CALCULUS EXERCISES 5 - Further Differential Equations

1. Find all solutions of the following separable differential equations:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{y-x y}{x y-x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\sin ^{-1} x}{y^{2} \sqrt{1-x^{2}}}, \quad y(0)=0 . \\
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =\left(1+3 x^{2}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} \quad \text { where } y(1)=0 \text { and } y^{\prime}(1)=\frac{-1}{2} .
\end{aligned}
$$

2. Use the method of integrating factors to solve the following equations with initial conditions

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x}+x y & =x \text { where } y(0)=0 \\
2 x^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 x^{2} y & =1 \text { where } y(1)=0 \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}-y \tan x & =1 \text { where } y(0)=1
\end{aligned}
$$

3. Find the most general solution of the following inhomogeneous constant coefficient differential equations:

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=x \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=\sin x \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=e^{x} \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=e^{-x}
\end{aligned}
$$

4. (a) By making the substitution $y(x)=x v(x)$ in the following homogeneous polar equations, convert them into separable differential equations involving v and x, which you should then solve

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{x^{2}+y^{2}}{x y} \\
x \frac{\mathrm{~d} y}{\mathrm{~d} x} & =y+\sqrt{x^{2}+y^{2}} .
\end{aligned}
$$

(b) Make substitutions of the form $x=X+a, y=Y+b$, to turn the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y-3}{x-y-1}
$$

into a homogeneous polar differential equation in X and Y. Hence find the general solution of the above equation.
5. A particle P moves in the $x y$-plane. Its co-ordinates $x(t)$ and $y(t)$ satisfy the equations

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=x+y \quad \text { and } \quad \frac{\mathrm{d} x}{\mathrm{~d} t}=x-y
$$

and at time $t=0$ the particle is at $(1,0)$. Find, and solve, a homogeneous polar equation relating x and y.
By changing to polar co-ordinates $\left(r^{2}=x^{2}+y^{2}, \tan \theta=y / x\right)$, sketch the particle's journey for $t \geq 0$.

