
	

	

	

	

EPSRC Centre for Doctoral Training in
Industrially Focused Mathematical

Modelling

Herding top percentiles

Oliver Sheridan-Methven

	

	

	

	

1	

	

Contents
1.	
 Introduction	
 ...	
 2	

Herding	
 the	
 top	
 percentiles	
 	
 2	

Glossary	
 of	
 terms	
 ..	
 2	

2.	
 Resampling	
 ...	
 3	

3.	
 Ensembles	
 ..	
 4	

Adaptive	
 boosting	
 ...	
 4	

Gradient	
 boosting	
 ...	
 4	

Cost-­‐sensitive	
 boosting	
 	
 4	

4.	
 Experimental	
 results	
 ...	
 4	

Feature	
 reduction	
 ...	
 4	

Resampling	
 ...	
 5	

Cost-­‐sensitive	
 boosting	
 	
 5	

Final	
 predictions	
 ...	
 6	

5.	
 Discussion,	
 Conclusions	
 &	
 Recommendations	
 	
 6	

6.	
 Potential	
 Impact	
 ...	
 7	

	

	

2	

	

	

1. Introduction
A common problem occurring in many scientific, industrial, or governmental applications
is classification. This is the process, known as machine learning, by which a machine is taught to
learn patterns from a data-set and then make predictions on new data. The advantage of
training machines to learn is the immense throughput they are capable of, and their ability
to process highly complex data. Common examples include email classification, text
recognition, and shopping recommendations.

Vodafone are a world leading mobile and communications provider, with over 444 million
customers globally. These include 20 million UK mobile phone customers, and 30 million
in Germany. Ensuring high customer satisfaction and continued customer service is a top
priority for Vodafone. To achieve this, Vodafone look for patterns in their customers’
behaviour, identify those who are dissatisfied with their phone contracts, and pre-empt
cancellations with targeted promotions. With an abundance of data available, it is not clear
what data are useful and what is not, nor what machine learning schemes are most suitable.

Herding the top percentiles
Vodafone are interested in improving their churn propensity model. Usually when a customer
is approaching the end of their contract, they will typically be looking to either renew it or
terminate it. A customer is said to “churn” if they register an intent to cancel. Vodafone
wish to pre-empt this, and if necessary provide that customer with a promotion before
they churn. Typically, at any one time, approximately 8% of their customer base will churn
within a 3-month period, and this increases to 15% when considering customers with
between 5-8 months remaining on their contract. Hence, the customers they wish to
identify and learn from only constitute a small minority of the data-set, producing an
imbalanced classification problem.

On top of having an imbalanced data-set to learn from, promotions are expensive, and
Vodafone can only justify a few promotions, e.g. for 5-7% of their customers.
Consequently, those most likely to churn and who are in the top percentiles when sorted by
their probabilities of churning will be forwarded for promotions. It is only the
classification accuracy in this percentile which is relevant. Increasing the proportion of
churning customers in the upper percentiles is described as herding.

Our aim is to increase the classification accuracy in this top percentile, improving
Vodafone’s capabilities for predicting customer satisfaction.

Glossary of terms
§ Algorithm: An instruction set defining a numerical routine.

§ Learner: A machine learning algorithm which can make predictions.

§ Churners: Customers who register an intent to cancel their contract.

§ Herding: Increasing the proportion of churners in the top percentiles.

§ Loss function: Measures the degree of error in a learner’s predictions.

§ Cross validation: Repartitioning data multiple times to avoid over-fitting.

§ Feature: A characteristic of a Vodafone customer which can be learnt.

§ Sample: All the features of a single Vodafone customer.

§ Majority instance: A sample corresponding to a satisfied customer.

§ Ensemble: An aggregation of various learners, producing a single prediction.

§ Boosting: An ensemble method, training learners in succession.

Identifying customers
who churn is a high
priority to Vodafone

	

3	

	

	

Machine learning algorithms must be provided with data. The overall data-set is
correspondingly split into three distinct and non-overlapping sets: training, validation, and
prediction. The training set is what we provide to the algorithm to learn from. After a learner
is trained, we assess its performance on the validation set. Validation identifies learners
which may have over-fit the training set, or generalise poorly to unseen data. Depending
on the results from the validation stage, we may revisit the algorithm, and iterate several
times between training and validation. After this, we should know how the algorithms
expect to perform, their robustness, and how they compare.

The marker we use to identify whether a customer should be offered a promotion is if they
churned within 3 months. Hence, to create a predictive model, a learner must be trained on
data which are at least 3 months old. The temporal structure of the data is presented in
Figure 1. Each customer is a sample in this data-set. The samples from March 2017 form
the prediction set. To keep the validation set representative of the prediction set, 400,000
samples were taken from December 2016 for validation. The training set consisted of the
397,028 samples remaining from 2016.

Figure 1: The temporal distribution of the samples.

The customers are only represented once in this data-set. Each sample has 211 features,
which are mostly numeric, but contain some categorical and ordinal fields. Features include
the number of calls, data usage, network coverage, province, etc. Naïvely, one could use all
the features and expand the categorical variables, producing 291 features. However, if
ordinals and categorical variables are omitted (along with some features Vodafone flagged
as less useful), then only 134 features remain.

2. Resampling
A popular approach to tackle imbalanced data is to try and rebalance the data. This can be
done by either undersampling the majority class (satisfied customers), or by oversampling
the minority class (churners). Both have their pitfalls: undersampling may throw away
important features in the training set, and oversampling may cause over-fitting.

A prominent algorithm for oversampling is the synthetic minority oversampling technique
(SMOTE). This takes a minority class instance, finds the samples which resemble it most
closely, and generates a new synthetic sample as an interpolation of these. A close relative
of SMOTE is adaptive synthetic sampling (ADASYN), which samples frequently misclassified
regions of the sample space which are deemed difficult to learn.

To undersample the majority class, one option is to randomly remove samples. A slightly
more sophisticated approach is to try to remove instances which obscure boundaries
between the classes. By removing these, the boundaries should become sharper and easier
to learn. One method is to remove Tomek links. Two samples form a Tomek link if they are
from different classes, and the majority instance is the closest resembling sample to the
minority instance. If so, the majority instance is removed. This can be iterated several
times, removing Tomek links on each parse. For the Vodafone data-set, approximately
10% of the majority instances were removed by two parses.

2016 2017
Jan FebMar AprMay Jun Jul Aug Sep Oct Nov Dec Jan FebMar

Date
104

105

106

107

Nu
m

be
ro

fs
am

pl
es

For machine learning,
the data-set is split
into training,
validation, and
prediction sets

	

4	

	

	

3. Ensembles
There are many algorithms we could use to learn from the data, each giving its own set of
predictions. Furthermore, the way an algorithm learns may not be deterministic, and so the
same algorithm may give different predictions over several training sessions. Multiple
learners can be aggregated together to produce one overarching learner, called an ensemble.
An ensemble should have a better overall accuracy (or stability) than its constituent base
learners. We can create ensembles by boosting, which successively introduces new learners
into the ensemble based on the performance of the most recently introduced base learner.
We now present two boosting variants: adaptive boosting and gradient boosting.

Adaptive boosting
A very data-centric boosting method is adaptive boosting. The premise is to assume that
several base learners have been trained and currently form an ensemble, but we want to
introduce another. Taking the most recently trained learner, we see which samples from
the training set it misclassifies. We then train a new learner on the same training set, but we
reweight the samples. We increase the sample weights by a constant factor for those which
were misclassified, and decrease those which were correctly classified. This means the new
learner will increase its focus on learning those which were misclassified, and less on those
which were correct. When this new learner is trained, the overall error it incurs is
evaluated, and its contribution to the ensemble is weighted accordingly. The better the
learner does, the greater its contribution to the ensemble.

Gradient boosting
The performance of a learner can be quantified using a loss function, which measures a
learner’s degree of error. Traditional gradient boosting minimises this loss function using
steepest descent, numerically computing how the loss function changes if the data is slightly
altered. Learning this dependency, the boosting algorithm proposes an additional learner
with different parameter values in the direction it expects to reduce the loss function
quickest.

An extension of steepest descent gradient boosting is extreme gradient boosting. This
approximates the loss function around the existing learners, incorporating corrections for
curvature. Minimising the loss function’s increase, the resulting learner emulates the Newton
direction of descent. An excellent implementation of extreme gradient boosting is XGBoost.

Cost-sensitive boosting
Both of these boosting methods assume the loss function is equally penalised for
misclassified majority instances as for minority instances. However, recalling what the
samples represent, it is much worse for Vodafone if a dissatisfied customer is overlooked
than if a content customer is needlessly offered a promotion. Hence the cost of these two
types of misclassification is not the same.

Different misclassification costs can be refactored into a cost-sensitive loss function. The
regular adaptive boosting algorithm AdaBoost has such a cost-sensitive extension called
AdaCost. There are many ways to incorporate cost-sensitivity; we construct two new
algorithms: AdaCost-B1 which is a revised AdaCost with a different error measurement,
and AdaCost-AATP which penalises misclassification in the top percentiles. Furthermore,
we also construct a cost sensitive loss function for gradient boosting algorithms.

4. Experimental results

Feature reduction
The features are a mix of numeric, categorical, and ordinal values. If categorical and ordinal
values are included, then there are 291 features, and only 134 if these are removed. Using
XGBoost as a baseline method, we perform 15-fold cross validation. We find that the

Extreme gradient
boosting learns the
Newton direction

Adaptive boosting
increases the weights
for misclassified
samples

	

5	

	

	

accuracies in the top 5th-percentile are 48.5±0.2% using the 134 features, and 47.1±0.4%
when including the ordinal and categorical variables. This implies we can use the reduced
data-set, consistently achieve higher accuracies, and train algorithms faster than if we had
used all the features.

Resampling
To measure the efficacy of the various resampling methods, we record performances as an
improvement (or reduction) relative to what XGBoost achieves without resampling. These
improvements form a distribution, which we show in Figure 2. We immediately see
ADASYN gives a substantial reduction in performance. Conversely, SMOTE gives an
improvement of approximately 0.3%, although also produces an increased variance.
Interestingly, removing Tomek links gives no nett improvement.

Figure 2: The performance gains from using various resampling methods with XGBoost.

Cost-sensitive boosting
One of our results is that AdaCost appears to show improvements above AdaBoost. In
light of this, we implement balanced (and imbalanced) ensembles using random
undersampling. The resulting learners were combined using either AdaBoost or the
AdaCost variants. The accuracies of these algorithms for different ensembles sizes are
shown in Figure 3.

Figure 3: Accuracies in the top percentile using cost-sensitive ensembles.

Several results are embedded in Figure 3. We first highlight the improvement gained when
AdaBoost uses imbalanced data. This learner achieves the best accuracy across all the
ensembles and algorithms we tested, with peak performance at 51.8±0.2%, which is
approximately 1.5% better than the best single algorithm Vodafone uses, and 1% better
than the accuracy they achieve from a combination of 12 different algorithms.

≠2.5 ≠2.0 ≠1.5 ≠1.0 ≠0.5 0.0 0.5 1.0 1.5 2.0
Improvement over XGBoost (%)

G
au

ss
ia

n
K

D
E

Bandwidth = 0.25
ADASYN SMOTE Tomek links

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy in the top percentile (%)

0.0

0.2

0.4

0.6

0.8

1.0

En
se

m
bl

e
siz

e

Cost-sensitive ensembles
1500
1200
1000
800
500
300
200
100
50
10
5
3

10 15 20 25 30 35 40 45 50 55
1 Bandwidth = 0.3

Balanced - AdaBoost
Imbalanced - AdaBoost
Imbalanced - AdaCost
Imbalanced - AdaCost-B1
Imbalanced - AdaCost-AATP

Balancing the data
reduced the accuracy
in the top percentile

	

6	

	

	

The cost-sensitive boosting methods exhibit very interesting scaling with increased
ensemble sizes. The most significant is that AdaCost achieved a comparably high accuracy
using a much smaller ensemble size of 50. However, for larger ensembles, this
performance reverted. Frustratingly, while showing promise in earlier tests, AdaCost-B1
and AdaCost-AATP did not show a competitive edge.

We also explored cost-sensitive extreme gradient boosting, but were unable to demonstrate
improved performances from introducing cost-sensitive loss functions. However, this was
not exhaustive, and more work is required before dismissing this.

Final predictions
After all the rounds of validation, we finally use the best performing algorithms on the
final prediction set (containing 953,479 samples). We used XGBoost with and without
SMOTE, and imbalanced AdaCost and AdaBoost for 50 and 1,500 base learners
respectively. For comparison we also include logistic regression, (a simple case of linear
models for binary classification). The accuracies achieved are show in Figure 4.

Figure 4: The final accuracies on the prediction set. Ensemble sizes are parenthesized.

Immediately we notice that these accuracies are all much lower than the 45-50% expected
from the validation set results. However, given the temporal segregation of the data from
Figure 1, it is not unreasonable to attribute this to an inherently more difficult data-set. We
notice that XGBoost using SMOTE gives a worse performance than without, and
AdaCost is appreciably worse than AdaBoost. However, AdaBoost with its imbalanced
ensemble does achieve a competitive accuracy compared with XGBoost, which is as
expected. Furthermore, we see AdaBoost shows a smaller variation than XGBoost.

5. Discussion, Conclusions & Recommendations
We have considered the problem of classifying churning Vodafone customers which is a
percentile herding task with an underlying data imbalance. To tackle these challenges, we
have investigated data processing and feature reduction, resampling methods, and boosting
algorithms.

We inspected the data and demonstrated that higher accuracies could be achieved when
using a reduced data-set. Selecting a subset of the features, ignoring the categorical and
ordinal features, we reduced the number of features down from 291 to 134. The reduced
set produced higher accuracies, more consistent results, and was faster and cheaper to
compute.

Within the Vodafone customer base, there is an imbalance in the number of churners and
non-churners. To address this imbalance, we considered ADASYN, SMOTE, and Tomek
links, which were two oversampling methods and an undersampling method respectively.
SMOTE showed small but appreciable performance gains, Tomek links gave no nett

22 24 26 28 30 32 34
Accuracy in the top percentile (%)

G
au

ss
ia

n
K

D
E

Bandwidth = 0.15
Prediction results

XGBoost
XGBoost (SMOTE)
Logistic regression
Imbalanced - AdaCost (50)
Imbalanced - AdaBoost (1500)

	

7	

	

	

improvement, and ADASYN reduced performance. Consequently, we would recommend
including SMOTE in subsequent algorithm validations.

From the experiments with cost-sensitive boosting methods, we found a myriad of
different performance behaviours. Emerging from this we found that AdaBoost, using
1,500 imbalanced base learners, achieved the highest recorded accuracy of 51.8±0.2%. This
was approximately 1.5% better than the best single algorithm Vodafone had found.

As a consequence of these findings, we would promote exploring SMOTE when
developing and validating any new algorithms. Furthermore, its benefits could be realised
across a wider range of algorithms. Additionally, although cost-sensitive boosting
algorithms did not achieve the highest recorded accuracy, for a variety of different base
learners they usually proved competitive, and would be suitable for further comparisons.

6. Potential Impact
The challenges caused by imbalanced data, and the task of herding top percentiles, is a
ubiquitous and pervasive problem frequently encountered across many areas of
Vodafone’s business. Having a better knowledge of approaches to tackle these difficulties,
from processing the data to ensemble methods, presents many opportunities for an
improved quality of service which can be passed onto Vodafone’s customers.

Dr Uwe Bombosch, lead data scientist at Vodafone Germany, said “Finding a top quantile
with a high true positive rate is a ubiquitous problem in our business, in fact more wide-spread than a good
overall classification. The outcome of the InFoMM mini-project can immediately be applied to several
machine learning models we are building for marketing and customer satisfaction campaigns. SMOTE, for
instance, has already found its way into a campaign channel optimisation. In addition to the insights, we
also received a package of well-written code for our toolbox. When applying for a mini-project, I expected
the highest level of maths, but was surprised by the IT-literacy and the hands-on approach. I clearly
recommend InFoMM projects as a source of inspiration to data science organisations.”

	

AdaBoost achieved an
accuracy of 51.8%

