INDUCTION EXERCISES 2.

1. Show that n lines in the plane, no two of which are parallel and no three meeting in a point, divide the plane into

$$
\frac{n^{2}+n+2}{2}
$$

regions.
2. Prove for every positive integer n, that

$$
3^{3 n-2}+2^{3 n+1}
$$

is divisible by 19 .
3. (a) Show that if $u^{2}-2 v^{2}=1$ then

$$
(3 u+4 v)^{2}-2(2 u+3 v)^{2}=1
$$

(b) Beginning with $u_{0}=3, v_{0}=2$, show that the recursion

$$
u_{n+1}=3 u_{n}+4 v_{n} \quad \text { and } \quad v_{n+1}=2 u_{n}+3 v_{n}
$$

generates infinitely many integer pairs (u, v) which satisfy $u^{2}-2 v^{2}=1$.
(c) How can this process be used to produce better and better rational approximations to $\sqrt{2}$? How many times need this process be repeated to produce a rational approximation accurate to 6 decimal places?
4. The Fibonacci numbers F_{n} are defined by the recurrence relation

$$
F_{n}=F_{n-1}+F_{n-2}, \text { for } n \geq 2
$$

and $F_{0}=0$ and $F_{1}=1$. Prove for every integer $n \geq 0$, that

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2} \text { and } \beta=\frac{1-\sqrt{5}}{2} .
$$

[Hint: you may find it helpful to show first that the two roots of the equation $x^{2}=x+1$ are α and β.]
5. The sequence of numbers $x_{0}, x_{1}, x_{2}, \ldots$ begins with $x_{0}=1$ and $x_{1}=1$ and is then recursively determined by the equations

$$
x_{n+2}=4 x_{n+1}-3 x_{n}+3^{n} \text { for } n \geq 0 .
$$

(a) Find the values of x_{2}, x_{3}, x_{4} and x_{5}.
(b) Can you find a solution of the form

$$
x_{n}=A+B \times 3^{n}+C \times n 3^{n}
$$

which agrees with the values of x_{0}, \ldots, x_{5} that you have found?
(c) Use induction to prove that this is the correct formula for x_{n} for all $n \geq 0$.

