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1.) Let G be a group.

a) Define the terms “representation of a group”, “irreducible representation”, “faithful rep-
resentation” and “unitary representation”. [5]

b) State Schur’s Lemma for an irreducible representation R : G → Gl(V ) on a complex
vector space V . Use Schur’s Lemma to show that a complex irreducible representation of
an Abelian group must be one-dimensional. [6]

c) Consider the Abelian group G = Z2 × Z2 which consists of {(0, 0), (1, 0), (0, 1), (1, 1)},
with the group operation being addition modulo 2. Write down the irreducible complex
representations and the character table for this group. [6]

d) Let V = {ax2 + bxy + cy2 | a, b, c ∈ C} be the vector space of quadratic polynomials
p in two variables x, y with complex coefficients. A map R : Z2 × Z2 → Gl(V ) is
defined by R((1, 0))(p)(x, y) := p(x,−y), R((0, 1))(p)(x, y) := p(y, x) and R((1, 1)) :=
R((1, 0))R((0, 1)). Why is R a representation? Work out the representation matrices for
R((1, 0)) and R((0, 1)) relative to the standard monomial basis {x2, xy, y2} of V . Find
the character and the irreducible representation content of R. [8]

Solution:

a) A representation of a group G is a map R : G → Gl(V ) from the group to the automor-
phisms of a vector space V which satisfies R(g1g2) = R(g1)R(g2) for all g1, g2 ∈ G. [1]
A representation R : G → Gl(V ) is called irreducible if there is no sub vector space
U ⊂ V , other than the two trivial sub vector spaces, such that R(g)(U) ⊂ U for all
g ∈ G. [2]
A representation R : G→ Gl(V ) is called faithful if it is injective. [1]
A representation R : G→ Gl(V ) is called unitary if all R(g) are unitary relative to some
scalar product on V . (Or, alternatively, if all R(g) are unitary matrices.) [1]

b) If R : G → Gl(V ) is a complex irreducible representation and P : V → V a linear map
with [R(g), P ] = 0 for all g ∈ G, then Schur’s Lemma states that P must be a multiple
of the unit matrix. [2]
Let R : G → Gl(V ) be a complex irreducible representation of G. If G is Abelian, it
follows from the representation property that [R(g), R(g̃)] = 0 for all g, g̃ ∈ G. If we fix g
and set P = R(g) it follows that [P,R(g̃] = 0 for all g̃ ∈ G. Hence, from Schur’s Lemma,
P = R(g) = λ(g)1, for some λ(g) ∈ C and this holds for all g ∈ G. However, this form of
R is only consistent with R being irreducible if the dimension of V is one. [4]

c) Since G is an Abelian group each element is its own conjugacy class. Hence we have four
classes and four irreducible, complex representations, denoted R(q1,q2), where qi ∈ {0, 1}.
They are explicitly given by

R(q1,q2)((k1, k2)) = (−1)q1k1+q2k2 .

Then, the character table is given by [3]
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(0,0) (1,0) (0,1) (1,1)

(0,0) 1 1 1 1

(1,0) 1 -1 1 -1

(0,1) 1 1 -1 -1

(1,1) 1 -1 -1 1
[3]

d) The map R is a representation because applying R((1, 0) or R((0, 1) twice to the polyno-
mials gives the identity map, in line with the group multiplication rules. [1]
We have R((1, 0))(x2) = x2, R((1, 0))(xy) = −xy and R((1, 0))(y2) = y2. Further, for the
other generator, we have R((0, 1))(x2) = y2, R((0, 1)(xy) = xy and R((0, 1))(y2) = x2.
From this we can easily read off the representation matrices

R̃((1, 0)) = diag(1,−1, 1) , R̃((0, 1)) =

 0 0 1
0 1 0
1 0 0

 .

Since tr(R̃((1, 0))) = 1, tr(R̃((0, 1)) = 1 and tr(R̃((1, 0))R̃((0, 1))) = −1 the character of [3]
this representation is given by

χ = (3, 1, 1,−1) .

Dotting this character into the rows of the above character table shows that (χ(0,0), χ) = [2]
(χ(0,1), χ) = (χ(1,0), χ) = 1 and (χ(1,1), χ) = 0 and, hence,

R = R(0,0) ⊕R(1,0) ⊕R(0,1) .

[2]

2.) The quaternion group Q can be defined as a matrix group with the eight elements

Q = {±12,±iσ1,±iσ2,±iσ3} ,

where σi are the Pauli matrices, explicitly given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

a) Find the conjugacy classes of Q. How many irreducible, complex representations does Q
have and what are the dimensions of these representations? [5]

b) Given the two one-dimensional representations

R1(±12) = 1 R1(±iσ1) = 1 R1(±iσ2) = −1 R1(±iσ3) = −1
R2(±12) = 1 R2(±iσ1) = −1 R2(±iσ2) = 1 R2(±iσ3) = −1

of Q, write down the character table of Q and the remaining representation or represen-
tations. [8]
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c) A four-dimensional representation R4 of Q is given by R4(±12) = ±14 and

R4(±iσ1) = ±


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , R4(±iσ2) = ±


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0



R4(±iσ3) = ±


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


Convince yourself that R4 is indeed a representation of Q and determine its irreducible
representation content. [6]

d) What is the irreducible representation content of R4 ⊕R4 and R4 ⊗R4? [6]

Solution:

a) Using the properties σ2i = 12 and σ1σ2 = iσ3 etc. of the Pauli matrices is it easy to show
that there are five conjugacy classes C0 = {12}, C− = {−12} and Ci = {±iσi}. [2]
Hence, there must be five complex, irreducible representations. The squares of their di-
mensions have to sum up to the group order 8 (and we have the trivial representation) so
there must be four one-dimensional representations and one two-dimensional representa-
tion. [3]

b) Of course we have the trivial representation, R0, and the two-dimensional representation
ρ given by the matrices we have used to define the group as well as the two representations
R1, R2 given in the question. Hence, we are missing one one-dimensional representations,
which we denote R3. Its associated character χ3 must satisfy χ3(12) = 1 and it must be
orthogonal to all other four characters. This fixes the character table of Q:

C0 C− C1 C2 C3

# elements 1 1 2 2 2

χ0 1 1 1 1 1

χ1 1 1 1 -1 -1

χ2 1 1 -1 1 -1

χ3 1 1 -1 -1 1

χρ 2 -2 0 0 0
[6]

For a one-dimensional representation, such as R3, the representation “matrices” equal the
character, so we have

R3(±12) = 1 R3(±iσ1) = −1 R3(±iσ2) = −1 R3(±iσ3) = 1

[2]
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c) It is easy to show that these 4×4 matrices multiply in the same way as the group elements,
for example R4(±iσ1)2 = −14, in line with (±iσ1)2 = −12. [2]
By taking the trace it follows that the character of R4 is given by

χ4 = (4,−4, 0, 0, 0) .

From the above character table we have (χ0, χ4) = 0, (χi, χ4) = 0 for i = 1, 2, 3 and
(χρ, χ4) = 2 which means that

R4 = ρ⊕ ρ .

[5]

d) Of course R4 ⊕R4 contains four copies of ρ. [1]
Further R4 ⊗ R4 = (ρ ⊕ ρ) ⊗ (ρ ⊕ ρ) = 4(ρ ⊗ ρ). The character of ρ ⊗ ρ is given by
χρ⊗ρ(g) = χρ(g)2 and hence, χρ⊗ρ = (4, 4, 0, 0, 0). Dotting into the character table this
means (χ0, χρ⊗ρ) = 1, (χi, χρ⊗ρ) = 1 for i = 1, 2, 3 and (χρ, χρ⊗ρ) = 0, so that

ρ⊗ ρ = R0 ⊕R1 ⊕R2 ⊕R3 .

As a result, R4 ⊗R4 contains four copies of R0 ⊕R1 ⊕R2 ⊕R3. [5]

3.) Consider the group SU(4) of 4× 4 special unitary matrices.

a) Determine the Lie-algebra and the Cartan sub-algebra of SU(4). What is the dimension
and the rank of this Lie algebra? Write down a simple basis for the Cartan sub-algebra. [6]

b) For the fundamental representation, 4, of SU(4), find the weights of the standard unit
vectors ei, where i = 1, . . . , 4, in C4. What are the weights of the complex conjugate of
the fundamental representation, 4̄? [4]

c) Using Young tableaux, find the irreducible representations in 4⊗ 4 and 4⊗ 4̄. For 4⊗ 4,
identify the tensors associated to these irreducible representations. [8]

d) Consider the SU(3) sub-group of SU(4) defined by the embedding

U =

(
U3 0
0 1

)
,

where U3 ∈ SU(3). How do the representations 4, 4̄ and 4⊗ 4 branch under this SU(3)
sub-group? [7]

Solution:

a) Writing U = 14 + iT + · · · and inserting into U †U = 14 and det(U) = 1 leads to T = T †

and tr(T ) = 0. So
L(SU(4)) = {T |T = T † and tr(T ) = 0} .

[2]
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The Cartan sub-algebra is given by the diagonal matrices T = diag(a1, a2, a3, a4) with
ai ∈ R and

∑4
i=1 ai = 0. [1]

There are 6 complex entries above the diagonal of T , making for 12 real degrees of freedom,
and four real ones along the diagonal, subject to the trace condition, so another three for
a total of 15. Hence, dim(L(SU(4))) = 15. [1]
The dimension of the Cartan sub-algebra is clearly three, so rk(L(SU(4))) = 3. [1]
A simple basis for the Cartan sub-algebra is

Y1 = diag(1,−1, 0, 0) , Y2 = diag(0, 1,−1, 0) , Y3 = diag(0, 0, 1,−1) .

[1]

b) The weights wi for the unit vector ei can be read off from the equations Yaei = wiaei
and this leads to

w1 = (1, 0, 0) , w2 = (−1, 1, 0) , w3 = (0,−1, 1) , w4 = (0, 0,−1) .

These are the weights in the fundamental representation 4. [3]
The complex conjugate 4̄ simply has weights −wi. [1]

c) Following the rules for Young-tableaux we have

4⊗ 4 ∼ ⊗ a =
a

⊕ a = 6⊕ 10

4̄⊗ 4 ∼ ⊗ a =

a

⊕

a

= 1⊕ 15 [6]

The 6 representation corresponds to an anti-symmetric two-index tensor and the 10
representation to a symmetric two-index tensor. [2]

d) Clearly, from the given embedding we have the branchings 4→ 3⊕ 1 and 4̄→ 3̄⊕ 1. [3]
Further

4⊗ 4 = (3⊕ 1)⊗ (3⊕ 1) = (3⊗ 3)⊕ 3⊕ 3⊕ 1 = 3̄⊕ 6⊕ 3⊕ 3⊕ 1 .

[4]

4.) Consider the group SO(7) of 7× 7 special orthogonal matrices.

a) Determine the Lie algebra, the Cartan sub-algebra, the dimension and the rank for this
group. [5]
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b) The Cartan matrix for the associated algebra B3 is given by

A(B3) =

 2 −1 0
−1 2 −2
0 −1 2

 .

Find the weight systems for the representations with highest Dynkin weight (1, 0, 0). [7]

c) Find the weight system for the representations with highest Dynkin weight (0, 0, 1). [7]

d) The algebra A3, associated to SU(4), can be embedded into B3 via the projection matrix

P (A3 ⊂ B3) =

 0 1 0
1 0 0
0 1 1

 .

Using this matrix, determine the branching under SU(4) of the SO(7) representations
with highest weight (0, 0, 1) from part 4.) c). [6]

Solution:

a) Writing R = 1 + T + · · · the orthogonality condition RTR = 17 implies that T = −T T ,
so

L(SO(7)) = {T |T = −T T } .

[1]
The Cartan sub-algebra consists of matrices of the form

diag

((
0 a
−a 0

)
,

(
0 b
−b 0

)
,

(
0 c
−c 0

)
, 0

)
,

where a, b, c ∈ R. [2]
The 7× 7 anti-symmetric matrices form a 21-dim. vector space so dim(L(SO(7))) = 21. [1]
Clearly, rk((L(SO(7))) = 3. [1]

b) The three rows of the Cartan matrix are the three positive simple roots α1, α2 and α3.
For the representation with highest weight (1, 0, 0) we have

(1, 0, 0)
α1→ (−1, 1, 0)

α2→ (0,−1, 2)
α3→ (0, 0, 0)

α3→ (0, 1,−2)
α2→ (1,−1, 0)

α1→ (−1, 0, 0) .

[7]

c) For the representation with highest weight (0, 0, 1) we have

(0, 0, 1)
α3→ (0, 1,−1)

α2→ (1,−1, 1)
α1,α3→ (1, 0,−1)

(−1, 0, 1)
α1,α3→ (−1, 1,−1)

α2→ (0,−1, 1)
α3→ (0, 0,−1) .

[7]
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d) Acting with the given matrix P (A3 ⊂ B3) on the eight weights above gives the A3 weights

(0, 0, 1), (1, 0, 0), (−1, 1, 0), (0, 1,−1), (0,−1, 1), (1,−1, 0), (−1, 0, 0), (0, 0,−1) .

Using the Cartan matrix [3]

A(A3) =

 2 −1 0
−1 2 −1
0 −1 2


of A3 one can generate the weights of the representations 4, starting from the highest
weight (1, 0, 0), and the weights of the representation 4̄, starting from the highest weight
(0, 0, 1). Together, these two weight systems coincide with the above list of weights so
that

8B3 → (4⊕ 4̄)A3 .

[3]
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