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1. Introduction 
Medical imaging techniques, such as radiography and computed tomography (CT), are key 
diagnostic tools in many areas of healthcare, and are paramount for disease detection and 
for patient monitoring during ongoing care. In the U.S.A., for example, 70% of the 
population are expected to undergo a medical or dental X-ray procedure each year. Due to 
advancements in digital imaging, it is now possible to produce images with fine anatomical 
detail, allowing disease detection to be made much earlier than before. 

A crucial development in X-ray imaging is digital tomosynthesis (DTS), in which a 3D 
image is reconstructed from a set of separately-captured 2D measurements. Over the last 
decade, a lot of effort has been directed at improving the accuracy and computational 
efficiency of the algorithms used to reconstruct DTS measurements. Standard DTS 
acquisition methods (see Figure 1) involve a single X-ray tube and a paired flat-panel 
detector, which are computer-controlled to move along predefined paths. The X-rays are 
emitted and detected, before reconstruction algorithms are employed to create three-
dimensional section images. The X-ray intensity measurements obtained by the detector 
panel are used to rebuild the geometry of the body being scanned, as well as its density. 

 

Figure 1: In a standard DTS acquisition, a set of two-dimensional images is produced by 
moving an X-ray emitter and tilting the detector around the body. Three-dimensional 
reconstructions can then be obtained by analysing the set of images together. 

Adaptix have developed a portable, low-cost X-ray source consisting of multiple low-
power emitters arranged in an array, to be used in conjunction with a flat-panel detector. 
With this device it is possible to fire a sequence of low-dose X-rays, and use the resulting 
intensity measurements to produce 3D image reconstructions. By using an array of smaller 
emitters, it is possible to reconstruct 3D images with a radiation dose similar to a single 
radiography procedure. 

During a complete firing sequence of the X-ray emitters there may be small body 
movements, either from small fluctuations in a patient‟s resting position, or from internal 
changes, e.g. if a patient is unable to hold their breath during the capture process. The 3D 
reconstructions may therefore be blurred. With this in mind, Adaptix wish to investigate 
the reconstruction of images which are affected by motion. It would first appear that 
reconstructions from individual emitters can be superimposed to obtain a complete image, 
but this requires a perfectly-trackable reference point within the body, which is not often 
achievable in medical imaging. 

Our approach is to implement and review two possible methods for motion correction. In 
one method, we use information captured over time to build a single 3D image. In the 
other method, we treat temporal information in such a way that we reconstruct a video of 
a 3D image moving over time. 
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2. Formulating the Problem  

The physical device that Adaptix have developed consists of a pair of emitter and detector 
panels that are positioned opposite one another. Each emitter flashes a conical beam of X-
ray radiation, with all detectors within the base of the cone recording a particular measured 
X-ray intensity. The number of emitters is far fewer than the number of detectors, and the 
body of interest is positioned closer to the detector panel to increase the amount of cone 
coverage – see Figure 2. 

 

Figure 2: Schematic showing a configuration for seven emitters and 32 detectors, with the 
body placed closer to the detector for increased cone coverage. 

Glossary of terms 

 Sparsity: The proportion of nonzero entries in a matrix is known as its sparsity, such 
that if a matrix is mostly comprised of zeros then it is said to be sparse. 

 Discretisation: The process of converting continuous information into discrete 
counterparts is known as discretisation. For example, we divide time into discrete 
parts (seconds, hours, days) even though time is continually progressing.  

 Compressed Sensing: Rather than capturing a huge amount of data and then 
compressing it afterwards, compressed sensing combines these two ideas by 
sampling a small amount of information from a signal while still being able to 
reconstruct the original signal with great accuracy. Compressed sensing relies on the 
assumption that the vector of signal information is sparse. 

 Wavelets: Wavelets are wave-like functions that can be used to represent signals 
using limited information. Wavelets often have specific properties that make them 
useful for signal processing. 

 Voxels: A voxel is a volume element in a 3D image, much like how a pixel is a 
picture element in a 2D image. 

 Phantom: A phantom is an object that is used in the field of medical imaging to 
evaluate and analyse the performance of an imaging device. 

Mathematical model 
We assume that, during measurement acquisition, no overlap occurs between radiation 
cones from different emitters. This is akin to assuming that all emitters flash at separate 
times, or that emitters which flash at the same time are positioned such that their radiation 
cones do not cross. 

In our model, the total volume to be measured, referred to as the scan domain, is taken to be 
a unit cube. We discretise the scan domain into cubic voxels, and we assume that each 
voxel has a constant density value. In particular, we model a cubic phantom as a body with 
a density of 1, with the body being positioned symmetrically in the scan domain, while the 
remaining voxels have a density of 0.  
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We model emitters and detectors as points, and we model the cone of radiation produced 
by an emitter as a set of rays starting from the point emitter which then pass through the 
point detectors contained within the base of the cone – see Figure 3. The cones of 
radiation are assumed to be identical for each emitter, and are entirely defined by their 
collimation angle, i.e. the complete open angle from which rays can be emitter. To agree with 

the design of the physical device, the collimation angle of each emitter is chosen to be 20 . 

 

Figure 3: (Left) Schematic of a cone with a collimation angle of    . (Right) A single ray is 
traced through the voxels that it crosses, represented here by two-dimensional pixels. 

A single measurement is obtained by recording the X-ray intensity at detector that lies 
within the base of the radiation cone. We assume that all emitters have the same intensity, 
and that the detected intensity is less than or equal to this due to interactions such as 
scattering and body absorption. We do not model the effect of scattering, and so we 
assume that all reductions in intensity are due to absorption. If the ray passes only through 
material of density zero, then the ray intensity does not decrease. 

Ray attenuation is governed by two factors - the attenuation coefficient of the body that 
the ray passes through, which is related to the density of the material, and the length of the 
path along which the ray travels. DTS reconstructions are made from measurements 
following the Beer-Lambert Law for X-ray absorption, with each ray requiring a separate 
equation. All rays in the model are therefore represented by a system of linear equations, 

    . The number of columns in   reflects the number of voxels in the model, while 
the number of rows represents how many measurements are made. From the standpoint 
of compressed sensing, we wish to reconstruct the information about all voxels without 

the need for a huge number of measurements, and so we assume that   has fewer rows 

than columns. We also assume that the solution to reconstruct is sparse, i.e. the vector   

does not have many nonzero entries. The system      may not have a unique solution, 

nor will it necessarily have a solution at all, and so we use the       compressed sensing 
algorithm to find the best fitting solution (under certain additional constraints).  

When investigating the effect of movement we assume that the body undergoes simple 
linear motion at a constant velocity, in the direction of a single coordinate axis.  

3. Results 
We first investigate the recoverability of static bodies to provide a baseline for how 
accurately the reconstructions can be resolved. We then move onto reconstructing 
measurements of moving bodies, using two different approaches, to see whether we can 
obtain clear reconstruction using either approach.  

Static body results 
We first run multiple simulations of a static cubic body, to make sure that the simpler, 
zero-motion model can be reconstructed with reasonable accuracy. 
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In Figure 4, we show the setup cubic body with density equal to 1, alongside a numerical 

reconstruction of the same body found using the       algorithm. We find that a cuboid-
like body is clearly resolved, but that many voxels have density values far higher than the 
density of the original setup. The reconstructed solution not only has densities that are 
over ten times greater than the original setup, but we also observe artefacts at the top and 
bottom of the scan domain. However, in a medical environment, results are often 
interpreted by visual judgement, such that we must ask ourselves the question: Can a body be 
identified in the reconstruction, even if the values are not entirely correct? 

 

Figure 4: (Left) Original setup of the constant density, cubic body. (Right) Reconstruction 
obtained from the YALL1 algorithm, using an emitter/detector ratio of 100/121. The scale 
in each figure gives the densities of the voxels. 

The number of emitters (and detectors) is taken to be a model parameter, and so we can 
increase this number if we want to reconstruct over more measurements. The 
reconstruction in Figure 4 used an emitter/detector ratio of 100/121, while in Figure 5 
(Left) we show the results of using a ratio of 576/625. When we use more measurements, 
we find that the resolution of the cube is increased and the density values better represent 
the actual solution. 

 

Figure 5: (Left) Reconstruction obtained from the YALL1 algorithm, using an 
emitter/detector ratio of 576/625. (Right) Reconstruction obtained from the YALL1 
algorithm, using a wavelet transformation and an emitter/detector ratio of 576/625. 

To resolve the edges of the cubic body more clearly, we transform the problem to one in 
which the body information is represented by wavelets. In this way, we infer density 
differences between neighbouring voxels, rather than solving for voxel information 

directly. In this approach, the       solver is able to find the exact boundary of the cubic 
body – see Figure 5 (Right). Reconstruction artefacts that occur in the top and bottom of 
the scan domain now appear to be spread out evenly, rather than being concentrated in 
certain areas, as is the case in Figure 5 (Left). We find that the same wavelets are unable to 
resolve bodies with curvature, such as a cylinder, although we do not present results here. 
Thus, the specific choice of wavelets we use may not have been optimal, and in future 
work we will look at different wavelet types to determine their utility. 

By increasing the 
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and detectors in the 

model, we obtain 

reconstructions with 
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However, we also 
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of information being 
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6 
 

 

We now consider the case in which the body is moved at a given speed through the scan 
domain, from the „back‟ of the domain to the „front‟. 

Dynamic body results: Method I 
To reconstruct measurements from taken over a finite time interval, we must necessarily 
divide the measured information over a certain number of frames, e.g. if we look at 10 
frames then each frame only contains 10% of the original information. In Figure 6 we 
show part of a 4D reconstruction without any temporal correlation between frames. We 
see that, in each frame, there is not enough information to gain any idea of what the 
phantom looks like. 

 

Figure 6: Frames 6, 10, and 14 (of 16). In each frame only a limited amount of information is 
obtained, and so it is not obvious that the moving body is cubic. 

We exploit the assumption that voxel information between neighbouring frames is 
correlated, i.e. we expect measurements from two or more sequential frames to share 
information. Therefore, we transform the problem to solve for voxel densities not only 
spatially, but also as a function of time. We use two different transforms to connect 
temporal information of a body undergoing constant linear motion. The first 
transformation is formed from smooth periodic functions, and the second is formed from 
„square-shaped‟ wavelets that have abrupt jumps in their value. In Figure 7 we show the 
impact of using a periodic function transformation to obtain additional information. 

 

Figure 7: Frames 6, 10, and 14 (of 16). In each frame we are able to reconstruct more of the 
body than is actually measured, due to the assumption of correlated temporal information. 

Dynamic body results: Method II 
The second approach we use focuses on correcting for linear motion while also attempting 
to parametrise the motion of the body, i.e. we wish to determine the velocity at which it 
moves across the scan domain. We achieve this by translating the voxels of each frame in 
the sequence so that the voxels of different frames overlap, in the hope of then 
reconstructing the body more accurately.  

We assume that, for maximal reconstruction accuracy, the exact body motion is known, so 
that the voxels can be perfectly translated – this is a strong assumption to make in a real 
life situation. Therefore, the numerical algorithm must also make estimates for the body 
velocity, so that we expect to find the most accurate reconstruction when the exact velocity 
is determined. Initial numerical tests find that the algorithm that we use does not always 
converge to the correct velocity, suggesting that the solution to the problem is non-unique. 
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Figure 8: (Left) Reconstruction from 8 frames, with the emitter firing sequence running 
orthogonally to the body motion. (Right) Reconstruction from 8 frames, with the emitters 
fired in a random sequence. 

Results from the second approach are highly dependent on the order in which the 
measurements are obtained (see Figure 8) and so more work must be done to identify the 
optimal emitter sequence to recover maximal information. 

4. Discussion, Conclusions, & Recommendations 
We have designed and implemented two models for tackling the problem of motion 
correction during digital tomosynthesis (DTS) measurement acquisition. We used the first 
model to identify methods for exploiting voxel information that is correlated over time, in 
order to infer information during frames that certain voxels are not measured. It will be 
useful to implement a variety of temporal transforms, to determine what the strengths and 
limitations are of each, and to then maximise the accuracy of the four dimensional 
reconstruction. We used the second model to not only detect the motion and correct the 
DTS reconstruction, but also to determine the most likely motion that the body could have 
undergone. The choice of numerical solver is very important in this approach, and more 
work must be done to identify the mathematical structure of the problem, to determine if 
there are solvers that will be particularly useful. 

In the immediate future, it will be useful to analyse the recoverability of a body undergoing 
motion that is not simply linear. We are interested in periodic motions, such as a heart 
beating or a breathing cycle, and so the first method may work a lot better with a smooth, 
periodic temporal transform. The second approach will need to be greatly adapted, as the 
space of possible motions will increase dramatically and so the numerical solver should be 
chosen accordingly. We have focused on cubic bodies, which are unrealistic as proxies for 
biological structures. It will be of great benefit to reconstruct bodies that better represent 
the types of bodies that we hope to detect in real medical situations.  

5. Potential Impact 
Our results will help to make current reconstruction algorithms more robust to patient 
motion and body dynamics, in a clinical (as opposed to laboratory) setting. In the long 
term, this work will enable “functional” information to be obtained during imaging, 
allowing for the quantification of lung function and perhaps cardiac monitoring.  

Gil Travish, Chief Science Officer for Adaptix, remarked that, “Adaptix are bringing 3D 
imaging to all the places that currently use 2D, including at the bedside and in the clinic. We have worked 
for the past three years with Oxford University to create the image reconstruction software. Now, through 
InFoMM, we are working on motion correction. Patient movement and anatomical processes – breathing, 
blood flow, heart beats – all can potentially degrade image quality. We are excited by the initial results and 
these new ideas should allow us to compensate for these motion effects. We hope our future collaboration will 
extend the utility of our ground breaking X-ray sources and enable new clinical applications. We are 
excited to see the fruits of this academic work brought to the clinic.” 


