CALCULUS EXERCISES 4 - Differential Equations

1. Find the general solutions of the following separable differential equations.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}}{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\cos ^{2} x}{\cos ^{2} 2 y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=e^{x+2 y}
$$

2. Find the solution of the following initial value problems. On separate axes sketch the solution to each problem.

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-2 x}{y}, \quad y(1)=-2 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x\left(x^{2}+1\right)}{4 y^{3}}, \quad y(0)=\frac{-1}{\sqrt{2}} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1+y^{2}}{1+x^{2}} \quad \text { where } y(0)=1
\end{aligned}
$$

3. The equation for Simple Harmonic Motion, with constant frequency ω, is

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\omega^{2} x
$$

Show that

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=v \frac{\mathrm{~d} v}{\mathrm{~d} x}
$$

where $v=\mathrm{d} x / \mathrm{d} t$ denotes velocity. Find and solve a separable differential equation in v and x given that $x=a$ when $v=0$.

Hence show that

$$
x(t)=a \sin (\omega t+\varepsilon)
$$

for some constant ε.
4. Find the most general solution of the following homogeneous constant coefficient differential equations:

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-y & =0 \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+4 y & =0, \quad \text { where } y(0)=y^{\prime}(0)=1 \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y & =0 \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y & =0, \quad \text { where } y(0)=y^{\prime}(0)=1
\end{aligned}
$$

5. Write the left hand side of the differential equation

$$
(2 x+y)+(x+2 y) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

in the form

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(F(x, y))=0
$$

where $F(x, y)$ is a polynomial in x and y. Hence find the general solution of the equation.
Use this method to find the general solution of

$$
\left(y \cos x+2 x e^{y}\right)+\left(\sin x+x^{2} e^{y}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

