
CALCULUS EXERCISES 5 – Further Differential Equations

1. Find all solutions of the following separable differential equations:
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2. Use the method of integrating factors to solve the following equations with initial conditions

dy
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+ xy = x where y (0) = 0,

2x3
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− 3x2y = 1 where y (1) = 0,
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− y tanx = 1 where y (0) = 1.

3. Find the most general solution of the following inhomogeneous constant coefficient differential equations:
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4. (a) By making the substitution y (x) = xv (x) in the following homogeneous polar equations, convert them into
separable differential equations involving v and x, which you should then solve

dy
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,

x
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= y +
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(b) Make substitutions of the form x = X + a, y = Y + b, to turn the differential equation

dy
dx

=
x+ y − 3
x− y − 1

into a homogeneous polar differential equation in X and Y . Hence find the general solution of the above equation.

5. A particle P moves in the xy-plane. Its co-ordinates x (t) and y (t) satisfy the equations

dy
dt
= x+ y and

dx
dt
= x− y,

and at time t = 0 the particle is at (1, 0) . Find, and solve, a homogeneous polar equation relating x and y.

By changing to polar co-ordinates
¡
r2 = x2 + y2, tan θ = y/x

¢
, sketch the particle’s journey for t ≥ 0.


