
EPSRC Centre for Doctoral Training in

Industrially Focused Mathematical

Modelling

Development of Multi-GPU Algorithms

Federico Danieli

1

Contents
1. Introduction...2

Background..2

Parallel Computing on GPUs..........................2

Glossary of terms...2

2. Solvers for Tridiagonal Systems of

Equations...3

Extension to Block-tridiagonal Systems4

3. Multi-GPU Algorithms5

4. Comparison of the Algorithms6

5. Discussion, Conclusions & Recommendations

7

6. Potential Impact ..7

2

1. Introduction

Background
NVIDIA is a leading company in the design and development of Graphic Processing Units
(GPUs). While traditionally employed in computer graphics applications, over the last
decade graphic cards have increasingly been used as computing accelerators to boost the
performance of software that requires a large number of computations to be carried out in
parallel. The reason why GPUs are so appealing for High Performance Computing (HPC)
applications lies in their specific architecture: the graphic processors are composed of
thousands of cores capable of handling many thousands of concurrent operations.

The speed-ups achieved by employing GPUs provide relevant reduction in the
computational time necessary to run algorithms for a wide range of applications. These
span from the most classical areas of numerical simulations to the relatively recent ones of
big data analysis and deep learning. Certain technologies currently being developed, such as
self-driving cars and real-time action-recognition, would be unthinkable without the aid of
graphic processors.

Parallel Computing on GPUs
To aid programmers in the task of writing general-purpose code designed to run on GPUs,
NVIDIA developed CUDA: this is a particular model for parallel programming, as well as
a programming language, that facilitates the dialog between CPU and GPU, and makes it
simpler for software developers to port familiar structures employed in classical CPU
programming to uses on GPUs. On top of this, a variety of software libraries written in
CUDA provide basic routines for the implementation of common algorithms, such as
linear algebra applications, on a single GPU.

However, the number of GPUs present in the same system, as well as the communication
speed among NVIDIA graphic cards, is ever increasing, with some of the most powerful
computers (like Piz Daint in Switzerland and Titan in the U.S.) featuring a large number of
graphic processors. NVIDIA has also launched a new product, DGX-1, which combines
the power of 8 interconnected graphic cards and is designed specifically with applications
to machine learning in mind. As a consequence, there is increasing interest in coordinating
different devices to work simultaneously on the same task, unlocking an additional level of
parallelisation, not only within the single GPU, but also across different GPUs. This
practice goes under the name of multi-GPU programming.

Our aim is to investigate the extension of some simple algorithms for solving linear algebra
problems to the framework of multi-GPU programming.

Glossary of terms

CPU and GPU: These are acronyms for Central Processing Unit and Graphic Processing
Unit, respectively. They are both key components responsible for interpreting and
executing the instructions listed in a program, but while the first is a general purpose
processor that acts as the “brain” of a computer, the latter sits on a graphic card and
is specialised for tasks involving display functions and graphic rendering. This is
reflected in its particular hardware architecture, designed to perform thousands of
operations in parallel. In many systems, CPUs work in conjunction with GPUs,
delegating to them certain tasks that are better suited to be performed by the latter.

Kernel: This denotes any function (to be intended in the programming sense, as a
sequence of instructions) written using the CUDA language and designed to run on
an NVIDIA GPU.

Thread, Warp, Block: This is the hierarchy of work distribution within a GPU. The
thread is the simplest unit responsible for executing a series of operations
sequentially. When launching a kernel, parallelisation is achieved by firing multiple

With more GPUs
being connected
together efficiently in
the same cluster, the
capability of
employing multiple
devices to work
concurrently on the
same algorithm
unlocks a new
possibility for
parallelisation

3

threads which work concurrently on different data. Threads are grouped in Warps of
size 32: threads within a warp are implicitly synchronised among themselves. Warps
are further collected in Blocks that can be of any size.

Registers, Shared Memory, Global Memory: This is the hierarchy of memory types
within a GPU. When launched, each thread has an area of memory assigned to it,
(the Registers), which it can employ to store local variables and temporary values for
computations. This memory is the fastest to access, and threads within a warp can
quickly read from each other’s registers, but its size is limited. Threads belonging to
the same block can use Shared Memory to exchange data: this is slower to use than
registers, but larger in size. Finally, threads of different blocks need to resort to
Global Memory, the slowest and largest one, for their communications. Each device
has its own global memory, and also the dialogue between CPU and GPU (as well as
among GPUs, when supported) happens using this memory.

2. Solvers for Tridiagonal Systems of Equations
Tridiagonal systems are sets of equations of a particular kind which have a very simple
structure and are therefore amenable to be solved in efficient ways. Although simple, they
are ubiquitous in mathematical applications: they arise for example from the description of
physical phenomena such as heat transfer and fluid flow. In these kind of systems, it is
possible to order the equations in such a way that each of them depends only on three
unknowns. As a consequence, each equation can be written as:

������ + ���� + ������ = �� ∀� = 1, … ,�,

where � is the number of equations in the system, and we assume �� = �� = 0. If we
collect the coefficients into a grid (or matrix) such that each row corresponds to an
equation and each column to an unknown, then the only non-zero values are placed on the
main diagonal (filled with the �� , and running from top-left to bottom-right), as well as the
ones above (the ��) and below (the ��), hence the name tri-diagonal.

Given their simplified structure, many fast algorithms exist in the literature to solve them
efficiently. The canonical choice is the Thomas algorithm, which consists of two parts: a
forward sweep followed by a backward sweep. During the forward sweep, we proceed from top
to bottom and combine each equation with the previous one to eliminate coefficient �� .
During the backward sweep, we proceed from bottom to top and combine each equation
with the following one to eliminate coefficient �� . At the end, we are left with a set of
equations which are trivial to solve. A schematic of how the algorithm impacts the
structure of the matrix is presented in Figure 1. This algorithm presents numerous
advantages since it is extremely straightforward to implement and it does not require too
many manipulations of the equations. However, its major drawback lies in its sequential
nature: parallelisation can only be achieved if more matrices need to be solved at the same
time, but at that point each thread should handle a whole matrix, which is too large to be
contained in registers.

Figure 1: Schematic of the matrix structure when applying Thomas algorithm: original
matrix (left), after the forward sweep (centre), after backward sweep (right). Each cross is a
non-zero coefficient.

An alternative to the Thomas algorithm, which allows for parallelisation at a finer level
(within the same matrix), is the Parallel Cyclic Reduction (PCR) algorithm. It operates in
subsequent steps, where at each step each equation is combined with two others to

The simple structure
of tridiagonal
systems makes them
easy to solve.
However, when
designing algorithms
to work on a GPU, we
need to take into
account the specific
architecture of the
device in order to
make the best use of
its computational
power.

4

eliminate both coefficients �� and �� at the same time, at the cost of adding two more
which are further away from the main diagonal. Eventually the off-diagonal coefficients are
pushed “outside” the matrix, at which point a trivial system is recovered again, as shown in
Figure 2. While this algorithm is more demanding in terms of the number of computations
to be performed, each thread could take care of a single equation in the matrix, achieving
fine-grained parallelisation. However, each step of the algorithm needs to be synchronised,
since a single warp cannot take care of handling the whole matrix, and so the coordination
between threads needs to be imposed explicitly, which comes at a cost. Moreover, threads
in different warps need to exchange data using shared memory, which further impacts
performance.

Figure 2: Schematic of the matrix structure when applying PCR algorithm: after first step
(left), after second (centre), and at completion (right). Each cross is a non-zero coefficient.

To make the best use of the specific architecture of a GPU, a Hybrid algorithm is
preferable, which combines the advantages of both the Thomas and PCR algorithms, while
at the same time mitigating their drawbacks. In this hybrid algorithm, we divide the original
matrix into chunks. As a first step, we apply the Thomas algorithm in the interior of each
chunk, so that the equations in each chunk only depend on its first and last unknowns. As
a second step, we collect the first and last equations of each chunk and the PCR algorithm
is applied to them. Once PCR is completed, the values of the collected unknowns can be
used to recover the remaining ones inside the chunk. The evolution of the matrix structure
is presented in Figure 3. By assigning each chunk to a thread, the algorithm is flexible
enough to allow for a whole matrix to be handled by a single warp. If that is the case, then
there is no need to worry about explicit synchronisation, since this is automatically
ensured. Moreover, the chunk size for the applications considered is usually small enough
for it to fit within the registers.

Figure 3: Schematic of the matrix structure when applying the Hybrid algorithm: after
applying Thomas within the chunks (left), after applying PCR (centre), and after the final
substitutions. Each cross is a non-zero coefficient. The red crosses on the left identify the
sub-system PCR is applied to. The black lines identify the chunks the matrix is divided in.

Extension to Block-tridiagonal Systems
The structure of block-tridiagonal systems shares many similarities with that of tridiagonal
ones. They arise from the same class of problems that tridiagonal systems come from, for
example, in cases where more accurate approximations are chosen to simulate the
evolution of a physical system.

Analogously to the tridiagonal case, the equations composing the system can be written as:

������ + ���� + ������ = �� ∀� = 1, … ,�/2,

where the sole difference lies in the fact that the variables are grouped into vectors and the
variables’ coefficients are matrices themselves of given size (they are the blocks in the
name block-tridiagonal). For our applications, we limited ourselves to blocks of dimension
2x2, although similar considerations can be extended to larger sizes.

Block-tridiagonal
systems are similar to
their tridiagonal
counterpart, and can
be solved applying
the same algorithms.
However, both the
computational cost
and the memory
requirements are
larger in this case.

5

All three solvers we have discussed retain their structure even when applied to these kind
of systems. However, what changes is the number of operations that need to be
performed. In particular, scalar manipulations in the tridiagonal system have to be replaced
by the corresponding matrix operations which are, in general, much more computationally
intensive. On the one hand, this renders the use of a GPU even more appealing to carry on
the solution of the system, but on the other hand it comes with a larger requirement for
memory, given that now whole matrices need to be stored rather than single coefficients.
However, for the applications we consider, a careful choice of the chunk sizes allows us to
store all the relevant data within the registers.

3. Multi-GPU Algorithms
The Hybrid algorithm introduces a clear hierarchical structure in the distribution of work
within a GPU: the single thread takes care of the operations within a single chunk, while
the warp operates across chunks. This hierarchy can be extended to consider more than
one GPU working on the task. For our applications, we considered an extension to the
concurrent use of just two GPUs, although it can be easily scaled to an arbitrary number of
GPUs.

The complete matrix is initially divided in two equal parts, with one GPU in charge of the
top half and the other assigned to the bottom one. Within each GPU, the work proceeds
as described in the normal hybrid algorithm, even though extra care needs to be dedicated
to correctly treating the two “dangling” unknowns that act as a bridge between the two
halves of the matrix, as shown in Figure 4. In general, the solution of the first half of the
system depends on the value of the first unknown of the second half, and conversely for
the second half. This introduces an additional complication, since the GPUs need to
synchronise and exchange information among each other regarding this bridge system
before they can complete their operations.

Figure 4: Schematic of the matrix structure when applying the multi-GPU Hybrid
algorithm, after applying Thomas within the chunks (left), after applying PCR (centre),
and after solving the bridge system and applying the final substitutions. Each cross is a
non-zero coefficient. The red crosses in the centre identify the bridge equations. The black
lines identify the chunks the matrix is divided in, while the thicker lines represent how the
matrix is split among the two GPUs.

The most straightforward way to achieve the required coordination involves the CPU
taking care of the synchronisation between the GPUs. In this case, the whole algorithm is
split into two different kernels, one each performing the operations required before and
after the solution of the bridge system, respectively. The CPU is responsible for firing the
first kernel on both GPUs, waiting for it to complete on the devices, triggering the
exchange of relevant information between them, and finally fire the second kernel and thus
complete the algorithm. However easy this is to achieve, such implementation comes at a
cost. Temporary data needs to be stored in the global memory of the devices at the end of
the first kernel, and then read in again at the beginning of the second one. There is also
more dialogue required between CPU and GPU, which is usually a bottleneck.

An alternative approach, which removes the necessity of storing temporary variables,
consists in having the synchronisation happening directly at GPU level as part of the whole
routine for the solution of the tridiagonal system. This can be achieved if each GPU has
access to the global memory of the others, as is usually the case, especially in newest
systems. It suffices to dedicate a specific area of memory to hosting a flag, which is
triggered when one GPU has completed its task, in order to notify the other GPU that it is

When using multiple
GPUs to work on the
same task, we need
to worry about how to
synchronise the
devices. This can be
achieved at CPU or at
GPU level.

6

now safe to read the necessary data that needs to be exchanged among them before
proceeding with the algorithm.

Despite the increase in data that needs to be exchanged between GPUs in the block-
tridiagonal case, the mechanism for synchronisation can be applied in the exact same way.

4. Comparison of the Algorithms
As a first experiment, we are interested in comparing the performances of the two
different approaches to achieve synchronisation among the devices: at GPU level, using
one single kernel, or at CPU level, using two. In Figure 5, we show the execution time for
each algorithm for a variety of matrix sizes. In the case of the two-kernel synchronisation
(2k in the figure), the total time is further broken down into computational time for each
kernel, as well as that required by the CPU to achieve coordination.

Figure 5: Comparison of total execution time of the solver when using GPU (orange) or
CPU (green and grey) for synchronisation. For the latter, the time is further split to identify
the cost of first kernel (light green), second kernel (dark green) and synchronisation at
CPU level (grey).

From Figure 5, we can easily see how storing temporary results is detrimental to the
performance of the algorithm, especially for matrices of larger size: the execution time
required by the two-kernel approach is in fact consistently higher than the single-kernel
counterpart. Moreover, the synchronisation on the CPU by itself takes most of the time.
This clearly indicates that GPU-level synchronisation is the preferable choice.

Of particular interest is the comparison between the single-GPU and the multi-GPU
implementations. The corresponding results are reported in Figure 6. By varying the matrix
size, we can notice how using different types of memory impacts performance. With
� > 2�� and � > 2�� for the tridiagonal (left) and block-tridiagonal (right) case
respectively, the matrix is too large to fit on registers. This is reflected in Figure 6 by the
sudden increase observed in the required execution time.

Figure 6: Comparison of total execution time of the solver: single- (blue) and multi-GPU
(orange) implementation, for tridiagonal (left) and block-tridiagonal (right) systems.

Synchronisation at
GPU level is to be
preferred over the
CPU one: experiments
showed that the latter
requires consistently
much more time

7

We also notice that, for smaller matrix sizes, the single-GPU implementation definitely
outperforms the multi-GPU counterpart: this is due to the additional cost of the
synchronisation among the devices. As a consequence, we deduce that the multi-GPU
implementation does not provide an improvement in performance over single-GPU
implementation for the general solution of tridiagonal systems. Nonetheless, for the
applications we are interested in, the tridiagonal solver routine is embedded in a more
complex software. In general, it is not unusual for the computation of the matrix
coefficients to be a very demanding task, which is already distributed among different
devices. If this is the case, a single-GPU approach would first require collecting all the data
on the same device, perform the necessary computations, and then redistribute the
solution to the other devices. This is not necessary with a multi-GPU implementation of
the solver. The large amount of data transfers between GPUs greatly impacts the global
performance of the algorithm, so a more fair comparison would keep this additional cost
into account.

5. Discussion, Conclusions & Recommendations
We have implemented and tested various algorithms for the solution of tridiagonal and
block-tridiagonal systems on a multi-GPU environment. We paid particular attention to
investigating different techniques to achieve the necessary synchronisation among GPUs.

The results collected unmistakably point towards an implementation that favours direct
dialogue between GPUs rather than relying on the supervision of the CPU for
coordination. The former is beneficial since it removes the necessity of storing temporary
data, and it reduces CPU interaction. We expect this result to become even more relevant
as communication speed among GPUs improves.

Within the multi-GPU implementation, the additional task of synchronising the GPUs is
very detrimental to the kernel execution time, which makes the single-GPU approach
preferable in general. However, in applications where the tridiagonal solver is a subroutine
of a more complicated code that already employs multiple GPUs, then this algorithm
becomes a viable alternative. Its main strength lies in the preference towards local
computations and the consequent small amount of communication that needs to be
performed between GPUs.

6. Potential Impact
The majority of our analysis is relevant not only for the specific case, but also for
implementations of other algorithms that rely on multi-GPU programming in general.
Most of the solutions developed for our test case, in particular regarding synchronisation
among GPUs are, in fact, versatile programming techniques commonly employed in many
other applications as well.

The code we have developed is an initial proof of concept for tridiagonal solvers designed
to work across multiple GPUs, and it requires tuning and extensions to tackle general cases
before it can be embedded in real-world applications. Nonetheless, it represents a well-
developed starting point and it provided numerous insights on the performance to be
expected from this type of algorithms.

Thomas Bradley, Director of Developer Technology at NVIDIA, commented “As
computational models become more complex and problems become larger, High Performance Computing
techniques are becoming increasingly important in myriad applications across all industries. The computing
platforms we use to address these problems are increasingly parallel, and as such it is important that
mathematical modelling takes into account the practicalities of implementing the algorithms efficiently. This
work joins the mathematical formulation of a problem with the implementation, with both fine-grain
parallelism within a GPU and coarser-grain across multiple GPUs. The methods can be applied not only
to tridiagonal problems, which arise in many real-world models, but also in the development of related
algorithms”.

The multi-GPU
implementation is a
viable alternative in
case the matrix
coefficients are
already split among
different devices

