CALCULUS EXERCISES 2 - Numerical Methods and Estimation

1. Use calculus, or trigonometric identities, to prove the following inequalities for θ in the range $0<\theta<\frac{\pi}{2}$:

- $\sin \theta<\theta$;
- $\theta<\tan \theta ;$
- $\cos 2 \theta<\cos ^{2} \theta$.

Hence, without directly calculating the following integrals, rank them in order of size.
(a) $\int_{0}^{1} x^{3} \cos x \mathrm{~d} x$,
(b) $\int_{0}^{1} x^{3} \cos ^{2} x \mathrm{~d} x$,
(c) $\int_{0}^{1} x^{2} \sin x \cos x d x$,
(d) $\int_{0}^{1} x^{3} \cos 2 x \mathrm{~d} x$.
2. Show that the equation

$$
\sin x=\frac{1}{2} x
$$

has three roots. Using Newton-Raphson, or a similar numerical method, find the positive root to 6 d.p.
The equation $\sin x=\lambda x$ has three real roots when $\lambda=\alpha$ or when $\beta<\lambda<1$ for two real numbers $\alpha<0<\beta$. Plot, on the same axes, the curves

$$
y=\sin x, \quad y=\alpha x, \quad y=\beta x .
$$

3. Let S denote the circle in the $x y$-plane with centre $(0,0)$ and radius 1 . A regular m-sided polygon I_{m} is inscribed in S and a regular n-sided polygon C_{n} is circumscribed about S.
(a) By considering the perimeter of I_{m} and the area bounded by C_{n}, prove that:

$$
m \sin \left(\frac{\pi}{m}\right)<\pi<n \tan \left(\frac{\pi}{n}\right)
$$

for all natural numbers $m, n \geq 3$.
(b) Archimedes showed (using this method) that $3 \frac{10}{71}<\pi<3 \frac{1}{7}$. What are the smallest values of m and n needed to verify Archimedes' inequality?
4. Find the coefficients of $1, x, x^{2}, x^{3}, x^{4}$ in the power series expansion (Taylor's series expansion) for $f(x)=\sec x$.

Use this approximation to make an estimate for sec $\frac{1}{10}$. With the aid of a calculator, find to how many decimal places the approximation is accurate.
5. Show that $\int \ln x \mathrm{~d} x=x \ln x-x+$ constant

Sketch the graph of the equation $y=\ln x$. By consideration of areas on your graph, show that

$$
n \ln n-n+1<\sum_{1}^{n} \ln r<(n+1) \ln (n+1)-n
$$

Let $G_{n}=\sqrt[n]{n!}$ denote the geometric mean of $1,2, \ldots, n$. Show that G_{n} / n approaches $1 / e$ as n becomes large

