
Monte Carlo Methods
Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 1 – p. 1/54

Geometric Brownian Motion

In the case of Geometric Brownian Motion

dSt = r St dt+ σ St dWt

the use of It̂o calculus gives

d(log St) = (r− 1
2σ

2) dt+ σ dWt

which can be integrated to give

ST = S0 exp
(
(r− 1

2σ
2)T + σWT

)

so we are able to directly simulate ST to perform Monte
Carlo estimation for European options with a payoff f(ST).

Lecture 1 – p. 2/54

Euler-Maruyama path simulation

In more general cases, the scalar SDE

dSt = a(St, t) dt+ b(St, t) dWt

can be approximated using the Euler-Maruyama
discretisation

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

Here h is the timestep, Ŝn is the approximation to Snh

and the ∆Wn are i.i.d. N(0, h) Brownian increments.

Lecture 1 – p. 3/54

Euler-Maruyama method

For ODEs, the forward Euler method has O(h) accuracy,
and other more accurate methods are usually preferred.

However, SDEs are very much harder to approximate so
the Euler-Maruyama method is used widely in practice.

Numerical analysis is also very difficult and even the
definition of “accuracy” is tricky.

Lecture 1 – p. 4/54

Weak convergence

In finance applications, we are mostly concerned with
weak errors, the error in the expected payoff due to using
a finite timestep h.

For a European payoff f(ST), the weak error is

E[f(ST)]− E[f(ŜM)]

where M = T/h, and for a path-dependent option it is

E[f(S)]− E[f̂(Ŝ)]

where f(S) is a function of the entire path St, and f̂(Ŝ) is a
corresponding approximation using the whole discrete path.

Lecture 1 – p. 5/54

Weak convergence

Key theoretical result (Bally and Talay, 1995):

If p(S) is the p.d.f. for ST and p̂(S) is the p.d.f. for ŜT/h

computed using the Euler-Maruyama approximation,
then under certain conditions on a(S, t) and b(S, t)

p(S)− p̂(S) = O(h)

and hence
E[f(ST)]− E[f(ŜT/h)] = O(h)

This holds even for digital options with discontinuous
payoffs f(S) – earlier theory covered only European options
such as put and call options with Lipschitz payoffs.

Lecture 1 – p. 6/54

Weak convergence

Numerical demonstration: Geometric Brownian Motion

dS = r S dt+ σ S dW

r = 0.05, σ = 0.5, T = 1

European call: S0 = 100,K = 110.

Plot shows weak error versus analytic expectation when
using 108 paths, and also Monte Carlo error (3 standard
deviations)

Lecture 1 – p. 7/54

Weak convergence

10
−1

10
−2

10
−1

Weak convergence −− comparison to exact solution

h

E
rr

o
r

 Weak error

 MC error

Lecture 1 – p. 8/54

Weak convergence

Previous plot showed difference between exact expectation
and numerical approximation.

What if the exact solution is unknown? Compare
approximations with timesteps h and 2h.

If
E[f(ST)]− E[f(Ŝh

T/h)] ≈ a h

then
E[f(ST)]− E[f(Ŝ2h

T/2h)] ≈ 2 a h

and so
E[f(Ŝh

T/h)]− E[f(Ŝ2h
T/2h)] ≈ a h

Lecture 1 – p. 9/54

Weak convergence

To minimise the number of paths that need to be simulated,
we use same driving Brownian path when doing 2h and h
approximations.

i.e. take Brownian increments for h simulation and sum in
pairs to get Brownian increments for 2h simulation.

The variance is lower because the h and 2h paths are close
to each other (strong convergence).

(We won’t cover this, but this forms the basis for the
Multilevel Monte Carlo method (Giles, 2006))

Lecture 1 – p. 10/54

Weak convergence

10
−2

10
−1

10
−3

10
−2

10
−1

Weak convergence −− difference from 2h approximation

h

E
rr

o
r

 Weak error

 MC error

Lecture 1 – p. 11/54

Mean Square Error

Question: how do we choose

the number of timesteps (to reduce the weak error)

the number of paths (to reduce the Monte Carlo
sampling error)

If the true option value is V = E[f]

and the discrete approximation is V̂ = E[f̂]

and the Monte Carlo estimate is Ŷ =
1

N

N∑

i=1

f̂ (i)

then . . .
Lecture 1 – p. 12/54

Mean Square Error

. . . the Mean Square Error is

E
[(

Ŷ − V
)2]

= V
[
Ŷ −V

]
+
(
E[Ŷ −V]

)2

= V[Ŷ] +
(
E[Ŷ]−V

)2

= N−1V[f̂] +
(
E[f̂]−E[f]

)2

first term is due to the variance of estimator

second term is square of bias due to weak error

Lecture 1 – p. 13/54

Mean Square Error

If there are M timesteps, the computational cost is
proportional to C = MN and the MSE is approximately

aN−1 + bM−2 = aN−1 + bC−2N2.

For a fixed computational cost, this is a minimum when

N =

(
aC2

2 b

)1/3

, M =

(
2 bC

a

)1/3

,

and hence

aN−1 =

(
2 a2b

C2

)1/3

, bM−2 =

(
a2b

4C2

)1/3

,

so the MC term is twice as big as the bias term.
Lecture 1 – p. 14/54

Path-dependent Options

For European options, Euler-Maruyama method has O(h)
weak convergence.

However, for some path-dependent options it may give only
O(

√
h) weak convergence, unless the numerical payoff is

constructed carefully.

Lecture 1 – p. 15/54

Barrier option

A down-and-out call option has discounted payoff

exp(−rT) (ST −K)+1mint S(t)>B

i.e. it is like a standard call option except that it pays nothing
if the minimum value drops below the barrier B.

The natural numerical discretisation of this is

f = exp(−rT) (ŜM −K)+1
minn Ŝn>B

Lecture 1 – p. 16/54

Barrier option

Numerical demonstration: Geometric Brownian Motion

dSt = r St dt+ σ St dWt

r = 0.05, σ = 0.5, T = 1

Down-and-out call: S0 = 100,K = 110, B = 90.

Plots shows weak error versus analytic expectation using
106 paths, and difference from 2h approximation using
105 paths.

(We don’t need as many paths as before because the weak
errors are much larger in this case.)

Lecture 1 – p. 17/54

Barrier option

10
−1

10
−1

10
0

10
1

Barrier weak convergence −− comparison to exact solution

h

E
rr

o
r

 Weak error

 MC error

Lecture 1 – p. 18/54

Barrier option

10
−2

10
−1

10
−1

10
0

Barrier weak convergence −− difference from 2h approximation

h

E
rr

o
r

 Weak error

 MC error

Lecture 1 – p. 19/54

Lookback option

A floating-strike lookback call option has discounted payoff

exp(−rT)

(
ST −min

[0,T]
St

)

The natural numerical discretisation of this is

f = exp(−rT)
(
ŜM −min

n
Ŝn

)

Lecture 1 – p. 20/54

Lookback option

10
−1

10
−1

10
0

10
1

Lookback weak convergence −− comparison to exact solution

h

E
rr

o
r

 Weak error

 MC error

Lecture 1 – p. 21/54

Lookback option

10
−2

10
−1

10
−2

10
−1

10
0

10
1
Lookback weak convergence −− difference from 2h approximation

h

E
rr

o
r

 Weak error

 MC error

Lecture 1 – p. 22/54

Brownian Bridge

To recover O(h) weak convergence we first need some
theory.

Consider simple Brownian motion

dSt = a dt+ b dWt

with constant a, b and initial data S0=0.

Question: given ST , what is conditional probability density
for ST/2?

Lecture 1 – p. 23/54

Conditional probability

With discrete probabilities,

P (A|B) =
P (A ∩ B)

P (B)

Similarly, with probability density functions

p1(x|y) =
p2(x, y)

p3(y)

where

p1(x|y) is the conditional p.d.f. for x, given y

p2(x, y) is the joint probability density function for x, y

p3(y) is the probability density function for y
Lecture 1 – p. 24/54

Brownian bridge

In our case,
y ≡ ST , x ≡ ST/2

p2(x, y) =
1√
π T b

exp

(
− (x− aT/2)2

b2 T

)

× 1√
π T b

exp

(
− (y − x− aT/2)2

b2 T

)

p3(y) =
1√

2π T b
exp

(
− (y − aT)2

2 b2 T

)

=⇒ p1(x|y) =
1√

π T/2 b
exp

(
− (x− y/2)2

b2 T/2

)

Hence, x is Normally distributed with mean y/2 and
variance b2T/4. Lecture 1 – p. 25/54

Brownian bridge

Extending this to a particular timestep with endpoints Sn

and Sn+1, conditional on these the mid-point is Normally
distributed with mean

1
2 (Sn + Sn+1)

and variance b2h/4.

We can take a sample from this conditional p.d.f. and then
repeat the process, recursively bisecting each interval to fill
in more and more detail.

Note: the drift a is irrelevant, given the two endpoints.
Because of this, we will take a = 0 in the next bit of theory.

Lecture 1 – p. 26/54

Barrier crossing

Consider zero drift Brownian motion with S0>0.

If the path St hits a barrier at 0, it is equally likely thereafter
to go up or down. Hence, by symmetry, for s > 0, the p.d.f.
for paths with ST = s after hitting the barrier is equal to the
p.d.f. for paths with ST = −s.

Thus, for ST > 0,

P (hit barrier |ST) =
exp

(
− (−ST−S0)

2

2b2T

)

exp
(
− (ST−S0)2

2b2T

)

= exp

(
− 2ST S0

b2T

)

Lecture 1 – p. 27/54

Barrier crossing

For a timestep [tn, tn+1] and non-zero barrier B this
generalises to

P (hit barrier |Sn, Sn+1 > B) = exp

(
− 2 (Sn+1−B) (Sn−B)

b2h

)

This can also be viewed as the cumulative probability
P (Smin < B) where Smin = min

[tn,tn+1]
S(t).

Since this is uniformly distributed on [0, 1] we can equate
this to a uniform [0, 1] random variable Un and solve to get

Smin = 1
2

(
Sn+1 + Sn −

√
(Sn+1−Sn)2 − 2 b2h logUn

)

Lecture 1 – p. 28/54

Barrier crossing

For a barrier above, we have

P (hit barrier |Sn, Sn+1 < B) = exp

(
− 2 (B−Sn+1) (B−Sn)

b2h

)

and hence

Smax = 1
2

(
Sn+1 + Sn +

√
(Sn+1−Sn)2 − 2 b2h logUn

)

where Un is again a uniform [0, 1] random variable.

Lecture 1 – p. 29/54

Barrier option

Returning now to the barrier option, how do we define the
numerical payoff f̂(Ŝ)?

First, calculate Ŝn as usual using Euler-Maruyama method.

Second, two alternatives:

use (approximate) probability of crossing the barrier

directly sample (approximately) the minimum in each
timestep

Lecture 1 – p. 30/54

Barrier option

Alternative 1: treating the drift and volatility as being
approximately constant within each timestep, the probability
of having crossed the barrier within timestep n is

Pn = exp

(
− 2 (Ŝn+1−B)+ (Ŝn−B)+

b2(Ŝn, tn) h

)

Probability at end of not having crossed barrier is∏

n

(1− Pn) and so the payoff is

f̂(Ŝ) = exp(−rT) (ŜM −K)+
∏

n

(1− Pn).

I prefer this approach because it is differentiable – good for
Greeks Lecture 1 – p. 31/54

Barrier option

Alternative 2: again treating the drift and volatility as being
approximately constant within each timestep, define the
minimum within timestep n as

M̂n = 1
2

(
Ŝn+1 + Ŝn −

√
(Ŝn+1−Ŝn)2 − 2 b2(Ŝn, tn)h logUn

)

where the Un are i.i.d. uniform [0, 1] random variables.

The payoff is then

f̂(Ŝ) = exp(−rT) (ŜM −K)+ 1
minn M̂n>B

With this approach one can stop the path calculation as
soon as one M̂n drops below B.

Lecture 1 – p. 32/54

Weak convergence

Barrier: comparison to solution

h

10 -1

E
rr

o
r

10
-3

10
-2

10
-1

10
0

 Weak error

 MC error

Lecture 1 – p. 33/54

Weak convergence

Barrier: h versus 2h solution

h

10
-2

10
-1

E
rr

o
r

10
-3

10
-2

10
-1

 Weak error

 MC error

Lecture 1 – p. 34/54

Lookback option

This is treated in a similar way to Alternative 2 for the
barrier option.

We construct a minimum M̂n within each timestep and then
the payoff is

f̂(Ŝ) = exp(−rT)
(
ŜM −min

n
M̂n

)

This is differentiable, so good for Greeks – unlike
Alternative 2 for the barrier option.

Lecture 1 – p. 35/54

Weak convergence

Lookback: comparison to true solution

h

10
-1

E
rr

o
r

10
-2

10
-1

10
0

 Weak error

 MC error

Lecture 1 – p. 36/54

Weak convergence

Lookback: h versus 2h solution

h

10
-2

10
-1

E
rr

o
r

10
-2

10
-1

10
0 Weak error

 MC error

Lecture 1 – p. 37/54

Final Words

Euler-Maruyama gives O(h) weak convergence for
European options

Mean Square Error analysis shows how to balance
weak errors and Monte Carlo sampling errors

“natural” approximation of barrier and lookback options
leads to poor O(

√
h) weak convergence due to O(

√
h)

path variation within each timestep

improved treatment based on Brownian bridge theory
approximates behaviour within timestep as simple
Brownian motion with constant drift and volatility
– gives O(h) weak convergence

Lecture 1 – p. 38/54

Quasi-Monte Carlo

You have previously learned about Quasi-Monte Carlo for
European options based on Geometric Brownian Motion, so
the underlying can be directly simulated at the final time T .

Now consider path-dependent options which require us to
simulate the underlying asset(s) by approximating the SDE.

Same ingredients:

Sobol or lattice rule quasi-uniform generators

Z = Φ−1(U) to convert quasi-uniform random numbers
to quasi-Normal random numbers

PCA (Principal Component Analysis) to best use QMC
inputs for multi-dimensional applications

randomised QMC to regain confidence interval

New ingredient:

Lecture 1 – p. 39/54

Quasi-Monte Carlo

For a scalar SDE, using Euler-Maruyama approximation

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

with ∆Wn =
√
hZn, can express expectation as a

multi-dimensional integral with respect to unit Normal inputs

V = E[f̂(Ŝ)] =
∫

f̂(Ŝ) φ(Z) dZ

where φ(Z) is multi-dimensional unit Normal p.d.f.

Putting Zn = Φ−1(Un) turns this into an integral over a
M -dimensional hypercube

V = E[f̂(Ŝ)] =
∫

f̂(Ŝ) dU
Lecture 1 – p. 40/54

Quasi-Monte Carlo

This is then approximated as

N−1
∑

n

f̂(Ŝ(n))

and each path calculation involves the computations

U → Z → ∆W → Ŝ → f̂

The key step here is the second, how best to convert the
vector Z into the vector ∆W .

With standard Monte Carlo, as long as ∆W has the correct
distribution, how it is generated is irrelevant, but with QMC it
does matter.

Lecture 1 – p. 41/54

Quasi-Monte Carlo

For a scalar Brownian motion W (t) with W (0)=0, defining
Wn=W (nh), each Wn is Normally distributed and for j ≥ k

E[Wj Wk] = E[W 2
k] + E[(Wj−Wk)Wk] = tk

since Wj−Wk is independent of Wk. Hence, the covariance
matrix for W is Ω with elements

Ωj,k = min(tj , tk)

Given a vector of uncorrelated units Normals Z, can define
W as

W = L Z,

where
Ω = E[WW T] = E[LZ ZTLT] = LLT .

Lecture 1 – p. 42/54

Quasi-Monte Carlo

The task now is to find a matrix L such that

LLT = Ω = h

1 1 . . . 1 1

1 2 . . . 2 2

.

1 2 . . . M−1 M−1

1 2 . . . M−1 M

We will consider 3 possibilities:

Cholesky factorisation

PCA

Brownian Bridge treatment

Lecture 1 – p. 43/54

Cholesky factorisation

The Cholesky factorisation gives

L =
√
h

1 0 . . . 0 0

1 1 . . . 0 0

.

1 1 . . . 1 0

1 1 . . . 1 1

and hence

Wn =

n∑

m=1

√
h Zm =⇒ ∆Wn = Wn −Wn−1 =

√
h Zn

i.e. standard MC approach

Lecture 1 – p. 44/54

PCA construction

The PCA construction uses

L = U Λ1/2 =
(

U1 U2 . . .
)

λ
1/2
1

λ
1/2
2

. . .

with the eigenvalues λn and eigenvectors Un arranged in
descending order, from largest to smallest.

Numerical computation of the eigenvalues and eigenvectors
is costly for large numbers of timesteps, so instead use
theory due to Åkesson and Lehoczky (1998)

Lecture 1 – p. 45/54

PCA construction

It is easily verified that

Ω−1 = h−1

2 −1

−1 2 −1

−1 2 −1

.

−1 2 −1

−1 2 −1

−1 1

.

This looks like the finite difference operator approximating
a second derivative, and so the eigenvectors are Fourier
modes.

Lecture 1 – p. 46/54

PCA construction

The eigenvectors of both Ω−1 and Ω are

(Um)n =
2√

2M + 1
sin

(
(2m−1)nπ

2M+1

)

and the eigenvalues of Ω are the reciprocal of those of Ω−1,

λm =
h

4

(
sin

(
(2m−1) π

2 (2M+1)

))−2

Because the eigenvectors are Fourier modes, an efficient
FFT transform can be used (Scheicher, 2006) to compute

L Z = U
(
Λ1/2 Z

)
=
∑

m

(
√

λm Zm)Um

Lecture 1 – p. 47/54

Brownian Bridge construction

The Brownian Bridge construction uses the theory already
developed.

The final Brownian value is constructed using Z1:

WM =
√
T Z1

Conditional on this, the midpoint value WM/2 is Normally
distributed with mean 1

2WM and variance T/4, and so can
be constructed as

WM/2 =
1
2WM +

√
T/4 Z2

Lecture 1 – p. 48/54

Brownian Bridge construction

The quarter and three-quarters points can then be
constructed as

WM/4 = 1
2WM/2 +

√
T/8 Z3

W3M/4 = 1
2(WM/2 +WM) +

√
T/8 Z4

and the procedure continued recursively until all Brownian
values are defined.

(This assumes M is a power of 2 – if not, the
implementation is slightly more complex)

I have a slight preference for this method because it is
particularly effective for European options for which ST is
very strongly dependent on W (T).

Lecture 1 – p. 49/54

Numerical results

Usual European call test case based on geometric
Brownian motion:

128 timesteps so weak error is negligible

comparison between
QMC using Brownian Bridge
QMC without Brownian Bridge
standard MC

QMC calculations use Sobol points

all calculations use 64 “sets” of points – for QMC calcs,
each has a different random offset

plots show error and 3 s.d. error bound

Lecture 1 – p. 50/54

QMC with Brownian Bridge

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound

Lecture 1 – p. 51/54

QMC without Brownian Bridge

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound

Lecture 1 – p. 52/54

Standard Monte Carlo

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound

Lecture 1 – p. 53/54

Final words

QMC offers large computational savings over the
standard Monte Carlo approach

again advisable to use randomised QMC to regain
confidence intervals, at the cost of slightly poorer
accuracy

very important to use PCA or Brownian Bridge
construction to create discrete Brownian increments
– much better than “standard” approach which is
equivalent to Cholesky factorisation of covariance
matrix

for multi-dimensional SDEs, combine Brownian Bridge
construction in time, with PCA for correlation between
multiple assets.

Lecture 1 – p. 54/54

Monte Carlo Methods
Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 2 – p. 1/49

Greeks

In Monte Carlo applications we don’t just want to know the
expected discounted value of some payoff

V = E[f(S(T))]

We also want to know a whole range of “Greeks”
corresponding to first and second derivatives of V with
respect to various parameters:

∆ =
∂V

∂S0
, Γ =

∂2V

∂S2
0

,

ρ =
∂V

∂r
, Vega =

∂V

∂σ
.

Lecture 2 – p. 2/49

Greeks

The Greeks are needed for hedging and risk analysis.

Whereas prices can be obtained to some extent from
market prices, simulation is the only way to determine the
Greeks.

You have already learned about estimating Greeks by finite
differences, so we now discuss 2 alternatives:

likelihood ratio method

pathwise sensitivities

Lecture 2 – p. 3/49

Likelihood ratio method

Defining p(S) to the probability density function for the final
state ST , then

V = E[f(ST)] =
∫
f(S) p(S) dS,

=⇒ ∂V

∂θ
=

∫
f
∂p

∂θ
dS =

∫
f
∂(log p)

∂θ
p dS = E

[
f
∂(log p)

∂θ

]

The quantity
∂(log p)

∂θ
is sometimes called the “score

function”.

Lecture 2 – p. 4/49

Likelihood ratio method

Note that when f = 1, we get

∂

∂θ
E[1] = 0

and therefore

E
[
∂(log p)

∂θ

]
= 0

This is a handy check to make sure we have derived the
score function correctly.

Lecture 2 – p. 5/49

Likelihood ratio method

Example: GBM with arbitrary payoff f(ST).

For the usual Geometric Brownian motion with constants
r, σ, the final log-normal probability distribution is

p(S) =
1

Sσ
√
2πT

exp

[
−1

2

(
log(S/S0)− (r − 1

2σ
2)T

σ
√
T

)2
]

log p = − log S−log σ−1
2 log(2πT)−1

2

(
log(S/S0)− (r − 1

2σ
2)T
)2

σ2T

=⇒ ∂ log p

∂S0
=

log(S/S0)− (r − 1
2σ

2)T

S0σ2T

Lecture 2 – p. 6/49

Likelihood ratio method

Hence

∆ = E
[
log(S/S0)− (r − 1

2σ
2)T

S0 σ2T
f(ST)

]

In the Monte Carlo simulation,

log(S/S0)− (r − 1
2σ

2)T = σW (T)

so the expression can be simplified to

∆ = E
[
W (T)

S0 σ T
f(ST)

]

– very easy to implement so you estimate ∆ at the same
time as estimating the price V

Lecture 2 – p. 7/49

Likelihood ratio method

Similarly for vega we have

∂ log p

∂σ
= − 1

σ
− log(S/S0)− (r − 1

2σ
2)T

σ

+

(
log(S/S0)− (r − 1

2σ
2)T
)2

σ3T

and hence

vega = E
[(

1

σ

(
W (T)2

T
− 1

)
−W (T)

)
f(ST)

]

Lecture 2 – p. 8/49

Likelihood ratio method

In both cases, the variance is very large when σ is small,
and it is also large for ∆ when T is small.

More generally, LRM is usually the approach with the
largest variance.

Lecture 2 – p. 9/49

Likelihood ratio method

To get second derivatives, note that

∂2 log p

∂θ2
=

∂

∂θ

(
1

p

∂p

∂θ

)
=

1

p

∂2p

∂θ2
− 1

p2

(
∂p

∂θ

)2

=⇒ 1

p

∂2p

∂θ2
=

∂2 log p

∂θ2
+

(
∂ log p

∂θ

)2

and hence

∂2V

∂θ2
= E

[(
∂2 log p

∂θ2
+

(
∂ log p

∂θ

)2
)
f(ST)

]

Lecture 2 – p. 10/49

Likelihood ratio method

In the multivariate extension, X = log ST can be written as

X = µ+ LZ

where µ is the mean vector, Σ=LLT is the covariance
matrix and Z is a vector of uncorrelated Normals. The joint
p.d.f. is

log p = −1
2 log |Σ| − 1

2(X−µ)TΣ−1(X−µ)− 1
2d log(2π).

and after a lot of algebra we obtain

∂ log p

∂µ
= L−TZ,

∂ log p

∂Σ
= 1

2 L
−T (ZZT−I

)
L−1

Lecture 2 – p. 11/49

Likelihood Ratio Method

Extending this to a SDE path simulation with M timesteps,
with the payoff a function purely of the discrete states Ŝn,
we have the M -dimensional integral

V = E[f̂(Ŝ)] =
∫
f̂(Ŝ) p(Ŝ) dŜ,

where dŜ ≡ dŜ1 dŜ2 dŜ3 . . . dŜM

and p(Ŝ) is the product of the p.d.f.s for each timestep

p(Ŝ) =
∏

n

pn(Ŝn+1|Ŝn)

log p(Ŝ) =
∑

n

log pn(Ŝn+1|Ŝn)

Lecture 2 – p. 12/49

Likelihood Ratio Method

For the Euler-Maruyama approximation of Geometric
Brownian Motion,

log pn = − log Ŝn− log σ− 1
2 log(2πh)− 1

2

(
Ŝn+1 − Ŝn(1+r h)

)2

σ2 Ŝ2
n h

=⇒ ∂(log pn)

∂σ
= − 1

σ
+

(
Ŝn+1 − Ŝn(1+r h)

)2

σ3 Ŝ2
n h

=
Z2
n − 1

σ

where Zn is the unit Normal defined by

Ŝn+1 − Ŝn(1+r h) = σ Ŝn
√
hZn

Lecture 2 – p. 13/49

Likelihood Ratio Method

Hence, the approximation of Vega is

∂

∂σ
E[f(ŜM)] = E

[(∑

n

Z2
n−1

σ

)
f(ŜM)

]

Note that again this gives zero for f(S) ≡ 1.

Note also that V[Z2
n − 1] = 2 and therefore

V

[(∑

n

Z2
n−1

σ

)
f(ŜM)

]
= O(M) = O(T/h)

This O(h−1) blow-up is the great drawback of the LRM.
Lecture 2 – p. 14/49

Pathwise sensitivities

Start instead with

V ≡ E [f(ST)] =

∫
f(ST) pW (W) dW

and differentiate this to get

∂V

∂θ
=

∫
∂f

∂S

∂ST
∂θ

pW dW = E
[
∂f

∂S

∂ST
∂θ

]

with ∂ST /∂θ being evaluated at fixed W .

Note: this derivation needs f(S) to be differentiable, but by
considering the limit of a sequence of smoothed
(regularised) functions can prove it’s OK provided f(S) is
continuous and piecewise differentiable

Lecture 2 – p. 15/49

Pathwise sensitivities

This leads to the estimator

1

N

N∑

i=1

∂f

∂S
(S(i))

∂S(i)

∂θ

which is the derivative of the usual price estimator

1

N

N∑

i=1

f(S(i))

Gives incorrect estimates when f(S) is discontinuous.

e.g. for digital put
∂f

∂S
= 0 so estimated value of Greek is

zero – clearly wrong.
Lecture 2 – p. 16/49

Pathwise sensitivities

Extension to second derivatives is straightforward

∂2V

∂θ2
=

∫ {
∂2f

∂S2

(
∂ST
∂θ

)2

+
∂f

∂S

∂2ST
∂θ2

}
pW dW

= E

[
∂2f

∂S2

(
∂ST
∂θ

)2

+
∂f

∂S

∂2ST
∂θ2

]

with ∂2ST /∂θ2 also being evaluated at fixed W .

However, this requires f(S) to have a continuous first
derivative – a problem in practice

Lecture 2 – p. 17/49

Pathwise sensitivities

To handle payoffs which do not have the necessary
continuity/smoothness one can modify the payoff

For digital options it is common to use a piecewise linear
approximation to limit the magnitude of ∆ near maturity
– avoids large transaction costs

Bank selling the option will price it conservatively
(i.e. over-estimate the price)

✲

✻

S
K

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

✄
✄
✄
✄
✄
✄
✄✄

Lecture 2 – p. 18/49

Pathwise sensitivities

The standard call option definition can be smoothed by
integrating the smoothed Heaviside function

Hε(S−K) = Φ

(
S−K
ε

)

with ε≪ K, to get

f(S) = (S−K) Φ

(
S−K
ε

)
+

ε√
2π

exp

(
− (S−K)2

2 ε2

)

This will allow the calculation of Γ and other second
derivatives

Lecture 2 – p. 19/49

Pathwise Sensitivity

To allow for possibility of calculating sensitivity to changes
in correlation, better to start with integral with respect to unit
Normal Z:

V = E[f(ST)] =
∫
f(ST) φ(Z) dZ

where φ(Z) is unit Normal p.d.f.

Differentiation then gives

∂V

∂θ
= E

[
∂f

∂S

∂ST
∂θ

]

with ∂ST /∂θ being evaluated at fixed Z.

Lecture 2 – p. 20/49

Pathwise Sensitivity

In the multiple dimensional GBM case,

Si(T) = Si(0) exp((r − 1
2σ

2
i)T + σi

√
T (LZ)i)

where LLT is the correlation matrix for dW , and the
components of Z are i.i.d. unit Normals.

Hence for vega, we have

∂Si
∂σi

∣∣∣∣
Z

= Si(T)
(
−σiT +

√
T (LZ)i

)

Lecture 2 – p. 21/49

Pathwise Sensitivity

The extension to SDE path simulations is quite natural, with

V = E[f̂(Ŝ)] =
∫
f̂(Ŝ(Z)) φ(Z) dZ

where dZ ≡ dZ0 dZ1 dZ2 . . . dZM−1 and φ(Z) is the

product of the unit Normal p.d.f.’s φ(Z) =
∏

n

φ(Zn)

Differentiation then gives

∂V

∂θ
= E

[
∂f̂

∂Ŝ

∂Ŝ

∂θ

]
≡ E

[∑

m

∂f̂

∂Ŝm

∂Ŝm
∂θ

]

with ∂Ŝ/∂θ being evaluated at fixed Z.
Lecture 2 – p. 22/49

Pathwise Sensitivity

For a scalar GBM, defining ŝn ≡ ∂Ŝn
∂σ

then differentiating the

initial data Ŝ0 = S(0) gives ŝ0 = 0, and differentiating

Ŝn+1 = Ŝn (1 + r h+ σ
√
hZn)

gives
ŝn+1 = ŝn (1 + r h+ σ

√
hZn) + Ŝn

√
hZn

and then

Vega = E

[
∂f̂

∂Ŝ
ŝ

]
≡ E

[∑

m

∂f̂

∂Ŝm
ŝm

]

Lecture 2 – p. 23/49

Pathwise Sensitivity

As h→ 0,

ŝm → ∂St
∂σ

so the approximate path sensitivity tends to the true value,
and hence both the expectation and variance of

∂f̂

∂Ŝ
ŝ

converge to the expectation and variance of

∂f

∂σ

Thus, there is no variance “blow-up”.

Lecture 2 – p. 24/49

Final Words

Estimating Greeks is an important task:

LRM can handle discontinuous payoffs, but a little
complicated for multivariate case, and the variance
blows up as h→ 0

pathwise sensitivity is usually the best approach
(simplest, lowest variance and least cost) when it is
applicable – needs continuous payoff for first derivatives

payoff smoothing can be used to make pathwise
approach applicable to discontinuous payoffs and for
second derivatives

alternatively, combine pathwise sensitivity with finite
differences for second derivatives – e.g. use pathwise
to compute ∆, then finite difference this to get Γ

Lecture 2 – p. 25/49

Early Exercise

Perhaps the biggest challenge for Monte Carlo methods is
the accurate and efficient pricing of options with optional
early exercise:

Bermudan options: can exercise at a finite number of
times tj
American options: can exercise at any time

The challenge is to find/approximate the optimal strategy
(i.e. when to exercise) and hence determine the price and
Greeks.

Lecture 2 – p. 26/49

Early Exercise

Approximating the optimal exercise boundary introduces
new approximation errors:

an approximate exercise boundary is inevitably
sub-optimal
=⇒ under-estimate of “true” value, but accurate value
for the sub-optimal strategy

for the option buyer, sub-optimal price reflects value
achievable with sub-optimal strategy

for the option seller, “true” price is best a purchaser
might achieve

can also derive an upper bound approximation

Lecture 2 – p. 27/49

Early Exercise

upper bound

true value

lower bound

X

X

overall
confidence

interval

Lecture 2 – p. 28/49

Early Exercise

Why is early exercise so difficult for Monte Carlo methods?

leads naturally to a dynamic programming formulation
working backwards in time

fairly minor extension for finite difference methods
which already march backwards in time

doesn’t fit well with Monte Carlo methods which go
forwards in time

Lecture 2 – p. 29/49

Problem Formulation

Following description in Glasserman’s book, “Monte Carlo
Methods in Financial Engineering” the Bermudan problem
has the dynamic programming formulation:

Ṽm(x) = h̃m(x)

Ṽi−1(x) = max
(
h̃i−1(x),E[Di−1,i Ṽi(Xi) | Xi−1 = x]

)

where

Xi is the underlying at exercise time ti

Ṽi(x) is option value at time ti assuming not previously
exercised

h̃i(x) is exercise value at time ti
Di−1,i is the discount factor for interval [ti−1, ti]

Lecture 2 – p. 30/49

Problem Formulation

By defining

hi(x) = D0,i h̃i(x)

Vi(x) = D0,i Ṽi(x)

where
D0,i = D0,1 D1,2 . . . Di−1,i

can simplify the formulation to

Vm(x) = hm(x)

Vi−1(x) = max (hi−1(x),E[Vi(Xi) | Xi−1 = x])

Lecture 2 – p. 31/49

Problem Formulation

An alternative point of view considers stopping rules τ ,
the time at which the option is exercised.

For a particular stopping rule, the initial option value is

V0(X0) = E[hτ (Xτ)],

the expected value of the option at the time of exercise.

The best that can be achieved is then

V0(X0) = sup
τ

E[hτ (Xτ)]

giving an optimisation problem.

Lecture 2 – p. 32/49

Problem Formulation

The continuation value is

Ci(x) = E[Vi+1(Xi+1) | Xi = x]

and so the optimal stopping rule is

τ = min {i : hi(Xi) > Ci(Xi)}

Approximating the continuation value leads to an
approximate stopping rule.

Lecture 2 – p. 33/49

Longstaff-Schwartz Method

The Longstaff-Schwartz method (2001) is the one most
used in practice.

Start with N path simulations, each going from initial time
t=0 to maturity t=T = tm.

Problem is to assign a value to each path, working out
whether and when to exercise the option.

This is done by working backwards in time, approximating
the continuation value.

Lecture 2 – p. 34/49

Longstaff-Schwartz Method

At maturity, the value of an option is

Vm(Xm) = hm(Xm)

At the previous exercise date, the continuation value is

Cm−1(x) = E[Vm(Xm) | Xm−1 = x]

This is approximated using a set of R basis functions as

Ĉm−1(x) =

R∑

r=1

βr ψr(x)

Lecture 2 – p. 35/49

Longstaff-Schwartz Method

The coefficients βr are obtained by a least-squares
minimisation, minimising

E
{(

E[Vm(Xm) | Xm−1]− Ĉm−1(Xm−1)
)2}

Setting the derivative w.r.t. βr to zero gives

E
{(

E[Vm(Xm) | Xm−1]− Ĉm−1(Xm−1)
)
ψr(Xm−1)

}
= 0

and hence

E[Vm(Xm) ψr(Xm−1)] = E[Ĉm−1(Xm−1) ψr(Xm−1)]

=
∑

s

E[ψr(Xm−1) ψs(Xm−1)] βs

Lecture 2 – p. 36/49

Longstaff-Schwartz Method

This set of equations can be written collectively as

Bψψ β = BV ψ

where
(BV ψ)r = E[Vm(Xm)ψr(Xm−1)]

(Bψψ)rs = E[ψr(Xm−1)ψs(Xm−1)]

Therefore,
β = B−1

ψψ BV ψ

Lecture 2 – p. 37/49

Longstaff-Schwartz Method

In the numerical approximation, each of the expectations is
replaced by an average over the values from the N paths.

For example,
E[ψr(Xm−1)ψs(Xm−1)]

is approximated as

N−1
N∑

n=1

ψr(X
(n)
m−1) ψs(X

(n)
m−1)

Assuming that the number of paths is much greater than
the number of basis functions, the main cost is in
approximating Bψψ with a cost which is O(N R2).

Lecture 2 – p. 38/49

Longstaff-Schwartz Method

Once we have the approximation for the continuation value,
what do we do?

if Ĉ(Xm−1) < hm−1(Xm−1), exercise the option and set

Vm−1 = hm−1(Xm−1)

if not, then set
Vm−1 = Ĉ(Xm−1)

(Tsitsiklis & van Roy, 1999), or

Vm−1 = Vm

(Longstaff & Schwartz, 2001)

Lecture 2 – p. 39/49

Longstaff-Schwartz Method

The Longstaff-Schwartz treatment only uses the
continuation estimate to decide on the exercise boundary

no loss of accuracy for paths which are not exercised
reduces to standard Monte Carlo estimate for
European option if there is no early exercise

as an extra bonus, only need to estimate Ĉ(x) for paths
which are in-the-money (i.e. h(x) > 0)

approximating Ĉ(x) for a smaller range of x can be
done more accurately for a given number of basis
functions

Lecture 2 – p. 40/49

Longstaff-Schwartz Method

Provided the basis functions are chosen suitably, the
approximation

Ĉm−1(x) =

R∑

r=1

βr ψr(x)

gets increasingly accurate as R → ∞ – Longstaff &
Schwartz used 5-20 basis functions in their paper.

Having completed the calculation for tm−1, repeat the
procedure for tm−2 then tm−3 and so on. Could use different
basis functions for each exercise time – the coefficients β
will certainly be different.

Lecture 2 – p. 41/49

Longstaff-Schwartz Method

The estimate will tend to be biased low because of the
sub-optimal exercise boundary, however might be biased
high due to using the same paths for decision-making and
valuation.

To be sure of being biased low, should use two sets of
paths, one to estimate the continuation value and exercise
boundary, and the other for the valuation.

This leaves the problem of computing an upper bound.

Lecture 2 – p. 42/49

Upper Bounds

In Glasserman’s Bermudan version of Roger’s continuous
time result (2002), he lets Mm be a martingale with M0=0.

For any stopping rule τ , we have

E[hτ (Xτ)] = E[hτ (Xτ)−Mτ] ≤ E[max
k

(hk(Xk)−Mk)]

This is true for all martingales M and all stopping rules τ
and hence

V0(X0) = sup
τ

E[hτ (Xτ)] ≤ inf
M

E[max
k

(hk(Xk)−Mk)]

Lecture 2 – p. 43/49

Upper Bounds

The key duality result is that in fact there is equality

sup
τ

E[hτ (Xτ)] = inf
M

E[max
k

(hk(Xk)−Mk)]

so that

an arbitrary τ gives a lower bound

an arbitrary M gives an upper bound

making both of them “better” shrinks the gap between
them to zero

Lecture 2 – p. 44/49

Upper Bounds

Glasserman proves by induction that the optimal martingale
M is equal to

Mk =

k∑

1

(
Vi(Xi)− E[Vi(Xi) | Xi−1]

)

To get a good upper bound we approximate this martingale.

Lecture 2 – p. 45/49

Upper Bounds

The approximate martingale for a particular path is defined
as

M̂k =

k∑

1

(
Vi(Xi)− P−1

∑

p

Vi(X
(p)
i)

)

where the X(p)
i are values for Xi from P different mini-paths

starting at Xi−1, and

Vi(Xi) = max(hi(Xi), Ĉi(Xi))

with Ĉi(Xi) being the approximate continuation value given
by the Longstaff-Schwartz algorithm.

Glasserman suggests up to 100 mini-paths may be needed.

Lecture 2 – p. 46/49

Numerical results

Single asset, Geometric Brownian Motion: r = 0.05,
σ = 0.2, T = 1

American put option: S0 = 1, K = 1

explicit finite difference method used to give “true value”

Longstaff-Schwartz method uses 64 timesteps,
105 paths, 3 basis functions: 1, x−1, (x−1)2

Computed values:

method value err. bnd
finite difference method 0.0609 ???

Longstaff-Schwartz, first set 0.0605 ± 0.0006
Longstaff-Schwartz, second set 0.0609 ± 0.0006

Lecture 2 – p. 47/49

Numerical results

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
American put option

Lecture 2 – p. 48/49

Final Words

Bermudan and American options are important
applications

Longstaff-Schwartz method is popular, but maybe still
scope for improvement

finite difference method (bumping) is probably used for
Greeks

is second independent set of paths used in practice?

are upper bounds used in practice?

Lecture 2 – p. 49/49

