COMPLEX NUMBERS EXERCISES

1. By writing $\omega=a+i b$ (where a and b are real), solve the equation

$$
\omega^{2}=-5-12 i
$$

Hence find the two roots of the quadratic equation

$$
z^{2}-(4+i) z+(5+5 i)=0
$$

2. By substituting $z=x+i y$ or $z=r e^{i \theta}$ into the following equations and inequalities, sketch the following regions of the complex plane on separate Argand diagrams:

- $|z-3-4 i|<5$,
- $\arg (z)=\pi / 3$
- $0 \leq \operatorname{Re}((i z+3) / 2)<2$,
- $e^{z}=1$,
- $\operatorname{Im}\left(z^{2}\right)<0$.

3. Find the image of the point $z=2+i t$ under each of the following transformations.

- $z \mapsto i z$,
- $z \mapsto z^{2}$,
- $z \mapsto e^{z}$,
- $z \mapsto 1 / z$.

By letting t vary over all real values find the image of the line $\operatorname{Re} z=2$ under the same transformations.
4. (a) Given that $e^{i \theta}=\cos \theta+i \sin \theta$, prove that

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

(b) Use De Moivre's Theorem to show that

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

5. (a) Let $z=\cos \theta+i \sin \theta$ and let n be an integer. Show that

$$
2 \cos \theta=z+\frac{1}{z} \text { and that } 2 i \sin \theta=z-\frac{1}{z}
$$

Find expressions for $\cos n \theta$ and $\sin n \theta$ in terms of z.
(b) Show that

$$
\cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)
$$

and hence find $\int_{0}^{\pi / 2} \cos ^{5} \theta \mathrm{~d} \theta$.

