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1. Introduction 

Motivation 
Cancer is a deadly disease that 1 in 2 people in the UK will get in their lifetime. It starts 
when gene changes make one cell or a few cells begin to grow and multiply in an 
uncontrolled way. These cells are called tumour cells, and have the potential to invade or 
spread to other parts of the body, forming secondary tumours called metastases. Despite 
being toxic and carcinogenic, radiation and chemotherapy are widely accepted as two of 
three standard treatments of care for cancer, with the third being invasive surgery. The 
metastatic nature of cancer makes it difficult for the disease to be controlled by these 
treatments since, for example, tumour recurrence remains the leading cause of mortality in 
patients receiving radiotherapy. Therefore, there is an urgent need for new and more 
effective treatments. 

New promising tools are immunotherapy treatments, now starting to be approved for 
clinical use in the UK. As a pharmaceutical company, AstraZeneca is committed to 
delivering such therapies. The difficulty they are facing is the heterogeneity of responses to 
treatment, as tumours shrink in some subjects and not in others. This emphasises the 
importance of gaining an increased understanding of the mechanisms forming the basis of 
these treatments. Due to the complexity of interactions in the tumour micro-environment, 
obtaining sufficient understanding has proven difficult, and our aim is to make use of 
mathematical modelling to gain more insight into the dynamics of tumour growth. 

The cancer-immunity cycle 
In the last 20 years, evidence has accumulated that our immune systems can recognize and 
eliminate malignant tumours. The cancer-immunity cycle describes the mechanisms by 
which this occurs. Mutated tumour cells are coated with substances called tumour-specific 
antigens, which make them distinguishable from normal cells. Such antigens are loaded onto 
the surface of cells called antigen-presenting cells, which travel through blood from the 
tumour to lymph nodes. There they interact further with immune cells to activate them 
and orchestrate a powerful immune response. For example, T cells become activated if 
they recognise these antigens through their receptors, and receive an additional stimulatory 
signal through their co-receptors. Activated T cells then divide further to build up in 
numbers, and travel to the tumour site, where they infiltrate the tumour and scan 
surrounding tumour cells until they find their target tumour cells to kill. The same antigen 
which activated the T cell must be present on the surface of the tumour cell, and again a 
co-stimulatory signal must be transmitted between the interacting cells for the T-cell-
programmed death of the tumour cell to occur. 

Immune checkpoint therapy 
In cancer patients, the cancer-immunity cycle does not perform optimally, enabling tumour 
cells to avoid attack. This process can be described via the three stages of immunoediting: 

 Elimination: Tumour cells are destroyed by a competent immune system. 

 Equilibrium: A tumour population which manages to survive immune attack may 
undergo division and editing, but remain in a state of immune-mediated dormancy. 

 Escape: Immune-resistant tumour cells begin to grow progressively, become 
clinically apparent, and establish an immunosuppressive tumour micro-environment. 

Escape from immune surveillance often occurs due to negative co-stimulatory signals 
transmitted through co-receptors during cell interactions in the lymph nodes or in the 
tumour bed. In a healthy organism, the step in the cancer-immunity cycle where this occurs 
(a checkpoint) plays the role of preventing over-inflammation but, in the case of cancer, 
they can promote its progress. These findings form the basis of types of immunotherapy 
called immune checkpoint therapies, which attempt to block the binding of 
immunosuppressive co-receptors, such as PD-1/PD-L1 at the tumour site or CTLA-4 in 
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the lymph nodes (see Figure 1). By targeting the immunosuppressive step, it is hoped that 
these therapies can reinitiate a self-sustaining cycle of cancer immunity, enabling it to 
amplify and propagate, but not so much as to generate unrestrained autoimmune 
inflammatory responses. 

 
Figure 1: Immune checkpoint therapy via blockade of receptors CTLA-4, or PD-L1/PD-1 

Glossary of terms  

 Metastasis: spread of cancer to a different part of the body from where it started 

 Antigen: a molecule capable of producing an immune response in a host organism 

 T cell: a type of white blood cell that plays a central role in cell-mediated immunity 

 Immunoediting: a dynamic process that consists of immune eradication of a tumour 
and its progression 

 Bifurcation: sudden appearances of qualitatively different model solutions when 
some model parameter is slightly varied 

 Steady state: state of a dynamical system in which variables do not vary with time 

 Phase portrait: a graphical representation of the trajectories of a dynamical system in 
a coordinate system with axes being the values of system variables 

 Posterior distribution: a description of a set of possible values in terms of their 
probabilities after taking into account the relevant data 

In mouse experiments conducted by AstraZeneca, immune checkpoint therapies resulted 
in a dichotomous response from the tumour as shown in Figure 2; sometimes the tumour 
is seen to shrink (or even get eradicated), while there are also situations where the tumour 
grows. AstraZeneca fit an experimentally driven mathematical model for tumour volume 
to this dataset. This involves formulating an equation for tumour volume that depends on 
time and some physical parameters. Values of parameters are chosen so that the difference 
between the time-dependent solution to the equation and the data is as small as possible. 
New tumour volume data are also simulated using the model, with parameters slightly 
perturbed from their fitted values to account for subject variability. The resulting range of 
data fails to capture the separation of response (shrinkage) vs no response (escape) to 
treatment, which suggests a better model is needed. 

Our aim is to develop a more mechanism-based model of tumour-immune interactions. 
The desired key characteristic of the model is allowing the switch between the three typical 
behaviours observed during immunoediting, i.e. elimination, equilibrium, and escape. We 
hypothesize that the propagation through these stages may be represented by bifurcations in 
a model of immunoediting; in other words, if we represent immunotherapy and variability 
between subjects through changes in parameter values, then the model should allow a large 
qualitative change in behaviour when these are varied across a threshold representing, for 
example, the transitions between tumour escape and eradication that are seen in the data. 
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Figure 2: Graph showing tumour volume of different mice (black) vs time at increasing 
treatment dosages (grey), the range of medians of simulated data sets of tumour volume 
(pink region), and their 95% confidence interval (blue region). 

2. Mathematical model 

There are a large variety of models of tumour-immune interactions available. We choose 
one of the simplest models (Kuznetsov et al. [1]) that admits immunoediting behaviour. 
The model describes the interactions in a fixed region representing the tumour site, of five 
different cell species, which are: 

 effector cells (E): activated immune cells, free to bind to tumour cells and kill them, 

 tumour cells (T): free to bind to effector cells, 

 E-T conjugates (C): interacting tumour and effector cell, 

 inactivated effector cells (E*): inactivated through interaction with tumour cells, 

 lethally hit tumour cells (T*): programmed for death by effector cells. 

Kinetic scheme 
The differential equation model is based on the following kinetic scheme, which describes 
the competition between tumour and effector cells as observed in vitro. 

 

The model assumptions are that when tumour and effector cells interact through their 
receptors, they temporarily form structures called conjugates. As a result of the interaction 
within a conjugate, the tumour cell can either be programmed for death with the effector 
cell staying intact, or the effector cell can become inactivated while the tumour cell remains 
undamaged. The rates of change of species due to such kinetics are modelled as 
proportional to concentrations of respective “reactant” species. 

Cell growth, death and migration 
In addition to kinetics, the model includes cell proliferation, migration, and death. The 
growth of tumour cells is assumed to be logistic, so that growth is exponential for small 
tumour populations and, as the number of cells gets larger, it slowly approaches a 
maximum size. Tumour cells are assumed not to migrate out of the region. The main 
source of effector cells is assumed to be their migration from the lymph nodes, which is 
modelled as a baseline constant influx rate and a tumour-stimulated influx rate due to an 
increased immune response. The latter is assumed proportional to the number of 
conjugates (interacting effector cells), and inversely proportional a linear term in T, which 
implies an influx rate saturation as the number of tumour cells in the region gets large. This 
assumption accounts for limitations in the rate of transport through blood vessels to the 
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tumour site. Lastly, per capita death rates of effector cells, their inactivated counterparts, 
and lethally hit tumour cells are all assumed constant. 

3. Model analysis 

Quasi-steady-state assumption 
A quasi-steady-state assumption (QSSA) is normally applied to systems where one component 
reacts much quicker than another. The disparity in the timescales means that we can treat 
this component as if it were in a steady state; this means it varies parametrically over the 
longer timescale on which the other components vary significantly. In [1] the model is 
simplified through the quasi-steady-state assumption, since the time scale of formation and 
dissociation of conjugates (minutes to hours) is shorter than multiplication and migration 
of effector cells into the tumour region (tens of hours).  

We challenge this assumption by revisiting the underpinning biological assumptions. It is 
known that effector cells are constantly scanning and interacting with tumour cells in order 
to locate their target cells, but a very small proportion of these interactions result in 
tumour cell death or the inactivation of effector cells. This translates into the assumption 
that per capita rates k-1 and k1E0, where E0 is the typical number of effector cells, are much 
larger than k2 and k3. We can also translate the assumption of growth, death or migration 
occurring on a much slower time scale than formation/detachment of conjugates to 
supposing per capita rates associated with these effects are of similar size as k2. 

We are then able to choose a small parameter  as the ratio of k2 and k-1+k2+k3 that 
appears in a scaled version of the model. By exploiting the smallness of this parameter, we 
able to make mathematical approximations, and reduce our system of model equations in a 
systematic way. The resulting system does indeed reach quasi-steady behaviour, but this is 
not a valid assumption during the pre-steady-state period, when system dynamics are 
predominantly governed by fast kinetics of conjugate binding.  

Long-term model behaviour 

  
Figure 3: Graphs showing time-dependent paths of system solutions for different initial 
states in phase portraits of scaled numbers of tumour cells (y) vs effector cells (x) in 
different parameter regimes. 

Next we investigate how the system behaves in the long term. The types of behaviours we 
observe are attraction with possible oscillations towards a steady state without a tumour (as 
seen in Figure 3a) or with a small tumour that is controlled by the immune system. In 
addition, some parameter regimes with certain initial conditions allow tumour escape, 
which is characterised by a large-tumour steady state (as seen in Figure 3b). We can thus 
say that our system describes the stages of immunoediting, as desired. The rich behaviour 
is a result of bifurcations that occur when varying the parameters, such as for instance the 

constant per capita rate of influx of effector cells (), effector cell per capita death rate (), 

or the ratio of tumour killing versus effector cell inactivation (). 

In simulations, we observe that by carefully changing  for example, we can change system 
behaviour in a way that tumour escape becomes impossible. We can thus model 
immunotherapy treatment as a change in therapy-relevant parameters. Small parameter 
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changes due to heterogeneity of tumours can also result in a large behavioural change if 
close enough to the bifurcation region of the parameter space, which could explain large 
differences in tumour responses to treatment observed in the experiments. 

Parameter estimation 

A crucial step in evaluating how well the mechanistic model describes the experimental 
data is the resulting estimation of the model parameters. We test a method called 
Approximate Bayesian Computation (ABC), which enables estimation of the posterior 
distribution of the parameters given incomplete and scarce data. From the posterior, we can 
then infer the most probable parameter value. We use synthetic data of the number of 
tumour cells only, obtained by solving the model at a set of consecutive times. We first 

estimate , , and  while fixing other parameters, and afterwards perform estimation on 
the full parameter set. 

We find that parameter estimation is a much easier problem for a smaller data set, where, 
despite using only tumour data, parameters defining the behaviour of effector cells can be 

well estimated;  and  in particular. On the full parameter set we find that the parameters 

with the smallest uncertainties are the per capita tumour growth rate () and the inverse of 

the carrying capacity (). Larger uncertainties in other parameters suggest difficulties in 
estimation of the full parameter set for this model. 

The uncertainty level associated with a certain parameter gives some indication of how 
effective a possible immunotherapy that changes this parameter would be as predicted by 
the model, or how influential variability in this parameter over the tumour population 
would be on the predicted tumour response. This means that posteriors indicate how 
prone the system is to qualitatively changing behaviour when the parameter is perturbed. 
The smaller the interval of posterior values, the larger the effect of perturbation. The key is 

identifying parameters with the largest effect, such as ,  and  with smaller uncertainties. 

Simulated treatment 

 
Figure 4: Graphs showing the scaled number of tumour cells at the steady state, when  is 

changed at time t=10 to (1+p), as  and  are varied. 

Using results from our parameter estimation, we perform a simple simulation of treatment. 

We solve the model until time t=10, when we change the  parameter by some percentage, 
which represents immunotherapy treatment. We then continue the simulation using the 
perturbed parameter from this point on, until a steady state is reached. We record the final 

tumour size, and repeat this for different values of  and  which represent tumour 
population variability. The results in Figure 4 show variability in the resulting tumour 

response, where the region of the - parameter space with tumour escape (blue to bright 
red) is sharply separated from the region of tumour suppression (dark red). By decreasing 

 or increasing the strength of treatment, there is a considerable decrease in the parameter 
region of tumour escape. 

4. Discussion, Conclusions & Recommendations 
We have analysed a simple mechanistic model of tumour-immune interactions from [1]. 
The model incorporates fast effects of formation/dissociation of conjugates of interacting 
tumour and effector cells, and slow effects of immunologically initiated killing of tumour 
cells, inactivation of effector cells, and their migration to the tumour site. 
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By revisiting the model assumptions and sizes of parameters, we showed that, after the 
initial period of fast relaxation from initial conditions, a quasi-steady state is reached and 
the model can be simplified.  

Nevertheless, looking at the long-term behaviour of the quasi-steady simplified model, we 
showed that, by varying parameters, the bifurcating system is descriptive of 
immunoediting. The sudden switch between the qualitatively different solutions caused by 
a small parameter change suggests that tumour-immune dynamics can play an important 
role in immunotherapy effectiveness. Our results suggest the large differences in tumour 
responses may be explained by a distribution of parameters in the tumour population. 

Parameter inference using only tumour data performed well for parameters of tumour 
growth, but we found difficulties with parameters that determine the dynamics of effector 
cells. The parameters with smaller uncertainties were thought to be the influential ones, 
which we tested in simulations. Clear separation between tumour escape and tumour 
control in responses is a promising result, as it resembles outcomes of AstraZeneca’s 
immune checkpoint therapy trials. 

Our first attempts at assessing whether experimental data from immunotherapy trials can 
be explained better with a bifurcating mechanistic model gave encouraging results. 
However, further testing and assessment of the current model, and parameter estimation 
using experimental data, will be needed to confirm our hypothesis. 

Extending the model 
The key extensions for future work are: 

 Incorporation of effects due activation and proliferation of effector cells that occur 
in the lymph nodes, and not at the tumour site; 

 Incorporation of effects of inactivated effector cells, which can stay at the tumour 
site and compete for tumour binding spots, as well as become reactivated by 
immune checkpoint therapy; 

 Transformation of the model into a stochastic system by adding random effects. 

However, we must bear in mind that the aim of our model is to reflect a balance between 
its mechanistic complexity and the characteristics of AstraZeneca's experimental data. 

5. Potential Impact 
Further progress on aligning a simple but mechanistic model with data from immune 
checkpoint therapy trials will provide a proof of concept for modelling immune-oncology 
treatments for AstraZeneca. A more general model describing combinations of cancer 
treatments should enable AstraZeneca to interpret existing datasets, and inform the design 
of future experiments to increase understanding of these treatments. Modelling of 
immunotherapy treatments could in long-term contribute to optimisation of treatment 
regimen, and understanding of what immune characteristics predict a likely response to it. 

James Yates, Principal Scientist at AstraZeneca, commented “Understanding the sources of 
variability that contribute to response vs non-response to immune checkpoint inhibitors is clearly challenging. 
However, identifying these sources of variability are key to the best use of these treatments in patients, 
especially as part of combination of treatments that targets tumour cells as well as mobilises the immune 
system. The results of this mini-project give progress in this area by demonstrating the feasibility of 
developing a model that can describe the reasons for variability.” 
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