
Lab 2
Lattice Reduction & Attacks

Martin R. Albrecht, Guillaume Bonnoron and Léo Ducas
23 March 2017

In this lab, we will make intensive use of Fplll1 and Fpylll2. Fplll 1 https://github/com/fplll/fplll
2 https://github.com/fplll/fpylllis a C++11 library for operating on lattices using floating point

arithmetic. It implements Gram-Schmidt orthogonalisation, LLL,
BKZ, BKZ 2.03, Slide reduction4 and Self-Dual BKZ5. 3 Yuanmi Chen and Phong Q.

Nguyen. “BKZ 2.0: Better Lat-
tice Security Estimates”. In: ASI-
ACRYPT 2011. Ed. by Dong Hoon
Lee and Xiaoyun Wang. Vol. 7073.
LNCS. Springer, Heidelberg, Dec.
2011, pp. 1–20.
4 Nicolas Gama and Phong Q.
Nguyen. “Finding short lattice
vectors within Mordell’s inequality”.
In: 40th ACM STOC. ed. by Richard
E. Ladner and Cynthia Dwork. ACM
Press, May 2008, pp. 207–216.
5 Daniele Micciancio and Michael
Walter. Practical, Predictable Lattice
Basis Reduction. Cryptology ePrint
Archive, Report 2015/1123. http:
//eprint.iacr.org/2015/1123. 2015.

Fpylll is a Python wrapper and extension of Fplll, making its data
structures and algorithms available in Python and Sage (7.4 and
greater). It also (re-)implements some algorithms in Python to make
their internals easily accessible, a feature we will make use of.

Note: Both Fplll and Fpylll are evolving software projects. In partic-
ular, the current development versions of either library offer improve-
ments over the latest stable released shipped with Sage. Thus, using
Fpylll from within Sage and using a version compiled by yourself
(outside of Sage) from GitHub will be different. We recommend, if at
all possible, to use the latest development version.6

6 You can install the latest develop-
ment versions of fplll/fpylll into Sage
as well, if you run Sage locally, i.e.
not on https://sagemath.com.

Both libraries being evolving software projects also means that (a)
you will encounter bugs and (b) we need your help. For example,
you will notice that some functions lack documentation, examples
and tests. Contributions welcome!7 7 https://github.com/fplll/fplll/

blob/master/CONTRIBUTING.md

Introduction

In this lab, we ask you to experiment with LLL and BKZ (2.0) as
implemented in Fpylll. We start with a little tutorial on how to use
this library.

To start, we first import the fpylll API into Sage’s main names-
pace:
from fpylll import *

Note by calling from fpylll import * we overwite Sage’s own
set_random_seed. You can still call it as sage.all.set_random_seed.

Integer Matrices

To experiment, we generate a q-ary lattice of dimension 100 and de-
terminant q50 where q is a 30-bit prime. Before we sample our basis,
we set the random seed to ensure we can reproduce our experiments
later.

https://github/com/fplll/fplll
https://github.com/fplll/fpylll
http://eprint.iacr.org/2015/1123
http://eprint.iacr.org/2015/1123
https://sagemath.com
https://github.com/fplll/fplll/blob/master/CONTRIBUTING.md
https://github.com/fplll/fplll/blob/master/CONTRIBUTING.md

lab 2 lattice reduction & attacks 2

set_random_seed(1337)
A = IntegerMatrix.random(100, "qary", k=50, bits=30)

Reminder: Objects and functions in Python/Sage can be inter-
rogated to learn more about them such as what parameters they
accept (for functions) or (often) their documentation.8 8 https://doc.sagemath.org/html/en/

tutorial/tour_help.html

Gram-Schmidt Orthogonalisation

To run LLL we have two choices. We can either run the high-level
LLL.reduction() function or we can create the appropriate hierarchy
of objects “by hand”. That is, algorithms are represented by objects
with which we can interact. As this exercise is about dealing with
those internal objects, we are going to pursue this strategy. We,
hence, first create a MatGSO object, which takes care of computing
the Gram-Schmidt orthogonalisation.

A MatGSO object stores the following information:

• An integral basis B,

• the Gram-Schmidt coefficients µi,j =
⟨
bi, b

∗
j

⟩
/∥b∗j∥2 for i > j,

• the coefficients ri,i = ⟨b∗i , b∗i ⟩ and

• the coefficients ri,j =
⟨
bi, b

∗
j

⟩
= µi,j · rj,j for i > j

It holds that: B = R × Q = (µ × D) × (D−1 × B∗) where Q

is orthonormal, R is lower triangular and B∗ is the Gram-Schmidt
orthogonalisation.

We choose the floating point type (≈ bits of precision) used to repre-
sent the Gram-Schmidt coefficients as native double, which is fastest
and fine up to dimension 170 or so. If you choose mpfr for arbitrary
precision, you must call set_precision(prec) before constructing
your object M, i.e. precision is global!
M = GSO.Mat(A, float_type="d")

When we say “internal”, we mean it. Note that M is lazy, i.e. the
Gram-Schmidt orthogonalisation is only computed/updated when
needed. For example, as of now, none of the coefficients are meaning-
ful:
M.get_r(0,0)

6.90051235708626e-310

To get meaningful results, we need to trigger the appropriate compu-
tation. To compute the complete GSO, run:

https://doc.sagemath.org/html/en/tutorial/tour_help.html
https://doc.sagemath.org/html/en/tutorial/tour_help.html

lab 2 lattice reduction & attacks 3

M.update_gso()

True

This is better:
M.get_r(0,0)
A[0].norm()^2

1.1005727694586943e+18
1.1005727694586944e+18

LLL

We can now create an LLL object which operates on GSO objects.
All operations performed on GSO objects, e.g. M, are automatically
also applied to the underlying integer matrix, e.g. A.
L = LLL.Reduction(M, delta=0.99, eta=0.501, flags=LLL.VERBOSE)

Now that we have an LLL object, we can call it, i.e. run the algo-
rithm. Note that you can specify a range of rows on which to per-
form LLL.
L(0, 0, 10)

Entering LLL
delta = 0.99
eta = 0.501
precision = 53
exact_dot_product = 0
row_expo = 0
early_red = 0
siegel_cond = 0
long_in_babai = 0
Discovering vector 2/10 cputime=0
Discovering vector 3/10 cputime=0
Discovering vector 4/10 cputime=0
Discovering vector 5/10 cputime=0
Discovering vector 6/10 cputime=0
Discovering vector 7/10 cputime=0
Discovering vector 8/10 cputime=0
Discovering vector 9/10 cputime=0
Discovering vector 10/10 cputime=0
End of LLL: success

That’s maybe a bit verbose, let’s continue to the end without all
that feedback:
L = LLL.Reduction(M, delta=0.99, eta=0.501)
L()

If our LLL implementation is any good, then ∥µi,j∥ ≤ η should hold
for all i > j. Let’s check:

lab 2 lattice reduction & attacks 4

all([abs(M.get_mu(i,j)) <= 0.501 for i in range(M.d) for j in range(i)])

True

We also want to check in on A:
A[0].norm()^2

13340327827.0

BKZ

Calling BKZ works similarly: there is a high-level function BKZ.reduction()

and a BKZ object BKZ.Reduction. However, in addition there are
also several implementations of the BKZ algorithm in

fpylll.algorithms

These are re-implementations of BKZ-syle algorithms in Python
which makes them rather hackable, i.e. we can modify different parts
of the algorithms relatively easily. To use those, we first have to
import them. We opt for BKZ 2.0:9 9 Check out https://github.com/

fplll/fpylll/blob/master/src/fpylll/
algorithms/simple_bkz.py for a simple
implementation of BKZ.

from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

BKZ 2.0 takes a lot of parameters, such as:

block_size the block size

strategies we explain this one below

flags verbosity, early abort, etc.

max_loops limit the number of tours

auto_abort heuristic, stop when the average slope of log(∥b∗i ∥) does
not decrease fast enough

gh_factor heuristic, if set then the enumeration bound will be set to
this factor times the Gaussian Heuristic.

It gets old fast passing these around one-by-one. Thus, Fplll and
Fpylll introduce an object BKZ.Param to collect such parameters:
flags = BKZ.AUTO_ABORT|BKZ.MAX_LOOPS|BKZ.GH_BND # optionally add |BKZ.VERBOSE
par = BKZ.Param(60, strategies=BKZ.DEFAULT_STRATEGY, max_loops=4, flags=flags)

The parameter strategies takes a list of “reduction strategies” or a
filename for a JSON file containing such strategies. For each block
size these strategies determine what pruning coefficients are used and

https://github.com/fplll/fpylll/blob/master/src/fpylll/algorithms/simple_bkz.py
https://github.com/fplll/fpylll/blob/master/src/fpylll/algorithms/simple_bkz.py
https://github.com/fplll/fpylll/blob/master/src/fpylll/algorithms/simple_bkz.py

lab 2 lattice reduction & attacks 5

what kind of recursive preprocessing is applied before enumeration.
The strategies in BKZ.DEFAULT_STRATEGY were computed using fplll’s
strategizer.10 10 https://github.com/fplll/

strategizer
strategies = load_strategies_json(BKZ.DEFAULT_STRATEGY)
print strategies[60]

'/opt/sage-devel/local/share/fplll/strategies/default.json'
Strategy< 60, (40), 0.29-0.50>

That last line means that for block size 60 we are preprocessing with
block size 40 and our pruning parameters are such that enumeration
succeeds with probability between 29% and 50% depending on the
target enumeration radius.

Finally, let’s call BKZ-60 on our example lattice:
bkz = BKZ2(A) # or
bkz = BKZ2(GSO.Mat(A)) # or
bkz = BKZ2(LLL.Reduction(GSO.Mat(A)))

_ = bkz(par)

tours = bkz.stats.tours
map(lambda x: [x["i"], RealField(20)(x["total time"]), x["r_0"]], tours)

i time r0

0 13.573 5729242260.0
1 25.795 3034110354.0
2 40.709 2845292328.0
3 52.384 2845292328.0

Lattice Reduction

In this exercise, we ask you to verify various predictions made about
lattice reduction using the implementations available in Fpylll.

root-Hermite factors

Recall that lattice reduction returns vectors such that ∥v∥ = δd0 ·
Vol(L)1/d where δ0 is the root-Hermite factor which depends on the
algorith. For LLL it is δ0 ≈ 1.0219 and for BKZ-k it is

δ0 ≈
(

k

2πe
(πk)

1
k

) 1
2(k−1)

.

Experimentally measure root-Hermite factors for various bases and
algorithms.

https://github.com/fplll/strategizer
https://github.com/fplll/strategizer

lab 2 lattice reduction & attacks 6

GS norms & Geometric series assumption

Schnorr’s geometric series assumption (GSA) states that the norms
of the Gram-Schmidt vectors after lattice reduction satisfy

∥b∗i ∥ = αi−1 · ∥b1∥ for some 0 < α < 1.

Combining this with the root-Hermite factor ∥b1∥ = δd0 det(Λ)1/d and
det(Λ) =

∏d
i=1 ∥b∗i ∥ where d is the dimension of the lattice, we get

α = δ−2d/(d−1).11 Check how well this assumption holds for various 11 Richard Lindner and Chris Peikert.
“Better Key Sizes (and Attacks)
for LWE-Based Encryption”. In:
CT-RSA 2011. Ed. by Aggelos
Kiayias. Vol. 6558. LNCS. Springer,
Heidelberg, Feb. 2011, pp. 319–339.

block sizes of BKZ.

That is, running several tours of BKZ 2.0, plot the logs of Gram-
Schmidt norms agains the GSA after each tour. You have several
options to get to those norms:12 12 We apologise for violating the

Zen of Python so much: “There
should be one — and preferably only
one — obvious way to do it.” https:
//www.python.org/dev/peps/pep-0020/

• Check out the dump_gso_filename option for BKZ.Param.

• Set up BKZ parameters to run one tour only an measure between
BKZ calls.

• Inherit from fpylll.algorithms.bkz2.BKZReduction and add the
functionality to plot after each tour.

To plot, you again have several options.

If you are running from within Sage, you can simply call line() to
plot, e.g.
line(zip(range(10),prime_range(30)), color="lightgrey", dpi=150r, thickness=2)

In vanilla Python, you can use matplotlib13 13 http://matplotlib.org

import matplotlib.pyplot as plt
X = range(10)
Y = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
plt.plot(X, Y)
plt.ylabel('primes!!!')
plt.savefig("lab-02-plot-line-matplotlib.png", dpi=300r, bbox_inches='tight')
plt.close()

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
http://matplotlib.org

lab 2 lattice reduction & attacks 7

Dual Attack

In this exercise, you are asked to break a decision-LWE instance
using the dual lattice attack.

That is, assume you are given access to an lWE oracle such as
from sage.crypto.lwe import LindnerPeikert
lwe = LindnerPeikert(50)

1. Establish the BKZ block size required to distinguish with an
advantage of, say, 60%.14 14 Richard Lindner and Chris Peikert.

“Better Key Sizes (and Attacks)
for LWE-Based Encryption”. In:
CT-RSA 2011. Ed. by Aggelos
Kiayias. Vol. 6558. LNCS. Springer,
Heidelberg, Feb. 2011, pp. 319–339.

Note that this entails finding the optimal number of samples m,
i.e that m which minimises the expression δm0 · qn/m.15

15 Daniele Micciancio and Oded
Regev. “Lattice-based Cryptogra-
phy”. In: ed. by Daniel J. Bernstein,
Johannes Buchmann, and Erik
Dahmen. Berlin, Heidelberg, New
York: Springer, Heidelberg, 2009,
pp. 147–191; Martin R. Albrecht,
Rachel Player, and Sam Scott. On
The Concrete Hardness Of Learn-
ing With Errors. Cryptology ePrint
Archive, Report 2015/046. http:
//eprint.iacr.org/2015/046. 2015.

2. Construct a basis for the scaled dual lattice.16

16 See http://doc.sagemath.org/html/
en/constructions/linear_algebra.
html#kernels

3. Run BKZ on on that basis to recover a short vector v in the
scaled dual lattice.

4. Use (possibly several) v to distinguish the outputs of the oracle
from uniform.

5. Attempt bigger, harder instances.

6. Improve the running time by employing cleverer techniques, such
as progressive BKZ17, running in the low-advantage regime or

17 Yoshinori Aono, Yuntao Wang,
Takuya Hayashi, and Tsuyoshi
Takagi. Improved Progressive BKZ
Algorithms and their Precise Cost
Estimation by Sharp Simulator.
Cryptology ePrint Archive, Report
2016/146. http://eprint.iacr.org/
2016/146. 2016.

sparse-ish re-randomisation of already reduced bases.

http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046
http://doc.sagemath.org/html/en/constructions/linear_algebra.html#kernels
http://doc.sagemath.org/html/en/constructions/linear_algebra.html#kernels
http://doc.sagemath.org/html/en/constructions/linear_algebra.html#kernels
http://eprint.iacr.org/2016/146
http://eprint.iacr.org/2016/146

lab 2 lattice reduction & attacks 8

Example Solutions

root-Hermite factors

-*- coding: utf-8 -*-
from fpylll import *

deltaf = lambda beta: (beta/(2*pi*e) * (pi*beta)^(1/beta))^(1/(2*beta-1))
fmt = u"n: %3d, bits: %2d, β: %2d, δ_0: %.4f, pred: 2^%5.2f, real: 2^%5.2f"

ntrials = 20
for n in (50, 70, 90, 110, 130):

for bits in (20, 40):
for beta in (2, 20, 50, 60):

if beta > n:
continue

beta = ZZ(beta)
if beta == 2:

delta_0 = 1.0219
else:

delta_0 = deltaf(beta)
n_pred = float(delta_0^n * 2^(bits/2))
n_real = []
for i in range(ntrials):

A = IntegerMatrix.random(n, "qary", k=n/2, bits=bits)
if beta == 2:

LLL.reduction(A)
else:

par = BKZ.Param(block_size=beta,
strategies=BKZ.DEFAULT_STRATEGY,
max_loops=4,
flags=BKZ.MAX_LOOPS|BKZ.GH_BND)

BKZ.reduction(A, par)
n_real.append(A[0].norm())

n_real = sum(n_real)/ntrials
print(fmt%(n, bits, beta, delta_0, log(n_pred,2), log(n_real,2)))

print

n: 50, bits: 20, β: 2, δ_0: 1.0219, pred: 2^11.56, real: 2^10.75
n: 50, bits: 20, β: 20, δ_0: 1.0094, pred: 2^10.67, real: 2^10.51
n: 50, bits: 20, β: 50, δ_0: 1.0119, pred: 2^10.86, real: 2^10.14
n: 50, bits: 40, β: 2, δ_0: 1.0219, pred: 2^21.56, real: 2^20.61
n: 50, bits: 40, β: 20, δ_0: 1.0094, pred: 2^20.67, real: 2^20.66
n: 50, bits: 40, β: 50, δ_0: 1.0119, pred: 2^20.86, real: 2^20.26

n: 70, bits: 20, β: 2, δ_0: 1.0219, pred: 2^12.19, real: 2^11.44
n: 70, bits: 20, β: 20, δ_0: 1.0094, pred: 2^10.94, real: 2^11.02
n: 70, bits: 20, β: 50, δ_0: 1.0119, pred: 2^11.20, real: 2^10.55
n: 70, bits: 20, β: 60, δ_0: 1.0114, pred: 2^11.14, real: 2^10.59
n: 70, bits: 40, β: 2, δ_0: 1.0219, pred: 2^22.19, real: 2^21.36
n: 70, bits: 40, β: 20, δ_0: 1.0094, pred: 2^20.94, real: 2^20.93
n: 70, bits: 40, β: 50, δ_0: 1.0119, pred: 2^21.20, real: 2^20.84
n: 70, bits: 40, β: 60, δ_0: 1.0114, pred: 2^21.14, real: 2^20.51

n: 90, bits: 20, β: 2, δ_0: 1.0219, pred: 2^12.81, real: 2^11.46
n: 90, bits: 20, β: 20, δ_0: 1.0094, pred: 2^11.21, real: 2^11.64
n: 90, bits: 20, β: 50, δ_0: 1.0119, pred: 2^11.54, real: 2^10.97
n: 90, bits: 20, β: 60, δ_0: 1.0114, pred: 2^11.47, real: 2^11.01
n: 90, bits: 40, β: 2, δ_0: 1.0219, pred: 2^22.81, real: 2^21.94
n: 90, bits: 40, β: 20, δ_0: 1.0094, pred: 2^21.21, real: 2^21.51
n: 90, bits: 40, β: 50, δ_0: 1.0119, pred: 2^21.54, real: 2^20.96
n: 90, bits: 40, β: 60, δ_0: 1.0114, pred: 2^21.47, real: 2^20.96

n: 110, bits: 20, β: 2, δ_0: 1.0219, pred: 2^13.44, real: 2^12.81
n: 110, bits: 20, β: 20, δ_0: 1.0094, pred: 2^11.48, real: 2^12.18

lab 2 lattice reduction & attacks 9

n: 110, bits: 20, β: 50, δ_0: 1.0119, pred: 2^11.88, real: 2^11.31
n: 110, bits: 20, β: 60, δ_0: 1.0114, pred: 2^11.79, real: 2^11.08
n: 110, bits: 40, β: 2, δ_0: 1.0219, pred: 2^23.44, real: 2^22.71
n: 110, bits: 40, β: 20, δ_0: 1.0094, pred: 2^21.48, real: 2^22.20
n: 110, bits: 40, β: 50, δ_0: 1.0119, pred: 2^21.88, real: 2^21.24
n: 110, bits: 40, β: 60, δ_0: 1.0114, pred: 2^21.79, real: 2^21.04

n: 130, bits: 20, β: 2, δ_0: 1.0219, pred: 2^14.06, real: 2^13.37
n: 130, bits: 20, β: 20, δ_0: 1.0094, pred: 2^11.75, real: 2^12.81
n: 130, bits: 20, β: 50, δ_0: 1.0119, pred: 2^12.23, real: 2^11.90
n: 130, bits: 20, β: 60, δ_0: 1.0114, pred: 2^12.12, real: 2^11.66
n: 130, bits: 40, β: 2, δ_0: 1.0219, pred: 2^24.06, real: 2^23.25
n: 130, bits: 40, β: 20, δ_0: 1.0094, pred: 2^21.75, real: 2^22.71
n: 130, bits: 40, β: 50, δ_0: 1.0119, pred: 2^22.23, real: 2^21.70
n: 130, bits: 40, β: 60, δ_0: 1.0114, pred: 2^22.12, real: 2^21.67

GS norms & Geometric series assumption

dump_gso_filename

-*- coding: utf-8 -*-
from fpylll import *

set_random_seed(1)
n, bits = 120, 40
A = IntegerMatrix.random(n, "qary", k=n/2, bits=bits)
beta = 60
tours = 2

fn = "/tmp/logs.txt"
par = BKZ.Param(block_size=beta,

strategies=BKZ.DEFAULT_STRATEGY,
dump_gso_filename=fn,
max_loops=tours)

par.flags & BKZ.MAX_LOOPS # max_loops sets flag for you

delta_0 = (beta/(2*pi*e) * (pi*beta)^(1/ZZ(beta)))^(1/(2*beta-1))
alpha = delta_0^(-2*n/(n-1))

norms = [map(log, [(alpha^i * delta_0^n * 2^(bits/2))^2 for i in range(n)])]

BKZ.reduction(A, par)

for i, l in enumerate(open(fn).readlines()):
if i > tours:

break
_norms = l.split(":")[1] # stop off other information
_norms = _norms.strip().split(" ") # split string
_norms = map(float, _norms) # map to floats
norms.append(_norms)

colours = ["#4D4D4D", "#5DA5DA", "#FAA43A", "#60BD68",
"#F17CB0", "#B2912F", "#B276B2", "#DECF3F", "#F15854"]

g = line(zip(range(n), norms[0]), legend_label="GSA", color=colours[0])
g += line(zip(range(n), norms[1]), legend_label="lll", color=colours[1])

for i,_norms in enumerate(norms[2:]):
g += line(zip(range(n), _norms),

legend_label="tour %d"%i, color=colours[i+2])
g

lab 2 lattice reduction & attacks 10

bkz.tour

-*- coding: utf-8 -*-
from fpylll import *
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

set_random_seed(1)
n, bits = 120, 40
A = IntegerMatrix.random(n, "qary", k=n/2, bits=bits)
beta = 60
tours = 2
par = BKZ.Param(block_size=beta,

strategies=BKZ.DEFAULT_STRATEGY)

delta_0 = (beta/(2*pi*e) * (pi*beta)^(1/ZZ(beta)))^(1/(2*beta-1))
alpha = delta_0^(-2*n/(n-1))

LLL.reduction(A)

M = GSO.Mat(A)
M.update_gso()

norms = [map(log, [(alpha^i * delta_0^n * 2^(bits/2))^2 for i in range(n)])]
norms += [[log(M.get_r(i,i)) for i in range(n)]]

bkz = BKZ2(M)

for i in range(tours):
bkz.tour(par)
norms += [[log(M.get_r(i,i)) for i in range(n)]]

colours = ["#4D4D4D", "#5DA5DA", "#FAA43A", "#60BD68",
"#F17CB0", "#B2912F", "#B276B2", "#DECF3F", "#F15854"]

g = line(zip(range(n), norms[0]), legend_label="GSA", color=colours[0])
g += line(zip(range(n), norms[1]), legend_label="lll", color=colours[1])

for i,_norms in enumerate(norms[2:]):
g += line(zip(range(n), _norms),

legend_label="tour %d"%i, color=colours[i+2])
g

lab 2 lattice reduction & attacks 11

MyBKZ

from fpylll import *
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2
from fpylll.algorithms.bkz_stats import BKZStats
import time

class MyBKZ(BKZ2):
def __call__(self, params, norms, min_row=0, max_row=-1):

"""Run the BKZ with `param` and dump norms to ``norms``

:param params: BKZ parameters
:param norms: a list to append vectors of norms to
:param min_row: start processing in this row
:param max_row: stop processing in this row (exclusive)

"""
this changed in the development version of fpyll
stats = BKZStats(self, verbose=params.flags & BKZ.VERBOSE)

if params.flags & BKZ.AUTO_ABORT:
auto_abort = BKZ.AutoAbort(self.M, self.A.nrows)

cputime_start = time.clock()

self.M.discover_all_rows()
norms.append([self.M.get_r(j, j) for j in range(n)])

i = 0
while True:

with stats.context("tour"):
clean = self.tour(params, min_row, max_row, stats)

norms.append([self.M.get_r(j, j) for j in range(n)])
i += 1
if clean or params.block_size >= self.A.nrows:

break
if (params.flags & BKZ.AUTO_ABORT) and auto_abort.test_abort():

break
if (params.flags & BKZ.MAX_LOOPS) and i >= params.max_loops:

break
if (params.flags & BKZ.MAX_TIME) \

and time.clock() - cputime_start >= params.max_time:
break

stats.finalize()
self.stats = stats

lab 2 lattice reduction & attacks 12

return clean

set_random_seed(1)

n, bits = 120, 40
A = IntegerMatrix.random(n, "qary", k=n/2, bits=bits)
beta = 60
tours = 2
par = BKZ.Param(block_size=beta,

strategies=BKZ.DEFAULT_STRATEGY,
max_loops=tours)

delta_0 = (beta/(2*pi*e) * (pi*beta)^(1/ZZ(beta)))^(1/(2*beta-1))
alpha = delta_0^(-2*n/(n-1))

LLL.reduction(A)

norms = [[(alpha^i * delta_0^n * 2^(bits/2))^2 for i in range(n)]]
bkz = MyBKZ(A)

bkz(par, norms)

colours = ["#4D4D4D", "#5DA5DA", "#FAA43A", "#60BD68", "#F17CB0",
"#B2912F", "#B276B2", "#DECF3F", "#F15854"]

g = line(zip(range(n), map(log, norms[0])),
legend_label="GSA", color=colours[0])

g += line(zip(range(n), map(log, norms[1])),
legend_label="lll", color=colours[1])

for i,_norms in enumerate(norms[2:]):
g += line(zip(range(n), map(log, _norms)),

legend_label="tour %d"%i, color=colours[i+2])
g

Dual attack

We will need to invert

δ0 ≈
(

k

2πe
(πk)

1
k

) 1
2(k−1)

.

lab 2 lattice reduction & attacks 13

def block_sizef(delta_0):
"""
Blocksize for a given delta_0
:param delta_0: root-hermite factor

"""
k = ZZ(40)
RR = delta_0.parent()
pi_r = RR(pi)
e_r = RR(e)

f = lambda k: (k/(2*pi_r*e_r) * (pi_r*k)**(1/k))**(1/(2*(k-1)))

while f(2*k) > delta_0:
k *= 2

while f(k+10) > delta_0:
k += 10

while True:
if f(k) < delta_0:

break
k += 1

return k

We will also need to lift from mod q to the integers by mapping to
the element closest to zero.
def balanced_lift(e):

q = parent(e).order()
e = ZZ(e)
return e - q if e > q//2 else e

We set up our instance and recover q and α, the latter from σ =

α · q/
√
2π where σ is the standard deviation.

from sage.crypto.lwe import LindnerPeikert
adv, n = 0.6, 50

sage.all.set_random_seed(1337) # make it reproducible

lwe = LindnerPeikert(n)
q = lwe.K.order()
alpha = RR(sqrt(2*pi)*lwe.D.sigma/q)

We compute δ0
18, β and m.19 18 Martin R. Albrecht, Rachel Player,

and Sam Scott. On The Concrete
Hardness Of Learning With Errors.
Cryptology ePrint Archive, Report
2015/046. http://eprint.iacr.org/
2015/046. 2015.
19 Daniele Micciancio and Oded
Regev. “Lattice-based Cryptogra-
phy”. In: ed. by Daniel J. Bernstein,
Johannes Buchmann, and Erik Dah-
men. Berlin, Heidelberg, New York:
Springer, Heidelberg, 2009, pp. 147–
191.

log_delta_0 = log(RR(sqrt(log(1/adv)/pi))/alpha, 2)**2 / (4*n*log(q, 2))
delta_0 = RR(2**log_delta_0)

beta = block_sizef(delta_0)
m = ZZ(round(sqrt(n*log(q, 2)/log(delta_0, 2))))
beta, m

(40, 164)

It is time to sample from our oracle. We write the result in matrix
form.
samples = [lwe() for _ in range(m)]

A = matrix([a for a,c in samples])
c = vector([c for a,c in samples])

http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046

lab 2 lattice reduction & attacks 14

We compute a basis for for v · A ≡ 0 mod q and extend that basis to
a q-ary lattice basis B.
B = A.left_kernel().matrix()
N = B.change_ring(ZZ)
S = matrix(ZZ, n, m-n).augment(q*identity_matrix(n))
B = N.stack(S)

We call BKZ
R = B.BKZ(block_size=beta, proof=False)

Our short vector is the first in the basis, let’s look at ⟨v, c⟩ = ⟨v, e⟩.
v = R[0]
balanced_lift(v*c)

-20

Let’s #yolo and take inner products of all vectors in R.
l = []
for r in R.rows():

l.append(balanced_lift(r*c))

histogram(l, color="#5DA5DA", edgecolor="#5DA5DA", bins=20)

	Introduction
	Lattice Reduction
	Dual Attack
	Example Solutions

