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1.   Introduction 
A common problem occurring in many scientific, industrial, or governmental applications 
is classification. This is the process, known as machine learning, by which a machine is taught to 
learn patterns from a data-set and then make predictions on new data. The advantage of 
training machines to learn is the immense throughput they are capable of, and their ability 
to process highly complex data. Common examples include email classification, text 
recognition, and shopping recommendations. 

Vodafone are a world leading mobile and communications provider, with over 444 million 
customers globally. These include 20 million UK mobile phone customers, and 30 million 
in Germany. Ensuring high customer satisfaction and continued customer service is a top 
priority for Vodafone. To achieve this, Vodafone look for patterns in their customers’ 
behaviour, identify those who are dissatisfied with their phone contracts, and pre-empt 
cancellations with targeted promotions. With an abundance of data available, it is not clear 
what data are useful and what is not, nor what machine learning schemes are most suitable.  

Herding the top percentiles 
Vodafone are interested in improving their churn propensity model. Usually when a customer 
is approaching the end of their contract, they will typically be looking to either renew it or 
terminate it. A customer is said to “churn” if they register an intent to cancel. Vodafone 
wish to pre-empt this, and if necessary provide that customer with a promotion before 
they churn. Typically, at any one time, approximately 8% of their customer base will churn 
within a 3-month period, and this increases to 15% when considering customers with 
between 5-8 months remaining on their contract. Hence, the customers they wish to 
identify and learn from only constitute a small minority of the data-set, producing an 
imbalanced classification problem.  

On top of having an imbalanced data-set to learn from, promotions are expensive, and 
Vodafone can only justify a few promotions, e.g. for 5-7% of their customers. 
Consequently, those most likely to churn and who are in the top percentiles when sorted by 
their probabilities of churning will be forwarded for promotions. It is only the 
classification accuracy in this percentile which is relevant. Increasing the proportion of 
churning customers in the upper percentiles is described as herding.  

Our aim is to increase the classification accuracy in this top percentile, improving 
Vodafone’s capabilities for predicting customer satisfaction.  

Glossary of terms 
§  Algorithm: An instruction set defining a numerical routine. 

§  Learner: A machine learning algorithm which can make predictions. 

§  Churners: Customers who register an intent to cancel their contract. 

§  Herding: Increasing the proportion of churners in the top percentiles. 

§  Loss function: Measures the degree of error in a learner’s predictions.  

§  Cross validation: Repartitioning data multiple times to avoid over-fitting. 

§  Feature: A characteristic of a Vodafone customer which can be learnt.  

§  Sample: All the features of a single Vodafone customer.  

§  Majority instance: A sample corresponding to a satisfied customer.  

§  Ensemble: An aggregation of various learners, producing a single prediction. 

§  Boosting: An ensemble method, training learners in succession.  

 

Identifying customers 
who churn is a high 
priority to Vodafone 
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Machine learning algorithms must be provided with data. The overall data-set is 
correspondingly split into three distinct and non-overlapping sets: training, validation, and 
prediction. The training set is what we provide to the algorithm to learn from. After a learner 
is trained, we assess its performance on the validation set. Validation identifies learners 
which may have over-fit the training set, or generalise poorly to unseen data. Depending 
on the results from the validation stage, we may revisit the algorithm, and iterate several 
times between training and validation. After this, we should know how the algorithms 
expect to perform, their robustness, and how they compare.  

The marker we use to identify whether a customer should be offered a promotion is if they 
churned within 3 months. Hence, to create a predictive model, a learner must be trained on 
data which are at least 3 months old. The temporal structure of the data is presented in 
Figure 1. Each customer is a sample in this data-set. The samples from March 2017 form 
the prediction set. To keep the validation set representative of the prediction set, 400,000 
samples were taken from December 2016 for validation. The training set consisted of the 
397,028 samples remaining from 2016. 

 

Figure 1: The temporal distribution of the samples.  

The customers are only represented once in this data-set. Each sample has 211 features, 
which are mostly numeric, but contain some categorical and ordinal fields. Features include 
the number of calls, data usage, network coverage, province, etc. Naïvely, one could use all 
the features and expand the categorical variables, producing 291 features. However, if 
ordinals and categorical variables are omitted (along with some features Vodafone flagged 
as less useful), then only 134 features remain. 

2.  Resampling  
A popular approach to tackle imbalanced data is to try and rebalance the data. This can be 
done by either undersampling the majority class (satisfied customers), or by oversampling 
the minority class (churners). Both have their pitfalls: undersampling may throw away 
important features in the training set, and oversampling may cause over-fitting. 

A prominent algorithm for oversampling is the synthetic minority oversampling technique 
(SMOTE). This takes a minority class instance, finds the samples which resemble it most 
closely, and generates a new synthetic sample as an interpolation of these. A close relative 
of SMOTE is adaptive synthetic sampling (ADASYN), which samples frequently misclassified 
regions of the sample space which are deemed difficult to learn.  

To undersample the majority class, one option is to randomly remove samples. A slightly 
more sophisticated approach is to try to remove instances which obscure boundaries 
between the classes. By removing these, the boundaries should become sharper and easier 
to learn. One method is to remove Tomek links. Two samples form a Tomek link if they are 
from different classes, and the majority instance is the closest resembling sample to the 
minority instance. If so, the majority instance is removed. This can be iterated several 
times, removing Tomek links on each parse. For the Vodafone data-set, approximately 
10% of the majority instances were removed by two parses.  
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3.  Ensembles  
There are many algorithms we could use to learn from the data, each giving its own set of 
predictions. Furthermore, the way an algorithm learns may not be deterministic, and so the 
same algorithm may give different predictions over several training sessions. Multiple 
learners can be aggregated together to produce one overarching learner, called an ensemble. 
An ensemble should have a better overall accuracy (or stability) than its constituent base 
learners. We can create ensembles by boosting, which successively introduces new learners 
into the ensemble based on the performance of the most recently introduced base learner. 
We now present two boosting variants: adaptive boosting and gradient boosting.  

Adaptive boosting 
A very data-centric boosting method is adaptive boosting. The premise is to assume that 
several base learners have been trained and currently form an ensemble, but we want to 
introduce another. Taking the most recently trained learner, we see which samples from 
the training set it misclassifies. We then train a new learner on the same training set, but we 
reweight the samples. We increase the sample weights by a constant factor for those which 
were misclassified, and decrease those which were correctly classified. This means the new 
learner will increase its focus on learning those which were misclassified, and less on those 
which were correct. When this new learner is trained, the overall error it incurs is 
evaluated, and its contribution to the ensemble is weighted accordingly. The better the 
learner does, the greater its contribution to the ensemble.   

Gradient boosting 
The performance of a learner can be quantified using a loss function, which measures a 
learner’s degree of error. Traditional gradient boosting minimises this loss function using 
steepest descent, numerically computing how the loss function changes if the data is slightly 
altered. Learning this dependency, the boosting algorithm proposes an additional learner 
with different parameter values in the direction it expects to reduce the loss function 
quickest. 

An extension of steepest descent gradient boosting is extreme gradient boosting. This 
approximates the loss function around the existing learners, incorporating corrections for 
curvature. Minimising the loss function’s increase, the resulting learner emulates the Newton 
direction of descent. An excellent implementation of extreme gradient boosting is XGBoost.  

Cost-sensitive boosting 
Both of these boosting methods assume the loss function is equally penalised for 
misclassified majority instances as for minority instances. However, recalling what the 
samples represent, it is much worse for Vodafone if a dissatisfied customer is overlooked 
than if a content customer is needlessly offered a promotion. Hence the cost of these two 
types of misclassification is not the same.  

Different misclassification costs can be refactored into a cost-sensitive loss function. The 
regular adaptive boosting algorithm AdaBoost has such a cost-sensitive extension called 
AdaCost. There are many ways to incorporate cost-sensitivity; we construct two new 
algorithms: AdaCost-B1 which is a revised AdaCost with a different error measurement, 
and AdaCost-AATP which penalises misclassification in the top percentiles. Furthermore, 
we also construct a cost sensitive loss function for gradient boosting algorithms.  

4.  Experimental results 

Feature reduction 
The features are a mix of numeric, categorical, and ordinal values. If categorical and ordinal 
values are included, then there are 291 features, and only 134 if these are removed. Using 
XGBoost as a baseline method, we perform 15-fold cross validation. We find that the 

Extreme gradient 
boosting learns the 
Newton direction 

Adaptive boosting 
increases the weights 
for misclassified 
samples 
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accuracies in the top 5th-percentile are 48.5±0.2% using the 134 features, and 47.1±0.4% 
when including the ordinal and categorical variables. This implies we can use the reduced 
data-set, consistently achieve higher accuracies, and train algorithms faster than if we had 
used all the features.  

Resampling 
To measure the efficacy of the various resampling methods, we record performances as an 
improvement (or reduction) relative to what XGBoost achieves without resampling. These 
improvements form a distribution, which we show in Figure 2. We immediately see 
ADASYN gives a substantial reduction in performance. Conversely, SMOTE gives an 
improvement of approximately 0.3%, although also produces an increased variance. 
Interestingly, removing Tomek links gives no nett improvement.  

 

Figure 2: The performance gains from using various resampling methods with XGBoost. 

Cost-sensitive boosting 
One of our results is that AdaCost appears to show improvements above AdaBoost. In 
light of this, we implement balanced (and imbalanced) ensembles using random 
undersampling. The resulting learners were combined using either AdaBoost or the 
AdaCost variants. The accuracies of these algorithms for different ensembles sizes are 
shown in Figure 3.  

 

Figure 3: Accuracies in the top percentile using cost-sensitive ensembles. 

Several results are embedded in Figure 3. We first highlight the improvement gained when 
AdaBoost uses imbalanced data. This learner achieves the best accuracy across all the 
ensembles and algorithms we tested, with peak performance at 51.8±0.2%, which is 
approximately 1.5% better than the best single algorithm Vodafone uses, and 1% better 
than the accuracy they achieve from a combination of 12 different algorithms.  
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The cost-sensitive boosting methods exhibit very interesting scaling with increased 
ensemble sizes. The most significant is that AdaCost achieved a comparably high accuracy 
using a much smaller ensemble size of 50. However, for larger ensembles, this 
performance reverted. Frustratingly, while showing promise in earlier tests, AdaCost-B1 
and AdaCost-AATP did not show a competitive edge.  

We also explored cost-sensitive extreme gradient boosting, but were unable to demonstrate 
improved performances from introducing cost-sensitive loss functions. However, this was 
not exhaustive, and more work is required before dismissing this.  

Final predictions 
After all the rounds of validation, we finally use the best performing algorithms on the 
final prediction set (containing 953,479 samples). We used XGBoost with and without 
SMOTE, and imbalanced AdaCost and AdaBoost for 50 and 1,500 base learners 
respectively. For comparison we also include logistic regression, (a simple case of linear 
models for binary classification). The accuracies achieved are show in Figure 4. 

 

Figure 4: The final accuracies on the prediction set. Ensemble sizes are parenthesized.  

Immediately we notice that these accuracies are all much lower than the 45-50% expected 
from the validation set results.  However, given the temporal segregation of the data from 
Figure 1, it is not unreasonable to attribute this to an inherently more difficult data-set. We 
notice that XGBoost using SMOTE gives a worse performance than without, and 
AdaCost is appreciably worse than AdaBoost. However, AdaBoost with its imbalanced 
ensemble does achieve a competitive accuracy compared with XGBoost, which is as 
expected. Furthermore, we see AdaBoost shows a smaller variation than XGBoost. 

5.  Discussion, Conclusions & Recommendations 
We have considered the problem of classifying churning Vodafone customers which is a 
percentile herding task with an underlying data imbalance. To tackle these challenges, we 
have investigated data processing and feature reduction, resampling methods, and boosting 
algorithms.  

We inspected the data and demonstrated that higher accuracies could be achieved when 
using a reduced data-set. Selecting a subset of the features, ignoring the categorical and 
ordinal features, we reduced the number of features down from 291 to 134. The reduced 
set produced higher accuracies, more consistent results, and was faster and cheaper to 
compute.  

Within the Vodafone customer base, there is an imbalance in the number of churners and 
non-churners. To address this imbalance, we considered ADASYN, SMOTE, and Tomek 
links, which were two oversampling methods and an undersampling method respectively. 
SMOTE showed small but appreciable performance gains, Tomek links gave no nett 
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improvement, and ADASYN reduced performance. Consequently, we would recommend 
including SMOTE in subsequent algorithm validations.  

From the experiments with cost-sensitive boosting methods, we found a myriad of 
different performance behaviours. Emerging from this we found that AdaBoost, using 
1,500 imbalanced base learners, achieved the highest recorded accuracy of 51.8±0.2%. This 
was approximately 1.5% better than the best single algorithm Vodafone had found. 

As a consequence of these findings, we would promote exploring SMOTE when 
developing and validating any new algorithms. Furthermore, its benefits could be realised 
across a wider range of algorithms. Additionally, although cost-sensitive boosting 
algorithms did not achieve the highest recorded accuracy, for a variety of different base 
learners they usually proved competitive, and would be suitable for further comparisons. 

6.  Potential Impact 
The challenges caused by imbalanced data, and the task of herding top percentiles, is a 
ubiquitous and pervasive problem frequently encountered across many areas of 
Vodafone’s business. Having a better knowledge of approaches to tackle these difficulties, 
from processing the data to ensemble methods, presents many opportunities for an 
improved quality of service which can be passed onto Vodafone’s customers.  

Dr Uwe Bombosch, lead data scientist at Vodafone Germany, said “Finding a top quantile 
with a high true positive rate is a ubiquitous problem in our business, in fact more wide-spread than a good 
overall classification. The outcome of the InFoMM mini-project can immediately be applied to several 
machine learning models we are building for marketing and customer satisfaction campaigns. SMOTE, for 
instance, has already found its way into a campaign channel optimisation. In addition to the insights, we 
also received a package of well-written code for our toolbox. When applying for a mini-project, I expected 
the highest level of maths, but was surprised by the IT-literacy and the hands-on approach. I clearly 
recommend InFoMM projects as a source of inspiration to data science organisations.” 

	  

AdaBoost achieved an 
accuracy of 51.8% 


