INDUCTION EXERCISES 2.

1. Show that n lines in the plane, no two of which are parallel and no three meeting in a point, divide the plane into

$$\frac{n^2 + n + 2}{2}$$

regions.

2. Prove for every positive integer n, that

$$3^{3n-2} + 2^{3n+1}$$

is divisible by 19.

3. (a) Show that if $u^2 - 2v^2 = 1$ then

$$(3u+4v)^2 - 2(2u+3v)^2 = 1.$$

(b) Beginning with $u_0 = 3, v_0 = 2$, show that the recursion

$$u_{n+1} = 3u_n + 4v_n$$
 and $v_{n+1} = 2u_n + 3v_n$

generates infinitely many integer pairs (u, v) which satisfy $u^2 - 2v^2 = 1$.

(c) How can this process be used to produce better and better rational approximations to $\sqrt{2}$? How many times need this process be repeated to produce a rational approximation accurate to 6 decimal places?

4. The Fibonacci numbers F_n are defined by the recurrence relation

$$F_n = F_{n-1} + F_{n-2}, \text{ for } n \ge 2$$

and $F_0 = 0$ and $F_1 = 1$. Prove for every integer $n \ge 0$, that

$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}$$

where

$$\alpha = \frac{1+\sqrt{5}}{2}$$
 and $\beta = \frac{1-\sqrt{5}}{2}$.

[Hint: you may find it helpful to show first that the two roots of the equation $x^2 = x + 1$ are α and β .]

5. The sequence of numbers x_0, x_1, x_2, \ldots begins with $x_0 = 1$ and $x_1 = 1$ and is then recursively determined by the equations

$$x_{n+2} = 4x_{n+1} - 3x_n + 3^n$$
 for $n \ge 0$.

(a) Find the values of x_2, x_3, x_4 and x_5 .

(b) Can you find a solution of the form

$$x_n = A + B \times 3^n + C \times n3^n$$

which agrees with the values of x_0, \ldots, x_5 that you have found?

(c) Use induction to prove that this is the correct formula for x_n for all $n \ge 0$.