
Week 5 – Induction and Recursion

Richard Earl∗

Mathematical Institute, Oxford, OX1 2LB,

November 2003

Abstract

Induction. Strong induction. Binomial theorem. Difference equations. Fibonacci numbers.

Notation 1 Throughout this article we shall use the notation N to denote the set of natural numbers
{0, 1, 2, 3, . . .} . So when we write that a statement is true for all n ∈ N then we are simply saying that
the statement is true in each of the cases n = 0, 1, 2, 3, . . .
The symbol n! read ‘n factorial’ denotes the product 1× 2× 3× · · · × n. As a convention 0! = 1.

1 Introduction
Mathematical statements can come in the form of a single proposition such as

3 < π or as 0 < x < y =⇒ x2 < y2,

but often they come as a family of statements such as

A ex > 0 for all real numbers x;

B 0 + 1 + 2 + · · ·+ n =
1

2
n (n+ 1) for n ∈ N;

C

Z π

0

sin2n θ dθ =
(2n)!

(n!)2
π

22n
for n ∈ N;

D 2n+ 4 can be written as the sum of two primes for all n ∈ N.

Induction, or more exactly mathematical induction, is a particularly useful method of proof for dealing
with families of statements which are indexed by the natural numbers, such as the last three statements
above. We shall prove both statements B and C using induction (see below and Example 6). Statement B
(and likewise statement C) can be approached with induction because in each case knowing that the nth
statement is true helps enormously in showing that the (n+ 1)th statement is true – this is the crucial
idea behind induction. Statement D, on the other hand, is a famous problem known as Goldbach’s
Conjecture (Christian Goldbach (1690—1764), who was a professor of mathematics at St. Petersburg,
made this conjecture in a letter to Euler in 1742.and it is still an open problem). If we let D (n) be the
statement that 2n+ 4 can be written as the sum of two primes, then it is currently known that D (n) is
true for n < 4 × 1014. What makes statement D different, and more intractable to induction, is that in
trying to verify D (n+ 1) we can’t generally make much use of knowledge of D (n) and so we can’t build
towards a proof. For example, we can verify D(17) and D (18) by noting that

38 = 7 + 31 = 19 + 19, and 40 = 3 + 37 = 11 + 29 = 17 + 23.

Here, knowing that 38 can be written as a sum of two primes, is no help in verifying that 40 can be, as
none of the primes we might use for the latter was previously used in splitting 38.
∗These pages are produced by Richard Earl, who is the Schools Liaison and Access Officer for mathematics, statistics

and computer science at Oxford University. Any comments, suggestions or requests for other material are welcome at
earl@maths.ox.ac.uk
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By way of an example we shall prove statement B by induction, before giving a formal definition of
just what induction is. For any n ∈ N, let B (n) be the statement

0 + 1 + 2 + · · ·+ n =
1

2
n (n+ 1) .

We shall prove two facts:

(i) B (0) is true and (ii) for any n ∈ N, if B (n) is true then B (n+ 1) is also true.

The first fact is the easy part as we just need to note that

LHS of B (0) = 0 =
1

2
× 0× 1 = RHS of B (0) .

To verify (ii) we need to prove for each n that B (n+ 1) is true assuming B (n) to be true. Now

LHS of B (n+ 1) = 0 + 1 + · · ·+ n+ (n+ 1) .

But, assuming B (n) to be true, we know that the terms from 0 through to n add up to n (n+ 1) /2 and
so

LHS of B (n+ 1) =
1

2
n (n+ 1) + (n+ 1)

= (n+ 1)
³n
2
+ 1
´

=
1

2
(n+ 1) (n+ 2) = RHS of B (n+ 1) .

This verifies (ii). Be sure that you understand the above calculation, it contains the important steps
common to any proof by induction. Note in the final step that we have retrieved our original formula of
n (n+ 1) /2, but with n+ 1 now replacing n everywhere; this was the expression that we always had to
be working towards.
With induction we now know that B is true, i.e. that B (n) is true for any n ∈ N. How does this

work? Well suppose we want to be sure B (2) is correct – above we have just verified the following three
statements:

B (0) is true, if B (0) is true then B (1) is true, if B (1) is true then B (2) is true

and so putting the three together, we see that B (2) is true: the first statement tells us that B (0) is true
and the second two are stepping stones, first to the truth about B (1) , and then on to proving B (2) .

Formally then the Principle of Induction is as follows:

Theorem 2 (THE PRINCIPLE OF INDUCTION) Let P (n) be a family of statements indexed by the
natural numbers. Suppose that

P (0) is true, and

for any n ∈ N, if P (n) is true then P (n+ 1) is also true,

then P (n) is true for all n ∈ N.

Proof. Let S denote the subset of N consisting of all those n for which P (n) is false. We aim to show
that S is empty, i.e. that no P (n) is false.
Suppose for a contradiction that S is non-empty. Any non-empty subset of N has a minimum element;

let’s write m for the minimum element of S. As P (0) is true then 0 6∈ S, and so m is at least 1.
Consider now m− 1. As m ≥ 1 then m− 1 ∈ N and further, as m− 1 is smaller than the minimum

element of S, then m − 1 6∈ S, i.e. P (m− 1) is true. But, as P (m− 1) is true, then induction tells us
that P (m) is also true. This means m 6∈ S, which contradicts m being the minimum element of S. This
is our required contradiction, an absurd conclusion. We see that S being non-empty just doesn’t hold
water. If S being non-empty leads to a contradiction, then S must be empty.
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It is not hard to see how we might amend the hypotheses of the theorem above to show

Corollary 3 Let N ∈ N and let P (n) be a family of statements for n = N,N + 1, N + 2, . . . Suppose
that

P (N) is true, and

for any n ≥ N, if P (n) is true then P (n+ 1) is also true,

then P (n) is true for all n ≥ N.

This is really just induction again, but we have started the ball rolling at a later stage. Here is another
version of induction, which is usually referred to a the Strong Form Of Induction:

Theorem 4 (STRONG FORM OF INDUCTION) Let P (n) be a family of statements for n ∈ N. Sup-
pose that

P (0) is true, and

for any n ∈ N, if P (0) , P (1) , P (2) , . . . , P (n) are all true then so is P (n+ 1) ,

then P (n) is true for all n ∈ N.

To reinforce the need for proof, and to show how patterns can at first glance delude us, consider the
following example. Take two points on the circumference of a circle and take a line joining them; this line
then divides the circle’s interior into two regions. If we take three points on the perimeter then the lines
joining them will divide the disc into four regions. Four points can result in a maximum of eight regions
– surely then, we can confidently predict that n points will maximally result in 2n−1 regions. Further
investigation shows our conjecture to be true for n = 5, but to our surprise, however we take six points
on the circle, the maximum number of regions attained is 31. Indeed the maximum number of regions
attained from n points on the perimeter is given by the formula [2, p.18]

1

24

¡
n4 − 6n3 + 23n2 − 18n+ 24

¢
.

Our original guess was way out!
There are other well-known ‘patterns’ that go awry in mathematics: for example, the number

n2 − n+ 41

is a prime number for n = 1, 2, 3, . . . , 40 (though this takes some tedious verifying), but it is easy to see
when n = 41 that n2−n+41 = 412 is not prime. A more amazing example comes from the study of Pell’s
equation x2 = py2 + 1 in number theory, where p is a prime number and x and y are natural numbers.
If P (n) is the statement that

991n2 + 1 is not a perfect square (i.e. the square of a natural number),

then the first counter-example to P (n) is staggeringly found at [1, pp. 2—3]

n = 12, 055, 735, 790, 331, 359, 447, 442, 538, 767.
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2 Examples
On a more positive note though, many of the patterns found in mathematics won’t trip us at some later
stage and here are some further examples of proof by induction.

Example 5 Show that n lines in the plane, no two of which are parallel and no three meeting in a point,
divide the plane into n(n+ 1)/2 + 1 regions.

Proof. When we have no lines in the plane then clearly we have just one region, as expected from putting
n = 0 into the formula n (n+ 1) /2 + 1.
Suppose now that we have n lines dividing the plane into n (n+ 1) /2 + 1 regions and we will add a

(n+ 1)th line. This extra line will meet each of the previous n lines because we have assumed it to be
parallel with none of them. Also, it meets each of these n lines in a distinct point, as we have assumed
that no three lines are concurrent.
These n points of intersection divide the new line into n+1 segments. For each of these n+1 segments

there are now two regions, one on either side of the segment, where previously there had been only one
region. So by adding this (n+ 1)th line we have created n+1 new regions. In total the number of regions
we now have is

n (n+ 1)

2
+ 1 + (n+ 1) =

(n+ 1) (n+ 2)

2
+ 1.

This is the correct formula when we replace n with n+ 1, and so the result follows by induction.

L1

L2

L3

L4

P

Q

R

An example when n = 3.

Here the four segments, ‘below P ’, PQ, QR and ‘above R’ on the fourth line L4, divide what were four
regions previously, into eight new ones.

Example 6 Prove for n ∈ N that Z π

0

sin2n θ dθ =
(2n)!

(n!)
2

π

22n
. (1)

Proof. Let’s denote the integral on the LHS of equation (1) as In. The value of I0 is easy to calculate,
because the integrand is just 1, and so I0 = π. We also see

RHS (n = 0) =
0!

(0!)2
π

20
= π,

verifying the initial case.
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We now prove a reduction formula connecting In and In+1, so that we can use this in our induction.

In+1 =

Z π

0

sin2(n+1) θ dθ

=

Z π

0

sin2n+1 θ × sin θ dθ

=
£
sin2n+1 θ × (− cos θ)

¤π
0
−
Z π

0

(2n+ 1) sin2n θ cos θ × (− cos θ) dθ [using integration by parts]

= 0 + (2n+ 1)

Z π

0

sin2n θ
¡
1− sin2 θ

¢
dθ [using cos2 θ = 1− sin2 θ]

= (2n+ 1)

Z π

0

³
sin2n θ − sin2(n+1) θ

´
dθ

= (2n+ 1) (In − In+1) .

Rearranging gives

In+1 =
2n+ 1

2n+ 2
In.

Suppose now that equation (1) gives the right value of Ik for some natural number k. Then, turning to
equation (1) with n = k + 1, and using our assumption and the reduction formula, we see:

LHS = Ik+1 =
2k + 1

2 (k + 1)
× (2k)!
(k!)

2 ×
π

22k

=
2k + 2

2 (k + 1)
× 2k + 1

2 (k + 1)
× (2k)!
(k!)

2 ×
π

22k

=
(2k + 2)!

((k + 1)!)2
× π

22(k+1)
,

which equals the RHS of equation (1) with n = k + 1. The result follows by induction.

Example 7 Show for n = 1, 2, 3 . . . and k = 1, 2, 3, . . . that

nX
r=1

r(r + 1)(r + 2) · · · (r + k − 1) = n(n+ 1)(n+ 2) · · · (n+ k)

k + 1
. (2)

Remark 8 This problem differs from our earlier examples in that our family of statements now involves
two variables n and k, rather than just the one variable. If we write P (n, k) for the statement in equation
(2) then we can use induction to prove all of the statements P (n, k) in various ways:

• we could prove P (1, 1) and show how P (n+ 1, k) and P (n, k + 1) both follow from P (n, k) for
n, k = 1, 2, 3, . . .;

• we could prove P (1, k) for all k = 1, 2, 3, . . . and show how knowledge of P (n, k) for all k, leads to
proving P (n+ 1, k) for all k – effectively this reduces the problem to one application of induction,
but to a family of statements at a time

• we could prove P (n, 1) for all n = 1, 2, 3, . . . and show how knowing P (n, k) for all n, leads to
proving P (n, k + 1) for all n – in a similar fashion to the previous method, now inducting through
k and treating n as arbitrary.

What these different approaches rely on, is that all the possible pairs (n, k) are somehow linked to our
initial pair (or pairs). Let

S = {(n, k) : n, k ≥ 1}
be the set of all possible pairs (n, k) .
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The first method of proof uses the fact that the only subset T of S satisfying the properties

(1, 1) ∈ T,

if (n, k) ∈ T then (n, k + 1) ∈ T,

if (n, k) ∈ T then (n+ 1, k) ∈ T,

is S itself. Starting from the truth of P (1, 1) , and deducing further truths as the second and third
properties allow, then every P (n, k) must be true. The second and third methods of proof rely on the fact
that the whole of S is the only subset having similar properties.

Proof. In this case is the second method of proof seems easiest, that is: we will prove that P (1, k)
holds for each k = 1, 2, 3, . . . and show that assuming statements P (N, k) for a particular N and all k, is
sufficient to prove the statements P (N + 1, k) for all k. Firstly we note

LHS of P (1, k) = 1× 2× 3× · · · × k, and

RHS of P (1, k) =
1× 2× 3× · · · × (k + 1)

k + 1
= 1× 2× 3× · · · × k,

are equal, proving P (1, k) for all k ≥ 1. Then, assuming P (N, k) for all k = 1, 2, 3, . . . , we have

LHS of P (N + 1, k) =
N+1X
r=1

r(r + 1)(r + 2) · · · (r + k − 1)

=
N (N + 1) . . . (N + k)

k + 1
+ (N + 1) (N + 2) · · · (N + k)

= (N + 1) (N + 2) · · · (N + k)

µ
N

k + 1
+ 1

¶
=

(N + 1) (N + 2) · · · (N + k) (N + k + 1)

k + 1
= RHS of P (N + 1, k) ,

proving P (N + 1, k) simultaneously for each k. This verifies all that is required for the second method.

We end with one example which makes use of the Strong Form of Induction. Recall that a natural
number n ≥ 2 is called prime if the only natural numbers which divide it are 1 and n. (Note that 1
is not considered prime.) The list of prime numbers begins 2, 3, 5, 7, 11, 13, . . . and has been known to
be infinite since the time of Euclid. (Euclid was an Alexandrian Greek living c. 300 B.C. His most
famous work is The Elements, thirteen books which present much of the mathematics discovered by the
ancient Greeks, and which was a hugely influential text on the teaching of mathematics even into the
twentieth century. The work presents its results in a rigorous fashion, laying down basic assumptions,
called axioms, and carefully proving his theorems from these axioms.) The prime numbers are, in a sense,
the atoms of the natural numbers under multiplication as every natural number n ≥ 2 can be written as a
product of primes in what is essentially a unique way – this fact is known as the Fundamental Theorem
of Arithmetic. Here we just prove the existence of such a product.

Example 9 Every natural number n ≥ 2 can be written as a product of prime numbers.
Proof. We begin at n = 2 which is prime. As our inductive hypothesis we assume that every number
2 ≤ k ≤ N is a prime number or can be written as a product of prime numbers. Consider then N + 1;
we need to show this is a prime number, or else a product of prime numbers. Either N + 1 is prime or
it is not. If N + 1 is prime then we are done. If N + 1 is not prime, then it has a factor 2 ≤ m < N + 1
which divides N + 1. Note that m ≤ N and (N + 1) /m ≤ N, as m is at least 2. So, by hypothesis, we
know m and (N + 1) /m are both either prime or the product of prime numbers. Hence we can write

m = p1 × p2 × · · · × pk, and
N + 1

m
= P1 × P2 × · · · × PK ,

where p1, . . . , pk and P1, . . . , PK are prime numbers. Finally we have that

N + 1 = m× N + 1

m
= p1 × p2 × · · · × pk × P1 × P2 × · · · × PK ,

showing N + 1 to be a product of primes. The result follows using the strong form of induction.
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3 The Binomial Theorem
All of you will have met the identity

(x+ y)2 = x2 + 2xy + y2

and may even have met identities like

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

It may even have been pointed out to you that these coefficients 1, 2, 1 and 1, 3, 3, 1 are simply the numbers
that appear in Pascal’s Triangle. This is the infinite triangle of numbers that has 1s down both sides
and a number internal to some row of the triangle is calculated by adding the two numbers above it in
the previous row. So the triangle grows as follows:

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

From the triangle we could say read off the identity

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

Of course we haven’t proved this identity yet – these identities, for general n other than just n = 6,
are the subject of the Binomial Theorem. We introduce now the binomial coefficients; their connection
with Pascal’s triangle will become clear soon.

Definition 10 The (n, k)th binomial coefficient is the numberµ
n

k

¶
=

n!

k! (n− k)!

where n = 0, 1, 2, 3, . . . and 0 ≤ k ≤ n. It is read as ‘n choose k’ and in some books is denoted as nCk.
As a convention we set

¡
n
k

¢
to be zero when n < 0 or when k < 0 or k > n.

Note some basic identities concerning the binomial coefficientsµ
n

k

¶
=

µ
n

n− k

¶
,
µ
n

0

¶
=

µ
n

n

¶
= 1,

µ
n

1

¶
=

µ
n

n− 1

¶
= n.

The following lemma demonstrates that the binomial coefficients are precisely the numbers that appear
in Pascal’s triangle.

Lemma 11 Let n ∈ N and 1 ≤ k ≤ n. Thenµ
n

k − 1

¶
+

µ
n

k

¶
=

µ
n+ 1

k

¶
.

Proof. Putting the LHS over a common denominator

LHS =
n!

(k − 1)! (n− k + 1)!
+

n!

k! (n− k)!

=
n!

k! (n− k + 1)!
{k + (n− k + 1)}

=
(n+ 1)!

k! (n+ 1− k)!

=

µ
n+ 1

k

¶
= RHS.
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Corollary 12 The kth number in the nth row of Pascal’s triangle is
¡
n
k

¢
(remembering to count from

n = 0 and k = 0). In particular the binomial coefficients are whole numbers.

Proof. We shall prove this by induction. Note that
¡
0
0

¢
= 1 gives the 1 at the apex of Pascal’s triangle,

proving the initial step.
Suppose now that the numbers

¡
N
k

¢
are the numbers that appear in the Nth row of Pascal’s triangle.

The first and last entries of the next, (N + 1)th, row (associated with k = 0 and k = N + 1) are

1 =

µ
N + 1

0

¶
, and 1 =

µ
N + 1

N + 1

¶
as required. For 1 ≤ k ≤ N , then the kth entry on the (N + 1)th row is formed by adding the (k − 1)th
and kth entries from the Nth row. By our hypothesis about the Nth row their sum isµ

N

k − 1

¶
+

µ
N

k

¶
=

µ
N + 1

k

¶
,

using the previous lemma, and this verifies that the (N + 1)th row also consists of binomial coefficients.
So the (N + 1)th row checks out, and the result follows by induction.

Finally, we come to the binomial theorem:

Theorem 13 (THE BINOMIAL THEOREM): Let n ∈ N and x, y be real numbers. Then

(x+ y)n =
nX

k=0

µ
n

k

¶
xkyn−k.

Proof. Let’s check the binomial theorem first for n = 0. We can verify this by noting

LHS = (x+ y)
0
= 1, RHS =

µ
0

0

¶
x0y0 = 1.

We aim now to show the theorem holds for n = N + 1 assuming it to be true for n = N . In this case

LHS = (x+ y)
N+1

= (x+ y) (x+ y)
N
= (x+ y)

Ã
NX
k=0

µ
N

k

¶
xkyN−k

!

writing in our assumed expression for (x+ y)N . Expanding the brackets gives

NX
k=0

µ
N

k

¶
xk+1yN−k +

NX
k=0

µ
N

k

¶
xkyN+1−k,

which we can rearrange to

xN+1 +
N−1X
k=0

µ
N

k

¶
xk+1yN−k +

NX
k=1

µ
N

k

¶
xkyN+1−k + yN+1

by taking out the last term from the first sum and the first term from the second sum. In the first sum
we now make a change of variable. We set k = l − 1, noting that as k ranges over 0, 1, ...,N − 1, then l
ranges over 1, 2, ...,N. So the above equals

xN+1 +
NX
l=1

µ
N

l − 1

¶
xlyN+1−l +

NX
k=1

µ
N

k

¶
xkyN+1−k + yN+1.

We may combine the sums as they are over the same range, obtaining

xN+1 +
NX
k=1

½µ
N

k − 1

¶
+

µ
N

k

¶¾
xkyN+1−k + yN+1
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which, using Lemma 11, equals

xN+1 +
NX
k=1

µ
N + 1

k

¶
xkyN+1−k + yN+1 =

N+1X
k=0

µ
N + 1

k

¶
xkyN+1−k = RHS.

The result follows by induction.

There is good reason why
¡
n
k

¢
is read as ‘n choose k’ – there are

¡
n
k

¢
ways of choosing k elements

from the set{1, 2, . . . , n} (when showing no interest in the order that the k elements are to be chosen).
Put another way, there are

¡
n
k

¢
subsets of {1, 2, . . . , n} with k elements in them. To show this, let’s think

about how we might go about choosing k elements.
For our ‘first’ element we can choose any of the n elements, but once this has been chosen it can’t be

put into the subset again. So for our second element any of the remaining n− 1 elements may be chosen,
for our third any of the n− 2 that are left, and so on. So choosing a set of k elements from {1, 2, . . . , n}
in a particular order can be done in

n× (n− 1)× (n− 2)× · · · × (n− k + 1) =
n!

(n− k)!
ways.

But there are lots of different orders of choice that could have produced this same subset. Given a
set of k elements there are k! ways of ordering this (see Exercise ?? below) – that is to say, for each
subset with k elements there are k! different orders of choice that will lead to that subset. So the number
n!/ (n− k)! is an ‘overcount’ by a factor of k!. Hence the number of subsets of size k equals

n!

k! (n− k)!

as required.

Remark 14 There is a Trinomial Theorem and further generalisations of the binomial theorem to greater
numbers of variables. Given three real numbers x, y, z and a natural number n we can apply the binomial
theorem twice to obtain

(x+ y + z)n =
nX

k=0

n!

k! (n− k)!
xk (y + z)n−k

=
nX

k=0

n!

k! (n− k)!

n−kX
l=0

(n− k)!

l! (n− k − l)!
xkylzn−k−l

=
nX

k=0

n−kX
l=0

n!

k!l! (n− k − l)!
xkylzn−k−l.

This is a somewhat cumbersome expression; it’s easier on the eye, and has a nicer symmetry, if we write
m = n− k − l and then we can rewrite the above as

(x+ y + z)n =
X

k+l+m=n
k,l,m≥0

n!

k! l!m!
xk yl zm.

Again the number n!/ (k! l!m!) , where k + l + m = n and k, l,m ≥ 0, is the number of ways that n
elements can be apportioned into three subsets associated with the numbers x, y and z.
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4 Difference Equations
In this chapter we shall be mainly interested in solving linear difference equations with constant coefficients
– that is finding an expression for numbers xn defined recursively by a relation such as

xn+2 = 2xn+1 − xn + 2 for n ≥ 0, with x0 = 1, x1 = 1.

We see that the xn can be determined by applying this relation sufficiently many times from our initial
values of x0 = 1 and x1 = 1. So for example to find x7 we’d calculate

x2 = 2x1 − x0 + 1 = 2− 1 + 2 = 3;
x3 = 2x2 − x1 + 1 = 6− 1 + 2 = 7;
x4 = 2x3 − x2 + 1 = 14− 3 + 2 = 13;
x5 = 2x4 − x3 + 1 = 26− 7 + 2 = 21;
x6 = 2x5 − x4 + 1 = 42− 13 + 2 = 31;
x7 = 2x6 − x5 + 1 = 62− 21 + 2 = 43.

If this was the first time we had seen such a problem, then we might try pattern spotting or qualitatively
analysing the sequence’s behaviour, in order to make a guess at a general formula for xn. Simply looking
at the sequence xn above no obvious pattern is emerging. However we can see that the xn are growing,
roughly at the same speed as n2 grows. We might note further that the differences between the numbers
0, 2, 4, 6, 8, 10, 12, . . . are going up linearly. Even if we didn’t know how to sum an arithmetic progression,
it would seem reasonable to try a solution of the form

xn = an2 + bn+ c, (3)

where a, b, c are constants, as yet undetermined. We can can find a, b, c using the first three cases, so that

x0 = 1 = a02 + b0 + c and so c = 1;

x1 = 1 = a12 + b1 + 1 and so a+ b = 0;

x2 = 3 = a22 − a2 + 1 and so a = 1.

So the unique solution of the form (3) which gives the right answer in the n = 0, 1, 2 cases is

xn = n2 − n+ 1. (4)

If we put n = 3, 4, 5, 6, 7 into (4) then we get the correct values of xn calculated above. This is, of course,
not a proof, but we could prove this formula to be correct for all values of n ≥ 0 using induction.
Alternatively having noted the differences go up as 0, 2, 4, 6, 8, 10, 12, . . . we can write, using statement

B from the start of this article,

xn = 1 + 0 + 2 + 4 + · · ·+ (2n− 2)

= 1 +
n−1X
k=0

2k

= 1 + 2
1

2
(n− 1)n

= n2 − n+ 1.

To make this proof water-tight we need to check that the pattern 0, 2, 4, 6, 8, 10, 12, . . . of the differences
carries on forever, and that it wasn’t just a fluke, but this follows if we note

xn+2 − xn+1 = xn+1 − xn + 2

and so the difference between consecutive terms is increasing by 2 each time.
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Of course if a pattern to xn is difficult to spot then the above methods won’t apply. We will show
now how to solve a difference equation of the form

axn+2 + bxn+1 + cxn = 0

where a, b, c are real (or complex) constants. The theory extends to constant coefficient difference equa-
tions of any order. We will later treat some inhomogeneous examples where the RHS is non-zero. As with
constant coefficient differential equations this involves solving the corresponding homogeneous difference
equation and finding a particular solution of the inhomogeneous equation. We will see that the theory
has much in common with the differential equations material we met in week 3 – this is because the
underlying linear algebra behind solving the two sets of problems is identical.

Theorem 15 Suppose that the sequence xn satisfies the difference equation

axn+2 + bxn+1 + cxn = 0 for n ≥ 0, (5)

and that α and β be the roots the auxiliary equation

aλ2 + bλ+ c = 0.

The general solution of (5) has the form

xn = Aαn +Bβn (n ≥ 0) ,

when α and β are distinct, and has the form

xn = (An+B)αn (n ≥ 0) ,

when α = β 6= 0. In each case the values of A and B are uniquely determined by the values of x0 and x1.

Proof. Firstly we note that the sequence xn defined in (5) is uniquely determined by the initial values
x0 and x1. Knowing these values (5) gives us x2, knowing x1 and x2 gives us x3 etc. So if we can find
a solution to (5) for certain initial values then we have the unique solution; if we can find a solution for
arbitrary initial values then we have the general solution.
Note that if α 6= β then putting xn = Aαn +Bβn into the LHS of (5) gives

axn+2 + bxn+1 + cxn = a
¡
Aαn+2 +Bβn+2

¢
+ b

¡
Aαn+1 +Bβn+1

¢
+ c (Aαn +Bβn)

= Aαn
¡
aα2 + bα+ c

¢
+Bβn

¡
aβ2 + bβ + c

¢
= 0

as α and β are both roots of the auxiliary equation.

Similarly if α = β then putting xn = (An+B)αn into the LHS of (5) gives

axn+2 + bxn+1 + cxn = a (A (n+ 2) +B)αn+2 + b (A (n+ 1) +B)αn+1 + c (An+B)αn

= Aαn
¡
n
¡
aα2 + bα+ c

¢
+ (2aα+ b)α

¢
+Bαn

¡
aα2 + bα+ c

¢
= 0

because α is a root of the auxiliary equation and also of the derivative of the auxiliary equation, being
a repeated root (or, if you prefer, you can show that 2aα + b = 0 by remembering that ax2 + bx + c =

a (x− α)2 , comparing coefficients and eliminating c).
So in either case we see that we have a set of solutions. But further the initial equations

A+B = x0, Aα+Bβ = x1,

are uniquely solvable for A and B when α 6= β, whatever the values of x0 and x1. Similarly when
α = β 6= 0 then the initial equations

B = x0, (A+B)α = x1,

also have a unique solution in A and B whatever the values of x0 and x1. So in each case our solutions
encompassed the general solution.
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Remark 16 When α = β = 0 then (5) clearly has solution xn given by

x0, x1, 0, 0, 0, 0, . . .

Probably the most famous sequence defined by such a difference equation is the sequence of Fibonacci
numbers. The Fibonacci numbers Fn are defined recursively

Fn+2 = Fn+1 + Fn, for n ≥ 0,

with initial values F0 = 0 and F1 = 1. So the sequence begins as

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

and continues to grow, always producing whole numbers and increasing by a factor of roughly 1.618 each
time.
This sequence was first studied by Leonardo of Pisa (c.1170—c.1250), who called himself Fibonacci.

(the meaning of the name ‘Fibonacci’ is somewhat uncertain; it may have meant ‘son of Bonaccio’ or may
have been a nickname meaning ‘lucky son’.) The numbers were based on a model of rabbit reproduction:
the model assumes that we begin with a pair of rabbits in the first month, which every month produces
a new pair of rabbits, which in turn begin producing when they are one month old. If we look at the
Fn pairs we have at the start of the nth month, then these consist of Fn−1 − Fn−2 pairs which have just
become mature but were immature the previous month, and Fn−2 pairs which were already mature and
their new Fn−2 pairs of offspring. In other words

Fn = (Fn−1 − Fn−2) + 2Fn−2

which rearranges to the recursion above.

Proposition 17 For every integer n ≥ 0,

Fn =
αn − βn√

5
(6)

where

α =
1 +
√
5

2
and β =

1−
√
5

2
.

Proof. From our previous theorem we know that

Fn = Aαn +Bβn for n ≥ 0,

where α and β are the roots of the auxiliary equation

x2 − x− 1 = 0,

that is the α and β given in the statement of the proposition, and where A and B are constants uniquely
determined by the equations

A+B = 0,

Aα+Bβ = 1.

So
A = −B =

1

α− β
=

1√
5
,

concluding the proof.
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We end with two examples of inhomogeneous difference equations.

Example 18 Find the solution of the following difference equation

xn+2 − 4xn+1 + 4xn = 2n + n, (7)

with initial values x0 = 1 and x1 = −1.

Proof. The auxiliary equation
λ2 − 4λ+ 4 = 0

has repeated roots λ = 2, 2. So the general solution of the homogeneous equation

xn+2 − 4xn+1 + 4xn = 0 (8)

we know, from Theorem 15 to be xn = (An+B) 2n where A and B are undetermined constants.
In order to find a particular solution of the recurrence relation (7) we need to try a solution xn = f (n)

where f (n) is a function similar in nature to 2n+n.We can deal with the n on the RHS by contributing
a term an+b to f (n) . But trying to deal with the 2n on the RHS with contributions to f (n) that consist
of some multiple of 2n or n2n would be useless as 2n and n2n are both solutions of the homogeneous
equation (8), and so trying them would just yield a zero on the RHS – rather we need to try instead a
multiple of n22n to deal with the 2n. So let’s try a particular solution of the form

xn = an+ b+ cn22n,

where a, b, c are constants, as yet undetermined. Putting this expression for xn into the LHS of (7) we
get

a (n+ 2) + b+ c (n+ 2)2 2n+2 − 4a (n+ 1)− 4b− 4c (n+ 1)2 2n+1 + 4an+ 4b+ 4cn22n

= a (n+ 2− 4n− 4 + 4n) + b (1− 4 + 4) + c2n
¡
4n2 + 16n+ 16− 8n2 − 16n− 8 + 4n2

¢
= an+ (b− 2a) + 8c2n.

This expression we need to equal 2n + n and so we see that a = 1, b = 2, c = 1/8. Hence a particular
solution is

xn = n+ 2 +
n2

8
2n,

and the general solution of (7) is

xn = (An+B) 2n + n+ 2 +
n2

8
2n.

Recalling the initial conditions x0 = 1 and x1 = −1 we see

n = 0 : B + 2 = 1;

n = 1 : 2 (A+B) + 1 + 2 +
1

4
= −1.

The first line gives us B = −1 and the second that A = −9/8. Finally then the unique solution of (7) is

xn = n+ 2 +
1

8

¡
n2 − 9n− 8

¢
2n.
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Example 19 Find the solution of the difference equation

xn+3 = 2xn − xn+2 + 1,

with initial values x0 = x1 = x2 = 0.

Proof. The auxiliary equation here is
λ3 + λ2 − 2 = 0,

which factorises as
λ3 + λ2 − 2 = (λ− 1)

¡
λ2 + 2λ+ 2

¢
= 0

and so has roots
λ = 1,−1 + i,−1− i.

So the general solution of the homogeneous difference equation is

xn = A+B (−1 + i)n + C (−1− i)n .

At this point we know need to find a particular solution of the inhomogeneous equation. Because
constant sequences are solutions of the homogeneous equation there is no point trying these as particular
solutions; instead we try one of the form xn = kn. Putting this into the difference equation we obtain

k (n+ 3) = 2kn− k (n+ 2) + 1 which simplifies to 3k = −2k + 1

and so k = 1
5 . The general solution of the inhomogeneous difference equation has the form

xn =
n

5
+A+B (−1 + i)

n
+ C (−1− i)

n
.

At first glance this solution does not necessarily look like it will be a real sequence, and indeed B and C
will need to be complex constants for this to be the case. But if we remember that

(−1 + i)n =
³√
2ei3π/4

´n
= 2n/2

µ
cos

3nπ

4
+ i sin

3nπ

4

¶
(−1− i)n =

³√
2ei5π/4

´n
= 2n/2

µ
cos

5nπ

4
+ i sin

5nπ

4

¶
we can rearrange our solution in terms of overtly real sequences.
To calculate A,B and C then we use the initial conditions. We see that

n = 0 : A+B + C = 0;

n = 1 : A+B (−1 + i) + C (−1− i) =
−1
5
;

n = 2 : A+B (−2i) + C (2i) =
−2
5
.

Substituting in A = −B − C from the first equation we have

B (−2 + i) + C (−2− i) =
−1
5
;

B (−1− 2i) + C (−1 + 2i) =
−2
5
,

and solving these gives

B =
4− 3i
50

and C =
4 + 3i

50
, and A = −B − C =

−8
50

.
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Hence the unique solution is

xn =
n

5
+
−8
50
+
4− 3i
50

(−1 + i)
n
+
4 + 3i

50
(−1− i)

n

=
1

50
(10n− 8 + (4− 3i) (−1 + i)n + (4 + 3i) (−1− i)n) .

The last two terms are conjugates of one another and so, recalling that

z + z = 2Re z

we have

xn =
1

50
(10n− 8 + 2Re [(4− 3i) (−1 + i)

n
])

=
1

50

µ
10n− 8 + 2× 2n/2Re

∙
(4− 3i)

µ
cos

3nπ

4
+ i sin

3nπ

4

¶¸¶
=

1

50

µ
10n− 8 + 2n/2+1

µ
4 cos

3nπ

4
+ 3 sin

3nπ

4

¶¶
=

1

25

µ
5n− 4 + 2n/2

µ
4 cos

3nπ

4
+ 3 sin

3nπ

4

¶¶
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