
INDUCTION EXERCISES 1

1. Factorials are defined inductively by the rule

0! = 1 and (n+ 1)! = n!× (n+ 1).

Then binomial coefficients are defined for 0 ≤ k ≤ n byµ
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and deduce the Binomial Theorem: that for any x and y,
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2. Prove that
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3. Prove that for n = 1, 2, 3, . . .
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for n = 1, 2, 3, . . . Can you find a matrix B such that B2 = A?

5. Let k be a positive integer. Prove by induction on n that
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Show now by induction on k that
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where Ek(n) is a polynomial in n of degree at most k.


