DYNAMICS 2 - Oscillations and Further Examples.

1. Say a projectile of mass m is shot at time $t=0$ from the origin with speed V at an angle α to the horizontal. Throughout the motion the particle is acted on by gravity so that $\mathrm{d}^{2} y / \mathrm{d} t^{2}=-g$.
(i) Write down the initial conditions $x(0), y(0), x^{\prime}(0), y^{\prime}(0)$.
(ii) Determine the particle's position vector $(x(t), y(t))$ at time t.
(iii) Determine where the projectile lands (returns to ground level $y=0$).
(iv) What value of α maximises the distance travelled?
(v) Show that

$$
\frac{1}{2} m\left(\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}\right)+m g y=\frac{1}{2} m V^{2}
$$

throughout the motion.
2. If a spring, with spring constant α, is stretched by an extension x, Hooke's Law states that the force on the particle has magnitude $\alpha|x|$ towards the equilibrium. Thus whether the extension x is positive (an extension) or negative (a compression) Newton's Second Law gives

$$
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-\alpha x
$$

Show that the general solution of this equation is

$$
x(t)=A \cos \omega t+B \sin \omega t
$$

for constants A and B, and where $\omega^{2}=\alpha / m$. Show that

$$
\frac{1}{2} m\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\frac{1}{2} \alpha x^{2}=E
$$

is constant throughout the motion. What does the quantity $\frac{1}{2} \alpha x^{2}$ represent?
3. Say that the particle and spring in Question 2 lie on a rough table, so that there is a resistant frictional force of magnitude $\mu m g$ (coefficient of friction μ) when the particle is in motion and we have

$$
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-\alpha x+\mu m g \quad \text { when } x \geqslant 0
$$

Say that we have initially $x(0)=\varepsilon>0$ and $x^{\prime}(0)=0$. What happens if $\mu \geqslant \alpha \varepsilon /(m g)$? Show that if

$$
\frac{\varepsilon \alpha}{2 m g}<\mu<\frac{\varepsilon \alpha}{m g}
$$

then the particle comes to rest before its normal equilibrium position, and find the value of x where this occurs.
Show that

$$
\frac{1}{2} m\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\frac{1}{2} \alpha x^{2}=\frac{1}{2} \alpha \varepsilon^{2}+\mu m g(x-\varepsilon)
$$

throughout the motion and explain the significance of the terms in this identity.
4. Consider a mass m at the end of a light inextensible rod of length l making small swings under gravity; let θ denote the angle the rod makes with the vertical.
(i) Note that $\mathbf{r}=(l \sin \theta,-l \cos \theta)$. What do $\mathrm{d} \mathbf{r} / \mathrm{d} t$ and $\mathrm{d}^{2} \mathbf{r} / \mathrm{d} t^{2}$ equal?
(ii) Use Newton's Second Law to show that

$$
l \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}}=-g \sin \theta
$$

and find an expression for the tension in the rod.
(iii) Show throughout the motion that $\frac{1}{2} m l^{2}(\mathrm{~d} \theta / \mathrm{d} t)^{2}-m g l \cos \theta=E$ is constant.
(iv) Say that the pendulum's oscillations are small enough that the approximation $\sin \theta \approx \theta$ applies. Show that the pendulum's swings have period $2 \pi \sqrt{l / g}$.
(v) More generally if the particle starts off with $\theta=\alpha, \mathrm{d} \theta / \mathrm{d} t=0$, show that the oscillations have exact period

$$
4 \sqrt{\frac{l}{2 g}} \int_{0}^{\alpha} \frac{\mathrm{d} \theta}{\sqrt{\cos \theta-\cos \alpha}}
$$

