

EPSRC Centre for Doctoral Training in

Industrially Focused Mathematical

Modelling

Robust Vehicle Routing

Jonathan Peters

1

Contents
1. Introduction ... 2

Background .. 2

Terminology ... 3

2. Dynamic solution to the TSP 3

3. Finding a robust solution with recourse

 ……………………………………………………………….5

Regret vs Journey Time............................ 6

Expanding the model 6

4. Results .. 6

5. Discussion, Conclusions &

Recommendations .. 7

6. Potential Impact 7

2

1. Introduction

Background
When someone orders a product online, there is a considerable amount of scheduling
required for them to receive their order efficiently. Assuming the company that they
ordered from has every product in their order waiting in a warehouse, remaining tasks still
include:

 Grouping the order with others which need to be delivered to a similar location.

 Selecting a time window during which the customer is available to receive their
order, which is compatible with the other deliveries to be made by the same van.

 Choosing the best route to take to ensure that the delivery is made within the
customer’s Time Windows.

The last of these problems is especially of interest to Tesco who wish to reduce the time
their vans spend on the road in order to avoid unnecessary expense. However, they also
must ensure that deliveries are made to their customers at the appropriate times in order to
avoid angering customers, and potentially losing customers.

The main issue in reducing the time that their vans spend on the road is that travel times
are uncertain. If we knew without doubt how long it would take for the van to drive from
the depot to a customer, then this problem would be the known Travelling Salesmen
Problem with Time Window constraints, in which case we could determine precisely which
route the van should take and guarantee that all deliveries would be made on time.

However, real-world factors such as unexpected traffic conditions complicate the problem.
Even if we can predict with some certainty how long a journey will take, the possibility
exists that traffic will suddenly congest, resulting in all remaining deliveries being late.

Therefore, Tesco is interested in how to choose the best route for the delivery van when
the expected time required to travel along a specific road depends on the time of day (for
example, taking into account traffic resulting from the end of the school day) and is
uncertain and might take a different amount of time on different days. These different
journey times occur due to factors which we cannot predict or control. In the context of
uncertainty, we can no longer guarantee that a particular route would minimize the journey
time, or that each customer will be delivered to within their respective time window.

In practice, when a Tesco delivery van sets out, it will usually contain deliveries for
between 12 and 18 customers. Customer Time Windows start on an hour, and last for
either one hour (for example from 2pm until 3pm) or 4 hours (from 1pm until 5pm).
Usually up to 4 customers will share a common one-hour Time Window.

Our aim is to find a route which reduces the journey time while being robust to uncertainty.

Glossary of terms

 Route: A route refers to the order in which we visit a number of customers. For
example, given the customers A, B, and C, there exist 2 routes which start and finish
at A while only visiting B and C once: ABCA and ACBA.

 Time Window: Each customer gives Tesco a time interval during which they can
receive their delivery. We refer to such time intervals (for example 8am – 9am) as
Time Windows.

 Local Regret: The time between the start of a customer’s Time Window and the
time that the van actually arrives at that customer. Regret is the largest value of
Local Regret over all customers.

We seek the route for

a delivery van such

that it delivers to each

customer their order

during the time frame

when there are ready

to receive it

An important facet is

that the route needs

to work even if there

is unexpected traffic

congestion

3

 Scenario: We assume that traffic can be in 3 conditions within a particular time
window: normal, semi-congested or congested. The sequence of conditions across
all the Time Windows is called a Scenario.

 Robustness: Given a scenario, a route has a Regret. The robustness of a route is the
maximum Regret over all scenarios. Robustness quantifies the performance of a
route in the worst case situation.

 TSP: The Travelling Salesman Problem is the well-known problem in which we find
the shortest journey a salesman can take starting at a fixed location, travelling to all
customers, and returning to the starting point.

2. Dynamic solution to the TSP

Our objective is to find a route for the delivery van to take which departs the depot,
delivers to all customers within their respective Time Windows, and returns to the depot at
the end. We wish this route to be both robust, and to take as little time as possible. We
assume that there are five Time Windows. While at first glance these Time Windows add
an extra complication to the problem, they actually make it easier.

In Figure 1 we illustrate how the number of possible routes can be reduced as a
consequence of the Time Windows. The complete graph on the left shows all roads that
may be taken by a delivery van which starts at A, goes to B, C, D, and E returning to A at
the end if time windows are not taken into account. However, given customer preferences,
it is clear that , for example, we will never travel from B to D if B expects its delivery
between 3pm and 4pm while D should be delivered to between 1pm and 2pm. By
removing redundant edges, we reduce the size of the problem. The graph on the right is an
example of what remains if we remove redundant edges. The only routes which remain as
options are ADEBCA, and ADECBA. Previously, we would have to take into account all
24 routes. Thus, removing unnecessary edges simplifies this problem from 24 possible
routes to only two. This procedure both makes the problem far easier for a computer to
solve, but it also motivates a further simplification which is the entire basis of the approach
which we take.

Figure 1: Schematic showing how taking Time Windows into account results in many
edges being removed. All edges in the graph on the left are double sided, while the reduced
graph on the left contains one-way edges.

We break the problem down into a series of smaller problems. Instead of looking at which
order to visit all customers at once, we instead look at all of the customers which expect
their delivery within one particular Time Window. This means that instead of looking at all
the deliveries the van has to make during its journey, we only look at the number of
customers within a particular Time Window, which is usually four. While there are many of
these smaller problems, they are sufficiently easier to solve than the overall problem, and
thus this approach is worthwhile.

Time Windows allow

us to reduce the

number of

possibilities we

consider. This is

because we must

deliver to customers

with early Time

Windows before we

delivery to customers

with later Time

Windows.

4

We solve a sub problem for every pair of customers in consecutive Time Windows. We fix
a customer to be the first one we deliver to within the current Time Window, and a
customer to be the first within the following Time Window. Then we compare all sub
routes which visit all other customers within the current Time Window, and finish at the
selected customer in the future Time Window. We record the most robust of these sub
routes, taking into account how subsequent Time Windows are affected.

Once we have solved all of these sub problems, we are left with the problem stringing
together these solutions, which we illustrate in Figure 2. By solving all of these sub

problems, starting with the customers in the final Time Window and working backwards,
we can iteratively determine what the best regret would be if we were to start at any given

customer, and finish the journey from there.

Figure 2: In this schematic, we show a problem with 16 customers which are divided across
5 time windows. Each black circle refers to the customer which we deliver to first within
the corresponding time window. Each arrow is weighted with the robustness of the sub
problem where we fix the start of the sub route to be the origin of the arrow, and fix the end
of the sub route to be the target of the arrow. Finding the most robust route for the entire
delivery is now equivalent to finding cheapest path from the left to right (for example, the
route in red).

Once we have worked back to the start, we read off which customer in Time Window 1 is
the best one to deliver to first. Next, we determine the best customer in Time Window 2 to
deliver to first, given our starting point in Time Window 1, and so on. We determine in
this way which customer we should arrive at first in each time window. The details of this
optimal route are determined by revisiting the corresponding sub problems.

3. Finding a robust solution with recourse
In the previous section, we described the way that we might find a robust route which
allows us to deliver to all customers regardless of the traffic conditions. However, can we
do better? In reality, if the van drives along a road and observes intense traffic, then the
traffic conditions are no longer uncertain.

This motivates the idea of a recourse solution: a route which we determine in advance in
which there are different options depending on the traffic conditions that are actually
observed. Better routes can be selected in this way. Once we observe that traffic is not
intense, we can take the route which is best for low congestion.

A recourse solution is

one that allows us to

adjust our route as we

observe the traffic

conditions that are

actually occurring.

We solve the problem

in 2 steps. First we go

backwards,

computing the best

case regret if we

finish the route from

a particular customer.

Then we go forwards,

following the smallest

regret values to

determine which

route we should take.

We reduce a problem

consisting of about

16 customers, into 56

smaller problems only

with 3 customers

each. These small

problems are much

easier to solve.

5

In order to proceed, we must state more carefully what we mean by a Scenario. We assume
that traffic can exist in one of three states: normal, partially congested, and congested.
Note that when we say congestion here, we refer to traffic beyond that expected at a
particular time in the day, i.e. we do not include standard rush hour congestion.

Next, we divide the delivery into the five Time Windows. We assume that the state of
congestion only changes when moving from one Time Window to another. That is, within
an hour block, traffic conditions remain fixed and only when moving to the next hour are
conditions allowed to change. Finally, we assume that, if unexpected congestion exists,
then during the time span of the delivery schedule the traffic will only get worse, i.e. if the
current state of the roads is partially congested at 8:30am, we assume that at 9am it will
either still be partially congested or will escalate to fully congested.

During each Time Window, the traffic takes a particular state. Therefore, if the delivery
occurs over 5 Time Windows, then the traffic situation for the entire delivery, or scenario,
refers to the sequence of 5 traffic states.

These assumptions give rise to the Scenario flow diagram which we show in Figure 3. The
benefit of this approach is that there are only 11 distinct scenarios, and thus it is
straightforward to carry out computations for all of them.

Figure 3: Schematic showing the way that unexpected traffic can develop during a delivery
journey. The state of traffic at the start of the journey is always Normal. When transitioning
to Time Window 2, traffic will either stay Normal, or else escalate to a state of Partially
Congested. Each route between the node in Time Window 1 to any of the 3 nodes in Time
Window 5 is a different Scenario which can actually happen over the course of a delivery.
There are 11 such Scenarios.

Now we return to a recourse solution. First of all, we select a customer in the first Time
Window that we go to first. Once we arrive there, we observe whether the traffic
conditions are still normal, or have changed to a state of partially congested. For both of
these possibilities, we plan a different route. Each of these routes will, in turn, branch off
as the conditions that day are actually observed. By allowing the driver to adapt to the
traffic he sees, we obtain a route which is both robust and efficient.

We write a recourse solution as a list of eleven different routes, one for each scenario.
However, these routes must agree to some extent. If two scenarios are indistinguishable up
to a particular time window, then we require that the recourse solution routes must agree up
to that same Time Window. This means that the early parts of the journey need to be
robust with respect to all eleven scenarios, while the last two hours only need to take one
or two scenarios into account. The recourse solution is guaranteed to perform better than a
single route chosen to maximise robustness, as a single route solution is merely a special
case of a recourse solution.

We find this recourse solution algorithmically using a process similar to that described in the
previous section.

6

Regret vs Journey Time
When computing the recourse solution, we find the route with the smallest regret value. We
want to determine how this objective affects the total journey time, since reducing journey
time is also of interest. The reason why we define local regret as how long after the start of
the Time Window the van actually arrives is so that, by minimizing the maximum local
regret, we are actively minimizing the overall journey time at the same time.

There is only one exception to this, a place where the objectives of minimizing travel time,
and minimizing the maximum local regret, do not match. This exception is the last step of
the journey, when we return to the Depot itself. Here we must ask ourselves, which would
be better: to return to the depot at 4:30pm having delivered to the final customer at
4:10pm, which is 10 minutes late, or to deliver to the final customer at 3:55pm, but as a
result return to the Depot at 4:50pm.

Instead of deciding which course of action is preferable, we create an artificial final Time
Window for returning to the Depot. This is a parameter which is set by the user that has
the effect of specifying which is more important: arriving back at the depot quickly, or
robustly delivering to the customers in the penultimate Time Window.

Expanding the model
When designing the Dynamic Programming solution to this problem, it was convenient to
assume that all Time Windows were exactly one hour in duration. In practice Tesco also
have customers who have four-hour Time Windows, although there are fewer of these.
There is a conceptually simple way to generalise the algorithm to this case, but it is
inelegant and expensive to compute. To expand our model, it would be ideal to design a
more natural way for these 4 hour Time Window customers to be included. Aside from
this, we identify the following weaknesses of our approach which could be improved on:

 We assume that one set of scenarios affects the entire road network during a
journey. In practice, if customers live in two different towns, we expect the traffic in
those towns to be independent of each other. Accounting for this would require far
more scenarios.

 We assume that, within a Time Window, the time to travel between a given pair of
customers is constant.

 By minimizing the maximum local regret, we assume that the customers are well
chosen so that no single customer is significantly out of the way. If this doesn’t
apply, then we might have one customer which is inevitably late, and thus dominates
the attention of the objective function.

4. Results
The approach that is usually taken to solve the Travelling Salesman Problem is to construct
a mixed integer programming formulation, and solve with appropriate software. We
compare our dynamic programming algorithm to such a method, using problems which
are as similar as possible given the different model assumptions. In Figure 5, we see that
our dynamic approach performs approximately one hundred times faster for realistic
problem sizes. Even when incorporating uncertainty, our approach still runs 10 times
faster. Note that the mixed integer programming problem itself does not include
uncertainty, and thus that it would be infeasible to approach the robust Travelling Salesman
Problem this way.

Minimizing regret is

almost equivalent to

reducing journey time

but not quite. Our

solution algorithm

contains a parameter

which allows to user

to specify which is

more important.

7

Figure 4: Graph showing the computational cost of our dynamic programming approach
in comparison to conventional mixed integer programming methods.

5. Discussion, Conclusions & Recommendations
We have looked at how to incorporate uncertainty into a Travelling Salesman Problem and
concluded that in order to include this feature, we need to make simplifications elsewhere.
Thus we developed an algorithm which breaks the problem into smaller ones, making it
computationally tractable, and is easily generalised to add uncertainty and recourse solutions.

A recourse solution has several advantages over a solution which is fixed in advance (an a
priori solution). Given that a normal a priori solution is a special case of a recourse solution, it
follows that a recourse solution will always perform at least as well as an a priori solution. In
addition, having a solution which has been planned to include potential adjustments is
more intuitive to a driver who encounters heavy traffic along a road. However, a recourse
solution is a larger structure, and thus requires more computational effort to solve for.

We have presented a solution algorithm which demonstrates a considerable speedup over
alternative methods. Thus we recommend that further attention be given to this approach,
as it is fast enough to have additional complications included. Specifically, we suggest that
the potential weaknesses mentioned in the previous section be given further scrutiny.

6. Potential Impact
If our assumptions concerning the time-dependence of travel times can be validated, then
Tesco will be able to select routes for their vehicles which, even if they take slightly longer
most of the time, would be able to handle rare extremities of traffic congestion, therefore
avoiding the possibility of angering and thus losing customers.

Furthermore, the method we use of taking advantage of time windows to break the
problem into sub-problems offers a new way of approaching this problem, which unlike
conventional Mixed Integer Programming approaches, does not have trouble with the
computational complexity due to uncertainty.

George Dikas, senior Data Scientist at Tesco, “The outcomes of this mini-research project will be
extremely useful for Tesco, since we now have a better definition for our problem, the notion of “robustness”,
a better understating of the computational time needed, and we have a first approach that we can elaborate
on and build a business solution in the future.

“I really enjoyed spending time with Jonathan and Raphael these past few weeks, and I am really satisfied
about all the interesting insights gained and the overall outcome of this project.

We compare the

speed of our dynamic

programming

approach to

conventional mixed

integer programming

methods, and show

ours to perform much

faster.

