CALCULUS EXERCISES 1 - Curve Sketching

1. Sketch the graph of the curve

$$
y=\frac{x^{2}+1}{(x-1)(x-2)}
$$

carefully labelling any turning points and asymptotes.
2. The parabola $x=y^{2}+a y+b$ crosses the parabola $y=x^{2}$ at $(1,1)$ making right angles.

Calculate the values of a and b.
On the same axes, sketch the two parabolas.
3. The curve C in the $x y$-plane has equation

$$
x^{2}+x y+y^{2}=1
$$

By solving $\mathrm{d} y / \mathrm{d} x=0$, show that the maximum and minimum values taken by y are $\pm 2 / \sqrt{3}$.
By changing to polar co-ordinates, $(x=r \cos \theta, y=r \sin \theta)$,sketch the curve C.
What is the greatest distance of a point on C from the origin?
4. Sketch the curve $y=x^{3}+a x+b$ for a selection of values of a and b.

Suppose now that a is negative. Find the co-ordinates of the turning points of the graph and deduce that $y=0$ has exactly two roots when

$$
b= \pm \frac{2 a}{3} \sqrt{\frac{-a}{3}}
$$

For what values of b does the equation $y=0$ have three distinct real roots?
5. On separate $x u$ - and $y u$-axes sketch the curves $u=8\left(x^{3}-x\right)$ and $u=e^{y} / y$ labelling all turning points.
[Harder] Hence sketch the curve $e^{y}=8 y\left(x^{3}-x\right)$.

