INDUCTION EXERCISES 1

1. Factorials are defined inductively by the rule

$$
0!=1 \quad \text { and } \quad(n+1)!=n!\times(n+1)
$$

Then binomial coefficients are defined for $0 \leq k \leq n$ by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Prove from these definitions that

$$
\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}
$$

and deduce the Binomial Theorem: that for any x and y,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

2. Prove that

$$
\sum_{r=1}^{n} \frac{1}{r^{2}} \leq 2-\frac{1}{n}
$$

3. Prove that for $n=1,2,3, \ldots$

$$
\sqrt{n} \leq \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leq 2 \sqrt{n}-1
$$

4. Let $A=\left(\begin{array}{rr}5 & -1 \\ 4 & 1\end{array}\right)$. Show that

$$
A^{n}=3^{n-1}\left(\begin{array}{cc}
2 n+3 & -n \\
4 n & 3-2 n
\end{array}\right)
$$

for $n=1,2,3, \ldots$ Can you find a matrix B such that $B^{2}=A$?
5. Let k be a positive integer. Prove by induction on n that

$$
\sum_{r=1}^{n} r(r+1)(r+2) \cdots(r+k-1)=\frac{n(n+1)(n+2) \cdots(n+k)}{k+1}
$$

Show now by induction on k that

$$
\sum_{r=1}^{n} r^{k}=\frac{n^{k+1}}{k+1}+E_{k}(n)
$$

where $E_{k}(n)$ is a polynomial in n of degree at most k.

