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Summary

In this report we study mathematical models for predicting when ice

may form and fall from vertical steel hangers of suspension bridges

down onto the road below. This is an important problem to study, not

only because of the economic costs related to closing a bridge due to

the risk of falling ice, but also the human cost if the bridge is still

open to traffic when ice falls down. In the report we present two main

categories of models for predicting falling times: 1) models based on

heat transfer from the surrounding air, and 2) models based on heating

due to radiation from the sun. A flow chart is furthermore presented

together with tables for determining which model to use and quickly

estimating time of failure based on a set of simple conditions.
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1 Introduction

On suspension bridges in colder climates, such as the Great Belt Bridge in Denmark, ice

can form on the vertical hanger cables that hold up the road. This ice has previously

been observed to fall from the cable onto the road below. This is an important problem,

not only because of the economic cost that closing the bridge when this behaviour is

expected incurs, but the human cost if the bridge is still open to traffic when it happens.

In this report we are interested in predicting when ice may form and fall from the

vertical steel hangers of a suspension bridge. There are two main types of ice that form

on a hanger, called rime and glaze. The main difference is the amount of air within the

ice. With rime there is no water layer adjacent to the freezing and hence many air pockets

remain in the ice, while glaze has a water film that freezes and hence has few air bubbles.

The ice forms either from precipitation (either as freezing rain or as wet snow), or from

fog and mist.

There appeared to be two-stages in behaviour of the ice that need considering. Firstly

is the creation of the ice layer. Here the composition, shape and size of the ice layer need

to be determined. Secondly is the fracturing phase. Here we need to identify the stresses

and deformations that will separate chunks of ice from the deposited layer. These two

steps occur sequentially and behaviour during the second stage may be closely determine

by the first stage.

2 Literature review

There is an extensive literature on the first stage of the process where an ice layer is

created. For example various researchers in the past have proposed models for how ice

is formed around cables [4, 14, 22], or aircraft wings [1, 6]. There are also papers in

the literature trying to understand how ice is formed on surfaces in general [20, 21] and

consequently, the ice adhesion mechanisms are discussed in [5, 7, 15]. The literature on

the second stage is much smaller but includes [13], where L. Kollár and M. Farzaneh

model sudden ice shedding from conductor bundles. There is some recent work dealing

with how the shapes of ice accretion affect the aerodynamics on the inclined stay cables

and straddling hangers of suspension bridges [8, 19] and how ice creates additional friction

in surfaces it adheres to [11, 16].

In this report, we mainly focus on modeling how ice is shedding from vertical steel

hangers of suspension bridges. There has been an initial review in the past by K. Kleissl

and C. Georgakakis [12] concerning ice accretion and de-icing systems to prevent big

chunks of ice falling on passing automobiles. There are a number of researchers consider-

ing how a coating could be created for cables with anti-icing features that would prevent

such ice growth. This remains an unsolved manufacturing and engineering problem in-

volving material science as discussed in [17]. But there are solutions where, when ice

shedding occurs, the ice is less chunky making the phenomenon less dangerous [17, 18].
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3 Possible mechanisms for fracturing stage

We discussed many different mechanisms that might cause ice to become separated from

the hanger and nearby ice. These mechanisms involve both thermal effects and mechanics.

• After the ice is formed there may be changes in heat transfer at the air-ice surface due

to surface conditions or wind that cause the ice to melt and lose strength.

• Solar radiation may melt the ice and reduce adhesion to the hanger.

• The hanger may conduct heat from lower parts of the bridge

• The ice may be unable to withstand stresses created due to gravity, vibrations or

expansion.

• The ice may begin to melt and this may alter the physical properties of the ice (eg:

elastic, yield stress, adhesion etc).

• Changes in temperature may expand of contract the steel hanger and the ice deferen-

tially creating stress.

4 Estimate of maximum size of ice buildup

To give a simple estimate of the amount of ice that can form we assume that the only

forces acting on the ice are adhesion to the hanger and gravity (hence we are neglecting

aspects such as wind stresses). The paper [15] gives experimental measurements of the

fracture energy on an ice-steel interface as 1.1 J/m2, which we will denote by Wa. They

define the work spent moving the ice as

Ws =

∫ δx

0

F (x) dx, (4.1)

where F (x) is the force applied at position x and δx is the amount the ice must be moved

to separate. By setting Ws = Wa we can calculate the maximum sized ice chunk that

can be supported.

Assume the ice formation is perfectly circular and centered on the center of the cable.

Let h be the height of a cable, r1 the radius of the cable, and r2 be the radius of the ice

buildup from the centre of the cable. The surface area of the ice is given by

Surface area = 2πr1h (4.2)

and the mass of ice built up is

Mass ice = ρπh(r2
2 − r2

1) (4.3)

where ρ is density of ice. Hence we get

2πr1hWa = ρπh(r2
2 − r2

1)gδx (4.4)

Simplifying

r2
2 =

2War1

ρgδx
+ r2

1 (4.5)

We use Wa = 1.1 J/m2, ρ = 900 kg/m3, g = 10 m/sec2 and r1 = 5× 10−2 m, r1 = 5 cm.

The value of δx is hard to characterise, but δx = 1 mm gives an ice width of 7 cm. Note

that whatever shape the ice forms, the maximum mass of ice that can be supported will
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Figure 1. The domain considered for the one-dimensional melting due to air temperature

problem with center-line at x = 0 and ice-air interface at x = s(t).

remain unchanged, provided the whole surface of the cable is coated in ice. For the values

above this gives that the cable can support at most 33 kg/m of ice.

5 Melting due to air temperature and surface absorption of radiation in

one-dimension

We now consider a simple model for the melting of the ice. Our initial approach is to take

a simple 1-D geometry and determine how long it takes to completely melt some ice if

heat transfer from the air is the only mechanism. We shall treat the ice as a homogeneous

solid material, neglecting the effect of any voids or impurities. Such a model is likely to

be appropriate for glazed ice, but not for rime ice which has many air pockets. In the

subsequent section we shall generalise the model to an arbitrarily shaped two-dimensional

deposit of ice on a cable and include the effect of surface absorption of solar radiation,

i.e. heating from the sun.

5.1 Model

We shall consider an infinite slab of ice with finite thickness s(t) at time t. Assuming dif-

fusion is the only heat transfer mechanism within the ice, we can model the temperature

T using the heat equation

ρcp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
, in 0 < x < s(t) (5.1)

where ρ, cp, and k are the density, specific heat capacity (at constant pressure), and

thermal conductivity of the ice respectively. The boundary condition at the interface

between the air and ice, x = s(t) has two different behaviours: whilst the temperature of

the interface is below the melting point the appropriate boundary condition is continuity

of heat flux, namely, if T < Tmelt then at x = h

H(T − Ta) = k
∂T

∂x
(5.2)
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where Tmelt and Ta are the melting temperature and temperature of the air respectively,

H is the heat transfer coefficient between the ice and the air. When the surface reaches the

melting temperature we have to change the boundary condition to account for melting.

Assuming any water that forms from melting either falls or is advected away by the air,

we can assume that the ice-air interface x = s(t), simply moves to account for the loss

of material from the ice. The appropriate boundary condition now comes from assuming

a jump in the heat flux across the boundary equal to the amount of energy required to

melt the material on the boundary,

T = Tmelt, and ρL
ds

dt
= H(Tmelt − Ta)− k∂T

∂x
(5.3)

where L is the specific latent heat of ice melting. Note that we require Ta > Tmelt, so

that melting occurs. This is a common type of boundary condition for free boundary

problems, see [3] for more details of their derivation.

For simplicity, we shall ignore any effects due to the cable, and assume the behaviour

of the ice to be symmetric about x = 0, meaning

∂T

∂x
= 0 at x = 0. (5.4)

The initial conditions are

s(t) = h, T (x) = Tinit(x) at t = 0, (5.5)

so that h is the initial height of the ice.

5.2 Nondimensionalisation

We now nondimensionalise the problem in order to systematically reduce the number of

parameters in the problem and identify the most important physical processes. We start

by scaling the variables as follows

x = hx̂, s = hŝ, (5.6)

T = Tmelt + ∆T T̂ , t = tref t̂ (5.7)

Here, we have left the timescale, tref , undefined and will subsequently choose a natural

timescale in the problem related to the heat flux and the latent heat (other timescale,

such as the diffusion time across the ice are also possible choices and would not change

the analysis).

The governing equation (5.1) becomes

∂T̂

∂t̂
=
ktref
ρh2cp

∂2T̂

∂x2
(5.8)

with boundary conditions,

∂T

∂x
= 0 at x̂ = 0 (5.9)

and, if T̂ < T̂melt at x̂ = 1

H∆Ttref
ρLh

(
T̂ − T̂a

)
=
ktref
ρh2cp

cp∆T

L

∂T̂

∂x̂
at x̂ = ŝ(t̂), (5.10)
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Parameter Value
∆T 5 K
k 2.22 W/mK
L 334 × 103 J/kg
cp 2.0 × 103 J/kgK
h 5 × 10−2 m
H 30 W/m2K
ρ 900 kg/m3

Table 1. Typical parameter values used for melting due to air heating problem.

otherwise

T̂ = T̂melt at x̂ = ŝ(t̂), (5.11)

dŝ

dt̂
=
H∆Ttref
ρLh

(
T̂ − T̂a

)
− ktref
ρh2cp

cp∆T

L

∂T̂

∂x̂
at x̂ = ŝ(t̂), (5.12)

where T̂melt = 0, and T̂a = (Ta − Tinit)/∆T are the nondimensional melting and air

temperatures.

Based on this nondimensionalisation there are two timescales in the problem

ρh2cp
k

= 2027 sec ≈ 30 min and
ρLh

H∆T
= 100 200 sec ≈ 28 hours. (5.13)

associated with diffusion within the ice and the speed at which the interface changes,

with their values calculated from table 1. As the time-scale associated with the movement

of the interface is longest we choose it as our temporal scaling, setting

tref =
ρLh

H∆T
. (5.14)

The problem therefore becomes

∂T̂

∂t̂
=

1

NuSt

∂2T̂

∂x̂2
in 0 < x̂ < ŝ(t̂) (5.15)

with boundary conditions

∂T

∂x̂
= 0 at x̂ = 0, (5.16)

and, for T < Tmelt

T̂ − T̂a =
1

Nu

∂T̂

∂x̂
at x̂ = ŝ(t̂), (5.17)

otherwise

T̂ = T̂melt at x̂ = ŝ(t̂), (5.18)

dŝ

dt̂
= T̂ − T̂a −

1

Nu

∂T̂

∂x̂
at x̂ = ŝ(t̂), (5.19)

where

St =
cp∆T

L
, Nu =

Hh

k
. (5.20)

where St is called the Stefan number, (in some texts the Stefan number defined as a

reciprocal) and Nu is the Nusselt number. The Stefan number is the ratio of sensible to



Ice on Suspension Bridge Cables 7

latent heat, and the Nusselt number the ratio of of convective to conductive heat transfer

at the boundary. Based on the parameter values in table 1, typical values would be

St = 0.06, Nu = 0.75 (5.21)

It would therefore seem appropriate to examine the solution in the limit St→ 0.

5.3 The Small Stefan number limit

When we consider the limit where the Stefan number is small (ie. when the latent heat

dominates over the sensible heat) we find the problem has two regimes. First there is a

rapid transient where the temperature in the ice first reaches the melting point of the ice.

There is then a long regime where the temperature in the ice remains near the melting

point everywhere and the surface moves primarily due to a balance between the heat flux

from the air and the latent heat.

5.3.1 Short time behaviour

There is a transient, on a timescale where t̂ = O(1/St), where the temperature adjust

from its initial condition to a long time behaviour. In the first part of this transient the

temperature is above melting everywhere and so

∂T̂

∂t̂
=

1

NuSt

∂2T̂

∂x̂2
in 0 < x̂ < ŝ(t̂) (5.22)

with boundary conditions

∂T

∂x̂
= 0 at x̂ = 0, (5.23)

and

T̂ − T̂a =
1

Nu

∂T̂

∂x̂
at x̂ = ŝ(t̂), at x̂ = 1, (5.24)

This is a classical heat diffusion problem. The solution can solved analytically. This early

part of the behaviour can be extended to more complex geometries. for example circular

regions would be appropriate for representing thin ice on a cable and also include solar

heating that depends on position around the cable. Analytical solutions to such cases

can be found in the extensive examples in [2].

Because this is a rapid transient ŝ(t) remains very close to its original position x =

1. Hence, once the melting temperature is reached on the surface, the boundary will

change to T̂ = Tmelt and the solution to the diffusion equation can then be put into the

heat conduction condition to determine the small distance s(t) starts to move and the

temperature everywhere tends to the melting temperature.

5.3.2 Long time behaviour

For the longer times the problem is a classical Stefan problem. Such problems are dis-

cussed in detail in [3]. Such problems are best solved using numerical the ”Enthalpy

method” but here we present an approximate analytical solution that exploits the small

Stefan number.



8 Hjorth et al.

We consider the behaviour for t̂ = O(1) and St→ 0. Then, assuming that both T̂ and

ŝ can be expanded in the form

T̂ (x̂, t̂,St) ∼ T̂0(x̂, t̂) + St T̂1(x̂, t̂) + St2 . . . , (5.25)

at lowest order, the problem is

0 =
∂2T̂0

∂x̂2
in 0 < x̂ < ŝ(t̂) (5.26)

with boundary conditions

∂T̂0

∂x̂
= 0 at x̂ = 0, (5.27)

T̂0 = T̂melt at x̂ = ŝ(t̂), (5.28)

dŝ

dt̂
= T̂0 − T̂a −

1

Nu

∂T̂0

∂x̂
at x̂ = ŝ(t̂), (5.29)

and initial condition

ŝ(0) = 1. (5.30)

Solving the temperature equation and using the first two boundary conditions we see

that T̂0 = T̂melt for all x and t. Putting this solution into the third boundary condition,

the Stefan condition, this becomes an ODE for s given by

dŝ

dt̂
= T̂melt − T̂a (5.31)

Integrating, and using initial condition for ŝ,

ŝ(t̂) =
(
T̂melt − T̂a

)
t̂+ 1 (5.32)

As T̂melt − T̂a < 0, this means ice region shrinking. Letting t̂∗ be the time such that

ŝ(t̂∗) = 0, we see

t̂∗ =
1

T̂a − T̂melt
. (5.33)

In dimensional time we find that the time until the block of ice is completely melted is

given by

t∗ = tref t̂
∗ =

ρLh

H∆T

1

T̂a − T̂melt
=

ρLh

H(Ta − Tmelt)
=≈ 27 hours (5.34)

and the numerical value here is derived using the parameter values we have given earlier.

This gives a simple expression, based on easily measured physical quantities, for the

melting time of a block of ice in the physically relevant situation where the Stefan number

is small.

5.3.3 Extension to variable ambient temperature

This analysis trivially extends to an ambient temperature that varies with time Ta(t).

Then, in the small Stefan number limit,

dŝ

dt̂
= T̂melt − T̂a(t̂), (5.35)
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Figure 2. The domain Γ considered for the arbitrary two-dimensional problem, including

the cable and ice-air interface ∂Γ.

which (using the initial condition for ŝ) integrates to

ŝ(t̂) = T̂meltt̂−
∫ t̂

0

T̂a(t̃) dt̃+ 1 (5.36)

We cannot explicitly solve for the melting time t̂∗ as in (5.34) but we can find it using

an iterative algorithm based on a simple numerical integration method.

Let T̂a1 , T̂a2 , T̂a3 , . . . be a sequence of temperatures observed at times t1, t2, t3, . . . .

We then construct the sequence s1, s2, s3, . . . which estimates the thickness of the ice

at the corresponding times t1, t2, t3, . . . as follows:

s1 = 1 sn+1 = sn + (tn+1 − tn)(T̂melt − T̂an) (5.37)

Note that if the temperature is constant (T̂a1 = T̂a2 = · · · = T̂a) then we get

sn =
(
T̂melt − T̂a

)
(tn − t1) + 1 (5.38)

which is the discrete version of (5.32). Whenever some sn ≤ 0 is encountered, we expect

that tn−1 < t̂∗ ≤ tn, so we set

t̂∗ =
sntn−1 − sn−1tn

sn − sn−1
(5.39)

This corresponds to finding the root of the straight line drawn through the two points

(tn−1, sn−1) and (tn, sn).

6 Melting of an arbitrarily shaped ice block due to air temperature and

surface absorption of radiation

We now extend the analysis of the previous section to the application relevant cross-

section of ice deposited on a cable. We also outline the extension to surface absorption

of solar radiation.

6.1 Model

The ideas of the previous model can be extended to consider a cross-sectional region

of ice and steel cable and how it melts due to air flow. We can write the more general
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diffusion equation in two dimensions with a moving surface.

ρcp
∂T

∂t
= ∇ (k∇T ) , in Γ (6.1)

where ρ, cp, and k may depend spatially depending on the position of the ice and the

steel cable and Γ is the region of space containing both the cable and the ice. Denoting

the ice-air boundary by ∂Γ, boundary conditions for the problem are at points on the

boundary where T < Tmelt the boundary remains fixed in space and

H(T − Ta) = k∇T · n +Bqsol (6.2)

otherwise, on the moving boundary

T = Tmelt, ρLv · n = H(T − Ta)− k∇T · n +Bqsol, (6.3)

where v is the velocity of the outer surface ∂Γ, n is the outward facing normal to ∂Γ

and B is the proportion of solar radiation qsol absorbed by the surface. We assume the

remainder of the radiation is reflected and no internal heating occurs.

For some results of how to treat evolution of a moving surface in more than one-

dimension we follow [10] page 14. First we introduce the function f(x, t) which implicitly

defines the location of ∂Γ at time t via f(x, t) = 0. Then the outward-pointing unit

normal n = ∇f/|∇f |. Now any point xB(t) in ∂Γ at time t must satisfy

dxB
dt

= v, and f(xB(t), t) = 0, (6.4)

hence, by differentiating the second equation and substituting in the first we obtain

∂f

∂t
+ v · ∇f = 0, ⇔ ∂f

∂t
+ v · n = 0, (6.5)

which gives the relationship between the position of the boundary f and its velocity and

every point along the boundary.

Finally, for initial conditions of the problem we take

T = Tinit(x), and f(x, t) = f0(x). (6.6)

6.2 Nondimensionalisation

We nondimensionalise using the same scalings as before,

x = hx̂, v =
h

tref
, v̂, T = Tmelt + ∆T T̂ , (6.7)

t =
ρrefLh

H∆T
t̂, ρ = ρref ρ̂, cp = cp,ref ĉp, k = kref k̂, (6.8)

Note here we are now allowing the thermodynamic parameters, of density, specific heat

and conductivity to vary spatially, to account for regions of ice and steel and have in-

troduced ρ̂, ĉp, and k̂ref as dimensionless functions expressing this dependence. As in

the one-dimensional analysis we have chosen the timescale of heat transfer from air to

ice as our dominant timescale. The inclusion of solar radiation technically introduces an

additional timescale into the problem, but we shall assume it is always on the same time

scale of heat transfer from the air.
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This then gives us the dimensionless problem (we drop the hat notation for conve-

nience)

NuStρcp
∂T

∂t
= ∇ (k∇T ) , in Γ (6.9)

with boundary conditions

0 = T − Ta −
1

Nu
k∇T · n + βqsol on ∂Γ, where T < Tmelt, (6.10)

ρv · n = T − Ta −
1

Nu
k∇T · n + βqsol on ∂Γ, where T = Tmelt. (6.11)

where,

St =
cp,ref∆T

L
, Nu =

Hh

kref
, β =

Bqsol,ref
H∆T

(6.12)

where as before St and Nu are the Stefan and Nusselt numbers, and β is the nondimen-

sional ratio of solar heating to convective heating from the air.

6.3 Small Stefan number

As before we will consider the St→ 0 limit. We note there is a rapid transient, but focus

our analysis on the t = O(1) region. To lowest order we get the equation

0 = ∇ (k∇T ) , in Γ (6.13)

and if we impose the first boundary condition on the surface we find that

T ≡ Tmelt (6.14)

Taking this solution and putting it into the second boundary condition, (6.11), to find

−ρ∂f
∂t

= ρv · n = Tmelt − Ta + βqsol (6.15)

The condition (6.15) simply states that provided Ta and qsol are fixed in value, the

boundary melts at a uniform rate in a direction normal to the surface. For any given

initial shape of ice we can readily deduce when the outer boundary first contacts the

steel hanger within the ice and this might be a simplest failure criteria for the ice.

6.4 Bulk heat from the sun: Mushy region model

Radiation from the sun can be adsorbed as heat either at the interfaces (we have pre-

viously looked a the heat adsorbed at the ice/air interface, but it can also occur at the

ice/hanger interface) however, there can also be heat absorbed through the depth of the

ice. These ideas have been considered elsewhere in the context of heating in glaciers such

as [9]. We present some initial ideas related to this but we have not developed the ideas

very far. The model is similar to before, but rather than modelling the ice-air interface

as sharp, we shall instead assume there is an intermediate ”mushy” region as discussed

in [3].

We now let Γ1 represent the region where the ice is solid. The boundary between the

solid ice and the mushy region ∂Γ1 is implicitly specified by f1(x, t) = 0.
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The mushy region is Γ2 and it has an interior boundary ∂Γ1 with the solid region, and

a mush-air boundary ∂Γ2 implicitly defined by f2(x, t) = 0. We therefore have two free

boundaries in the model.

In the mush region, we expect the temperature to equal the melting temperature

everywhere T = Tmelt. Therefore the energy equation describes how heat is supplied to

melt the solid. Therefore, letting θ be the volume fraction of ice, the governing equations

are

ρcp
∂T

∂t
= ∇ (k∇T ) +Q in Γ1, (6.16)

ρL
∂θ

∂t
= Q in Γ2. (6.17)

The boundary conditions are more complicated. We require continuity in θ and T across

the ice-mush boundary, meaning

θ = 1, and T = Tmelt on ∂Γ1 (6.18)

while θ need not equal zero at ∂Γ2. This possible discontinuity is the same as the sharp

interface model. Across the ice-mush interface we must have continuous temperature and

θ and conservation of energy, meaning

T = Tmelt, (6.19)

[θ]+− = 0, (6.20)

[ρLθv1 · n1 + k∇T · n1]
+
− = 0, on ∂Γ2 (6.21)

where the temperature gradient in the mush region, in the final condition, region will be

zero.

7 Heating of a the cable by the sun

In this section it is estimated how long time it will take for the cable that the ice is

stuck on, to exceed a temperature of 0◦C, due to the cable being heated by the sun.

Here only the cable is considered and the heating of the ice itself from solar radiation

is not considered. Such a model is appropriate for a clear ice, with a small absorption

coefficient. The heating of the cable is based on the energy balance between the sun and

the cable. It is assumed that when the cable exceeds 0◦C the ice in contact with the

cable will start to melt and lose its adhesion with the cable, thereby causing it to fall.

Assuming that the wire is a steel cylinder of length 1 meter the heat capacity of the cable

is calculated as follows

Cc = πr2ρccp,c (7.1)

where ρc is the density of steel, cp,c is the specific heat capacity of steel, and Cc is the

heat capacity of a 1 meter long steel cylinder with a radius r. We denote the power from

the sun Qsolar and the power absorbed by the wire qsolar as

qsolar = Qsolar(1− a)(1− b) sin(θ) (7.2)

where a is the albedo parameter related to reflected energy at the ice surface, b is the

fraction of energy absorbed by the ice layer and θ describes the angel of incidence. We
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denote the target temperature as Tc = 0 and the initial temperature as Ti,c. The energy

balance between the cable and the sun’s heating can then be expressed.

(Ti,c − Tc)Cc = Aqsolar (7.3)

where A is the area of the cable. Since qsolar is the energy per unit time qsolar = Esolar

∆t ,

where Esolar is the energy delivered and ∆t is the amount of time for the cable to reach

the required temperature, using this with equation (7.3) it can be rewritten to obtain

∆t.

∆t =
(Ti,c − Tc)Cc
EsolarA

(7.4)

Through this the time required to obtain high enough temperatures to melt the ice can

be estimated as a function of different parameters.

8 Applying the Models

This section presents a method for quickly and intuitively applying the presented models

for predicting when ice may fall from a vertical steel hangers of a suspension bridge. The

method contains two steps: 1) Look up which of the presented models to apply using

a flow chart (Section 8.1), and 2) based on the model, look up related times in a table

containing precomputed values (Section 8.2) .

8.1 Classification system

In this section we present a flow chart for identifying which of the presented models to

apply in a give situation. The flow chart seen in Figure 3, uses four categories and their

condition for determining the recommended actions to take e.g. which model to use.

These categories are in a hierarchical order: 1) air temperature, 2) day time (sun is up

vs. sun is down), 3) elongated shape (yes or no). In the chart we present five groups of

possible actions:

• Look up time related to the Stefan model (see Equation 5.34). Potential danger of

falling ice.

• Look up time related to the radiation model (see Equation 7.4). Potential danger of

falling ice.

• Not critical - keep monitoring the ice, no clear threat of falling ice detected.

• Not included in any of the presented models - the model does not cover this group,

this should be covered in future work. Potential danger of falling ice.

• Look up time related to both the Stefan model (see Equation 5.34) and the radiation

model (see Equation 7.4), and use the lowest time as a reference. Potential danger of

falling ice.

The model will serve as a guide for which actions to take when ice has been detected,

and can support the already used experience based method.
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8.2 Time Tables

Once the flow chart has been followed and the appropriate model has been identified,

the estimated time remaining until the ice falls can be calculated by either i) using the

appropriate formula or ii) using a quick estimate of the time from Table 5 or Table 6.

The estimates in Table 5 are calculated through equations (5.14) and (5.34) while the

iterative algorithm in equation (5.37) is used to estimate the air temperature for a dy-

namic air temperature profile. However, equation (5.34) can be utilized with a constant

air temperature if a dynamic profile is not at hand. To estimate melting of the ice due

to heat transfer from the air a sample of air temperatures from a winter month, from a

Design Reference Year(DRY) has been used. The data contains the air temperature in

Denmark for one year, with hourly time steps. The DRY and a small sample of the data

can be seen in Figure 4. The sample seen here is used for estimating the air temperatures

0◦C ≤ Ta < 5◦C while for temperatures 5◦C ≤ Ta < 10◦C the same data has been offset

by +5◦C. The air speed is considered in the calculations through its influence on the

Figure 4. Left: The DRY air temperature profile for the entire year. (red circle = extract)

Right: Extract of three days used for simulation of a dynamic air temperature profile.

convective heat transfer coefficient. Here it is assumed that the ice takes the shape of a

cylinder and the corresponding correlations are utilized

r = rc + h (8.1)

D =
1

2
r (8.2)

Re =
ρavaD

µa
(8.3)

Nu = 0.027PraRe
0.805 (8.4)

H =
Nuka
D

(8.5)
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Thermal conductivity Density Dynamic viscosity Specific heat Prandtl

24.35×10−3 [W/m×◦K] 1.276[kg/m3] 17.22×10−6[(N×s)/m2] 1.006[J/kg×◦K] 0.711[-]

Table 2. Thermal and fluid properties of air used for estimation of convective heat trans-

fer coefficient.

Figure 5. Convective heat transfer coefficient for air velocities between 2 m/s and 20

m/s.

where r is the total radius of the cable including the ice, rc is the radius of the cable,

h is the thickness of the ice, D is the characteristic length, Re is the Reynolds number,

ρa is the density of the air, va is the air velocity, µa is the dynamic viscosity of air, Pra
is the Prandtl number of air, H is the convective heat transfer coefficient at the air-ice

interface, Nu is the Nusselt number and ka is the thermal conductivity of the air. Here

the density, dynamic viscosity, conductivity and Prandtl number are assumed constant

and the utilized properties can be found in Table 2. These properties are temperature

dependent to some degree but within the relative small temperature interval that is con-

sidered (+-5◦C), this likely represents a very small inaccuracy in the estimation. How

the convective heat transfer coefficient varies with air velocity can be seen in Figure 5,

showing the importance of this parameter in the melting of the ice.

For Table 6 equations (7.1)-(7.4) are utilized. In Figure 6 how the time required to

heat the cable up to 0◦C as a function of different parameters in the estimate can be

seen. The standard values used for this estimation and the values that are varied can be

seen in Table 3 and Table 4, respectively.

However, the requirements needed to utilize the tables are of course less restrictive. For

Table 6 only the approximate time of day and the approximate cable temperature is

needed. If measurement of the cable temperature is not available the night time temper-

ature can be used as an estimate.

Table 5 requires knowledge about the ambient air temperature during when the cable is

expected to melt, the approximate wind speed and thickness of the ice at its thinnest

point. In the case where one or more of the parameters are not known to the required

accuracy, the shortest time period of several table entries are advised to be utilized.
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Figure 6. Time to heat up the the hanging cable to 0◦C, as a function of (a) The initial

cable temperature, (b) Angle of incidence of the sun, (c) the albedo of the ice and (d)

the absorption fraction of the ice.

ρ 8000 [kg/m3]
cp 420 [J/(kg ◦K)]
a 0.75 [-]
b 0.5 [-]
θ 20 [◦]
Ti,c -5 [◦]

Table 3. Values related to static param-

eters related to the graphs in Figure 6.

a [0.6 : 0.9]
b [0.1 : 0.9]
θ [10◦ : 30◦]
Ti,c [-16◦C : -2◦C]

Table 4. Parameter ranges related to

the non-static parameters from Figure 6

Air Temperature [◦C]

0 ≤ Ta < 5 5 ≤ Ta < 10

Wind speed [m/s] Wind speed [m/s]

0 ≤ v < 5 5 ≤ v < 10 v > 10 0 ≤ v < 5 5 ≤ v < 10 v > 10

Ic
e

th
ic

k
n
es

s h = 2cm 3 - 12 2 - 3 1 - 2 1 - 4 1 - 1 0 - 1
h = 4cm 7 - 24 4 - 6 2 - 4 2 - 7 1 - 2 1 - 1
h = 6cm 10 - 38 6 - 9 3 - 5 3 - 11 2 - 3 1 - 2
h = 8cm 14 - 51 8 - 12 5 - 7 4 - 15 2 - 4 1 - 2
h = 10cm 18 - 66 10 - 15 6 - 10 5 - 20 3 - 5 2 - 3

Table 5. Estimation of time remaining before ice falls off the cable due to the melting of

the ice at its thinnest spot. The values in the table are the estimated number of hours

rounded to the nearest hour.
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Time of day

Morning or afternoon Midday
C

a
b
le

te
m

p
er

a
tu

re
T0 = −1◦C 3 1
T0 = −4◦C 11 5
T0 = −7◦C 18 9
T0 = −10◦C 26 13
T0 = −13◦C 34 17

Table 6. Estimation of time remaining before the ice falls off the cable due to heating

of the cable from the sun. The values in the table are the estimated number of hours

rounded to the nearest hour.

9 Conclusion/ Future Work

This report presented different models for predicting when ice may fall from vertical

steel hangers of suspension bridges. We have presented two main categories of models

for determining falling times: 1) a model based on heated air, 2) a model based on

radiation from the sun. A flow chart was furthermore presented together with tables for

determining which model to use and quickly estimating time of failure.

This report has focused on the ice falling problem, however studying the ice formation

problem to understand how, when, and what type of ice forms is also an important

aspect of the problem that should be considered in future work. Another aspect of the

falling problem not considered here is failure due to mechanical stresses due to either

wind conditions or traffic. We note however, that the hanger cables are typically heavily

damped. The effect of bulk heating of the ice from the sun, as briefly discussed in section

6.4, should also be considered further.

For future work it is expected that the presented models will be verified via physical

experiments, conducted either on an actual bridge hanger, or through an experimental

setup. In relation to experiments on the bridge we recommend that sensors should be

install on the hangers, to collect data for model verification.



Ice on Suspension Bridge Cables 19

Material Temp Density Thermal Conduct Specific Heat Linear Expansion
[C] [kg/m3] [W/mK] [kJ/kgK] [µm/m/K]

Ice
0 916.2 2.22 2.050
-5 917.5 2.25 2.027 50

Steel 20 7900.0 40 0.470 10

Table A 1. Thermal properties of ice and steel used in estimations.

Appendix A Useful data
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[16] Makkonen, Lasse, & Tikanmäki, Maria. (2014). Modeling the friction of ice. Cold

regions science and technology, 102, 84–93.

[17] Matejicka, Lubomir, Georgakis, Christos Thomas, Schwarz, Andreas, & Egger,

Philipp. (2019). Cable surface for the reduction of risk associated with bridge cable ice

accretions. Structural engineering international, 29(3), 425–432.

[18] Matejicka, Lubomir, Georgakis, Christos T, Koss, Holger H, & Egger, Philipp.

(2020). Ice-shedding and aerodynamic investigations of bridge cables with steel wire

meshes. Iabse congress - resilient technologies for sustainable infrastructure.

[19] McTavish, Sean, D’Auteuil, Annick, Raeesi, Arash, & Szilder, Krzysztof. (2021).



Ice on Suspension Bridge Cables 21

Effect of cable surface geometry and ice accretion shapes on the aerodynamic behaviour

of inclined stay cables. Journal of wind engineering and industrial aerodynamics, 216,

104710.

[20] Myers, Tim G, & Charpin, Jean PF. (2004). A mathematical model for atmo-

spheric ice accretion and water flow on a cold surface. International journal of heat

and mass transfer, 47(25), 5483–5500.

[21] Rønneberg, Sigrid, He, Jianying, & Zhang, Zhiliang. (2020). The need for stan-

dards in low ice adhesion surface research: a critical review. Journal of adhesion science

and technology, 34(3), 319–347.

[22] Szilder, Krzysztof, D’Auteuil, Annick, & McTavish, Sean. (2021). Predicting ice

accretion from freezing rain on bridge stay cables. Cold regions science and technology,

187, 103285.


	Introduction
	Literature review
	Possible mechanisms for fracturing stage
	Estimate of maximum size of ice buildup
	Melting due to air temperature and surface absorption of radiation in one-dimension
	Model
	Nondimensionalisation
	The Small Stefan number limit

	Melting of an arbitrarily shaped ice block due to air temperature and surface absorption of radiation
	Model
	Nondimensionalisation
	Small Stefan number
	Bulk heat from the sun: Mushy region model

	Heating of a the cable by the sun
	Applying the Models
	Classification system
	Time Tables

	Conclusion/ Future Work
	Appendix A

