1. A particle, of mass $m$, has position vector

$$
\mathbf{r}(t)=(x(t), y(t))=(3 \sin 2 t+4 \cos 2 t, 3 t+2) .
$$

at time $t$.
(i) Determine the particle's momentum $m(\mathrm{~d} \mathbf{r} / \mathrm{d} t)$ at time $t$.
(ii) Determine the particle's kinetic energy $\frac{1}{2} m\left|\frac{\mathrm{dr}}{\mathrm{d} t}\right|^{2}$ at time $t$.
(iii) At what times is the particle's kinetic energy maximal?
(iv) Determine the particle's acceleration $\mathrm{d}^{2} \mathbf{r} / \mathrm{d} t^{2}$ at time $t$. Show that

$$
\frac{\mathrm{d}^{2} \mathbf{r}}{\mathrm{~d} t^{2}}=-4 x(t) \mathbf{i}
$$

2. Consider a particle of mass $m$ moving in one vertical dimension with height $y(t)$. It moves under gravity, so that its acceleration always satisfies $\mathrm{d}^{2} y / \mathrm{d} t^{2}=-g$. Initially the particle is projected from ground-level with speed $v$. That is, at $t=0$, we have $y=0$ and $\mathrm{d} y / \mathrm{d} t=v$.
(i) Determine $y(t)$.
(ii) What is the greatest height achieved by the particle?
(iii) Find the time taken to return to ground-level.
(iv) Show that the quantity

$$
E=\frac{1}{2} m\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right)^{2}+m g y
$$

is constant throughout the motion.
3. A particle of mass $m$ moves along the $x$-axis under the force $F(t)$, at time $t$, given below.

$$
F(t)= \begin{cases}3 & 0 \leqslant t<2 \\ 1 & 2 \leqslant t<3 \\ 2 & 3 \leqslant t \leqslant 5\end{cases}
$$

and otherwise moves under no force. Initially, at $t=0$, the particle is at rest at $x=0$.
Newton's Second Law states that

$$
F(t)=m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}
$$

Determine $x$ and $\mathrm{d} x / \mathrm{d} t$. On separate axes, sketch graphs of $x$ and $\mathrm{d} x / \mathrm{d} t$ against $t$.
4. A particle of mass $m$ moves along the $x$-axis under a force $F(x)$, when at position $x$, given below

$$
F(x)=\left\{\begin{array}{cc}
-k x^{3} & -a<x<a \\
0 & |x| \geqslant a
\end{array}\right.
$$

Initially, at $t=0$, we have $x=0$ and $\mathrm{d} x / \mathrm{d} t=u \geqslant 0$.
(i) Let $v=\mathrm{d} x / \mathrm{d} t$. Show that

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=v \frac{\mathrm{~d} v}{\mathrm{~d} x}
$$

(ii) From Newton's Second Law, show that

$$
\frac{1}{2} m v^{2}+\frac{1}{4} k x^{4}=E
$$

is constant throughout the motion.
(iii) Find the minimum value $U$ of $u$ such that the particle moves outside of the interval $-a<x<a$. If $u<U$ what is the maximum value of $x$ ?
(iv) Show that if $u=U$ then the time $T$ taken for the particle to reach $x=a$ equals

$$
T=\sqrt{\frac{2 m}{k}} \int_{0}^{a} \frac{\mathrm{~d} x}{\sqrt{a^{4}-x^{4}}}
$$

