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The background

Leonardo Da Vinci (circa 1500): “... the smallest eddies are almost
numberless, and large things are rotated only by large eddies and not by
small ones, and small things are turned by small eddies and large.”

Euler equation 1755: ideal fluid. Set on domain D ⊂ Rn, n = 2, 3.

∂tu + (u · ∇)u = ∇p, ∇ · u = 0, u · n|∂D = 0, u(x , 0) = u0(x)

Navier-Stokes equation 1845: adds viscosity.

∂tu + (u · ∇)u − ν∆u = ∇p, u|∂D = 0
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Global regularity vs finite time blow up? The story is very different in
dimensions two and three.
Key quantity: vorticity ω = curlu.

The Euler equation in vorticity form:

∂tω + (u · ∇)ω = (ω · ∇)u, u = KD ∗ ω, ω(x , 0) = ω0(x).

The vortex stretching term on the right hand side is identically zero in two
dimensions.

Solutions to the 2D Euler equation are globally regular (Wolibner 1933,
Hölder 1933).

Global regularity vs finite time singularity formation question for solutions
to the 3D Euler (and Navier-Stokes!) equations is a major open problem.
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Singularities and Turbulence: The Zeroth Law

Feynman: turbulence is the most important unsolved problem of classical
physics.

Suppose uν are solutions of the Navier-Stokes equation, no boundaries.

∂tu
ν + (uν · ∇)uν − ν∆uν = ∇pν + F , ∇ · uν = 0.

The energy dissipation rate is given by

∂t

∫
|uν |2 dx = −2ν

∫
|∇uν |2 dx +

∫
Fuν dx .

The zeroth law of turbulence (G.I. Taylor, Kolmogorov):

lim
ν→0

ν〈
∫
|∇uν |2 dx〉 → ε > 0

〈·〉 denotes suitable time average. Confirmed very well in experiments.
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Search for singularities: 3D Euler equation

But as ν → 0, solutions of the Navier-Stokes equation converge to the
solutions of Euler equation if everything stays smooth. And in this case
the zeroth law could not hold on finite time scales.

Conjecture, Onsager 1949: As ν → 0, the validity of the zeroth law is
enabled by singularities or near singularities of solutions, which create
extreme dissipation regions.

The validity of this picture has been shown rigorously for Burgers equation

∂tu
ν + uν∂xu

ν − ν∂2
xu

ν = F

by E, Khanin, Mazel and Sinai 2000. Singularities of the inviscid equation
are simple: shocks, and they dissipate energy.

Recall the 3D Euler equation:

∂tω + (u · ∇)ω = (ω · ∇)u, u = KD ∗ ω, ω(x , 0) = ω0.

Local well-posedness in sufficiently regular spaces.
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Search for singularities: 3D Euler equation

A variety of regularity criteria. Beale-Kato-Majda ’84: at blow up time T ,
must have ∫ T

0
‖ω(·, s)‖L∞ ds =∞.

Infinite energy singularities: Stuart ’88, Childress-Ierley-Spiegel-Young ’89,
Constantin ’00.

Numerical simulations looking for singular scenarios: Grauer-Sideris ’91,
Pumir-Siggia ’92, Kerr ’93, E-Shu ’94, Boratav-Pelz ’94, Pelz-Gulak ’97,
Ohkitani-Gibbon ’00, Hou-Li ’06, Larios-Petersen-Titi-Wingate ’15.

Constantin-Fefferman-Majda ’96: conditions on vorticity direction
sufficient for regularity.
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The 3D Euler equation: the Hou-Luo scenario

Luo-Hou ’14, numerical experiment: axi-symmetric flow in a cylinder.
Denote Dt = ∂t + ur∂r + uz∂z .
3D Euler equation in cylindrical coordinates:

Dt

(
ωφ

r

)
=
∂z(ruφ)2

r4
; Dt(ru

φ) = 0

(ur , uz) = (−r−1∂zψ, r
−1∂rψ),

Lψ =
ωφ

r
, Lψ = −1

r
∂r

(
1

r
∂rψ

)
− 1

r2
∂2
z .

Fast growth of ωφ is observed near a ring of
boundary hyperbolic points of the flow.

That small scales first form at the boundary
is not surprising - it is often at the boundary
that turbulence is initiated.

z
u periodic in z
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Hyperbolic points: the most common “singularity”?

E. Saw et al ’16: an experimental study focusing on extreme dissipation
regions. The flow is statistically axi-symmetric, and the camera is focused
near the r = 0 axis. 75% of extreme dissipation regions are found to
feature fronts/hyperbolic points (there are also jets, spirals, and cusps).
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Hou-Luo scenario: The 2D inviscid Boussinesq system

A good proxy for 3D axi-symmetric Euler
equation away from the rotation axis is the
2D inviscid Boussinesq system.

∂tω + (u · ∇)ω = ∂x1θ

∂tθ + (u · ∇)θ = 0

u = ∇⊥(−∆)−1ω.

Global regularity for this system is on the
list of “Eleven great problems of
mathematical hydrodynamics” by Yudovich.

When θ is constant, get the 2D Euler
equation. It makes sense to first understand
the 2D Euler small scale creation in a
geometry similar to Hou-Luo scenario.

The picture is essentially like for

the 3D Euler equation rotated

by π/2.
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2D Euler equation: history

The 2D Euler equation:

∂tω + (u · ∇)ω = 0, u = ∇⊥(−∆D)−1ω.
Trajectories

dΦt(x)

dt
= u(Φt(x), t), Φ0(x) = x .

Then ω(Φt(x), t) = ω0(x), ω(x , t) = ω0(Φ−1
t (x)). L∞ norm is conserved!

Theorem (Wolibner; Hölder 1933)

Let D be smooth, compact, ω0 ∈ C 1(D). Then there exists unique
solution of the 2D Euler equation ω(x , t) ∈ C 1. Moreover,

‖∇ω(·, t)‖L∞
‖ω0‖L∞

≤
(

1 +
‖∇ω0‖L∞
‖ω0‖L∞

)expC‖ω0‖L∞ t

.
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2D Euler equation: is double exp real?

Why double exponential? Kato inequality.
Recall u = ∇⊥(−∆D)−1ω, so ∂jui are Riesz transforms of ω. Then

‖∇u‖L∞ ≤ C‖ω‖L∞
(

1 + log

(
1 +
‖∇ω‖L∞
‖ω‖L∞

))
It is exactly the log term that leads to double exponential upper bound.

But can such fast growth actually happen?

Yudovich ’74: some infinite growth of ∇ω.
Nadirashvili ’91: linear growth of ‖∇ω‖L∞ .

Bahouri-Chemin ’94. “Singular cross” flow.
ω odd in x1, x2, ≡ 1 on (0, π)2, periodic.

u1(x1, 0) = cx1 log x1 + O(x1)!

x1

x2

1

−11

−1

Alexander Kiselev (Duke University) Singularity formation



2D Euler growth examples

Denisov 2010s: example set on T2 where ‖∇ω‖L∞ grows superlinearly.
Also, given T > 0, λ > 1, one can find ωT

0 such that

‖∇ωT (·,T )‖L∞ ≥ λe
T−1‖∇ωT

0 ‖L∞ .

Theorem (K-Sverak ’14)

Let D be unit disk. There exist ω0 ∈ C∞(D̄) with ‖∇ω0‖L∞ > ‖ω0‖L∞
such that

‖∇ω(·, t)‖L∞
‖ω0‖L∞

≥
(‖∇ω0‖L∞
‖ω0‖L∞

)c exp c‖ω0‖L∞ t

for all t ≥ 0.

Inspired by Luo-Hou numerical experiments for 3D Euler (more later).
Growth happens at the boundary!
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Main Lemma: Biot-Savart

Assume ω0 is odd with respect to x1.
Analyze u = ∇⊥(−∆D)−1ω.

Lemma (Main Lemma)

Fix small γ > 0. For x ∈ Dγ
1 , |x | ≤ δ, we

have

u1(x) = − 4

π
x1

∫
Q(x1,x2)

y1y2

|y |4 ω(y , t) dy+B1x1.

Moreover, if x ∈ Dγ
2 , |x | ≤ δ, we have

u2(x) =
4

π
x2

∫
Q(x1,x2)

y1y2

|y |4 ω(y , t) dy + B2x2.

Here ‖B1,2‖L∞ ≤ C (γ)‖ω0‖L∞ .

D+ = {(x1, x2) ∈ D | x1 ≥ 0}.
Set the origin at the bottom
of the disk!

y1

y2

D+ \ Dγ
1

x1

x2

Q(x1, x2)

Q(x1, x2) =
{y ∈ D+ : y1 ≥ x1, y2 ≥ x2 }
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The 2D Euler example

Denote

Ω(x , t) =
4

π

∫
Q(x1,x2)

y1y2

|y |4 ω(y , t) dy .

Corollary (of Main Lemma)

Exponential growth is easy!

Take 0 ≤ ω0 ≤ 1 in D+, and ω0(x) = 1 if x1 ≥ δ.
Then by incompressibility Ω(x , t) ≥ c log δ−1 if |x | ≤ δ, for all times.

If δ is chosen small enough, Main Lemma gives u1(x) ≤ −Cx1 for all
times, all |x | ≤ δ. In particular the characteristic along the boundary
converges to the origin at an exponential rate.
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The double exponential

The argument to show double exponential
growth is truly nonlinear: Ω(x , t) grows due
to larger values of ω approaching the origin.

The approach of Ft to the origin leads to
growth of Ω; one needs to control it!

A key role in the proof plays hidden
“comparison principle” in the structure of

Ω(x , t) =
4

π

∫
Q(x1,x2)

y1y2

|y |4 ω(y , t) dy .
ε10 ε δ

ω0 = 1

F0

ω0 = 1Ft

The initial data
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1D models of the Hou-Luo scenario

Main difficulties in analysis of the Boussinesq system (relative to Euler):

Vorticity may grow, affecting the “error” terms estimates.

Vorticity is no longer sign definite.

The 1D models of the Hou-Luo scenario.

∂tω + u∂xω = ∂xθ; ∂tθ + u∂xθ = 0.

Hou− Luo model : ux = Hω; CKY model : u(x) = −x
∫ 1

x

ω(y)

y
dy .

Derivation of the Hou-Luo model is based on boundary layer assumption
on structure of vorticity. It is used to close the Biot-Savart law:
ω(x1, x2, t) = ω(x1, t)χ[0,a](x2).

The CKY model is “almost local” and its Biot-Savart law is inspired by 2D
Euler Main Lemma.
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1D models of the Hou-Luo scenario

Theorem (Choi-K-Yao ’15; Choi-Hou-K-Luo-Sverak-Yao ’16)

Both models are locally well-posed, but there exist initial data leading to
finite time blow up. For the CKY model,

∫ T
0 ‖ω(·, t)‖L∞ dt =∞ at blow

up time; for Hou-Luo model,
∫ T

0 ‖ux(·, t)‖L∞ dt =∞.

Recall trajectories

dΦt(x)

dt
= u(Φt(x), t), Φ0(x) = x .

If ψ(x , t) = − log Φt(x), then ∂2
t ψ ∼ ecψ!

θ

ω

ω

Other work on Hou-Luo scenario: Hou-Liu ’15, Do-K-Xu ’17, K-Yang ’18 -
1d models;
Hoang, Orcan, Radosz, Yang ’17, K-Tan ’17 - 2d models.
Elgindi-Jeong ’17 - singular solutions in domains with corners.
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Alternative recent singular constructions

Tao ’16 - Fourier side-inspired models. Motivated in part by dyadic models
(Katz-Pavlovic ’05). Model equations that are designed to replicate most
of the properties of 3D Euler. Blow up has self-similar flavor.

Brenner, Harmoz, Pumir ’16. A specific self-similar mechanism: vortex
sheet break up into vortex tubes 7→ vortex tube flattening 7→ repeated
break up on smaller scale.
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The modified SQG equation: history

One of the key difficulties in the Hou-Luo scenario for the actual 2D
Boussinesq system: growth of ω making error terms in the Main Lemma
uncontrollable. Heuristic computations using numerical data suggest that
“helpful” for blow up and “opposing” terms are of the same order.

A similar story in a different setting: the modified SQG patches.

∂tω + (u · ∇)ω = 0, u = ∇⊥(−∆)−1+αω, 0 ≤ α ≤ 1/2.

The value α = 0 - 2D Euler, α = 1/2 - SQG. For α > 0 finite time blow
vs global regularity question is open!

Constantin-Majda-Tabak ’94; Cordoba ’98, Cordoba-Fefferman ’02.

A special class of initial data: patches, ω0 =
∑N

j=1 θjχΩj
(x).
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The Euler and SQG patches - history

The regularity question in patch context refers to regularity of the domain
boundaries ∂Ωj(t) and lack of touching by different patches.

2D Euler patches: existence and uniqueness by Yudovich ’63. Global
well-posedness in R2 or T2 : Chemin ’93, Bertozzi-Constantin ’93.

With boundary - limited results, Depauw ’99, Dutrifoy ’03.

Patches for modified SQG: local regularity Rodrigo ’05, Gancedo ’08.

Let us consider patches in half-plane D, with u · n|∂D = 0.

Theorem (K-Ryzhik-Yao-Zlatos ’16)

Let α = 0 (2D Euler), half-plane setting. If ω0(x) is C 1,γ for some γ > 0,
then there exists a unique global C 1,γ patch solution ω(x , t).

Patches are allowed to touch the boundary!
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Theorem (K-Yao-Zlatos ’16)

If 0 < α < 1/24 the following holds. If ω0 is an H3 patch, then there
exists a unique local H3 patch solution.

Why local well-posedness for patches with boundary is hard?
If α > 0, u ∈ C 1−2α only, not Lipschitz.

However: can show normal to patch
component of u has better regularity.

u2(x1, x2) =

∫
Ωj

x1 − y1

|x − y |2+2α
ω(y) dy

Due to the no-penetration boundary
condition, a patch touching the boundary is
equivalent to reflected patch touching the
original. Estimates near the point of
touching are hard!

u2

Ωj

Ωj
1

−1
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The modified SQG patches: finite time blow up

Theorem (K-Ryzhik-Yao-Zlatos ’16)

If 0 < α < 1/24, there exist initial data ω0 ∈ H3 such that the
corresponding patch solution blows up in finite time.

The initial data: odd, two patches.

∂D
x1

x2

ω0 = 1ω0 = −1

ω0 = 0

On the right, K (0) is the initial barrier that
evolves according to

Patch structure:

x1

x2

Ω2

Ω1

ε 3 4

4

3

2ε

Ω0

K(0)

3ε 2

K (t) = {x : x2 ≤ x1, X (t) ≤ x1 ≤ 1}, X ′ = − 1
50X

1−2α, X (0) = 3ε.
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Note that K (t) arrives at x1 = 0 in time τ ∼ ε2α.

Plan: show that K (t) ⊂ Ω(t) while the patch Ω(t) remains regular.

Let D+ be the first quadrant in R2. Focus on estimating u1 (u2 is similar).

u1(x) = −
∫
D+

K1(x , y)ω(y)dy ,

K1(x , y) =
y2 − x2

|x − y |2+2α
− y2 − x2

|x − ỹ |2+2α
− y2 + x2

|x + y |2+2α
+

y2 + x2

|x − ȳ |2+2α

≥ y2 − x2

|x − y |2+2α
− y2 − x2

|x − ỹ |2+2α
, ỹ = (−y1, y2), ȳ = (y1,−y2).

Lemma

Suppose 0 ≤ ω ≤ 1 in D+. If x ∈ D+ and x2 ≤ x1, then

ubad1 (x) ≡
∫
R+×(0,x2)

K1(x , y)ω(y) dy ≤ 1

α

(
1

1− 2α
− 2−α

)
x1−2α

1 .
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To estimate the “good” part of u1, assume that ω(x) = 1 on the set

A(x) := {y : y1 ∈ (x1, x1 + 1), y2 ∈ (x2, x2 + y1 − x1)}

Lemma

Assume that for some x we have ω ≥ χA(x).
There exists δα > 0 s. t. if x1 ≤ δα, then

ugood1 (x) ≤ − 1

6 · 20αα
x1−2α

1 .

0

A(x)

x

x+ (1, 1)

x+ (1, 0)

After cancellations, ugood1 and ubad1 can be
bounded by integrals of x2−y2

|x−y |2+2α over G and

B respectively.

For small α, kernel is long range and G wins.
For α closer to 1/2, B wins!

y2

y1

x2

x1

B

G
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