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1. Introduction 

Background 
When someone orders a product online, there is a considerable amount of scheduling 
required for them to receive their order efficiently. Assuming the company that they 
ordered from has every product in their order waiting in a warehouse, remaining tasks still 
include: 

 Grouping the order with others which need to be delivered to a similar location. 

 Selecting a time window during which the customer is available to receive their 
order, which is compatible with the other deliveries to be made by the same van. 

 Choosing the best route to take to ensure that the delivery is made within the 
customer’s Time Windows. 

The last of these problems is especially of interest to Tesco who wish to reduce the time 
their vans spend on the road in order to avoid unnecessary expense. However, they also 
must ensure that deliveries are made to their customers at the appropriate times in order to 
avoid angering customers, and potentially losing customers.  

The main issue in reducing the time that their vans spend on the road is that travel times 
are uncertain. If we knew without doubt how long it would take for the van to drive from 
the depot to a customer, then this problem would be the known Travelling Salesmen 
Problem with Time Window constraints, in which case we could determine precisely which 
route the van should take and guarantee that all deliveries would be made on time.  

However, real-world factors such as unexpected traffic conditions complicate the problem. 
Even if we can predict with some certainty how long a journey will take, the possibility 
exists that traffic will suddenly congest, resulting in all remaining deliveries being late.  

Therefore, Tesco is interested in how to choose the best route for the delivery van when 
the expected time required to travel along a specific road depends on the time of day (for 
example, taking into account traffic resulting from the end of the school day) and is 
uncertain and might take a different amount of time on different days. These different 
journey times occur due to factors which we cannot predict or control. In the context of 
uncertainty, we can no longer guarantee that a particular route would minimize the journey 
time, or that each customer will be delivered to within their respective time window.  

In practice, when a Tesco delivery van sets out, it will usually contain deliveries for 
between 12 and 18 customers. Customer Time Windows start on an hour, and last for 
either one hour (for example from 2pm until 3pm) or 4 hours (from 1pm until 5pm). 
Usually up to 4 customers will share a common one-hour Time Window. 

Our aim is to find a route which reduces the journey time while being robust to uncertainty. 

Glossary of terms 

 Route: A route refers to the order in which we visit a number of customers. For 
example, given the customers A, B, and C, there exist 2 routes which start and finish 
at A while only visiting B and C once: ABCA and ACBA. 

 Time Window: Each customer gives Tesco a time interval during which they can 
receive their delivery. We refer to such time intervals (for example 8am – 9am) as 
Time Windows. 

 Local Regret: The time between the start of a customer’s Time Window and the 
time that the van actually arrives at that customer. Regret is the largest value of 
Local Regret over all customers. 

We seek the route for 

a delivery van such 

that it delivers to each 

customer their order 

during the time frame 

when there are ready 

to receive it 

An important facet is 

that the route needs 

to work even if there 

is unexpected traffic 

congestion 
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 Scenario: We assume that traffic can be in 3 conditions within a particular time 
window: normal, semi-congested or congested. The sequence of conditions across 
all the Time Windows is called a Scenario.  

 Robustness: Given a scenario, a route has a Regret. The robustness of a route is the 
maximum Regret over all scenarios. Robustness quantifies the performance of a 
route in the worst case situation. 

 TSP: The Travelling Salesman Problem is the well-known problem in which we find 
the shortest journey a salesman can take starting at a fixed location, travelling to all 
customers, and returning to the starting point. 

2. Dynamic solution to the TSP 

Our objective is to find a route for the delivery van to take which departs the depot, 
delivers to all customers within their respective Time Windows, and returns to the depot at 
the end. We wish this route to be both robust, and to take as little time as possible. We 
assume that there are five Time Windows. While at first glance these Time Windows add 
an extra complication to the problem, they actually make it easier. 

In Figure 1 we illustrate how the number of possible routes can be reduced as a 
consequence of the Time Windows. The complete graph on the left shows all roads that 
may be taken by a delivery van which starts at A, goes to B, C, D, and E returning to A at 
the end if time windows are not taken into account. However, given customer preferences, 
it is clear that , for example, we will never travel from B to D if B expects its delivery 
between 3pm and 4pm while D should be delivered to between 1pm and 2pm. By 
removing redundant edges, we reduce the size of the problem. The graph on the right is an 
example of what remains if we remove redundant edges. The only routes which remain as 
options are ADEBCA, and ADECBA. Previously, we would have to take into account all 
24 routes. Thus, removing unnecessary edges simplifies this problem from 24 possible 
routes to only two. This procedure both makes the problem far easier for a computer to 
solve, but it also motivates a further simplification which is the entire basis of the approach 
which we take. 

 

Figure 1: Schematic showing how taking Time Windows into account results in many 
edges being removed. All edges in the graph on the left are double sided, while the reduced 
graph on the left contains one-way edges. 

We break the problem down into a series of smaller problems. Instead of looking at which 
order to visit all customers at once, we instead look at all of the customers which expect 
their delivery within one particular Time Window. This means that instead of looking at all 
the deliveries the van has to make during its journey, we only look at the number of 
customers within a particular Time Window, which is usually four. While there are many of 
these smaller problems, they are sufficiently easier to solve than the overall problem, and 
thus this approach is worthwhile. 

Time Windows allow 

us to reduce the 

number of 

possibilities we 

consider. This is 

because we must 

deliver to customers 

with early Time 

Windows before we 

delivery to customers 

with later Time 

Windows. 
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We solve a sub problem for every pair of customers in consecutive Time Windows. We fix 
a customer to be the first one we deliver to within the current Time Window, and a 
customer to be the first within the following Time Window. Then we compare all sub 
routes which visit all other customers within the current Time Window, and finish at the 
selected customer in the future Time Window. We record the most robust of these sub 
routes, taking into account how subsequent Time Windows are affected. 

Once we have solved all of these sub problems, we are left with the problem stringing 
together these solutions, which we illustrate in Figure 2. By solving all of these sub 

problems, starting with the customers in the final Time Window and working backwards, 
we can iteratively determine what the best regret would be if we were to start at any given 

customer, and finish the journey from there.  

 

 

Figure 2: In this schematic, we show a problem with 16 customers which are divided across 
5 time windows. Each black circle refers to the customer which we deliver to first within 
the corresponding time window. Each arrow is weighted with the robustness of the sub 
problem where we fix the start of the sub route to be the origin of the arrow, and fix the end 
of the sub route to be the target of the arrow. Finding the most robust route for the entire 
delivery is now equivalent to finding cheapest path from the left to right (for example, the 
route in red). 

Once we have worked back to the start, we read off which customer in Time Window 1 is 
the best one to deliver to first. Next, we determine the best customer in Time Window 2 to 
deliver to first, given our starting point in Time Window 1, and so on. We determine in 
this way which customer we should arrive at first in each time window. The details of this 
optimal route are determined by revisiting the corresponding sub problems. 

3. Finding a robust solution with recourse 
In the previous section, we described the way that we might find a robust route which 
allows us to deliver to all customers regardless of the traffic conditions. However, can we 
do better? In reality, if the van drives along a road and observes intense traffic, then the 
traffic conditions are no longer uncertain.  

This motivates the idea of a recourse solution: a route which we determine in advance in 
which there are different options depending on the traffic conditions that are actually 
observed. Better routes can be selected in this way. Once we observe that traffic is not 
intense, we can take the route which is best for low congestion. 

A recourse solution is 

one that allows us to 

adjust our route as we 

observe the traffic 

conditions that are 

actually occurring. 

We solve the problem 

in 2 steps. First we go 

backwards, 

computing the best 

case regret if we 

finish the route from 

a particular customer. 

Then we go forwards, 

following the smallest 

regret values to 

determine which 

route we should take. 

We reduce a problem 

consisting of about 

16 customers, into 56 

smaller problems only 

with 3 customers 

each. These small 

problems are much 

easier to solve. 
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In order to proceed, we must state more carefully what we mean by a Scenario. We assume 
that traffic can exist in one of three states: normal, partially congested, and congested. 
Note that when we say congestion here, we refer to traffic beyond that expected at a 
particular time in the day, i.e. we do not include standard rush hour congestion. 

Next, we divide the delivery into the five Time Windows. We assume that the state of 
congestion only changes when moving from one Time Window to another. That is, within 
an hour block, traffic conditions remain fixed and only when moving to the next hour are 
conditions allowed to change. Finally, we assume that, if unexpected congestion exists, 
then during the time span of the delivery schedule the traffic will only get worse, i.e. if the 
current state of the roads is partially congested at 8:30am, we assume that at 9am it will 
either still be partially congested or will escalate to fully congested.  

During each Time Window, the traffic takes a particular state. Therefore, if the delivery 
occurs over 5 Time Windows, then the traffic situation for the entire delivery, or scenario, 
refers to the sequence of 5 traffic states. 

These assumptions give rise to the Scenario flow diagram which we show in Figure 3. The 
benefit of this approach is that there are only 11 distinct scenarios, and thus it is 
straightforward to carry out computations for all of them.  

 

Figure 3: Schematic showing the way that unexpected traffic can develop during a delivery 
journey. The state of traffic at the start of the journey is always Normal.  When transitioning 
to Time Window 2, traffic will either stay Normal, or else escalate to a state of Partially 
Congested. Each route between the node in Time Window 1 to any of the 3 nodes in Time 
Window 5 is a different Scenario which can actually happen over the course of a delivery. 
There are 11 such Scenarios. 

Now we return to a recourse solution. First of all, we select a customer in the first Time 
Window that we go to first. Once we arrive there, we observe whether the traffic 
conditions are still normal, or have changed to a state of partially congested. For both of 
these possibilities, we plan a different route. Each of these routes will, in turn, branch off 
as the conditions that day are actually observed. By allowing the driver to adapt to the 
traffic he sees, we obtain a route which is both robust and efficient. 

We write a recourse solution as a list of eleven different routes, one for each scenario. 
However, these routes must agree to some extent. If two scenarios are indistinguishable up 
to a particular time window, then we require that the recourse solution routes must agree up 
to that same Time Window. This means that the early parts of the journey need to be 
robust with respect to all eleven scenarios, while the last two hours only need to take one 
or two scenarios into account. The recourse solution is guaranteed to perform better than a 
single route chosen to maximise robustness, as a single route solution is merely a special 
case of a recourse solution.  

We find this recourse solution algorithmically using a process similar to that described in the 
previous section. 
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Regret vs Journey Time 
When computing the recourse solution, we find the route with the smallest regret value. We 
want to determine how this objective affects the total journey time, since reducing journey 
time is also of interest. The reason why we define local regret as how long after the start of 
the Time Window the van actually arrives is so that, by minimizing the maximum local 
regret, we are actively minimizing the overall journey time at the same time.  

There is only one exception to this, a place where the objectives of minimizing travel time, 
and minimizing the maximum local regret, do not match. This exception is the last step of 
the journey, when we return to the Depot itself. Here we must ask ourselves, which would 
be better: to return to the depot at 4:30pm having delivered to the final customer at 
4:10pm, which is 10 minutes late, or to deliver to the final customer at 3:55pm, but as a 
result return to the Depot at 4:50pm.  

Instead of deciding which course of action is preferable, we create an artificial final Time 
Window for returning to the Depot. This is a parameter which is set by the user that has 
the effect of specifying which is more important: arriving back at the depot quickly, or 
robustly delivering to the customers in the penultimate Time Window. 

Expanding the model 
When designing the Dynamic Programming solution to this problem, it was convenient to 
assume that all Time Windows were exactly one hour in duration. In practice Tesco also 
have customers who have four-hour Time Windows, although there are fewer of these. 
There is a conceptually simple way to generalise the algorithm to this case, but it is 
inelegant and expensive to compute. To expand our model, it would be ideal to design a 
more natural way for these 4 hour Time Window customers to be included. Aside from 
this, we identify the following weaknesses of our approach which could be improved on: 

 We assume that one set of scenarios affects the entire road network during a 
journey. In practice, if customers live in two different towns, we expect the traffic in 
those towns to be independent of each other. Accounting for this would require far 
more scenarios. 

 We assume that, within a Time Window, the time to travel between a given pair of 
customers is constant.  

 By minimizing the maximum local regret, we assume that the customers are well 
chosen so that no single customer is significantly out of the way. If this doesn’t 
apply, then we might have one customer which is inevitably late, and thus dominates 
the attention of the objective function. 

4. Results 
The approach that is usually taken to solve the Travelling Salesman Problem is to construct 
a mixed integer programming formulation, and solve with appropriate software. We 
compare our dynamic programming algorithm to such a method, using problems which 
are as similar as possible given the different model assumptions. In Figure 5, we see that 
our dynamic approach performs approximately one hundred times faster for realistic 
problem sizes. Even when incorporating uncertainty, our approach still runs 10 times 
faster. Note that the mixed integer programming problem itself does not include 
uncertainty, and thus that it would be infeasible to approach the robust Travelling Salesman 
Problem this way. 

Minimizing regret is 

almost equivalent to 

reducing journey time 

but not quite. Our 

solution algorithm 

contains a parameter 

which allows to user 

to specify which is 

more important. 
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Figure 4: Graph showing the computational cost of our dynamic programming approach 
in comparison to conventional mixed integer programming methods. 

5. Discussion, Conclusions & Recommendations 
We have looked at how to incorporate uncertainty into a Travelling Salesman Problem and 
concluded that in order to include this feature, we need to make simplifications elsewhere. 
Thus we developed an algorithm which breaks the problem into smaller ones, making it 
computationally tractable, and is easily generalised to add uncertainty and recourse solutions.  

A recourse solution has several advantages over a solution which is fixed in advance (an a 
priori solution). Given that a normal a priori solution is a special case of a recourse solution, it 
follows that a recourse solution will always perform at least as well as an a priori solution. In 
addition, having a solution which has been planned to include potential adjustments is 
more intuitive to a driver who encounters heavy traffic along a road. However, a recourse 
solution is a larger structure, and thus requires more computational effort to solve for. 

We have presented a solution algorithm which demonstrates a considerable speedup over 
alternative methods. Thus we recommend that further attention be given to this approach, 
as it is fast enough to have additional complications included. Specifically, we suggest that 
the potential weaknesses mentioned in the previous section be given further scrutiny.  

6. Potential Impact 
If our assumptions  concerning the time-dependence of travel times can be validated, then 
Tesco will be able to select routes for their vehicles which, even if they take slightly longer 
most of the time, would be able to handle rare extremities of traffic congestion, therefore 
avoiding the possibility of angering and thus losing customers. 

Furthermore, the method we use of taking advantage of time windows to break the 
problem into sub-problems offers a new way of approaching this problem, which unlike 
conventional Mixed Integer Programming approaches, does not have trouble with the 
computational complexity due to uncertainty.  

George Dikas, senior Data Scientist at Tesco, “The outcomes of this mini-research project will be 
extremely useful for Tesco, since we now have a better definition for our problem, the notion of “robustness”, 
a better understating of the computational time needed, and we have a first approach that we can elaborate 
on and build a business solution in the future. 

“I really enjoyed spending time with Jonathan and Raphael these past few weeks, and I am really satisfied 
about all the interesting insights gained and the overall outcome of this project.  

We compare the 

speed of our dynamic 

programming 

approach to 

conventional mixed 

integer programming 

methods, and show 

ours to perform much 

faster. 


