], Hunter-Keller [68], Harabetian [67], Morawetz [93], and the ref-
erences cited therein; also see Glimm-Majda [63]. Large or small scale numerical simulations have been
also performed; cf. [8,63,110] and the references cited therein. However, most of the fundamental issues
for shock reflection-diffraction phenomena have not been understood, especially the global structure and
transition between the different patterns of shock reflection-diffraction configurations. This is partially
because physical and numerical experiments are hampered by many difficulties and have not yielded
clear transition criteria between the different patterns. In particular, numerical dissipation or physi-
cal viscosity smear the shocks and cause boundary layers that interact with the reflection-diffraction
patterns and can cause spurious Mach steams; cf. [110]. Furthermore, some different patterns occur
when the wedge angles are only fractions of a degree apart, a resolution as yet unreachable even by
sophisticated experiments (cf. [?, 8]). For this reason, it is impossible to distinguish experimentally
between the sonic and detachment criteria clearly, as pointed out in [8]. In this regard, the neces-
sary approach to understand fully the shock reflection-diffraction phenomena, especially the transition
criteria, is via rigorous mathematical analysis. To achieve this, it is essential to formulate the shock
reflection-diffraction problem as a free boundary problem and establish the global existence, regularity,
and structural stability of its solution.

Mathematically, the shock reflection-diffraction problem is a two-dimensional lateral Riemann prob-
lem in domain R2zW .

Problem 4.1 (Two-Dimensional Lateral Riemann Problem). Piecewise constant initial data, consisting
of state p0q with velocity u0 � p0, 0q on tx1 ¡ 0uzW and state p1q with velocity u1 � pu1, 0q on tx1   0u
connected by a shock at x1 � 0, are prescribed at t � 0. Seek a solution of the Euler system (4.1)–(4.2)
for t ¥ 0 subject to these initial data and the boundary condition ∇Φ � ν � 0 on BW .
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In order to define the notion of weak solutions of Problem 4.1, it is noted that the boundary condition
can be written as ρ∇Φ � ν � 0 on BW , which is spatial conormal to equation (4.5). Then we have

Definition 4.2 (Weak Solutions of Problem 4.1). A function Φ PW 1,1
loc pR��pR2zW qq is called a weak

solution of Problem 4.1 if Φ satisfies the following properties:

(i) B � �BtΦ� 1
2 |∇xΦ|2� ¥ hp0�q a.e. in R� � pR2zW q.

(ii) For ρpBtΦ,∇xΦq determined by (4.4),

pρpBtΦ, |∇xΦ|2q, ρpBtΦ, |∇xΦ|2q|∇xΦ|q P pL1
locpR� � R2zW qq2.

(iii) For every ζ P C8
c pR� � R2q,» 8

0

»
R2zW

�
ρpBtΦ, |∇xΦ|2qBtζ � ρpBtΦ, |∇xΦ|2q∇Φ �∇ζ

	
dxdt�

»
R2zW

ρp0,xqζp0,xqdx � 0,

where

ρ|t�0 �
#
ρ0 for |x2| ¡ x1 tan θw and x1 ¡ 0,

ρ1 for x1   0.

Remark 4.3. Since ζ does not need to be zero on BΛ, the integral identity in Definition 4.2 is a weak
form of equation (4.5) and the boundary condition ρ∇Φ � ν � 0 on BW .

Remark 4.4. A weak solution is called an entropy solution if it satisfies the entropy condition that is
consistent with the second law of thermodynamics pcf. [35,52,53,73]q. In particular, a piecewise smooth
solution is an entropy solution if the discontinuities are all shocks.

Notice that Problem 4.1 is invariant under scaling (4.6), so it admits self-similar solutions determined
by equation (4.8) with (4.9), along with the appropriate boundary conditions, through (4.7). We now
show how such solutions in self-similar coordinates ξ � pξ1, ξ2q � x

t can be constructed.
First, by the symmetry of the problem with respect to the ξ1–axis, we consider only the upper half-

plane tξ2 ¡ 0u and prescribe the boundary condition: ϕν � 0 on the symmetry line tξ2 � 0u. Note
that state (1) satisfies this condition. Then Problem 4.1 is reformulated as a boundary value problem
in the unbounded domain:

Λ :� R2
�ztξ : |ξ2| ¤ ξ1 tan θw, ξ1 ¡ 0u

in the self-similar coordinates ξ � pξ1, ξ2q, where R2� :� R2 X tξ2 ¡ 0u. The incident shock in the
self-similar coordinates is the half-line S0 � tξ1 � ξ0

1u X Λ, where

ξ0
1 � ρ1

d
2pc2

1 � c2
0q

pγ � 1qpρ2
1 � ρ2

0q
� ρ1u1

ρ1 � ρ0
, (4.18)

which is determined by the Rankine-Hugoniot conditions between states (0) and (1) on S0. Then
Problem 4.1 for self-similar solutions becomes the following problem:

Problem 4.2 (Boundary Value Problem). Seek a solution ϕ of equation (4.8)–(4.9) in the self-similar
domain Λ with the slip boundary condition Dϕ � ν|BΛ � 0 and the asymptotic boundary condition at
infinity:

ϕÑ ϕ̄ �
#
ϕ0 for ξ1 ¡ ξ0

1 , ξ2 ¡ ξ1 tan θw,

ϕ1 for ξ1   ξ0
1 , ξ2 ¡ 0,

when |ξ| Ñ 8,

where ϕ0 � �1
2 |ξ|2 and ϕ1 � �1

2 |ξ|2 � u1pξ1 � ξ0
1q.

A weak solution of Problem 4.2 is obtained by the following modification of Definition 4.1: (4.15) is
now required to hold for all ζ P C8

c pR2q. As discussed in Remark 4.3, with such a choice of function ζ,
the integral identity (4.15) includes both equation (4.8) and the boundary condition of conormal form:
ρDϕ � ν � 0 on BΛ. A weak solution is called entropy solution if it satisfies the entropy condition:
density ρ increases in the pseudo-flow direction of Dϕ|Λ�XS across any discontinuity curve (i.e., shock).
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Figure 4.1. Supersonic regular
shock reflection-diffraction configu-
ration

Figure 4.2. Subsonic regu-
lar shock reflection-diffraction
configuration

Now we describe the more detailed structure of the regular reflection-diffraction configurations as
shown in Figs. 4.1–4.2. If a solution has one of the regular shock reflection-diffraction configurations,

and if its pseudo-potential ϕ is C1 in the subregion pΩ between the wedge and the reflected shock,
then, at P0, it should satisfy both the slip boundary condition on the wedge and the Rankine-Hugoniot
conditions with state p1q across the flat shock S1 � tϕ1 � ϕ2u, which passes through point P0 where
the incident shock meets the wedge boundary. Define the uniform state (2) with pseudo-potential ϕ2pξq
such that

ϕ2pP0q � ϕpP0q, Dϕ2pP0q � lim
PÑP0, PPpΩ

DϕpP q.

Then the constant density ρ2 of state (2) is equal to ρp|Dϕ|2, ϕqpP0q defined by (4.8):

ρ2 � ρp|Dϕ2|2, ϕ2qpP0q.
From the properties of ϕ discussed above, it follows that Dϕ2 � ν � 0 on the wedge boundary and the
Rankine-Hugoniot conditions (4.16)–(4.17) hold on the flat shock S1 � tϕ1 � ϕ2u between states (1)
and (2), which passes through P0. In particular, ϕ2 satisfies the following three conditions at P0:

Dϕ2 � νw � 0, ϕ2 � ϕ1, ρp|Dϕ2|2, ϕ2qDϕ2 � νS1 � ρ1Dϕ1 � νS1 for νS1 � Dpϕ1�ϕ2q
|Dpϕ1�ϕ2q| . (4.19)

where νw is the outward normal to the wedge boundary.

The entropy solution ϕ, correspondingly state (2), can be either supersonic or subsonic at P0. This
determines the supersonic or subsonic type of regular shock reflection-diffraction configurations. The
regular reflection solution in the supersonic region is expected to consist of the constant states separated
by straight shocks (cf. [98, Theorem 4.1]). Then, when state (2) is supersonic at P0, it can be shown that
the constant state (2), extended up to arc P1P4 of the sonic circle of state (2) between the wall and the
straight shock P0P1 � S1 separating it from state (1), as shown in Fig. 4.1, satisfies equation (4.8) in the
region, the Rankine-Hugoniot condition (4.16)–(4.17) on the straight shock P0P1, and the slip boundary
condition: Dϕ2 �νw � 0 on the wedge P0P4, and is expected to be a part of the regular shock reflection-
diffraction configuration. Then the supersonic regular shock reflection-diffraction configuration on Fig.
4.1 consists of three uniform states (0), (1), (2), and a non-uniform state in domain Ω � P1P2P3P4

where equation (4.8) is elliptic. The reflected shock P0P1P2 has a straight part P0P1. The elliptic
domain Ω is separated from the hyperbolic region P0P1P4 of state (2) by the sonic arc P1P4 which
lies on the sonic circle of state (2), and the ellipticity in Ω degenerates on the sonic arc P1P4. The
subsonic regular shock reflection-diffraction configuration as shown in Fig. 4.2 consists of two uniform
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Location of
incident shock

Reflected
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Figure 4.3. Normal reflection configuration (cf. [35])

states (0) and (1), and a non-uniform state in domain Ω � P0P2P3, where the equation is elliptic, and
ϕ|ΩpP0q � ϕ2pP0q and Dpϕ|ΩqpP0q � Dϕ2pP0q.

For the supersonic regular shock reflection-diffraction configurations in Fig. 4.1, we use Γsonic, Γshock,
Γwedge, and Γsym for the sonic arc P1P4, the curved part of the reflected shock P1P2, the wedge boundary
P3P4, and the symmetry line segment P2P3, respectively.

For the subsonic regular shock reflection-diffraction configurations in Fig. 4.2, Γshock, Γwedge, and
Γsym denote P0P2, P0P3, and P2P3, respectively. We unify the notations with the supersonic reflection
case by introducing points P1 and P4 for the subsonic reflection case as

P1 :� P0, P4 :� P0, Γsonic :� tP0u. (4.20)

The corresponding solution for θw � π
2 is called normal reflection. In this case, the incident shock

normally reflects from the flat wall; see Fig. 4.3. The reflected shock is also a plane tξ1 � ξ̄1u, where
ξ̄1   0.

From the discussion above, it follows that a necessary condition for the existence of a regular reflection
solution is the existence of the uniform state (2) with pseudo-potential ϕ2 determined by the boundary
condition Dϕ2 � ν � 0 on the wedge and the Rankine-Hugoniot conditions (4.16)–(4.17) across the flat
shock S1 � tϕ1 � ϕ2u separating it from state (1), and satisfying the entropy condition: ρ2 ¡ ρ1. These
conditions lead to the system of algebraic equations (4.19) for the constant velocity u2 and density ρ2

of state (2). System (4.19) has solutions for some but not all of the wedge angles. More specifically,
for any fixed densities 0   ρ0   ρ1 of states (0) and (1), there exist a sonic angle θs

w and a detachment
angle θd

w satisfying

0   θd
w   θs

w   π

2
such that the algebraic system (4.19) has two solutions for each θw P pθd

w,
π
2 q, which become equal when

θw � θd
w. Thus, for each θw P pθd

w,
π
2 q, there exist two states (2), called weak and strong, with densities

ρweak
2   ρstrong

2 . The weak state (2) is supersonic at the reflection point P0pθwq for θw P pθs
w,

π
2 q, sonic

for θw � θs
w, and subsonic for θw P pθd

w, θ̂
s
wq for some θ̂s

w P pθd
w, θ

s
ws. The strong state (2) is subsonic at

P0pθwq for all θw P pθd
w,

π
2 q.

There had been a long debate to determine which of the two states (2) for θw P pθd
w,

π
2 q, weak or

strong, is physical for the local theory; see [8,35,52] and the references cited therein. It was conjectured
that the strong shock reflection-diffraction configuration would be non-physical; indeed, it is shown
in Chen-Feldman [33, 35] that the weak shock reflection-diffraction configuration tends to the unique
normal reflection in Fig. 4.3, but the strong reflection-diffraction configuration does not, when the
wedge angle θw tends to π

2 . The entropy condition and the definition of weak and strong states (2)

imply that 0   ρ1   ρweak
2   ρstrong

2 , which shows that the strength of the corresponding reflected shock
near P0 in the weak shock reflection-diffraction configuration is relatively weak, compared to the other
shock given by the strong state (2).
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If the weak state (2) is supersonic, the propagation speeds of the solution are finite, and state (2)
is completely determined by the local information: state (1), state (0), and the location of point P0.
That is, any information from the reflection-diffraction region, particularly the disturbance at corner
P3, cannot travel towards the reflection point P0. However, if it is subsonic, the information can
reach P0 and interact with it, potentially altering the subsonic reflection-diffraction configuration. This
argument motivated the following conjecture by von Neumann in [105,106]:

The Sonic Conjecture: There exists a supersonic regular shock reflection-diffraction configuration
when θw P pθs

w,
π
2 q for θs

w ¡ θd
w. That is, the supersonicity of the weak state (2) implies the existence of

a supersonic regular reflection solution, as shown in Fig. 4.1.

Another conjecture is that the global regular shock reflection-diffraction configuration is possible
whenever the local regular reflection at the reflection point is possible:

The von Neumanm Detachment Conjecture: There exists a regular shock reflection-diffraction
configuration for any wedge angle θw P pθd

w,
π
2 q. That is, the existence of state (2) implies the existence

of a regular reflection solution, as shown in Figs. 4.1–4.2.

It is clear that the supersonic/subsonic regular shock reflection-diffraction configurations are not
possible without a local two-shock configuration at the reflection point on the wedge, so the detach-
ment conjecture is the weakest possible criterion for the existence of supersonic/subsonic regular shock
reflection-diffraction configurations.

From now on, for the given wedge angle θw P pθd
w,

π
2 q, state (2) represents the unique weak state (2)

and ϕ2 is its pseudo-potential. We now show how the solutions of regular shock reflection-diffraction
configurations can be constructed. This provides a solution to the von Neumann conjectures for po-
tential flow. Note that state (2) is obtained from the algebraic conditions described above, which
determine line S1 and the sonic arc P1P4 when state (2) is supersonic at P0, and the slope of Γshock

at P0 (arc P1P4 on the boundary of Ω becomes a corner point P0) when state (2) is subsonic at P0.
Thus, the unknowns are domain Ω (or equivalently, the curved part of the reflected shock Γshock) and
the pseudo-potential ϕ in Ω. Then, from (4.16)–(4.17), in order to construct a solution of Problem 4.2
of the supersonic or subsonic regular shock reflection-diffraction configuration, it suffices to solve the
following problem:

Problem 4.3 (Free Boundary Problem). For θw P pθd
w,

π
2 q, find a free boundary pcurved reflected shockq

Γshock � ΛX tξ1   ξ1P1u (Γshock � P1P2 on Fig. 4.1 and Γshock � P0P2 on Fig. 4.2q and a function ϕ
defined in region Ω as shown in Figs. 4.1–4.2 such that

(i) Equation (4.8) is satisfied in Ω, and the equation is strictly elliptic for ϕ in ΩzΓsonic,
(ii) ϕ � ϕ1 and ρDϕ � νs � ρ1Dϕ1 � νs on the free boundary Γshock,

(iii) ϕ � ϕ2 and Dϕ � Dϕ2 on P1P4 in the supersonic case as shown in Fig. 4.1 and at P0 in the
subsonic case as shown in Fig. 4.1,

(iv) Dϕ � νw � 0 on Γwedge, and Dϕ � νsym � 0 on Γsym,

where νs, νw, and νsym are the interior unit normals to Ω on Γshock, Γwedge, and Γsym, respectively.

Indeed, if ϕ is a solution of Problem 4.3, we define its extension from Ω to Λ by setting:

ϕ �

$''&''%
ϕ0 for ξ1 ¡ ξ0

1 and ξ2 ¡ ξ1 tan θw,

ϕ1 for ξ1   ξ0
1 and above curve P0P1P2,

ϕ2 in region P0P1P4,

(4.21)

where we have used the notational convention (4.20) for the subsonic reflection case, in which region
P0P1P4 is one point and curve P0P1P2 is P0P2; see Figs. 4.1–4.2. Also, ξ0

1 used in (4.21) is the location
of the incident shock (cf. (4.18)), and the extension by (4.21) is well-defined because of the requirement
that Γshock � ΛX tξ1   ξ1P1u in Problem 4.3.



42 GUI-QIANG G. CHEN AND MIKHAIL FELDMAN

Note that the conditions in Problem 4.3(ii) are the Rankine-Hugoniot conditions (4.16)–(4.17) on
Γshock between ϕ|Ω and ϕ1. Since Γshock is a free boundary and equation (4.8) is strictly elliptic for

ϕ in ΩzΓsonic, then two conditions — the Dirichlet and oblique derivative conditions — on Γshock are
consistent with one-phase free boundary problems for nonlinear elliptic PDEs of second order (cf. [1,3]).

In the supersonic case, the conditions in Problem 4.3(iii) are the Rankine-Hugoniot conditions on
Γsonic between ϕ|Ω and ϕ2. Indeed, since state (2) is sonic on Γsonic, then it follows from (4.16)–(4.17)
that no gradient jump occurs on Γsonic. Then, if ϕ is a solution of Problem 4.3, its extension by (4.21)
is a weak solution of Problem 4.2. From now on, we consider a solution of Problem 4.3 to be a function
defined in Λ by extension via (4.21).

Since Γsonic is not a free boundary (its location is fixed), it is not possible in general to prescribe two
conditions given in Problem 4.3(iii) on Γsonic for a second-order elliptic PDE. In the iteration problem,
we prescribe the condition: ϕ � ϕ2 on Γsonic, and then prove that Dϕ � Dϕ2 on Γsonic by exploiting
the elliptic degeneracy on Γsonic, as we describe below.

We observe that the key obstacle to prove the existence of regular shock reflection-diffraction con-
figurations as conjectured by von Neumann [105,106] is an additional possibility that, for some wedge
angle θa

w P pθd
w,

π
2 q, shock P0P2 may attach to the wedge vertex P3, as observed by experimental results

(cf. [103, Fig. 238]). To describe the conditions of such an attachment, we note that

ρ1 ¡ ρ0, u1 � pρ1 � ρ0q
d

2pργ�1
1 � ργ�1

0 q
ρ2

1 � ρ2
0

, c1 � ρ
γ�1
2

1 .

Then it follows from the explicit expressions above that, for each ρ0, there exists ρc ¡ ρ0 such that

u1 ¤ c1 if ρ1 P pρ0, ρ
cs; u1 ¡ c1 if ρ1 P pρc,8q.

If u1 ¤ c1, we can rule out the solution with a shock attached to the wedge vertex. This is based on
the fact that, if u1 ¤ c1, then the wedge vertex P3 � p0, 0q lies within the sonic circle Bc1ppu1, 0qq of

state (1), and Γshock does not intersect Bc1ppu1, 0qq, as we show below.

If u1 ¡ c1, there would be a possibility that the reflected shock could be attached to the wedge vertex
as the experiments show pe.g., [103, Fig. 238]q.

Thus, in [33,35], we have obtained the following results:

Theorem 4.1. There are two cases:

(i) If ρ0 and ρ1 are such that u1 ¤ c1, then the supersonic/subsonic regular reflection solution exists
for each wedge angle θw P pθd

w,
π
2 q. That is, for each θw P pθd

w,
π
2 q, there exists a solution ϕ of

Problem 4.3 such that

Φpt,xq � t ϕpx
t
q � |x|2

2t
for

x

t
P Λ, t ¡ 0

with

ρpt,xq �
�
ργ�1

0 � pγ � 1q�Φt � 1

2
|∇xΦ|2�	 1

γ�1

is a global weak solution of Problem 4.1 in the sense of Definition 4.2 satisfying the entropy
condition; that is, Φpt,xq is an entropy solution.

(ii) If ρ0 and ρ1 are such that u1 ¡ c1, then there exists θa
w P rθd

w,
π
2 q so that the regular reflection

solution exists for each wedge angle θw P pθa
w,

π
2 q, and the solution is of self-similar structure

described in (i) above. Moreover, if θa
w ¡ θd

w, then, for the wedge angle θw � θa
w, there exists an

attached solution, i.e., ϕ is a solution of Problem 4.3 with P2 � P3.

The type of regular shock reflection-diffraction configurations psupersonic as in Fig. 4.1 or subsonic as
in Fig. 4.2q is determined by the type of state (2) at P0:
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(a) For the supersonic and sonic reflection case, the reflected shock P0P2 is C2,α–smooth for some
α P p0, 1q and its curved part P1P2 is C8 away from P1. The solution ϕ is in C1,αpΩq X C8pΩq,
and is C1,1 across the sonic arc which is optimal; that is, ϕ is not C2 across sonic arc.

(b) For the subsonic reflection case pFig. 4.2q, the reflected shock P0P2 and solution ϕ in Ω is in C1,α

near P0 and P3 for some α P p0, 1q, and C8 away from tP0, P3u.
Moreover, the regular reflection solution tends to the unique normal reflection pas in Fig. 4.3) when
the wedge angle θw tends to π

2 . In addition, for both supersonic and subsonic reflection cases,

ϕ2   ϕ   ϕ1 in Ω. (4.22)

Furthermore, ϕ is an admissible solution in the sense of Definition 4.8 below, so that ϕ satisfies further
properties listed in Definition 4.8.

Theorem 4.1 is proved by solving Problem 4.3. The first results on the existence of global solutions
of the free boundary problem (Problem 4.3) were obtained for the wedge angles sufficiently close to π

2
in Chen-Feldman [33]. Later, in Chen-Feldman [35], these results were extended up to the detachment
angle as stated in Theorem 4.1. For this extension, the techniques developed in [33], notably the
estimates near the sonic arc, were the starting point.

Case I: The wedge angles close to π
2 . Let us first discuss the techniques in [33], where we employ

the approach of Chen-Feldman [29] to develop an iteration scheme for constructing a global solution of
Problem 4.3, when the wedge angle θw is close to π

2 . For this case, the solutions are of the supersonic
regular shock reflection-diffraction configuration as in Fig. 4.1. The general procedure is similar to the
one described in §2.2, which can be presented in the following four steps:

1. Fix θw sufficiently close to π
2 so that various constants in the argument can be controlled. The

iteration set consists of functions defined on a region D, where D contains all possible Ω for the fixed θw.
Specifically, an important property of the regular shock reflection-diffraction configurations is (4.22),
which implies that Ω � tϕ2   ϕ1u; that is, Ω lies below line S1 passing through P0 and P1 on Fig. 4.1.
Note that, when θw is close to π

2 , this line is close to the vertical reflected shock of normal reflection
on Fig. 4.3. Then D is defined as a region bounded by S1, Γsonic � P1P4, Γwedge � P3P4, and the
symmetry line ξ2 � 0. The iteration set is a set of functions ϕ on D, defined by ϕ ¥ ϕ2 on D and the
bound of norm of ϕ � ϕ2 on D in the scaled and weighted C2,α space defined in (4.38) below. Such
functions satisfy

}ϕ� ϕ2}C1,αpDq ¤ Cpπ
2
� θwq,

which is small when π
2 � θw ! 1, and

}ϕ� ϕ2}C1,1pDXNεpΓsonicqq   8.
However, }ϕ � ϕ2}C1,1pDXNεpΓsonicqq is not small even if π

2 � θw is small; the reasons for that will be

discussed below.
Given a function ϕ̂ from the iteration set, we define domain Ωpϕ̂q :� tϕ̂   ϕ1u so that the iteration

free boundary is Γshockpϕ̂q � BΩpϕ̂qXD. This is similar to (2.41), and the corresponding non-degeneracy
similar to (2.40) in the present case is:

Bξ1pϕ1 � ϕ2 � φq ¥ u1

2
in D if }φ}C1pDq and π

2 � θw are small.

Then we define the iteration equation by using form (4.12) of equation (4.8), by making an elliptic
truncation (which is somewhat different from Step 1 in §2.2) and substituting ϕ̂ in some terms of the
coefficients of (4.12). The iteration boundary condition on Γshockpϕ̂q is an oblique derivative condition
obtained by combining two conditions in Problem 4.3(ii) and making some truncations. On Γsonic, we
prescribe ϕ � ϕ2, i.e., one of two conditions in Problem 4.3(iii). On Γwedge and Γsympϕ̂q, we prescribe
the conditions given in Problem 4.3(iv). The iteration map: ϕ̂Ñ ϕ is defined by solving the iteration
problem to obtain ϕ and then extending ϕ from Ωpϕ̂q to D.
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The fundamental differences between the iteration procedure in the shock reflection-diffraction prob-
lem and the previous procedures on transonic shocks in the steady case in §2–§3 (such as [29,30,32,111]
and follow-up papers) include:

(i) The procedures on steady transonic shocks in §2–§3 are for the perturbation case. In particular,
the ellipticity of the iteration equation and the removal of the elliptic cutoff are achieved by making
the iteration set sufficiently close to the background solution in C1 or a stronger norm. For the
regular reflection problem, this cannot be done because of the elliptic degeneracy near the sonic
arc.

(ii) Only one condition on Γsonic can be prescribed; however, both ϕ � ϕ2 and Dϕ � Dϕ2 on Γsonic

are needed to be matched to obtain a global entropy solution. This is resolved by exploiting the
elliptic degeneracy on Γsonic.

2. In order to see the elliptic degeneracy on Γsonic more explicitly, we fix the wedge angle θw and the

corresponding pseudo-potential ϕ2 � ϕ
pθwq
2 of the weak state (2), and rewrite equation (4.10) in terms

of the function:

ψ � ϕ� ϕ2

in the following coordinates flattening Γsonic:

x � c2 � r, y � θ � θw, (4.23)

where pr, θq are the polar coordinates centered at O2 � u2 of the sonic circle of state (2). Then

Ωε :� ΩXNεpΓsonicq � tx ¡ 0u for small ε ¡ 0, Γsonic � tx � 0u.

In what follows, we always assume that ϕ P C1,1pΩεq as in Theorem 4.1 for the supersonic case. Then,
by the conditions in Problem 4.3(iii) and the definition of ψ,

ψ � 0 on Γsonic, (4.24)

Dψ � 0 on Γsonic. (4.25)

Moreover, we a priori assume that solution ϕ satisfies (4.22) in Ω to derive the required estimates of
the solution; with these estimates, we then construct such a solution and verify that it satisfies (4.22).
The heuristic motivation of (4.22) is the following: From Figs. 4.1–4.2, it appears that Γshock (and
hence Ω) is located below line S1, i.e., in the half-plane tϕ1 ¡ ϕ2u. Thus, ϕ � ϕ1 ¡ ϕ2 on Γshock, and
ϕ1 ¡ ϕ2 � ϕ on Γsonic. Also, the potential functions φ1 and φ2 of states (1) and (2) are linear functions,
thus they satisfy equation (4.12) with coefficients determined by ϕ, considered as a linear equation for
φ. Taking into account the inequalities on Γshock and Γsonic noted above, and the oblique boundary
conditions on Γwedge and Γsym, we obtain (4.22) by the maximum principle. Then, from (4.22), we have

ψ ¡ 0 in Ω. (4.26)

Even though the previous argument is heuristic, the fact that it comes from the structure of the problem
allows us to include the condition that ψ ¥ 0 in the definition of the iteration set and close the iteration
argument for constructing the solutions within this set.

Equation (4.10) in ΩXNεpΓsonicq for ψ in the px, yq–coordinates (4.23) is

�
2x� pγ � 1qψx �O1

�
ψxx �O2ψxy � p 1

c2
�O3qψyy � p1�O4qψx �O5ψy � 0, (4.27)
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where

O1pDψ,ψ, xq � �x
2

c2
� γ � 1

2c2
p2x� ψxqψx � γ � 1

c2

�
ψ � 1

2pc2 � xq2ψ
2
y

	
,

O2pDψ,ψ, xq � �2pψx � c2 � xqψy
c2pc2 � xq2 ,

O3pDψ,ψ, xq � 1

c2pc2 � xq2
�
xp2c2 � xq � pγ � 1q�ψ � pc2 � xqψx � 1

2
ψ2
x

�� γ � 1

2pc2 � xq2ψ
2
y

	
,

O4pDψ,ψ, xq � 1

c2 � x

�
x� γ � 1

c2

�
ψ � pc2 � xqψx � 1

2
ψ2
x �

pγ � 1qψ2
y

2pγ � 1qpc2 � xq2
�	
,

O5pDψ,ψ, xq � �2pψx � c2 � xqψy
c2pc2 � xq3 .

(4.28)

Since ψ P C1,1pΩεq, it follows from (4.24)–(4.25) that |ψpx, yq| ¤ Cx2 and

|Dψpx, yq| ¤ Cx in Ωε, (4.29)

so that
|O1pDψ,ψ, xq| ¤ N |x|2, |OkpDψ,ψ, xq| ¤ N |x| for k � 2, . . . , 5. (4.30)

Using (4.30), we can show that OkpDψ,ψ, xq are small perturbations of the leading terms of equation
(4.27) in Ωε � ΩXNεpΓsonicq. Also, if (4.29) holds, equation (4.27) is strictly elliptic in ΩεzΓsonic if

ψxpx, yq ¤ 2µ

γ � 1
x (4.31)

for µ P p0, 1q, when ε � εpµ,Nq is small. For θw close to π
2 , it can be shown that any solution of

Problem 4.3 (with some natural regularity properties) satisfies that, for any small δ ¡ 0,

|ψxpx, yq| ¤ 1� δ

γ � 1
x in Ωε for small ε � εpδq, (4.32)

which verifies (4.31) with any µ P p1
2 , 1q (e.g., with µ � 2

3) if δ is correspondingly small.

3. The iteration equation near Γsonic is defined based on the above facts. The iteration set KM used
in [33] is such that every ψ̂ � ϕ̂ � ϕ2 P KM satisfies (4.24) and (4.29) for some C, ε ¡ 0. Then the
iteration equation for ψ is�

2x� pγ � 1qxηpψx
x
q �O

pψ̂q
1

�
ψxx �O

pψ̂q
2 ψxy � p 1

c2
�O

pψ̂q
3 qψyy � p1�O

pψ̂q
4 qψx �O

pψ̂q
5 ψy � 0, (4.33)

where the cutoff function η P C8pRq satisfies |η| ¤ 5
3pγ�1q , η

1 ¥ 0, and ηpsq � s if |s| ¤ 4
3pγ�1q , and some

other technical conditions. The terms O
pψ̂q
k , k � 1, . . . , 5, are obtained from Ok by substituting ψ̂ into

certain terms in (4.28) and performing the cutoff in the remaining terms, so that estimates (4.30) hold.
Then (4.33) is strictly elliptic in ΩεzΓsonic for small ε, and its ellipticity degenerates on Γsonic. Since
the solution of Problem 4.3 satisfies equation (4.27) and inequality (4.32) with δ � 1

3 in Ωε for small

ε, then it satisfies equation (4.33) in Ωε with ψ̂ � ψ. Indeed, we have the estimate: |ψx| ¤ 4
3pγ�1qx, so

that xηpψxx q � ψx; and the cutoffs in the terms of O
pψ̂q
k are removed similarly.

We also note that the degenerate ellipticity structure of equation (4.33) is the following: Writing
(4.33) in the form

2̧

i,j�1

AijpDψ,ψ, xqDijψ �
2̧

i�1

AipDψ,ψ, xqDiψ � 0 (4.34)

with A12 � A21, we see that, for any ξ � pξ1, ξ2q P R2,

λ|ξ|2 ¤ A11pp, z, xqξ
2
1

x
� 2A12pp, z, xqξ1ξ2

x1{2 �A22pp, z, xqξ2
2 ¤

1

λ
|ξ|2 (4.35)
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for all pp, zq P R2 � R and x P p0, εq.
We consider solutions of (4.33) in Ωε satisfying (4.24) and (4.26). Since condition (4.25) can not

be prescribed in the iteration problem as discussed above, we have to obtain (4.25) from the estimates
of the solutions by exploiting the elliptic degeneracy. The estimates of the positive solutions of (4.33)
with (4.24) in Ωε are based on the fact that, for any δ ¡ 0, the function:

wδpx, yq � 1� δ

2pγ � 1qx
2

is a supersolution of (4.33) in Ωε if ε � εpδq is small; that is, N pwδq   0 in Ωε, where N p�q denotes the
operator determined by the left-hand side of (4.33). Using this, the boundary conditions on Γshock and
Γwedge, and (4.26), we obtain by the comparison principle that

0 ¤ ψ ¤ Cx2 in Ωε, (4.36)

where ε and C are uniform with respect to the wedge angles near π
2 . Note that �wδ is not a subsolution

of (4.27) so that it cannot be used to bound ψ from below. Thus, property (4.26), which is derived
from the global structure of the solution, is crucially used in this argument. Then, in (4.36), the upper
bound is from the local estimates near Γsonic, while the lower bound is from the global structure of the
problem.

In particular, (4.36) implies that Dψ � 0 on Γsonic, which resolves the issue described in (ii) above.
Furthermore, from (4.36), using the non-isotropic parabolic rescaling corresponding to the elliptic de-
generacy (4.35) of equation (4.33) near x � 0, we obtain the estimates in the appropriately weighted
and scaled Hölder norm in Ωε, which also imply the uniform C1,1 estimates:

|D2ψ| ¤ C in Ωε. (4.37)

More precisely, we denote this norm by }ψ}pparq
2,α,Ωε

and define it as follows: Denote z � px, yq and

z̃ � px̃, ỹq with x, x̃ P p0, 2εq and

δpparq
α pz, z̃q :� �|x� x̃|2 �maxpx, x̃q|y � ỹ|2�α{2 .

Then, for ψ P C2pΩεq X C1,1pΩεq written in the px, yq–coordinates, we define

}ψ}pparq
2,0,Ωε

:�
¸

0¤k�l¤2

sup
zPΩε

�
xk�l{2�2|BkxBlyψpzq|

	
,

rψspparq
2,α,Ωε

:�
¸

k�l�2

sup
z,z̃PΩε,z�z̃

�
minpxk�l{2�2, x̃k�l{2�2q |B

k
xBlyψpzq � BkxBlyψpz̃q|

δ
pparq
α pz, z̃q



,

}ψ}pparq
2,α,Ωε

:� }ψ}pparq
2,0,Ωε

� rψspparq
2,α,Ωε

.

(4.38)

Now we obtain the required estimates in the norm in (4.38), under the assumption that (4.36) holds
in Ω2ε. For every z0 � px0, y0q P ΩεzΓsonic (so that x0 P p0, εs), we define

Rz0 �
!
px, yq : |x� x0|   x0

10
, |y � y0|  

?
x0

10

)
X Ω. (4.39)

Note that distpRz0 ,Γsonicq � 9
10x0 ¡ 0. We rescale the rectangle in (4.39) to the unit square Q1 �

p�1, 1q2:

Q
pz0q
1 :�

!
pS, T q P Q1 : px0 � x0

10
S, y0 �

?
x0

10
T q P Ω

)
, (4.40)

and define the scaled version of ψ in the pS, T q–coordinates in Q
pz0q
1 :

ψpz0qpS, T q :� 1

x2
0

ψpx0 � x0

10
S, y0 �

?
x0

10
T q for pS, T q P Qpz0q

1 . (4.41)
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Note that this rescaling is non-isotropic with respect to the two variables x and y. By (4.36), we have

}ψpz0q}
L8pQpz0q

1 q
¤ C for any z0 � px0, y0q P ΩεzΓsonic. (4.42)

Rewriting equation (4.33) in terms of ψpz0q in the pS, T q–coordinates and noting the degenerate elliptic-

ity structure (4.35), we find that ψpz0q satisfies a uniformly elliptic equation in Q
pz0q
1 with the ellipticity

constants and certain Hölder norms of the coefficients independent of z0. We also rescale the boundary
conditions on Γshock X BΩε and Γwedge X BΩε in a similar way, when z0 is on the corresponding part of

the boundary. Then we apply the local elliptic C2,α–estimates for ψpz0q in Q
pz0q
1 in the following cases:

(i) Interior rectangles Rz0 , i.e., all z0 such that Q
pz0q
1 � Q1 holds,

(ii) Rectangles Rz0 centered on the shock: z0 P Γshock X BΩε,

(iii) Rectangles Rz0 centered on the wedge: z0 P Γwedge X BΩε,

where, in the last two cases, we use the local estimates for the corresponding boundary value problems.
Using (4.42), we obtain

}ψpz0q}
C2,αpQpz0q

1{2
q
¤ C with C independent of z0,

where Q
pz0q
1{2 � Q

pz0q
1 X p�1

2 ,
1
2q2. Rewriting in terms of ψ in the px, yq–coordinates and combining the

estimates for all z0 as above, we obtain the estimate: }ψ}pparq
2,α,Ωε

¤ C in norm (4.38), which also implies

the C1,1–estimates (4.37).

Remark 4.5. Note that ψ
pz0q
SS pS, T q � 1

100ψxxpx0 � x0
10S, y0 �

?
x0

10 T q. It follows that }D2ψ}L8 cannot
be made small by choosing the parameters, e.g., choosing ε small or θw close to π

2 .

Remark 4.6. The above argument, starting from (4.39), is also used for the a priori estimates of the
positive solutions of (4.27)–(4.28) with condition (4.24), satisfying (4.29) and the ellipticity condition
(4.31) with some µ P p0, 1q. Note that (4.24), (4.29), and ψ ¥ 0 imply (4.36), which is used in the
argument.

Remark 4.7. Remark 4.6 applies only to the positive solutions of (4.27) with condition (4.24). For
the negative solutions of (4.27) with condition (4.24), the equation is uniformly elliptic up to tx � 0u
and, similar to Hopf’s lemma, the negative solutions have linear growth: |ψpx, yq| ¥ 1

Cx, in a contrast
with (4.36). This feature is used in the proof of certain geometric properties of the free boundary for
the wedge angles away from π

2 , where we note that ϕ� ϕ1   0 by (4.22).

4. In order to remove the ellipticity cutoff in (4.33), i.e., to show that the fixed point solution of

(4.33) (i.e., with ψ � ψ̂) actually satisfies (4.27), we need to show that |ψx| ¤ 4
3pγ�1qx, as we have

discussed right after (4.33). Combining (4.37) with Dψ � 0 on Γsonic, we obtain that |Dψpx, yq| ¤ Cx
in Ωε, which does not remove the ellipticity cutoff, unless we show the explicit bound C ¤ 4

3pγ�1q .
However, this bound does not follow from the estimates discussed above (cf. Remark 4.5).

Note that the only explicit solution we know is the normal reflection for θw � π
2 , for which ϕ � ϕ

pπ
2
q

2 ,
i.e., ψ � 0 in Ω. Also, the analysis in Bae-Chen-Feldman [5] has shown that the solutions of Problem
4.3 for the supersonic regular shock reflection-diffraction configuration satisfy that, for small ε,

ψx ∼
x

γ � 1
in Ωε X tpx, yq : dist ppx, yq,Γshockq ¡

?
xu,

but
Dψ � opxq in Ωε X tpx, yq : dist ppx, yq,Γshockq   x2u.

This shows that the convergence of solutions ϕpθwq of Problem 4.3 to ϕp
π
2
q as θw Ñ π

2
� does not hold

in C2 up to the sonic arc Γsonic (but holds in C1,α) after mapping Ωpθwq to a fixed domain for all θw.
Moreover, the difference between the behaviors of Dψ near Γshock and away from Γshock within Ωε
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shows that there is no clear background solution such that the appropriate iteration set would lie in
its small neighborhood in the norm sufficiently strong to remove the ellipticity cutoff in (4.33) by the
smallness of the norm. Then, in order to remove the ellipticity cutoff for the fixed point of the iteration,
we derive an equation for ψx in Ωε and boundary conditions on Γshock X tx   εu and Γwedge X tx   εu,
and prove that

ψx ¤ 4

3pγ � 1qx
from this boundary value problem, if the wedge angle θw is sufficiently close to π

2 . The estimate from
below:

ψx ¥ � 4

3pγ � 1qx
is proved from the global setting of Problem 4.3 under the same condition on θw. This use of the local
and global structure is similar to that in the proof of (4.36).

Note that, in this argument for the wedge angles near π
2 , the non-perturbative nature of the problem

is seen only in the estimates of the solution near Γsonic, specifically in the fact that D2ψ on Γsonic

does not tend to zero as θw Ñ π
2 . The free boundary Γshock in this case is near S1pθwq, and also close

to the reflected shock of the normal reflection as in Fig. 4.3, which is the vertical line S1pπ2 q. Also,

}ϕ�ϕpθwq2 }C1pΩq ¤ Cpπ2 � θwq, which is small. Thus, away from Γsonic, the argument is perturbative for
the wedge angles near π

2 . In the case of general wedge angles in Theorem 4.1, the free boundary Γshock

is no longer close to a line, its structure is not known a priori, thus the study of geometric properties
of the free boundary is a part of the argument.

Case II. General wedge angles up to the detachment angle. For the general case and the
proof of Theorem 4.1, we follow the approach introduced in Chen-Feldman [35]. Similar to the case of
wedge angles near π

2 where we have restricted our consideration to the class of solutions satisfying ψ ¥ 0
in Ω and established the existence of such solutions, for the general case, we define a class of admissible
solutions, make the necessary a priori estimates of such solutions, and then employ these estimates to
prove the existence of solutions in this class. Our motivation for the definition of admissible solutions
is from the following properties of supersonic regular reflection solutions ϕ for the wedge angles close to
π
2 ; or more generally, for the supersonic regular reflection solutions ϕ satisfying that }ϕ�ϕpθwq2 }C1pΩq is

small: If (4.8) is strictly elliptic for ϕ in ΩzΓsonic, then ϕ satisfies (4.22) and the monotonicity properties:

Bξ2pϕ1 � ϕq ¤ 0, Dpϕ1 � ϕq � eS1 ¤ 0 in Ω for eS1 � P0P1
|P0P1| . (4.43)

We now present the outline of the proof of Theorem 4.1 in the following four steps:

1. Motivated by the discussion above, for the general case, we define the admissible solutions as the
solutions of Problem 4.3 (thus the solutions with weak regular reflection-diffraction configuration of
either supersonic or subsonic type) satisfying the following properties:

Definition 4.8. Let θw P pθd
w,

π
2 q. A function ϕ P C0,1pΛq is an admissible solution of the regular

reflection problem if ϕ is a solution of Problem 4.3 extended to Λ by (4.21) pwhere P0P1P4 is a point
in the subsonic and sonic casesq and satisfies the following properties:

(i) The structure of solutions:

 If |Dϕ2pP0q| ¡ c2, then ϕ is of the supersonic regular shock reflection-diffraction configuration
shown on Fig. 4.1 and satisfies that the curved part of reflected-diffracted shock Γshock is C2 in
its relative interior; curves Γshock, Γsonic, Γwedge, and Γsym do not have common points except

their endpoints; ϕ P C0,1pΛqXC1pΛzpS0YP0P1P2qq and ϕ P C1pΩqXC3pΩzpΓsonicYtP2, P3uqq.
 If |Dϕ2pP0q| ¤ c2, then ϕ is of the subsonic regular shock reflection-diffraction configuration

shown on Fig. 4.2 and satisfies that the reflected-diffracted shock Γshock is C2 in its relative
interior; curves Γshock, Γwedge, and Γsym do not have common points except their endpoints;

ϕ P C0,1pΛq X C1pΛzpS0 Y Γshockqq and ϕ P C1pΩq X C3pΩztP0, P3uq.
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Moreover, in both the supersonic and subsonic cases, the extended curve Γext
shock :� ΓshockYtP0uY

Γ�shock is C1 in its relative interior, where Γ�shock is the reflection of Γshock with respect to the
ξ1–axis.

(ii) Equation (4.8) is strictly elliptic in ΩzΓsonic, i.e., |Dϕ|   cp|Dϕ|2, ϕq in ΩzΓsonic.

(iii) Bνϕ1 ¡ Bνϕ ¡ 0 on Γshock, where ν is the normal to Γshock, pointing to the interior of Ω.

(iv) Inequalities hold:

ϕ2 ¤ ϕ ¤ ϕ1 in Ω. (4.44)

(v) (4.43) is satisfied, where vector eS1 is defined as the unit vector parallel to S1 and pointing into Λ
at P0 for the general case.

Note that (4.43) implies that

Dpϕ1 � ϕq � e ¤ 0 in Ω for all e P Conepeξ2 , eS1q, (4.45)

where Conepeξ2 , eS1q � ta eξ2 � b eS1 : a, b ¡ 0u with eξ2 � p0, 1q. Notice that eξ2 and eS1 are not
parallel if θw � π

2 .

2. To prove the existence of admissible solutions for each wedge angle in Theorem 4.1, we derive
uniform a priori estimates for admissible solutions with any wedge angle θw P rθd

w�σ, π2 s for each small
σ ¡ 0, show the compactness of this subset of admissible solutions in the appropriate norm, and then
apply the degree theory to establish the existence of admissible solutions for each θw P rθd

w � σ, π2 s,
starting from the unique normal reflection solution for θw � π

2 . To derive the a priori estimates for
admissible solutions, we first obtain the required estimates related to the geometry of shock Γshock and
domain Ω, as well as the basic estimates of solution ϕ. We prove:

(a) The inequality in (4.45) is strict for any e P Conepeξ2 , eS1q. Combined with the first inequality
in (4.44) and the fact that ϕ � ϕ1 on Γshock, this implies that Γshock is a Lipschitz graph with a
uniform Lipschitz estimate for all admissible solutions.

(b) The uniform bounds on diampΩq, }ϕ}C0,1pΩq, and the directional monotonicity of ϕ � ϕ2 near the
sonic arc for a cone of directions.

(c) The uniform positive lower bound for the distance between the shock and the wedge, and the
uniform separation of the shock and the symmetry line (that is, Γshock is away from a uniform
conical neighborhood of Γsym with vertex at their common endpoint P2);

(d) The uniform positive lower bound for the distance between the shock and the sonic circle Bc1ppu1, 0qq
of state (1), by using the properties described in Remark 4.7. This allows us to estimate the
ellipticity of (4.8) for ϕ in Ω (depending on the distance to the sonic arc P1P4 for the supersonic
regular shock reflection-diffraction configuration and to P0 for the subsonic regular shock reflection-
diffraction configuration).

(e) Estimate (4.29) holds in the supersonic case, by using the monotonicity of ψ � ϕ � ϕ2 near the
sonic arc in a cone of directions shown in (b) and the conditions on Γsonic in Problem 4.3.

The results of (a)–(c) are obtained via the maximum principle, by considering equation (4.12) as a
linear elliptic equation for φ and using the boundary conditions on Γshock, Γsonic, Γwedge, and Γsym in
Problem 4.3 and (4.44)–(4.45). The results of (c), combined with (a), show the structure of Ω which
allows us to perform the uniform local elliptic estimates in various parts of Ω: the interior, near a point
P in a relative interior of Γshock, Γwedge, and Γsym, and locally near corners P2 and P3.

Based on estimates (a)–(d), we show the uniform regularity estimates for the solution and the free
boundary in the weighted and scaled C2,α norms away from the sonic arc in the supersonic case and
away from P0 in the subsonic case, i.e., in ΩzΩε, for any small ε ¡ 0, for some α P p0, 1q. The equation
is uniformly elliptic in this region, with the ellipticity constant depending on ε. Thus, the estimates
depend on ε.

3. Below we discuss the estimates near Γsonic (resp. near P0 in the subsonic/sonic case), i.e., the
estimates in Ω2ε for some ε, independent of θw P rθd

w � σ, π2 s, which allows us to complete the uniform
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a priori estimates for admissible solutions with wedge angles θw P rθd
w �σ, π2 s. We obtain the estimates

near Γsonic (or P0 for the subsonic reflection), i.e., in Ω2ε, in scaled and weighted C2,α for ϕ and the

free boundary Γshock X BΩ2ε, by considering separately four cases depending on |Dϕ2|
c2

at P0:

(i) Supersonic: |Dϕ2|
c2

¥ 1� δ,

(ii) Supersonic (almost sonic): 1   |Dϕ2|
c2

  1� δ,

(iii) Subsonic (almost sonic, including sonic): 1� δ ¤ |Dϕ2|
c2

¤ 1,

(iv) Subsonic: |Dϕ2|
c2

¤ 1� δ,

for small δ ¡ 0 chosen so that the estimates can be obtained. The choice of δ determines ε.
For cases (i)–(ii), equation (4.8) is degenerate elliptic in Ω near P1P4 on Fig. 4.1. For case (iii),

except the sonic case |Dϕ2pP0q|
c2

� 1, the equation is uniformly elliptic in Ω, but the ellipticity constant

is small and tends to zero near P0 on Fig. 4.2 as
|Dϕpθwq2 pP0q|

c2
Ñ 1�, i.e., as the subsonic angles θw tend

to the sonic angle. Thus, for cases (i)–(iii), we exploit the local elliptic degeneracy, which allows us
to find a comparison function in each case, to show the appropriately fast decay of ϕ � ϕ2 near P1P4

for cases (i)–(ii) and near P0 for case (iii); furthermore, combining with appropriate local non-isotropic
rescaling to obtain the uniform ellipticity, we obtain the a priori estimates in the weighted and scaled
C2,α–norms. In cases (i)–(ii), the norms are (4.38). For case (iii), we use the different norms to obtain
the estimates that imply the standard C2,α–estimates. To obtain these estimates, for case (i), we use the
argument developed in Chen-Feldman [33] and described above (see Remark 4.6), where the ellipticity
estimate (4.31) follows from the estimates described in (d) above and (4.29) obtained in (e). These
estimates hold in Ωε with ε À plengthpΓsonicqq2 because the rectangles Rpx0,y0q defined by (4.39) do not
fit into Ω for larger x0, which means, for example, that Rpx0,y0qXΓwedge � H for px0, y0q P ΓshockXBΩε

with x0 ¥ CplengthpΓsonicqq2 if C is fixed and lengthpΓsonicq is small, because the length of the y-side

of Rpx0,y0q is
?
x0

10 , and Γshock and Γwedge are smooth curves that intersect Γsonic transversally. However,

lengthpΓsonicq tends to zero, as
|Dϕpθwq2 pP0q|

c2
Ñ 1�, i.e., when the supersonic wedge angle tends to the

sonic angle. Thus, a different argument, involving an appropriate scaling, is employed for case (ii) in
order to keep ε uniform for all θw P rθd

w � δ, π2 s. Another version of that argument (with a different
scaling) is applied for case (iii). For both cases (ii)–(iii), we need to use smaller rectangles than those
for case (i), but this requires stronger growth estimates than (4.36) to obtain a bound in C1,1 from the
corresponding weighted and scaled estimates. We obtain such growth estimates by using the conditions
of cases (ii)–(iii) for sufficiently small δ. For case (iv), the equation is uniformly elliptic in Ω for the
admissible solution, where the ellipticity constant is not small, and the estimates are more technically
challenging than those for cases (i)–(iii). This can be seen as follows: For all cases (i)–(iv), the free
boundary has a lower a priori regularity in the sense that only the Lipschitz estimate of Γshock is
obtained in (a) above; however, for case (iv), the uniform ellipticity combined with oblique boundary
conditions does not allow a comparison function that leads to the fast decay of |ϕ�ϕ2| near P0. Thus,
we prove the Cα–estimates of Dpϕ� ϕ2q near P0, by deriving the equations and boundary conditions
for two directional derivatives of ϕ � ϕ2 near P0, and performing the hodograph transform to flatten
the free boundary.

4. In order to prove the existence of solutions, we perform an iteration, which is an extension of the
iteration process used in Chen-Feldman [33]. First, given an admissible solution ϕ for the wedge angle
θw, we map its elliptic domain Ωpϕ, θwq to a unit square Q � p0, 1q2 so that, for the supersonic case,
the boundary parts Γshock, Γsonic, Γwedge, and Γsym are mapped to the respective sides of Q, and the

other properties of this map are satisfied. For the subsonic case, the map is discontinuous at P0 � Γsonic

(mapping the triangular domain to a square). Moreover, we define a function u on Q by expressing

u :� ϕ � ϕ̃
pθwq
2 in the coordinates on Q, where ϕ̃

pθwq
2 is a function determined by θw and equals to
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ϕ2 near Γsonic; we skip the complete technical definition here. For appropriate functions u on Q and
the wedge angle θw, this map can be inverted, i.e., the elliptic domain Ωpu, θwq and the iteration free

boundary Γshockpu, θwq can be determined, and a function ϕpu,θwq on Ωpu, θwq is defined by expressing u

in the coordinates on Ωpu, θwq and adding ϕ̃
pθwq
2 so that, if u is obtained from the admissible solution ϕ

with the elliptic domain Ω as described above, then Ωpu, θwq � Ω and ϕpu,θwq � ϕ in Ω. Moreover, the
map: Ωpu, θwq Ñ Q and its inverse satisfy certain continuity properties with respect to pu, θwq. The
iteration is performed in terms of the functions defined on Q. The iteration set consists of pairs pu, θwq,
where u is in a weighted and scaled C2,α space on Q, denoted as C2,α

�� (its definition is technical, so we
skip it here), and satisfy

(i) }u}
C2,α
��

¤ Mpθwq, where Mpθwq is defined explicitly, based on the a priori estimates discussed

above;
(ii) Ωpu, θwq, Γshockpu, θwq, and ϕpu,θwq on Ωpu, θwq satisfy some geometric and analytical properties.

The iteration map: pû, θwq Ñ pu, θwq is defined by solving the iteration problem on Ωpu, θwq and then
mapping its solution ϕ to a function u on Q. This mapping includes additional steps, compared to
the one described above. Specifically, we modify the iteration free boundary by using the solution ϕ of
the iteration problem so that, in the mapping: pϕ, θwq Ñ u, the resulting function u on Q keeps the
regularity obtained from solving the iteration problem. This yields the compactness of the iteration
map. We prove that, for a fixed point pu, θwq of the iteration map, ϕpu,θwq on Ωpu, θwq is an admissible
solution. We use the degree theory to establish the existence of admissible solutions as fixed points
of the iteration map for each θw P rθd

w � δ, π2 s, starting from the unique normal reflection solution for
θw � π

2 . The compactness of the iteration map described above is necessary for that. The a priori
estimates of admissible solutions discussed above are used in the degree theory argument in order to
define the iteration set such that a fixed point of the iteration map (i.e., admissible solution) cannot
occur on the boundary of the iteration set, since that would contradict the a priori estimates. With
all of these arguments, we complete the proof of Theorem 4.1. This provides a solution to the von
Neumann’s conjectures.

More details can be found in Chen-Feldman [35]; also see [33].

4.2. The Prandtl-Meyer Problem for Unsteady Supersonic Flow onto Solid Wedges. As
we discussed in §2–§3, steady shocks appear when a steady supersonic flow hits a straight wedge; see
Figure 3.1. Since both weak and strong steady shock solutions are stable in the steady regime, the static
stability analysis alone is not able to single out one of them in this sense, unless an additional condition
is posed on the speed of the downstream flow at infinity. Then the dynamic stability analysis becomes
more significant to understand the non-uniqueness issue of the steady oblique shock solutions. However,
the problem for the dynamic stability of the steady shock solutions for supersonic flow past solid wedges
involves several additional difficulties. The recent efforts have been focused on the construction of the
global Prandtl-Meyer reflection configurations in the self-similar coordinates for potential flow.

As we discussed earlier, if a supersonic flow with a constant density ρ0 ¡ 0 and a velocity u0 �
pu10, 0q, u10 ¡ c0 :� cpρ0q, impinges toward wedge W in (3.11), and if θw is less than the detachment
angle θd

w, then the well-known shock polar analysis shows that there are two different steady weak
solutions: the steady weak shock solution Φ̄ and the steady strong shock solution, both of which satisfy
the entropy condition and the slip boundary condition (see Fig. 3.1).

Then the dynamic stability of the weak transonic shock solution for potential flow can be formulated
as the following problem:

Problem 4.4 (Initial-Boundary Value Problem). Given γ ¡ 1, fix pρ0, u10q with u10 ¡ c0. For a fixed

θw P p0, θd
wq, let W be given by (3.11). Seek a global entropy solution Φ P W 1,8

loc pR� � pR2zW qq of Eq.

(4.5) with ρ determined by (4.4) and B � u210
2 � hpρ0q so that Φ satisfies the initial condition at t � 0:

pρ,Φq|t�0 � pρ0, u10x1q for x P R2zW, (4.46)
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and the slip boundary condition along the wedge boundary BW :

∇xΦ � νw|BW � 0, (4.47)

where νw is the exterior unit normal to BW .
In particular, we seek a solution Φ PW 1,8

loc pR� � pR2zW qq that converges to the steady weak oblique

shock solution Φ̄ corresponding to the fixed parameters pρ0, u10, γ, θwq with ρ̄ � h�1pB� 1
2 |∇Φ̄|2q, when

tÑ8, in the following sense: For any R ¡ 0, Φ satisfies

lim
tÑ8 }p∇xΦpt, �q �∇xΦ̄, ρpt, �q � ρ̄q}L1pBRp0qzW q � 0 (4.48)

for ρpt,xq given by (4.4).

Since the initial data functions in (4.46) do not satisfy the boundary condition (4.47), a boundary
layer is generated along the wedge boundary starting at t � 0, which forms the Prandtl-Meyer reflection
configurations; see Bae-Chen-Feldman [6] and the references cited therein.

Notice that the initial-boundary value problem, Problem 4.4, is invariant under scaling (4.6). Thus,
we study the existence of self-similar solutions determined by equation (4.8) with (4.9) through (4.7).

As the upstream flow has the constant velocity pu10, 0q, noting the choice of B in Problem 4.4, the
corresponding pseudo-potential ϕ0 has the expression of

ϕ0 � �1

2
|ξ|2 � u10ξ1 (4.49)

in self-similar coordinates ξ � x
t , as shown directly from (4.14). Notice also the symmetry of the

domain and the upstream flow in Problem 4.4 with respect to the x1–axis. Problem 4.4 can then be
reformulated as the following boundary value problem in the domain:

Λ :� R2
�ztξ : ξ2 ¤ ξ1 tan θw, ξ1 ¥ 0u

in the self-similar coordinates ξ, which corresponds to domain tpt,xq : x P R2�zW, t ¡ 0u in the
pt,xq–coordinates, where R2� � tξ : ξ2 ¡ 0u.

Problem 4.5 (Boundary Value Problem). Seek a solution ϕ of equation (4.8) in the self-similar domain
Λ with the slip boundary condition:

Dϕ � ν|BΛ � 0 (4.50)

and the asymptotic boundary condition:
ϕ� ϕ0 ÝÑ 0 (4.51)

along each ray Rθ :� tξ1 � ξ2 cot θ, ξ2 ¡ 0u with θ P pθw, πq as ξ2 Ñ8 in the sense that

lim
rÑ8 }ϕ� ϕ0}CpRθzBrp0qq � 0. (4.52)

In particular, we seek a global entropy solution of Problem 4.5 with two types of Prandtl-Meyer
reflection configurations whose occurrence is determined by the wedge angle θw for the two different
cases: One contains a straight weak oblique shock S0 attached to the wedge vertex O and connected
to a normal shock S1 through a curved shock Γshock when θw   θs

w, as shown in Fig. 4.4; the other
contains a curved shock Γshock attached to the wedge vertex and connected to a normal shock S1 when
θs

w ¤ θw   θd
w, as shown in Fig. 4.5, in which the curved shock Γshock is tangential to the straight weak

oblique shock S0 at the wedge vertex.
To seek a global entropy solution of Problem 4.5 with the structure of Fig. 4.4 or Fig. 4.5, one needs

to compute the pseudo-potential function ϕ below S0.
Given M0 ¡ 1, ρ1 and u1 are determined by using the shock polar as in Fig. 3.1 for steady potential

flow (note that the shock polar is now different from the one for the full Euler system but has the
same shape as in Fig. 3.1). Similar to those in §3.1, in the potential flow case, for any wedge angle
θw P p0, θs

wq, line u2 � u1 tan θw and the shock polar intersect at a point u1 with |u1| ¡ c1 and u11   u10;
while, for any wedge angle θw P rθs

w, θ
d
wq, they intersect at a point u1 with u11 ¡ u1d and |u1|   c1,

where u1d is the u1–component of the unique detachment state ud when θw � θd
w. The intersection



TRANSONIC SHOCK WAVES AND FREE BOUNDARY PROBLEMS 53

Figure 4.4. Self-similar solutions for θw P p0, θs
wq in the self-similar coordinates ξ (cf. [6])

Figure 4.5. Self-similar solutions for θw P rθs
w, θ

d
wq in the self-similar coordinates ξ (cf. [6])

state u1 is the velocity for steady potential flow behind an oblique shock S0 attached to the wedge
vertex with angle θw. The strength of shock S0 is relatively weak compared to the other shock given
by the other intersection point on the shock polar, hence we call S0 a weak oblique shock, and the
corresponding state u1 is a weak state.

We also note that states u1 depend smoothly on u10 and θw, and such states are supersonic when
θw P p0, θs

wq and subsonic when θw P rθs
w, θ

d
wq.

Once u1 is determined, by (4.17) and (4.49), the pseudo-potential ϕ1 below the weak oblique shock
S0 is

ϕ1 � �1

2
|ξ|2 � u1 � ξ. (4.53)

Similarly, by (4.16)–(4.17) and (4.49)–(4.50), the pseudo-potential ϕ2 below the normal shock S1 is of
the form:

ϕ2 � �1

2
|ξ|2 � u2 � ξ � k2 (4.54)

for constant state u2 and constant k2; see (4.14). Then it follows from (4.9) and (4.53)–(4.54) that the
corresponding densities ρ1 and ρ2 are constants, respectively. In particular, we have

ργ�1
k � ργ�1

0 � γ � 1

2

�
u2

10 � |uk|2
�

for k � 1, 2. (4.55)

Denote Γwedge :� BWXBΛ. Next, we define the sonic arcs Γ1
sonic � P1P4 on Fig. 4.4 and Γ2

sonic � P2P3

on Figs. 4.4–4.5. The sonic circle BBc1pu1q of the uniform state ϕ1 intersects line S0, where c1 � ρ
γ�1
2

1
by (4.11). For the supersonic case θw P p0, θs

wq, there are two arcs of this sonic circle between S0

and Γwedge in Λ. We denote by Γ1
sonic the lower arc (i.e., located to the left from another arc) in the

orientation on Fig. 4.4. Note that Γ1
sonic tends to point O as θw Õ θs

w and is outside of Λ for the
subsonic case θw P rθs

w, θ
d
wq. Similarly, the sonic circle BBc2pu2q of the uniform state ϕ2 intersects line

S1, where c2 � ρ
γ�1
2

2 . There are two arcs of this circle between S1 and the line containing Γwedge. For

all θw P p0, θd
wq, the upper arc (i.e., located to the right of the other arc) in the orientation on Figs.

4.4–4.5 is within Λ, which is denoted as Γ2
sonic.

Then Problem 4.5 can be reformulated into the following free boundary problem:
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Problem 4.6 (Free Boundary Problem). For θw P p0, θd
wq, find a free boundary (curved shock) Γshock

and a function ϕ defined in domain Ω, as shown in Figs. 4.4–4.5, such that ϕ satisfies

(i) Equation (4.8) in Ω,
(ii) ϕ � ϕ0 and ρDϕ � νs � ρ0Dϕ0 � νs on Γshock,

(iii) ϕ � ϕ̂ and Dϕ � Dϕ̂ on Γ1
sonicYΓ2

sonic when θw P p0, θs
wq and on Γ2

sonicYtOu when θw P rθs
w, θ

d
wq

for ϕ̂ :� maxpϕ1, ϕ2q,
(iv) Dϕ � νw � 0 on Γwedge,

where νs and νw are the unit normals to Γshock and Γwedge pointing to the interior of Ω, respectively.

Remark 4.9. It can be shown that ϕ1 ¡ ϕ2 on Γ1
sonic and the opposite inequality holds on Γ2

sonic. This
justifies the requirements in Problem 4.6(iii) above.

Remark 4.10. Similar to Problem 4.3, the conditions in Problem 4.6(ii)–(iii) are the Rankine-Hugoniot
conditions (4.16)–(4.17) on Γshock and Γ1

sonic Y Γ2
sonic or Γ2

sonic Y tOu, respectively; see the discussions
right after Problem 4.3.

Let ϕ be a solution of Problem 4.6 such that Γshock is a C1–curve up to its endpoints and ϕ P C1pΩq.
To obtain a solution of Problem 4.5 from ϕ, we consider two cases:

For the supersonic case θw P p0, θs
wq, we divide region Λ into four separate regions; see Fig. 4.4. We

denote by S0,seg the line segment OP1 � S0, and by S1,seg the portion (half-line) of S1 with left endpoint

P2 so that S1,seg � Λ. Let ΩS be the unbounded domain below curve S0,seg Y Γshock Y S1,seg and above
Γwedge (see Fig. 4.4). In ΩS , let Ω1 be the bounded domain enclosed by S0,Γ

1
sonic, and Γwedge. Set

Ω2 :� ΩSzΩ1 Y Ω. Define a function ϕ� in Λ by

ϕ� �

$'''&'''%
ϕ0 in ΛzΩS ,

ϕ1 in Ω1,

ϕ in Γ1
sonic Y ΩY Γ2

sonic,

ϕ2 in Ω2.

(4.56)

By Problem 4.6(ii)–(iii), ϕ� is continuous in ΛzΩS and C1 in ΩS . In particular, ϕ� is C1 across
Γ1

sonic Y Γ2
sonic. Moreover, using Problem 4.6(i)–(iii), we obtain that ϕ� is a global entropy solution of

equation (4.8) in Λ.
For the subsonic case θw P rθs

w, θ
d
wq, region Ω1 Y Γ1

sonic in ϕ� reduces to one point tOu; see Fig. 4.5.
The corresponding function ϕ� is a global entropy solution of equation (4.8) in Λ.

The first unsteady analysis of the steady supersonic weak shock solution as the long-time behavior of
an unsteady flow is due to Elling-Liu [56], in which they succeeded in establishing a stability theorem
for an important class of physical parameters determined by certain assumptions for the wedge angle
θw less than the sonic angle θs

w P p0, θd
wq for potential flow.

Recently, in Bae-Chen-Feldman [6], we have removed the assumptions [56] and established the stabil-
ity theorem for the steady (supersonic or transonic) weak shock solutions as the long-time asymptotics
of the global Prandtl-Meyer reflection configurations for unsteady potential flow for all the admissible
physical parameters even up to the detachment angle θd

w (beyond the sonic angle θs
w   θd

w).

To achieve this, we solve the free boundary problem (Problem 4.6), involving transonic shocks, for all
the wedge angles θw P p0, θd

wq by employing the techniques developed in Chen-Feldman [35], described
in §4.1 above. Similar to Definition 4.8, we define admissible solutions in the present case:

Definition 4.11. Let θw P p0, θd
wq. A function ϕ P C0,1pΛq is an admissible solution of Problem 4.6 if

ϕ is a solution of Problem 4.6 extended to Λ by (4.56) and satisfies the following properties:

(i) The structure of solutions is as follows:

 If θw P p0, θs
wq, then ϕ has the configuration shown on Fig. 4.4 such that Γshock is C2 in its

relative interior, ϕ P C0,1pΛqXC1pΛzpS0,segYΓshockYS1,segqq, and ϕ P C1pΩqXC2pΩzpΓ1
sonicY

Γ2
sonicqq X C3pΩq.
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 If θw P rθs
w, θ

d
wq, then ϕ has the configuration shown on Fig. 4.5 such that Γshock is C2 in

its relative interior, ϕ P C0,1pΛq X C1pΛzpΓshock Y S1,segqq, and ϕ P C1pΩq X C2pΩzptOu Y
Γ2

sonicqq X C3pΩq.
(ii) Equation (4.8) is strictly elliptic in ΩzpΓ1

sonic Y Γ2
sonicq, i.e., |Dϕ|   cp|Dϕ|2, ϕq in ΩzpΓ1

sonic Y
Γ2

sonicq.
(iii) Bνϕ0 ¡ Bνϕ ¡ 0 on Γshock, where ν is the normal to Γshock, pointing to the interior of Ω.

(iv) The inequalities hold:
maxtϕ1, ϕ2u ¤ ϕ ¤ ϕ0 in Ω, (4.57)

(v) The monotonicity properties hold:

Dpϕ0 � ϕq � eS1 ¥ 0, Dpϕ0 � ϕq � eS0 ¤ 0 in Ω, (4.58)

where eS0 and eS1 are the unit vectors along lines S0 and S1 pointing to the positive ξ1–direction,
respectively.

Similar to (4.45), the monotonicity properties in (4.58) imply that

Dpϕ1 � ϕq � e ¤ 0 in Ω for all e P Conep�eS1 , eS0q, (4.59)

where Conep�eS1 , eS0q � t�a eS1 � b eS0 : a, b ¡ 0u. We note that eS0 and eS1 are not parallel if
θw � 0. Then we establish the following theorem.

Theorem 4.2. Let γ ¡ 1 and u10 ¡ c0. For any θw P p0, θd
wq, there exists a global entropy solution ϕ

of Problem 4.6 such that the following regularity properties are satisfied for some α P p0, 1q:
(i) If θw P p0, θs

wq, the reflected shock S0,seg Y Γshock Y S1,seg is C2,α–smooth, and ϕ P C1,αpΩq X
C8pΩzpΓ1

sonic Y Γ2
sonicqq;

(ii) If θw P rθs
w, θ

d
wq, the reflected shock Γshock Y S1,seg is C1,α near O and C2,α away from O, and

ϕ P C1,αpΩq X C8pΩzptOu Y Γ2
sonicqq.

Moreover, in both cases, ϕ is C1,1 across the sonic arcs, and Γshock is C8 in its relative interior.
Furthermore, ϕ is an admissible solution in the sense of Definition 4.11, so ϕ satisfies further prop-

erties listed in Definition 4.11.

We follow the argument described in §4.1 so that, for any small δ ¡ 0, we obtain the required
uniform estimates of admissible solutions with wedge angles θw P r0, θd

w � δs. Using these estimates, we
apply the Leray-Schauder degree theory to obtain the existence for each θw P r0, θd

w � δs in the class
of admissible solutions, starting from the unique normal solution for θw � 0. Since δ ¡ 0 is arbitrary,
the existence of a global entropy solution for any θw P p0, θd

wq can be established. More details can be
found in Bae-Chen-Feldman [6]; see also Chen-Feldman [35].

The existence results in Bae-Chen-Feldman [6] indicate that the steady weak supersonic/transonic
shock solutions are the asymptotic limits of the dynamic self-similar solutions, the Prandtl-Meyer
reflection configurations, in the sense of (4.52) in Problem 4.5 for all θw P p0, θd

wq and all γ ¡ 1.
On the other hand, it is shown in Elling [55] and Bae-Chen-Feldman [6] that, for each γ ¡ 1, there is

no self-similar strong Prandtl-Meyer reflection configuration for the unsteady potential flow in the class
of admissible solutions. This means that the situation for the dynamic stability of the strong steady
oblique shocks is more sensitive.

5. Convexity of Self-Similar Transonic Shocks and Free Boundaries

We now discuss some recent developments in the analysis of geometric properties of transonic shocks
as free boundaries in the 2-D self-similar coordinates for compressible fluid flows. In Chen-Feldman-
Xiang [36], we have developed a general framework for the analysis of the convexity of transonic
shocks as free boundaries. For both applications discussed above, the von Neumann problem for shock
reflection-diffraction in §4.1 and the Prandtl-Meyer problem for unsteady supersonic flow onto solid
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wedges in §4.2, the admissible solutions satisfy the conditions of this abstract framework, as shown
in [36]. For simplicity, we present below the results on the convexity properties of transonic shocks for
these two problems (without discussion on the abstract framework).

For the regular shock reflection-diffraction configurations, we recall that, for admissible solutions in
the sense of Definition 4.8, the inequality in (4.45) is shown to be strict for any e P Conepeξ2 , eS1q.
From this, it is proved that, for admissible solutions, the shock is a graph in the coordinate system
pS, T q with respect to basis te, eKu for any unit vector e P Conepeξ2 , eS1q, where eK is the unit vector
orthogonal to e and oriented so that TP1 ¡ TP2 , and we have used notation pSP , TP q for the coordinates
of point P . That is, there exists fe P C8ppTP2 , TP1qq X C1prTP2 , TP1sq such that

Γshock � tpS, T q : S � fepT q, TP2   T   TP1u, ΩX tTP2   T   TP1u � tS   fepT qu, (5.1)

where we have used the notational convention (4.20) in the subsonic/sonic case.
Since the convexity or concavity of a shock as a graph depends on the orientation of the coordinate

system and Ω will be shown to be a convex domain (corresponding to the concavity of fe in (5.1)), we
do not distinguish them and instead use the term convexity for either case below. Then we have

Theorem 5.1 (Convexity of transonic shocks for the regular shock reflection-diffraction configurations).
If a solution of the von Neumann problem for shock reflection-diffraction is admissible in the sense of
Definition 4.8, then its domain Ω is convex, and the shock curve Γshock is a strictly convex graph in the
following sense: For any e P Conepeξ2 , eS1q, the function fe in (5.1) satisfies

f2e   0 on pTP2 , TP1q.
That is, Γshock is uniformly convex on any closed subset of its relative interior.

Moreover, for the solution of Problem 4.3 extended to Λ by (4.21), with pseudo-potential ϕ P C0,1pΛq
satisfying Definition 4.8(i)–(iv), the shock is strictly convex if and only if Definition 4.8(v) holds.

For the Prandtl-Meyer problem for unsteady supersonic flow onto solid wedges, the results are similar.
We first note that, based on (4.59) (which is strict for e P Conep�eS1 , eS0q) and the maximum principle,
it is proved that, for admissible solutions in the sense of Definition 4.11, the shock is a graph in the
coordinate system pS, T q with respect to basis te, eKu for any unit vector e P Conep�eS1 , eS0q, i.e.,
(5.1) holds, with fe P C8ppTP2 , TP1qq X C1prTP2 , TP1sq, where we have used the notational convention
P1 � P0 for the subsonic/sonic case θw P rθs

w, θ
d
wq.

Theorem 5.2 (Convexity of transonic shocks for the Prandtl-Meyer reflection configurations). If a
solution of the Prandtl-Meyer problem is admissible in the sense of Definition 4.11, then its domain
Ω is convex, and the shock curve Γshock is a strictly convex graph in the following sense: For any
e P Conep�eS1 , eS0q, the function fe in (5.1) satisfies

f2e   0 on pTP2 , TP1q.
That is, Γshock is uniformly convex on any closed subset of its relative interior.

Moreover, for the solution of Problem 4.6 extended to Λ by (4.56) pwith the appropriate modification
for the subsonic/sonic caseq with pseudo-potential ϕ P C0,1pΛq satisfying Definition 4.11(i)–(iv), the
shock is strictly convex if and only if Definition 4.11(v) holds.

Theorems 5.1–5.2 indicate that the curvature of Γshock:

κ � � f2e pT q�
1� pf 1epT qq2

�3{2

has a positive lower bound on any closed subset of pTP2 , TP1q.
Now we discuss the techniques developed in [36] by giving the main steps in the proofs of Theorems

5.1–5.2. While the argument in [36] is carried out in a more general setting, we focus here on the specific
cases of the regular shock reflection-diffraction and Prandtl-Meyer reflection configurations; see [36] for
the results in the more general setting and the detailed proofs.
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For the von Neumann problem, define

φ :� ϕ� ϕ1.

For the Prandtl-Meyer problem, define

φ :� ϕ� ϕ0.

Then, in both cases, φ � 0 on Γshock. From this, using Definition 4.8(iii) for the regular reflection-
diffraction case and Definition 4.11(iii) for the Prandtl-Meyer reflection case, it follows that, in both
problems, φ   0 in Ω near Γshock. Since Γshock is the zero level set of φ, the conclusion of Theorems
5.1–5.2 on the strict convexity of Γshock is equivalent to the following: φττ ¡ 0 along Γ0

shock, where
Γ0

shock is the relative interior of Γshock. Also, denote by Con the cone from (4.45) for the von Neuamnn
problem and the cone from (4.59) for the Prandtl-Meyer problem.

First, we establish the relation between the strict convexity/concavity of a portion of the shock and
the possibility for Beφ, with e P Con, to attain its local minimum or maximum with respect to Ω
on that portion of the shock. More precisely, on a portion of “wrong” convexity on which f2e ¥ 0
(equivalently, φττ ¤ 0), φe cannot attain its local minimum relative to Ω. Then, assuming that a
portion of the free boundary has a “wrong” convexity f2e ¡ 0, we show that φe for e P Con attains its
local minimum relative to Γshock on the closure of that portion. As we discussed above, it cannot be
a local minimum with respect to Ω. Starting from that, through a nonlocal argument, with the use
of the maximum principle for equation (4.12), considered as a linear elliptic PDE for φ, in Ω, and the
boundary conditions on various parts of BΩ, we reach a contradiction, which implies that the shock is
convex, possibly non-strictly, i.e., f2e ¤ 0 on pTP2 , TP1q, or equivalently, φττ ¥ 0 on Γshock. Extending
the previous argument with use of the real analyticity of Γ0

shock, we improve the result to the locally
uniform convexity as in Theorems 5.1–5.2.

Furthermore, with the convexity of reflected-diffracted transonic shocks, the uniqueness and stability
of global regular shock reflection-diffraction configurations have also been established in the class of
admissible solutions; see Chen-Feldman-Xiang [37] for the details.

The nonlinear method, ideas, techniques, and approaches that we have presented above for solving
M-D transonic shocks and free boundary problems should be useful to analyze other longstanding and
newly emerging problems. Examples of such problems include the unsolved M-D steady transonic shock
problems for the full Euler equations (including steady detached shock problems), the unsolved M-D
self-similar transonic shock problems (such as the 2-D Riemann problems and the conic body problems)
for potential flow, as well as the longstanding open transonic shock problems for both the isentropic
and the full Euler equations; also see Chen-Feldman [35]. Certainly, further new ideas, techniques,
and methods are still required to be developed in order to solve these mathematically challenging and
fundamentally important problems.
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