
Examiners’ Report: Final Honour School
of Mathematics Part B Trinity Term 2017

November 9, 2017

Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2017 (2016) (2015) (2014) (2013) 2017 (2016) (2015) (2014) (2013)

I 52 (56) (48) (49) (54) 39.39 (39.72) (32.88) (31.01) (34.34)
II.1 64 (58) (69) (78) (78) 48.48 (41.13) (47.26) (49.37) (49.68)
II.2 11 (24) (25) (21) (21) 8.33 (17.02) (17.12) (13.29) (13.38)
III 3 (3) (3) (9) (2) 2.27 (2.13) (2.05) (5.7) (1.27)
P 2 (0) (1) (1) (2) 1.52 (0) (0.68) (0.63) (1.27)
F 0 (0) (0) (0) (0) 0 (0) (0) (0) (0)
Total 132 (141) (146) (158) (157) 100 (100) (100) (100) (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.

As in previous years there were no vivas conducted for the FHS of
Mathematics Part B.

• Marking of scripts.
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BE Extended Essays, BSP projects, and coursework submitted for the
History of Mathematics course, the Mathematics Education course
and the Undergraduate Ambassadors Scheme, were double marked.

The remaining scripts were all single marked according to a pre-
agreed marking scheme which was strictly adhered to. For details of
the extensive checking process, see Part II, Section A.

• Numbers taking each paper.

See Table 5 on page 13.

B. New examining methods and procedures

This year three changes were made to examining procedures.

Firstly, the length of time allowed for Mathematics unit papers was in-
creased from 1.5 hours to 1.75 hours. Statistics unit papers also increased
to 1.75 hours, and Computer Science unit papers to 2 hours. The exami-
nation for SB1 Applied and Computational Statistics, a two-unit Statistics
course, was increased to 2.5 hours.

Secondly, BEE Extended Essays and BSP Structured Project written re-
ports were marked by the supervisor and one assessor, rather than by two
assessors.

Thirdly, candidates taking Part A from 2016 onwards take either 9 or 10
papers in Part A, that is, they must take papers A0, A1, A2, ASO, and five
or six out of A3-A11. If a candidate takes 9 papers, paper A2 counts as a
double unit and the remaining papers as single units in the Part A USM
average. If a candidate takes 10 papers, the two lowest scoring papers from
A3-A11 count as half a unit each in the Part A average. In both cases, the
classification in Part B depends on the sum of 40% of the Part A average
and 60% of the Part B average.

C. Changes in examining methods and procedures currently
under discussion or contemplated for the future

None.
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D. Notice of examination conventions for candidates

The first Notice to Candidates was issued on 15 February 2017 and the
second notice on 8 May 2017.

All notices and the examination conventions for 2017 are on-line at
http://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments.
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Part II

A. General Comments on the Examination

The examiners would like to convey their grateful thanks for their help
and cooperation to all those who assisted with this year’s examination,
either as assessors or in an administrative capacity. The chairman would
particularly like to thank Helen Lowe for administering the whole process
with efficiency, and also to thank Nia Roderick, Charlotte Turner-Smith,
Beth Delaplain and Waldemar Schlackow.

In addition the internal examiners would like to express their gratitude
to Professor Higham and Professor Skorobogatov for carrying out their
duties as external examiners in a constructive and supportive way during
the year, and for their valuable input at the final examiners’ meetings.

Standard of performance

The standard of performance was broadly in line with recent years. In
setting the USMs, we took note of

• the Examiners’ Report on the 2016 Part B examination, and in par-
ticular recommendations made by last year’s examiners, and the
Examiners’ Report on the 2016 Part A examination, in which the 2017
Part B cohort were awarded their USMs for Part A;

• a document issued by the Mathematics Teaching Committee giving
broad guidelines on the proportion of candidates that might be ex-
pected in each class, based on the class percentages over the last five
years in Mathematics Part B, Mathematics & Statistics Part B, and
across the MPLS Division.

Having said this, as in Table 1 the proportion of first class degrees in Math-
ematics alone awarded (38.64%) was high, and the proportion of II.2 and
below degrees in Mathematics awarded (12.88%) was low, compared to
the guidelines. One reason for this is that the examiners consider can-
didates in Mathematics and in Mathematics and Statistics together when
determining USMs, and this year the Mathematics and Statistics candi-
dates performed poorly compared to the Mathematics candidates, so that
the averages for the two schools combined (35.2% firsts, and 14.2% II.2 and
below) are consistent with the Teaching Committee guidelines.
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It seems plausible that the increase in time this year from 1.5 hours to 1.75
hours for Mathematics unit papers may have helped candidates near the
II.1/II.2 borderline to perform better, leading to fewer II.2s. The number of
candidates was also low (132, compared to an average of 155 over 2008-
2016), which may have been in part due to withdrawals by candidates with
problems likely to lower their performance, raising the overall standard.

Setting and checking of papers and marks processing

Requests to course lecturers to act as assessors, and to act as checkers of the
questions of fellow lecturers, were sent out early in Michaelmas Term, with
instructions and guidance on the setting and checking process, including a
web link to the Examination Conventions. The questions were initially set
by the course lecturer, in almost all cases with the lecturer of another course
involved as checkers before the first drafts of the questions were presented
to the examiners. Most assessors acted properly, but a few failed to meet
the stipulated deadlines (mainly for Michaelmas Term courses) and/or to
follow carefully the instructions provided.

The internal examiners met at the beginning of Hilary Term to consider
those draft papers on Michaelmas Term courses which had been submitted
in time; consideration of the remaining papers had to be deferred. Where
necessary, corrections and any proposed changes were agreed with the
setters. The revised draft papers were then sent to the external examiners.
Feedback from external examiners was given to examiners and to the
relevant assessor for response. The internal examiners at their meeting in
mid Hilary Term considered the external examiners’ comments and the
assessor responses, making further changes as necessary before finalising
the questions. The process was repeated for the Hilary Term courses, but
necessarily with a much tighter schedule.

Camera ready copy of each paper was signed off by the assessor, and then
submitted to the Examination Schools.

Except by special arrangement, examination scripts were delivered to the
Mathematical Institute by the Examination Schools, and markers collected
their scripts from the Mathematical Institute. Marking, marks processing
and checking were carried out according to well-established procedures.
Assessors had a short time period to return the marks on standardised
mark sheets. A check-sum is also carried out to ensure that marks entered
into the database are correctly read and transposed from the mark sheets.
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All scripts and completed mark sheets were returned, if not by the agreed
due dates, then at least in time for the script-checking process.

A team of graduate checkers under the supervision of Helen Lowe sorted
all the scripts for each paper for which the Mathematics Part B examiners
have sole responsibility, carefully cross checking against the mark scheme
to spot any unmarked questions or parts of questions, addition errors
or wrongly recorded marks. Also sub-totals for each part were checked
against the mark scheme, noting correct addition. In this way, errors were
corrected with each change independently verified and signed off by one of
the examiners, who were present throughout the process. A small number
of errors were found, but they were mostly very minor and hardly any
queries had to be referred to the marker for resolution.

Throughout the examination process, candidates are treated anonymously,
identified only by a randomly-assigned candidate number, until after all
decisions on USMs, degree classes, Factors Affecting Performance appli-
cations, prizes, and so on, have been finalized.

This year, there were a few more corrections to papers announced during
the examinations than usual (of 31 papers, 4 papers had one correction,
and 4 papers had two separate corrections). There appears to be no pattern
on MT/HT or Pure/Applied papers receiving corrections. This may have
been a failure of vigilance on the part of the board of examiners, but we
also feel that not all of our colleagues put as much effort as they should
(and a few, very little effort) into proofreading their draft papers.

Standard and style of papers

At the beginning of the year all setters were asked to aim that a I/II.1
borderline candidate should get about 36 marks out of 50, and that a
II.1/II.2 borderline script should get about 25 marks, and emphasising the
problems caused by very high marks.

This year one paper (B5.3) turned out to be too easy. This causes problems
with determining USMs at the top end.

Setting papers that are significantly too easy (and marking such papers
generously) is undesirable from the point of view of fairness. Such papers
generate more USMs than usual in the range 80-100 from candidates with
close to full marks. An undergraduate who has the good fortune to take
an easy paper and score highly will typically receive a rather higher USM
than he or she would otherwise have done – perhaps a USM of 100 – and
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this can easily push an otherwise high II.1 candidate into the first class.

Timetable

Examinations began on Tuesday 23 May and finished on Friday 16 June.

Determination of University Standardised Marks

We followed the Department’s established practice in determining the
University standardised marks (USMs) reported to candidates. Papers for
which USMs are directly assigned by the markers or provided by another
board of examiners are excluded from consideration. Calibration uses
data on the Part A performances of candidates in Mathematics and Mathe-
matics & Statistics (Mathematics & Computer Science and Mathematics &
Philosophy students are excluded at this stage). Working with the data for
this population, numbers N1, N2 and N3 are first computed for each paper:
N1, N2 and N3 are, respectively, the number of candidates taking the paper
who achieved in Part A average USMs in the ranges [69.5, 100], [59.5, 69.5)
and [0, 59.5), respectively.

The algorithm converts raw marks to USMs for each paper separately. For
each paper, the algorithm sets up a map R→ U (R = raw, U = USM) which
is piecewise linear. The graph of the map consists of four line segments:
by default these join the points (100, 100), P1 = (C1, 72), P2 = (C2, 57),
P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by the requirement
that the number of I and II.1 candidates in Part A, as given by N1 and N2,
is the same as the I and II.1 number of USMs achieved on the paper. The
value of C3 is set by the requirement that P2P3 continued would intersect
the U axis at U0 = 10. Here the default choice of corners is given by U-values
of 72, 57 and 37 to avoid distorting nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters
provide the starting point for the determination of USMs, and the Exam-
iners may then adjust them to take account of consultations with assessors
(see above) and their own judgement. The examiners have scope to make
changes, either globally by changing certain parameters, or on individ-
ual papers usually by adjusting the position of the corner points P1,P2,P3

by hand, so as to alter the map raw → USM, to remedy any perceived
unfairness introduced by the algorithm. They also have the option to in-
troduce additional corners. For a well-set paper taken by a large number
of candidates, the algorithm yields a piecewise linear map which is fairly
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close to linear, usually with somewhat steeper first and last segments. If
the paper is too easy or too difficult, or is taken by only a few candidates,
then the algorithm can yield anomalous results—very steep first or last
sections, for instance, so that a small difference in raw mark can lead to a
relatively large difference in USMs. For papers with small numbers of can-
didates, moderation may be carried out by hand rather than by applying
the algorithm.

Following customary practice, a preliminary, non-plenary, meeting of ex-
aminers was held ahead of the first plenary examiners’ meeting to assess
the results produced by the algorithm, to identify problematic papers and
to try some experimental changes to the scaling of individual papers. This
provided a starting point for the first plenary meeting to obtain a set of
USM maps yielding a tentative class list with class percentages roughly in
line with historic data.

The first plenary examiners’ meeting, jointly with Mathematics & Statis-
tics examiners, began with a brief overview of the methodology and of this
year’s data. Then we considered the scaling of each paper, making provi-
sional adjustments in some cases. The full session was then adjourned to
allow the examiners to look at scripts. This was both to help the external
examiners to form a view of overall standards, and to answer questions
that had arisen on how best to scale individual papers; for instance, to
decide whether a given raw mark should correspond to the I/II.1 or II.1/II.2
borderline, an examiner would read all scripts scoring close to this raw
mark, and make a judgement on their standard.

The examiners reconvened and we then carried out a further scrutiny of
the scaling of each paper, making small adjustments in some cases before
confirming the scaling map (those Mathematics & Statistics examiners
who were not Mathematics examiners left the meeting once all papers
with significant numbers of Mathematics & Statistics candidates had been
considered).

Table 2 on page 10 gives the final positions of the corners of the piecewise
linear maps used to determine USMs.

The Mathematics examiners reviewed the positions of all borderlines for
their cohort. For candidates very close to the proposed borderlines, marks
profiles and particular scripts were reviewed before the class list was fi-
nalised.

In accordance with the agreement between the Mathematics Department
and the Computer Science Department, the final USM maps were passed
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to the examiners in Mathematics & Computer Science. USM marks for
Mathematics papers of candidates in Mathematics & Philosophy were cal-
culated using the same final maps and passed to the examiners for that
School.

Factors affecting performance

A subset of the examiners had a preliminary meeting to consider the sub-
missions for factors affecting performance in Part B. There were twelve
Part 13 submissions which the preliminary meeting classified in bands 1,
2, 3 as appropriate. The full board of examiners considered the twelve
cases in the final meeting, and the certificates passed on by the examiners
in Part A 2016 were also considered. A late application was also considered
following the final board meeting. All candidates with certain conditions
(such as dyslexia, dyspraxia, etc) were given special consideration in the
conditions and/or time allowed for their papers, as agreed by the Proctors.
Each such paper was clearly labelled to assist the assessors and examiners
in awarding fair marks. Details of cases in which special consideration
was required are given in Section E.2.
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Table 2: Position of corners of the piecewise linear maps

Paper P1 P2 P3 Additional N1 N2 N3

Corners
B1.1 (16.09, 37) (28, 57) (43, 72) 10 20 7
B1.2 (13.67, 37) (26.5, 57) (43, 72) 16 29 9
B2.1 (9.08, 37) (28, 57) (36.8, 72) 8 15 0
B2.2 (9.08, 37) (23, 57) (36.8, 72) 11 12 0
B3.1 (8.56, 37) (22, 57) (40.4, 72) 16 20 1
B3.2 (10, 37) (28, 57) (36, 72) 5 2 0
B3.3 (18.1, 37) (30, 57) (39, 72) 13 7 0
B3.4 (11.32, 37) (23, 57) (36.2, 72) 15 17 1
B3.5 (9.25, 37) (21, 57) (35, 72) 15 14 0
B4.1 (10.91, 37) (21, 57) (34, 72) 18 18 2
B4.2 (9.25, 37) (24.5, 57) (35.6, 72) 19 17 2
B5.1 (11.43, 37) (19.9, 57) (30.4, 72) 9 13 7
B5.2 (11, 37) (22, 57) (40.5, 72) 13 24 12
B5.3 (18, 37) (33, 57) (44, 70) 5 13 6
B5.4 (13.67, 37) (23.8, 57) (42, 72) 5 16 7
B5.5 (16.26, 37) (27, 57) (40, 72) 8 18 10
B5.6 (15.05, 37) (26.2, 57) (35.2, 72) 11 17 5
B6.1 (19.82, 37) (33, 57) (41, 72) 8 14 10
B6.2 (15.51, 37) (31, 57) (42, 72) 6 9 2
B6.3 (14.82, 37) (23, 57) (40, 72) 8 17 5
B7.1 (14.42, 37) (25.1, 57) (42.6, 72) 5 13 7
B7.2 (14.94, 37) (22.5, 57) (36.5, 72) 3 6 6
B7.3 (16.83, 37) (25.5, 57) (39, 72) 4 8 6
B8.1 (13.5, 37) (27.5, 57) (41.5, 72) 13 16 3
B8.2 (9.13, 37) (21, 57) (41.4, 72) 8 9 2
B8.3 (13.1, 37) (22.8, 57) (42.5, 72) 13 31 13
B8.4 (13.96, 37) (24.3, 57) (37.8, 72) 6 14 7
B8.5 (10.17, 37) (17.7, 57) (34.2, 72) 14 24 5
SB1 (20.05, 37) (34.9,5 7) (53, 72) 2 20 7
SB2a (12.29, 37) (21.4, 57) (39.4, 72) 8 26 9
SB2b (21.19, 37) (34, 57) (43, 70) 6 18 5
SB3a (12.81, 37) (22.3, 57) (35.8, 72) 19 38 16
SB3b (16.6, 37) (28.9, 57) (39.4, 72) 10 16 6
SB4a (16.66, 37) (28, 57) (40, 72) 7 24 12
SB4b (16.26, 37) (27.5, 57) (39, 70) 5 22 10
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Table 3 gives the rank of candidates and the number and percentage of
candidates attaining this or a greater (weighted) average USM.

Table 3: Rank and percentage of candidates with this or greater overall USMs

Av USM Rank Candidates with %
this USM and above

93 1 1 0.76
91 2 2 1.52
90 3 3 2.27
85 4 4 3.03
84 5 6 4.55
83 7 7 5.3
81 8 8 6.06
77 9 15 11.36
76 16 17 12.88
75 18 22 16.67
74 23 29 21.97
73 30 33 25
72 34 37 28.03
71 38 44 33.33
70 45 51 38.64
69 52 54 40.91
68 55 62 46.97
67 63 71 53.79
66 72 75 56.82
65 76 82 62.12
64 83 91 68.94
63 92 97 73.48
62 98 102 77.27
61 103 109 82.58
60 110 115 87.12
59 116 118 89.39
58 119 120 90.91
57 121 123 93.18
56 124 124 93.94
53 125 125 94.7
52 126 127 96.21
49 128 128 96.97
45 129 129 97.73
44 130 130 98.48
39 131 131 99.24
36 132 132 100
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B. Equality and Diversity issues and breakdown of the re-
sults by gender

Table 4: Breakdown of results by gender

Class Number
2017 2016 2015

Female Male Total Female Male Total Female Male Total
I 7 45 52 10 46 56 7 41 48
II.1 21 43 64 17 41 58 25 44 69
II.2 5 6 12 10 14 24 8 17 25
III 0 3 3 2 1 3 1 2 3
P 0 2 2 0 0 0 0 1 1
Total 33 99 132 39 102 141 41 107 146
Class Percentage

2017 2016 2015
Female Male Total Female Male Total Female Male Total

I 21.21 45.45 39.39 25.64 45.1 39.72 17.07 39.05 32.88
II.1 63.63 43.43 48.48 43.59 40.32 41.13 60.98 41.9 47.26
II.2 15.15 6.06 8.33 25.64 13.73 17.02 19.51 16.19 17.12
III 0 3.03 2.27 5.13 0.98 2.13 2.44 1.9 2.05
P 0 2.02 1.52 0 0 0 0 0.95 0.68
Total 100 100 100 100 100 100 100 100 100

Table 4 shows the performances of candidates broken down by gender. The
examiners were concerned to discover, after the class lists were agreed, that
the percentage of male candidates awarded first class degrees was over
double the percentage of female candidates awarded first class degrees,
and that the percentage of female candidates awarded II.2s and below was
2.5 times the percentage of male candidates in the same range.

We would like to bring this year’s very significant gender discrepancy to
the attention of the department, which we know is already well aware of
this issue. We also note that one reason for the increase in time allowed
for Mathematics unit papers from 1.5 hours to 1.75 hours introduced this
year was that it was believed that some female candidates might be more
likely to be adversely affected by time pressure.
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C. Detailed numbers on candidates’ performance in each
part of the examination

The number of candidates taking each paper is shown in Table 5.

Table 5: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

B1.1 38 35.63 8.37 66.21 13.72
B1.2 55 35.73 9.09 66.87 12.81
B2.1 19 33.21 6.63 66.89 12.07
B2.2 22 33.68 7.61 70.5 11.59
B3.1 38 35.39 7.79 69.89 10.47
B3.2 7 35.71 10.32 73.29 16.46
B3.3 20 41.25 5.25 78.8 11.94
B3.4 34 33.71 7.29 70.79 10.88
B3.5 28 33.68 7.15 72.43 10.44
B4.1 39 30.33 6.2 68.15 8.84
B4.2 39 30.28 8.65 65.51 13.12
B5.1 29 25.45 7.16 64.1 11.86
B5.2 50 29.2 10.56 62 14.22
B5.3 26 40.65 7.47 69.12 12.75
B5.4 30 32.7 9.75 65.07 13.86
B5.5 34 33.94 7.73 65.15 12.04
B5.6 34 31.21 6.94 65.35 12.54
B6.1 31 36.55 8.38 65.45 16.43
B6.2 17 36.29 9.27 66 15.94
B6.3 24 35.83 8.67 71.25 13.13
B7.1 24 34.17 9.15 64.96 11.9
B7.2 15 31.4 7.96 67 11.75
B7.3 18 34.78 7.5 68.94 12.1
B8.1 32 38.91 7.78 73.53 14.24
B8.2 19 33.32 9.18 67.37 10.75
B8.3 44 34.43 7.56 66.89 8.88
B8.4 25 31.48 7 65.8 10.23
B8.5 43 29.12 6.99 67.77 8.39
SB1 2 - - - -
SB2a 17 31.41 6.47 65.47 6.63
SB2b 10 41.7 5.31 72.1 12.7
SB3a 55 29.09 6.91 64.11 9.74
SB3b 19 34.37 7.78 65.37 13.5
SB4a 23 34.65 6.83 66.26 10.93
SB4b 19 32.74 6.04 63.32 9.21
CS3a 8 - - 63 4.24
CS4b 7 - - 71 8.75
BO1.1 6 - - 69.5 5.17
BO1.1X 6 - - 65.33 8.09
BN1.1 6 - - 69 3.52
BN1.2 5 - - - -
BEE 7 - - 78.29 7.8
BSP 8 - - 69.38 4.39
102 2 - - - -
127 1 - - - -
129 1 - - - -
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Individual question statistics for Mathematics candidates are shown below
for those papers offered by no fewer than six candidates.

Paper B1.1: Logic

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.44 20.83 4.92 35 1
Q2 15.50 15.50 5.22 36 0
Q3 11.00 13.40 3.55 5 3

Paper B1.2: Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.37 16.07 5.44 27 3
Q2 18.90 18.90 5.77 52 0
Q3 16.63 17.68 4.56 31 4

Paper B2.1: Introduction to Representation Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.29 17.29 3.58 17 0
Q2 13.00 13.27 3.67 11 1
Q3 17.08 19.10 6.23 10 2

Paper B2.2: Commutative Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.31 16.31 4.99 16 0
Q2 16.50 16.50 3.63 18 0
Q3 14.85 18.30 7.84 10 3

Paper B3.1: Galois Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.82 20.82 4.16 38 0
Q2 13.97 13.97 5.20 29 1
Q3 14.18 16.56 6.75 9 2
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Paper B3.2: Geometry of Surfaces

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.17 21.17 3.31 6 0
Q2 16.33 16.00 7.02 2 1
Q3 15.17 15.17 4.75 6 0

Paper B3.3: Algebraic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.74 19.33 4.04 18 1
Q2 22.11 22.11 3.10 18 0
Q3 19.75 19.75 3.30 4 0

Paper B3.4: Algebraic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.75 17.13 5.83 15 1
Q2 15.71 16.45 4.79 22 2
Q3 17.00 17.00 3.47 31 0

Paper B3.5: Topology and Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.29 16.29 4.34 21 0
Q2 14.30 16.25 6.12 16 4
Q3 17.24 17.95 4.48 19 2

Paper B4.1: Banach Spaces

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.66 14.76 3.77 37 1
Q2 15.31 15.31 3.82 29 0
Q3 16.08 16.08 4.17 12 0
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Paper B4.2: Hilbert Spaces

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.18 15.24 4.20 38 1
Q2 12.52 12.58 4.66 24 1
Q3 17.44 18.75 5.90 16 2

Paper B5.1: Stochastic Modelling and Biological Processes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.69 12.80 3.04 25 1
Q2 12.75 14.17 6.62 18 2
Q3 9.71 10.87 5.14 15 2

Paper B5.2: Applied PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.83 14.18 4.50 40 2
Q2 12.32 13.56 7.37 32 5
Q3 15.29 16.39 6.74 28 3

Paper B5.3: Viscous Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.12 21.12 3.68 26 0
Q2 19.29 19.29 4.49 24 0
Q3 21.00 22.50 2.65 2 1

Paper B5.4: Waves and Compressible Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.09 16.09 3.32 23 0
Q2 13.91 16.71 7.06 17 5
Q3 15.90 16.35 7.39 20 1
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Paper B5.5: Mathematical Ecology and Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.45 17.80 6.11 10 1
Q2 18.07 18.66 5.35 29 1
Q3 15.00 15.00 4.20 29 0

Paper B5.6: Nonlinear Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.34 15.23 4.67 26 3
Q2 12.38 15.18 6.61 11 5
Q3 16.06 16.06 3.96 31 0

Paper B6.1: Numerical Solution of Differential Equations I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.36 14.10 5.18 20 2
Q2 20.62 20.62 4.14 29 0
Q3 17.87 19.46 5.33 13 2

Paper B6.2: Numerical Solution of Differential Equations II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.63 19.60 6.72 15 1
Q2 19.25 19.25 3.70 12 0
Q3 11.10 13.14 5.04 7 3

Paper B6.3: Integer Programming

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.33 20.00 5.03 2 1
Q2 16.73 16.73 5.53 22 0
Q3 18.83 18.83 5.10 24 0
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Paper B7.1: Classical Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.30 17.30 4.02 23 0
Q2 18.87 19.71 6.30 14 1
Q3 12.25 13.27 6.17 11 1

Paper B7.2: Electromagnetism

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.86 15.86 4.74 14 0
Q2 16.00 16.00 3.46 7 0
Q3 14.60 15.22 5.38 9 1

Paper B7.2: Further Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.00 17.00 3.16 14 0
Q2 17.92 19.00 5.28 11 2
Q3 15.67 16.27 6.43 11 1

Paper B8.1: Martingales through Measure Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.63 18.63 4.47 30 0
Q2 20.10 20.29 5.33 28 1
Q3 19.29 19.67 3.09 6 1

Paper B8.2: Continuous Martingales and Stochastic Calculus

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.18 12.18 5.83 11 0
Q2 19.21 19.21 4.73 19 0
Q3 15.78 16.75 5.09 8 1
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Paper B8.3: Mathematical Models of Financial Derivatives

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.17 18.17 4.17 35 0
Q2 16.23 16.23 4.43 30 0
Q3 16.12 17.04 5.92 23 2

Paper B8.4: Communication Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.94 14.94 4.04 18 0
Q2 16.27 16.27 4.61 22 0
Q3 14.91 16.00 4.74 10 1

Paper B8.5: Graph Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.05 15.05 3.25 43 0
Q2 14.24 14.24 4.97 41 0
Q3 10.50 10.50 2.12 2 0

Paper SB2a: Foundations of Statistical Inference

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.82 16.63 4.97 16 1
Q2 15.24 15.24 4.10 17 0
Q3 6.50 9.00 3.54 1 1

Paper SB2b: Machine Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.90 21.78 1.60 9 1
Q2 18.50 18.50 5.09 6 0
Q3 19.75 22.00 3.99 5 3
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Paper SB3a: Applied Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.76 14.82 3.87 44 1
Q2 16.55 18.20 6.29 20 2
Q3 12.40 12.70 3.72 46 2

Paper SB3b: Statistical Lifetime-Models

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.64 18.62 5.20 13 1
Q2 17.36 17.36 3.26 11 0
Q3 15.71 15.71 4.55 14 0

Paper SB4a: Actuarial Science I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.48 16.48 4.12 21 0
Q2 17.45 17.45 3.61 22 0
Q3 22.33 22.33 1.15 3 0

Paper SB4b: Actuarial Science II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.47 16.47 3.20 15 0
Q2 16.40 17.36 4.67 14 1
Q3 14.50 14.67 3.34 9 1
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Assessors’ comments on sections and on individual ques-
tions

The comments which follow were submitted by the assessors, and have
been reproduced with only minimal editing. The examiners have not in-
cluded assessors’ statements suggesting where possible borderlines might
lie; they did take note of this guidance when determining the USM maps.
Some statistical data which can be found in Section C above have also been
removed.

B1.1: Logic

Question 1: This question was done by most candidates and usually to
a very high standard (many 25/25 results). The biggest challenge was to
derive the Proof by Contradiction-Rule in the standard calculus.

Question 2: Part (a) and (b) were standard bookwork, though in (b) the
base case for the induction (atomic formulas) was often dealt with in a hand
waving manner rather than using induction on the complexity of terms. In
part (c) it was somewhat surprising how few candidates managed to fully
write down all the axioms for a dense linear ordering without endpoints.

Question 3: This question was not very popular (only 13 attempts, all
but one gaining rather low marks). Parts (b) and (c) required a good
understanding of the proof of the Completeness Theorem.

B1.2: Set Theory

Problem 1. Part (a) was generally well done. Most proofs of (iii) were at-
tempted via transfinite induction This required some care as the statement
only holds for ordinals ω ≤ α. Often this was not handled correctly. Part
(b) was also generally well done, with most realizing the key distinction
between parts (ii) and (iii). In part (c), (ii) was much like a homework
problem, and was frequently well done, while (iii) was found challenging,
not the many people provided a fully satisfactory answer.

Problem 2. Part (a) was generally very well done, with most seeing the
straightforward reduction of Rotnac’s theorem to Cantor’s theorem. Some
proved Rotnac’s theorem directly using the idea of the proof of Cantor’s
theorem, which was nice. In (b) (ii), several students applied Foundation
to a descending chain of elements. This is OK but some care is required
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as one really needs a descending sequence of sets (i.e. a function ω→ Y).
Much easier is to assert that X, being non-empty, must have an ε-minimal
element, and by transitivity this element must be the empty set. Part
(iii) generated some very circuitous arguments, but many found the key
through Foundation. In part (c), parts (i) and (ii) were generally well done,
with few problems applying recursion. Part (iii) was also done well by
many.

Problem 3. Part (a), all bookwork but (iii) somewhat subtle, was done very
well by most who attempted it. Part (b) (ii) and (iii) are similar to problems
appearing on several past papers, and were generally well done, (ii) by
transfinite induction and (iii) by recursion. In part (c), trying to work
with an injective map ω → X led to difficulties, which were sometimes
overcome; much more direct and appropriate for well-ordered sets was to
work with an order-isomorphism, giving an order embedding of ω onto
some initial segment, and then the contradiction is clear.

B2.1: Introduction to Representation Theory

Question 1: Popular question. Many candidates guessed correctly that
the answer to the last part was no, but then tried to find examples with A
semisimple.

Question 2: The last two parts were quite challenging. In (d) very few
candidates realized and proved that the image of a representation of a
finite abelian group G over C must be diagonalisable.

Question 3: Many good solutions. Many candidates attempted the last part
without proving thatχn is a character of G, which is the key ingredient here.

B2.2: Commutative Algebra

Question 1: Popular question, but last part was quite challenging with
only a handful of complete solution. Surprisingly nobody noticed that the
nilradical of R is not nilpotent and hence R cannot be Noetherian.

Question 2: Another very popular question with good results. Few candi-
dates realized that part (c) needs an application of Nakayama’s Lemma.

Question 3: Many good attempts. Last part (d) was more challenging and
in particular was important to prove that in part (c) P2 cannot be equal to
pZ[t] for a prime integer p.
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B3.1: Galois Theory

My personal feeling is that the paper went pretty well. Everybody did
question 1 (over the rationals). Most of the students also chose question
2, which dealt with function fields in positive characteristic (which I think
was a good sign, as this was a quite exotic exercise). They performed very
well on question 1, and quite OK on question 2. The students sometimes
failed when dealing with basic properties of finite fields, and sometimes
wrote contradictory statements when computing the Galois Group of the
polynomial in question 2 (some students did not understand the additive
structure of F25). They probably should do more exercises on these.

B3.2: Geometry of Surfaces

Candidates did well on question 1 with some perfect or near-perfect an-
swers.

Candidates found the calculus part of 1(c)(iii) the hardest. One near perfect
answer to (2), but generally candidates found 2 (c)(i) difficult (perhaps
because they did not fully use the hint).

Question 3 received mostly very good answers, but none in the 20+ raw
mark range, as candidates tried but failed to tackle 3 (d) inR3

−coordinates
(it is much easier if one tackles it in local θ, γ coordinates).

B3.3 Algebraic Curves

Question 1: Mostly well done. Candidates frequently failed to show a, b, c
nonzero in (b), or λ, µ, ν distinct in (c). Noone got full marks in (d); most
candidates noticed that the issue was in taking square roots in R, but almost
everyone wrote x2

1 + x2
2 + x2

3 = 0 as a possible local model, although this
is empty, and in the mixed signs case, specified λ, µ, ν distinct rather than
±λ,±µ,±ν distinct.

Question 2: The bookwork in (a),(b) was almost always well done. Can-
didates who could do the calculation in (c) successfully (who were, pleas-
ingly, in the majority) scored highly on this question.
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Question 3: The least popular question, with only 4 attempts.

B3.4: Algebraic Number Theory

Question 1: (a) This was straightforward for all who attempted it.

(b) Most people did well on this problem. Some had marks deducted for
not proving the correct formula for the minimal polynomial.

(c) This problem was challenging for quite a few people. Those who didn’t
remember the formula for the discriminant in terms of the derivative of the
minimal polynomial easily made calculation errors. Also, the argument
for using the Eisenstein polynomial to show that one gets the full ring of
integers was missed by many.

(d) I thought this problem would be challenging, but a surprising number
of people computed the norms correctly and found a unit. Some people
made calculation error while trying to compute the norm directly from the
definition.

Question 2:

(a) This problem was easy for most people. Some made the mistake of
incorrectly factorising the prime 3.

(b) This was a relatively challenging problem. Because of the slight com-
plication in the form of the ring of integers, small errors appeared in the
determination of units. But overall performance on this problem was
adequate.

(c) This problem was difficult. The ‘only if’ direction was solved correctly
by many. However, showing that the congruence condition implies that
the prime is reducible in the ring of integers proved elusive. Some students
gave a somewhat inadequate argument using Legendre symbols.

(d) This problem was challenging for many people. Many noted that the
minimal polynomial should factorise into linear terms modulo the prime.
However, realising that the multiplicative group of the residue field should
contain a 5-th root of 1 was difficult.

Question 3:

(a) This problem was mostly solved correctly. A few students missed the
relation between the three primes dividing 2, 3, and 5.

(b) This problem seemed also to be familiar. Some errors occurred in the

24



proof that (y +
√
−30) and (y +

√
−30) are coprime.

(c) This problem was difficult, in part because the formulation of the prob-
lem made it substantially more complicated than intended. One should
have assumed n odd. Without this assumption two difficulties come up.
The first is that −d could be 1 mod 4, in which case the ring of integers
of Q(

√
−d) becomes slightly complicated. The second difficulty is the co-

primeness of (1 +
√
−d) and (1 −

√
−d), which is crucial for the argument.

In spite of this, one or two people gave solutions that came close to being
complete.

B3.5 Topology and Groups

This paper was slightly harder than in previous years, and the spread of
marks achieved by the candidates was significantly broader.

Question 1: The bookwork on this question was relatively challenging.
It required students to show that homotopy equivalent, path-connected
spaces have isomorphic fundamental groups. A significant number of
students assumed that the homotopy equivalences and any relevant ho-
motopies preserved basepoints. This was clearly unjustified, as no-one
included these properties as part of the definition of a homotopy equiva-
lence in the previous sub-part. As a result, little credit was given for these
solutions.

Part (b) (i) - (iii) was new material. Many could do (i) and (ii) but most
found (iii) challenging.

Part (c) was more group-theoretic and was generally fairly well done. In
this question, the easiest way to establish that a homomorphism was an
isomorphism was to exhibit an inverse. Many students got unstuck by
trying to show injectivity and surjectivity directly. Partial credit was given
here if just surjectivity was established. Many students realised in (c) (iii)
that y is not in the image of φ3 and hence φ3 is not an isomorphism. Many
arguments were intuitive rather than a rigorous discussion of reduced
words, and received partial credit.

Question 2: The bookwork on push-outs and the Seifert-van Kampen
theorem was very standard and was well done. Some students attempted
to prove that the fundamental group of S1

×D2 is Z by using SVK. This is
not the right way to do it, and all attempts along these lines came unstuck.
Instead, an obvious homotopy retraction to the circle is the right thing to
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use.

The application of SVK in (b) was more challenging. Roughly half of all
students could make a reasonable attempt at it, although relatively few
could give a solution to (b)(iii).

Question 3: The bookwork here was straightforward and a central part of
the course. It was well done. But when it came to adapting the bookwork
in (b)(i), a minority of students gave an ill-defined homomorphism. Part
(b)(ii) on covering spaces was quite easy but was not generally well done.
The construction of the covering space X̃ was achieved only by a minority
of the students. Many answers attempted to show that X̃ was two tori or
two circles attached together in some way. Instead it is a single torus and
a single circle glued together at two points.

B4.1: Banach Spaces

Question 1 (Separability; Hahn–Banach Theorem)

Part (a) was answered badly despite appearing in the Part A Metric Spaces
course and in a B4.1 problem sheet. Inequalities were handled poorly
and often incorrectly and some candidates swapped lim and inf without
realising this amounted to assuming the result they were asked to prove.

Part (b) worked well, with a variety of valid examples provided and most
candidates demonstrating understanding. Most of those who went astray
did so because they forgot that a real normed space has to be closed under
addition and scalar multiplication.

Part (c) was a minor variant on a standard HBT application and was an-
swered well. A few candidates omitted to prove or at least to observe that
their functionals were well defined. A few others went off course by trying
to use part (a), and so specified a functional which was not linear.

Part (d) was intended to be challenging to get fully correct, and so it proved.
A number of candidates had all the right ideas, including realising that part
(a) was relevant, and lost their way only on the fine detail. At the other
end, those who had not appreciated that separability was crucial wrote
fallacious answers.

Question 2 (Stone–Weierstrass Theorem, subalgebra form)

Parts (a) and (b) were generally done well. A common mistake was omis-
sion of ‘subspace’ from the (standard) definition of linear sublattice, despite
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this being clearly a necessary condition for the argument in (b) to work.

Part (c) was new. Subpart (i) involved classical analysis and was done
poorly. Most candidates were able to sum the expression for Bn( fa) but
very few seemed to realise that they needed to prove that this converges
uniformly to fa on [0, 1] and arguments given for pointwise convergence
were unconvincing. Subpart (ii), an application of (b), was handled much
better, though it was disappointing that a number of candidates tried to
apply it to a subset of C[0, 1] which was not a subspace.

In (d), many did comment that the result in (b) supplied an explicit se-
quence of approximating polynomials but failed to observe that a some-
what stronger assertion could be made. All missed the point that the proof
of (b) involves just polynomial approximation to t 7→

√
t and not the full

Weierstrass theorem.

Question 3 (Sequence spaces: completeness; spectral theory)

The bookwork in (a) caused few problems. Part (b) proved a good test
of candidates’ abilities, with opportunities for slick, economical answers
missed by those who failed to see how to relate each subpart to the previous
one. No one spotted that Mα maps into c0 when infαi = 0 and so cannot
then be surjective. There were good answers to part (c) (and part (d)) from
candidates who had not dawdled over (b), with clear understanding of the
background spectral theory displayed. It was perhaps too much to expect
that justification would be supplied for the values of the limits arising in
(c)(ii) and (c)(iii) and very few marks were deducted if reasons were not
given.

B4.2: Hilbert Spaces

Everybody has attempted the first question. Bookwork in (a)(i) and (b)(i)
has been done well with minor exceptions. Problems in (a)(ii) and (b)(ii)
are not straightforward as the bookwork. In particular, in (a)(ii), many
students realised that the sequence of norms of minimal norm elements
is growing and bounded from above. However, how to deduce that the
corresponding sequence of minimal norm elements is a Cauchy sequence
was not clear for majority of students. In (b)(ii), the most challenging part
is to prove the uniqueness of the norm-preserving extension. The right
approach is based on the Riesz Representation Theorem and the Projection
Theorem rather than the Hahn-Banach Theorem.

27



Approximately, a half of students took the second question. Problem (a)(ii)
turned out to be the most difficult in the entire exam paper. The bookwork
part (a)(i) shows that one should use the Banach-Steinhaus theorem. Very
few students selected a reasonable dense set on which the strong con-
vergence to the identity operator takes place. Further technical step is to
analysis the uniform convergence of a particular sequence of functions on a
closed interval. Part (b) of the second question contains relatively difficult
bookwork part related to the Open Mapping Theorem. It has been mostly
done well. Problem b(iii) is in fact an application of the above mentioned
bookwork. However, it has been realised by minority of students who
attacked this problem. Problem (b)(iv) is the direct consequence of b(iii)
applied to the identity operator.

Another half of students attempted the third question, in which the book-
work was done well. In problem part (b), the first two questions have
been answered by the majority of students while the third one, b(iii), is
more complicated. The difficult part is the proof of the completeness of the
operator space in question. Finally, in the last problem part (c), one should
refer to part (b)(i) and select a basis in an optimal way.

B5.1: Stochastic Modelling and Biological Processes

Question 1. This question was answered by the majority of candidates.
Parts (a) and (b), being bookwork and a simple application, were well
done. Many candidates struggled to solve the equation in (c), and few
candidates made progress in (d).

Question 2. This question was answered by about half the candidates.
Part (a) was standard and well done by the majority. In part (b) many
candidates struggled to write down the correct equations for the boundary
compartments.

Question 3. This question was answered by about half the candidates. In
part (a) many candidates derived a system of ordinary differential equa-
tions that was not closed.

B5.2: Applied PDEs

Q1 Most students attempted this question. Common mistakes in the first
part included missing the distinction between the values of s± correspond-
ing to each region, and incorrectly identifying the domain of definition,
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which was y < x/2 for both regions. The domain of definition is almost
automatic to see with a simple sketch of the characteristics (straight lines
through the origin), but very few candidates actually made use of a sketch.
Part c was conceptually the most challenging, and only a small number of
candidates correctly identified the dividing points for which characteristics
travel into the domain.

Q2 Part b was the most challenging part of this question. The conservation
of flux across the shock requires showing that there is zero jump of u(v−V)
across the shock, where V is the shock velocity and hence v−V is the velocity
entering the shock. Showing this is a very simple algebraic manipulation,
but very few candidates approached it correctly. Part c was mostly done
well, though several candidates stopped at t = 1/(2s), obtained from setting
the Jacobian to be zero, without identifying an actual earliest time.

Q3 This question was attempted by the fewest number of candidates,
though average scores were the highest for those that did attempt it. Full
marks on part c required properly justifying adding three image points
with the proper signs, i.e. an argument about how the points take care of
the boundary conditions .

B5.3: Viscous Flow

Questions 1 and 2 were the most popular questions. All questions were
generally well done.

• Question 1: The bookwork parts were well done in general. Some
candidates did not use a corollary to Reynolds transport theorem (or
apply Reynolds transport theorem component wise) when comput-

ing
d
dt

$
V(t)
ρudV. Part (b) was well done. Minor slips occurred in

computing expressions for the flux.

• Question 2: This question was well done. Some candidates intro-
duced the incorrect scaling for pressure in (a). Some candidates did
not correctly explain why the ∂p/∂x term does not appear in equation
(3). Part (d) was well done. In part (e) there were some problems
when finding an expression for the dimensional leading-order com-
ponent of the shear stress σ12.

• Question 3: This was the least popular question. However, those
that did this question did it very well.
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B5.4: Waves and Compressible Flow

Q1: The first two parts were well done, though many candidates did not
explain the use of Bernoulli’s equation to derive the dynamic boundary
condition in (a) well (e.g. they identified the arbitrary constant with a
variable pressure instead of with atmospheric pressure), and a number of
candidates were confused about the amplitude of the solutions in (b) being
arbitrary. Part (c) was found difficult and no candidates were able to derive
the given expression for η(x, t). One or two candidates correctly identified
that the solution is dominated by cos(3πx/a) for the very last part, but none
bothered to sketch it as requested.

Q2: Part (a) was done well, although some candidates gave lengthy regur-
gitation of bookwork that was unnecessary and in some cases did not actu-
ally provide a coherent explanation. Part (b) was done surprisingly poorly,
with many students having difficulty solving the transformed problem. A
common error was to look for a ‘separable solution’ φ̂(x, `, z) = f (x)g(`)h(z),
including the transformed wave-number. Part (c) was on a problem sheet
and was done reasonably well. The unseen part (d) was found more
difficult, with just one candidate giving a complete solution.

Q3: The bookwork in parts (a) and (b) here was generally done well, though
some candidates found very long-winded ways of showing that the flow
was homentropic in (a), and some got lost in algebra in (b). There were a
number of excellent solutions to part (c), and a number of very confused
answers including some who had the wrong picture of the domain and
some who attempted to insert shocks into their solutions.

B5.5: Further Mathematical Biology

• Question 1: Those candidates who attempted this question typically
produced good answers. Parts (a) and (b) contained fairly standard
bookwork and were well done, while part (c) was more challenging.
While the majority of students were able to derive expressions relat-
ing the parameters D1,D2, γ and c, few were able to solve them as the
algebra was quite involved.

• Question 2: Most candidates did well on this question. They were
able to derive the stated inequalities in parts (b) and (c), having noted
that the stated equations were a variant on the standard PDEs for
pattern formation. The final part (d) was algebraically challenging
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and few candidates were able to sketch their results.

• Question 3: This question was completed reasonably well, with most
candidates scoring full marks on parts (a) and (b). Parts (c) and (d)
were more challenging, with some candidates failing to notice that
the nutrient concentration attained its minimum value on the outer
boundary (x = L(t)) and/or deducing that at steady state the tissue
comprised an inner, nutrient-rich region and an outer, region in which
cell death was active.

B5.6: Nonlinear Systems

Q1: Most students answered easily Part a, b(ii), c(i) but had difficulties
articulating a proof for b(i). Students who drew possible maps were helped
in their reasoning. Only a few students realised that question c(ii) could be
easily answered using the result of b(i). As a consequence, most students
failed to properly answer c(ii).

Q2: Only a few students attempted this problem. Part (a) of the question
was relatively straightforward and students mostly answered it correctly.
However, Part (b), was more of a challenge for the students despite the fact
that it was a direct application of the same algorithm as in part (a). Students
who managed to answer demonstrated a full grasp of the method.

Q3: Almost all students tried this question and many of them did well.
The question was mostly theoretical and students who learned the mate-
rial managed to give proper definitions of basic concepts and apply them
directly. Part d required the computation of an integral and many students
struggled. It seems that students are not required to manipulate integrals
routinely and have difficulties with basic integration methods. The last
part (e) proved to be too difficult for most students with only a handful
showing a good enough understanding of the material to be able to re-
late the gradient of a first integral to the variational equations around a
homoclinic orbit.

B6.1: Numerical Solution of Differential Equations I

Question 1

Most students attempted this question, but many had difficulties. Part a)
was generally well done, although some students had trouble identifying
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the constants. Almost everyone had difficulties with part b), with too
much being assumed about the function f, and many people getting into
difficulty truncating the Taylor series. Part c) also caused a lot of trouble,
with very few students being able to accurately derive an adaptive method
that uses the two methods given.

Question 2

This question was done by almost all candidates, and was generally done
well. A few students had difficulty reproducing the proof of the result
in part b). In part c), some students didnt check for consistency or zero-
stability, or failed to accurately state Dahlquists theorem. Part c)ii was
generally well done.

Question 3

This was the least popular question, but those that attempted it generally
did well. The main source of dropped marks in part a) was forgetting
to state the boundary conditions for the recurrence relation. Part b) was
generally done well, although some candidates got into difficulty showing
that the function is bounded below by -1. Part c) posed difficulties for
some candidates who didnt understand the requirement for positivity of
the coefficients, which resulted in missing one (or more) of the conditions
required for the discrete maximum principle to be satisfied.

B6.2: Numerical Solution of Differential Equations II

Question 1 was addressed by most candidates. All in all, questions of this
type have been around in previous papers for several years and this was
reflected in the relatively good performance of the candidates, except on
the bits that were actually different from previous papers.

Question 2 corresponded to a main theorem from the textbook. Only a
few candidates managed to follow all steps of the proof. Some of them
actually proved a more general theorem given in the lecture notes, and
ended up doing much more work.

The classification of each scheme was done correctly by most of the students
attempting question 2, except from the last part, where no one realised that
no conflict arises with the theorem regarding high order linear schemes.
Also, for scheme iv) many did not realised that the scheme had only one
possible value of λ to be TVD.

Question 3 was not very popular. Only the first bit was addressed by a
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handful of students, but the main steps of parts (b)–(d) were untouched,
even if the result was actually left as exercise during the lectures.

B6.3: Integer Programming

Q1 saw the least uptake of the three, presumably because the topic was
Lagrangian relaxation, with only 3 serious attempts.

Q2 was attempted by nearly everyone. There was a good spread of marks,
and the problem worked well in allowing to distinguish between levels of
ability at both ends of the scale.

Q3 was slightly easier than the other two and was attempted by everyone.
It was a good discriminator of abilities at the lower and middle range of
the scale, but with hindsight it should have contained more of a sting in
the tail to better distinguish candidates at the top end of the scale.

Overall the exam worked well and seems to have given the students the
chance of showing what theyve learned whilst discriminating well be-
tween different levels of mastery of the material. I was impressed by the
amount of good mathematical reasoning I saw and felt that the students
had worked really hard and achieved a good level of not only knowledge,
but also skill and intuition in the subject.

B7.1: Classical Mechanics

Question 1 is on Lagrangian mechanics. Answers to part (a) were generally
of a very high standard. The exception was part (a)(ii): one effectively
needs to show that d

dt f (q) satisfies Lagrange’s equations, which follows
from an application of the chain rule. A fair number of candidates did this
correctly, but it entirely eluded others. Part (b)(i) required candidates to
find the Lagrangian for a simple mechanical system; this was very well
answered (apart from a few computational errors). Many candidates found
the correct quadratic Lagrangian in (b)(ii), but only a handful correctly used
this to find the initial angular accelerations.

Question 2 is on rigid body mechanics. Parts (a) and (b) are bookwork,
while parts (c) and (d) are applications of Euler’s equations that were
either covered in lectures, or closely modelled on an example in the printed
lecture notes. Candidates who had learned the course material well scored
very highly in the question. There were a good number of largely complete
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solutions, scoring either full marks or close to full marks.

Question 3 is on Hamiltonian mechanics. The Lagrangian and Hamilto-
nian for a charged particle in a magnetic field, relevant to parts (a) and (b),
were covered as an example in the lectures. A few candidates incorrectly
identified mṙ as the momentum canonically conjugate to r. The computa-
tions are most easily done using a few vector identities, e.g. the scalar triple
product identity, and a good number of candidates took this approach. A
fair number also got bogged down quite early on in the question.

B7.2: Electromagnetism

The exam turned out to bit a little harder than the setter intended. Having
said that, about 40% of the candidates handed in excellent work.

• Q1 Many marks were lost in part (c) and also in part (b) where
students made various errors in the computations.

• Q2 There was a typo in part (ii) (where it says “part (a)” it should
have said “part (b)i”). This was compensated by generous marking
and by not taking points off where a student used the ”wrong” field,
as long as they were correct conceptually. Not many students were
able to get to the last part of the question (part b(iii)).

• Q3 There was also a typo in this question in the second set of equations
in part (a). Almost all students who attempted this question got to
the right answer. The typo was compensated by generous marking
of the question. Part (b) seemed to have been hard and there were
many errors in part (ii) and (iii).

B7.3 Further Quantum Theory

The questions were intentionally somewhat easier than previous years and
candidates were able to obtain good marks.

The first question was popular on an early part of the course, and was
well done except for the middle calculation that often was not properly
completed, and the last part that was answered too briefly.

The second question was a relatively routine question on the variational
principal, although the calculation did cause some difficulties for some
candidates.
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The third question was a little nonstandard, but nevertheless attracted a
good number of strong attempts.

B8.1: Martingales Through Measure Theory

Overall this is not a particularly hard paper, and most candidates were
able to start with parts of the book-work and achieved a good score for
each question attempted without much struggle if they understood the
material.

Question 1. This is the most popular question, all candidates except one
attempted this question. Most candidates were able to state the defini-
tions in (a) and (b) correctly, but a few of them forget to say for (b) the
totality measures should be the same for the uniqueness lemma. A few
candidates had difficulty to define a proper π-system to argue correctly the
independence of two σ-algebras following the hint, by using the unique-
ness lemma. Some candidates could not justify properly the computations
for the conditional expectation which should be evaluated by a few basic
properties about conditional expectations.

Questions 2. This is another question most candidates attempted, and
scored quite well. Many candidates lost some marks for part (a)(ii), and
could not combine two inequalities together to justify the arguments. A
few candidates could not provide a proof for part (b) (ii) to show the
convergence almost surely by using Borel-Cantelli lemma, by noticing that
an integer valued sequence converges if and only if it is eventually constant.

Question 3. A few candidates attempted this question, and most of them
did quite well for parts (a), (b)(i)(ii), but a few of them had difficulty to
arrive the estimate in part (b) (iii) by using Doob’s L2-inequality. Most
of those attempted were able to find the bracket process in part (c), and
to conclude the convergence, but several of them could not present the
arguments clearly, and lost a few marks for this part.

B8.2: Continuous Martingales and Stochastic Calculus

Each of Questions 1 and 3 was attempted by roughly half of the students
sitting the exam, while question 2 was attempted by nearly everybody.
Question 1 proved to be the hardest. The difficulty was caused by the sec-
ond part where students were asked to compute the quadratic variation of
a continuous Gaussian martingale X with independent increments. While
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this was an easy computation if one used the fact that X2
t − 〈X〉t is a mar-

tingale, it was much more involved if one tried to use the definition of the
quadratic variation via limits of sums of squares of increments, as many
students did. Numerous students got stuck on such computation but did
not seek to compute 〈X〉 in another way. Those who did typically scored
very well and the results of this question displayed the largest variance
among the three questions.
Question 3 saw a higher average mark and lower variance than Question 1.
Most common mistakes involved failure to define the stochastic integrals
properly, in particular to explain why the second integral’s definition did
not depend on T in the first integral, failure to justify the use of Itô’s formula
or the optional sampling theorem, or errors in computing the derivatives.
Question 2 had the highest standard of answers with mean raw mark of 20
and median of 21. Students often worked hard to justify taking the limits
where the use of optional sampling theorem was justified on unbounded
horizon and sometimes this led to errors when re-arranging terms. Com-
mon mistakes also involved not justifying the application of earlier results
in the last part of the problem or identifying a wrong value for θ.

B8.3: Mathematical Models of Financial Derivatives

Question 1: The solution involved finding the price of a European option,
with arbitrary payoff Po(ST), assuming that the underlying asset evolved
according to the process

dSt = αSt dt + σ dWt.

To do this question it was necessary to know how to solve this SDE, how
to derive the Black-Scholes equation for an option which depended on this
asset and the Feynman-Kǎc theorem to price the option.

To the surprise of the examiner, who thought this was the most difficult of
the three, candidates on the whole did well on this question.

Question 2: The question involved solving the SDE

dSt

St
= µ dt + σ dWt

then using the solution to find the Black-Scholes value of a European option
with the payoff max(log(ST/K, 0). Then one had to show that if V(S, t) was
a solution of the Black-Scholes equation then so too was (S/B)γ V(B2/S, t),
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where γ = 1−2r/σ2 and, finally, the students were asked to price the option
described above but where a barrier, B with 0 < B < K, was introduced.

The main problems were in applying the Feynman-Kǎc formula to get the
price of the option with payoff max(log(S/K), 0) and in proving that if V(S, t)
is a solution of the Black-Scholes equation then so too is (S/B)γV(B2/S, t).

Question 3: This involved firstly proving an arbitrage result about Amer-
ican and European call options (with the same parameters and no divi-
dends) and hence deducing that it was never optimal to exercise an Amer-
ican option before expiry (assuming the interest rate was strictly positive).
Secondly it involved solving a perpetual American call option (with pos-
itive dividends and interest rate) to find both the price and the optimal
exercise boundary, Ŝ. Finally, it was assumed that the holder of the Amer-
ican call option chose an arbitrary exercise price S̄ (but greater than the
option’s strike); in this case you had to show either that

• if S̄ < Ŝ then the option could be made more valuable by increasing
the value of S̄—by differentiating the solution with respect to S̄; or

• if S̄ > Ŝ then the option price went below the payoff for S ≈ S̄, which
represents an arbitrage — in this case you differentiate the solution
with respect to S and show that at S̄ the slope is greater than the
payoff’s slope.

The main problem with this question seemed to be a lack of time to com-
plete it.

B8.4: Communication Theory

All three questions were approximately equally popular. Most students
managed to gain all points for 1a,2a,3a.

In 1b) most students realized that a = 1 has to be treated separately, but
curiously not many realized that this is also the case for a = −1. In 1c),
most students managed to write down the joint information between the
input and output of the cascaded channel in terms of entropies but did not
get further. A common mistake was to get confused by the chain rule.

In 2a)(i) a common mistake was to state ≤ 1 + H(X) as upper bound, which
is however not sharp. In 2b), most students managed to calculate the
minimum but a recurring mistake was to forget the normalizing factor
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for the expected length L?. In 2b)(ii), some students ignored the implicit
restriction that `x has to be integer-valued in order to construct a code.
In 2c), many attempts had the right intuition to exploit that p1 > 2

5 has
consequences for the probability masses of subtrees. However, very few
managed to turn this into a rigorous argument.

In 3b) only a few students realized that a simple calculation can be given
by conditioning. On the other, most students managed to get far by a
direct calculation where sums are spelled out. Part i of 3c) was quite well
received, and most students who attempted this question got the right
answer. On the other hand, in 3c)(ii) only a few students managed to write
down the minimizer.

B8.5: Graph Theory

Every single candidate attempted question 1, and almost all attempted
question 2.

Question 1 is not that easy. The results are simple at an intuitive level,
but giving proper proofs isn’t so easy. Most candidates gave some sort of
partly-valid argument. Disappointingly, this was true even for (a), which
was written out in full detail in the notes and gone through slowly in
lectures.

The bookwork part of question 2 was overall OK; a fair number of good
answers, and quite a few partial answers at least showing some of the ideas.
Several candidates wasted time proving (a version of) what was given in
the hint. Nobody managed the last part of (b) completely, though a few
candidates came close. For the construction, several candidates found their
own solutions rather than using the (not very helpful, in hindsight) hint.

Only 3 candidates attempted question 3; those that did, did not do it well.

BO1.1: History of Mathematics

Both the extended coursework essays and the exam scripts were blind
double-marked. The marks for essays and exam were reconciled sepa-
rately. The two carry equal weight when determining a candidate’s final
mark.

The paper consisted of two halves, which carry equal weights. In section
A (‘extracts’), the candidates were invited to comment upon the context,
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content and significance of two samples of historical mathematics (from
a choice of six). Out of nine candidates, one person answered each of
questions 1 and 6; two people answered questions 3 and 4. The most
popular questions were 2 and 5, which each attracted answers from six
candidates.

The unpopularity of questions 4 and 6 is probably connected with the fact
that the relevant topics were touched upon only briefly within the lecture
course. The extract presented to candidates in question 1 was almost
entirely symbolic in nature and rather tricky to interpret, so candidates may
not have felt that there was much here to get hold of. It was disappointing
not to see any comment here on the homogeneity of Harriot’s equation:
the appearance of “000” on the right-hand side. Notational issues (namely
Maclaurin’s abundance of dots) may also have put people off question 3,
even though this extract related to a topic (calculus/infinite series/rigour
in analysis) that was at the core of the lecture course. There were some
misinterpretations of the language of the extract in question 3: “the law of
continuation” does not refer to the convergence of the series; no candidate
understood what “z being supposed to flow uniformly” meant (i.e., that ż
is constant).

Despite being a popular choice, the quality of answers to question 2 varied
significantly, with several candidates failing to note that the notion of a
limit was the key concept here; too many candidates implied that Newton’s
Principia is about calculus. Answers to question 5 were also quite varied,
with some candidates being inclined to read more into the presence of
the εs and δs on the page than was warranted (they do not correspond
to the modern conventions of using these symbols); the popularity of this
question probably stemmed from the familiarity of the relevant concept
(i.e., that of a Riemann integral) from Prelims.

Some candidates organised their answers to questions from section A un-
der the three headings ‘context’, ‘content’, ‘significance’, with material
mostly being distributed correctly. Some candidates were inclined to go
beyond the immediate content of the extract in their descriptions thereof,
but this was not a major problem. Slightly more serious was the vagueness
found in some answers under the heading ‘significance’: some candidates
merely stated that the mathematics at hand “was very significant” without
attempting to explain how or why.

In section B of the paper, candidates were invited to write an essay, taken
from a choice of three. Questions 7, 8 and 9 attracted answers from two,
four, and three candidates, respectively. As for questions 4 and 6 above,
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the material relevant to question 7 was covered in just one lecture, so this
probably explains its unpopularity. On the whole, answers to questions
from section B were quite well done, and tended to be better than those for
section A, barring a tendency towards vagueness in answers to question
9, and the inclusion of too much material on mathematicians other than
Lagrange in answers to question 8. Lagrange’s work on mechanics was
only rarely mentioned.

For the coursework essays, the candidates were invited to write about
some aspects of the context, development, reception, etc., of the Quadratic
Reciprocity Theorem. Although it could not be assumed that all candidates
taking O1 had already met this theorem in the Part A Number Theory short
option, a summary of the relevant mathematics was provided, and this
appears to have been assimilated well by all candidates. With regard to the
coursework essays, it should be emphasised that the assessors were looking
for the use of primary sources (a central feature of O1), and penalised where
they did not find it.

BEE, BSP and BOE essays and projects

Mark reconciliation was handled for essays and projects as part of the
same exercise. Some assessors/supervisors did not make the deadline
for submitting marks so the procedure was handled on a rolling basis
once initial suggested marks were received, but overall the process went
smoothly.

If the proposed marks were sufficiently close, as set out in the guidelines,
then the supervisor and assessor were informed that the automatic rec-
onciliation procedure would be applied unless they indicated that they
wished to discuss the mark further. If the proposed marks differed suf-
ficiently from each other, then the supervisor and assessor were asked to
confer in order to agree a mark.

BN1.1: Mathematics Education

The assessment of the course is based on:

• Assignment 1 (Annotated account of a mathematical exploration)
35%

• Assignment 2 (Exploring issues in mathematics education) 35%
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• Presentation (On an issue arising from the course) 30%

Each component was double-marked, with Dr Jenni Ingram (JI) or Dr
Gabriel Stylianides (GS) plus myself (NA) as assessors. Each component
was awarded a USM (agreed between assessors for double-marked compo-
nents), and then an overall USM was allocated according to the weightings
above. Where a significant difference between marks awarded by the two
assessors arose or marks were across a grade boundary, scripts were dis-
cussed in more detail before agreeing a mark.

There were 8 students on the course this year, all but one of whom also
went on to study for the BN1.2 (Undergraduate Ambassador Scheme) in
Hilary Term. We were pleased to be able to award three Firsts and four
very high Upper Seconds, and this years marks have a higher mean and
smaller variance in comparison with the previous year.

BN1.2: Undergraduate Ambassadors Scheme

The assessment of the course is based on:

• A Journal of Activities (20%)

• The End of Course Report, Calculus Questionnaire and write-up
(35%)

• A Presentation (and associated analysis) (30%)

• A Teacher Report (15%)

The Course Report was double-marked, with Dr Gabriel Stylianides (GS)
and myself (NA) as assessors. I was sole assessor for the Presentation
and the host school teacher provided grades for the Teacher Report. As
recorded in the table below, each component was awarded a USM (agreed
between assessors for double-marked components), and then an overall
USM was allocated according to the weightings above. Where a significant
difference between marks awarded by the two assessors arose (these are
underlined in the table), this was discussed in more detail before agreeing
a mark.

There were 7 students on the course this year, all of whom had previously
studied for the BN1.1 course in Mathematics Education in Michaelmas
Term. All students engaged well with the practical aspects of the course
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leading to the majority receiving first class marks in these areas. Pleasingly,
as last year, several candidates were awarded first class marks for their
reflective writing too. There was only one candidate who achieved an
overall mark of 70 or more, but all other candidates achieved upper second
class marks. This is a similar (narrow) distribution to previous years.

Statistics Options

Reports of the following courses may be found in the Mathematics &
Statistics Examiners’ Report.

SB1 Applied and Computational Statistics

SB2a: Foundations of Statistical Inference

BS2b: Statistical Machine Learning

SB3a: Applied Probability

SB3b: Statistical Lifetime Models

SB4a: Actuarial Science I

SB4b: Actuarial Science II

Computer Science Options

Reports on the following courses may be found in the Mathematics &
Computer Science Examiners’ Reports.

OCS1: Lambda Calculus & Types

OCS2: Computational Complexity

Philosophy Options

The report on the following courses may be found in the Philosophy Ex-
aminers’ Report.

102: Knowledge and Reality

127: Philosophical Logic

129: Early Modern Philosophy
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