$a + ar + ar^2 + \dots + ar^{n-1}$	Pythagoras $a^2 + b^2 = c^2$
$a + ar + ar^2 + ar^3 + \dots$	$\cos x$
$a + (a + d) + (a + 2d) + \cdots + (a + (n - 1)d)$	$\sin x$
$\cos^2(x)$	$-\sin x$
$\sin^2 x$	$\cos x$

	Geometric series $\frac{a\left(1-r^{n}\right)}{1-r} \text{if} r \neq 1.$
$\sin(90^{\circ} - x)$	Sum to infinity of a geometric sequence, equals $\frac{a}{1-r} \text{if} r < 1,$ diverges otherwise.
$\cos(90^{\circ} - x)$	Arithmetic series $\frac{n}{2} (2a + (n-1)d)$
$\sin(-x)$	$1 - \sin^2 x$
$\cos(-x)$	$1 - \cos^2 x$

$(x-a)^2 + (y-b)^2 = r^2$	$\frac{1}{2}ab\sin\theta$
The lines	•
$y = m_1 x + c_1$ and	Cosine rule
	$c^2 = a^2 + b^2 - 2ab\cos\theta$
$y = m_2 x + c_2$	
are perpendicular	
The lines	•
$y = m_1 x + c_1$	Sine rule
and	$\frac{\sin \theta}{\theta} = \frac{\sin \phi}{\theta}$
$y = m_2 x + c_2$	c b
are parallel	
	$y = m(x - x_1) + y_1$
	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

f(x + a)	$b = a^c$
f(ax)	ax^{a-1}
f(ax + b)	ke^{kx}
$(a^m)^n$	The line with gradient $f'(a)$ and value $f(a)$ at $x = a$; $y = f'(a)(x - a) + f(a)$
$(a^m)(a^n)$	The line with gradient $\frac{-1}{f'(a)}$ and value $f(a)$ at $x = a$; $y = \frac{a - x}{f'(a)} + f(a)$

$\log_a b = c$	Translation by a units in the negative direction parallel to the x -axis
$y = x^a$ $\frac{\mathrm{d}y}{\mathrm{d}x} = ?$	Stretch by a factor of $\frac{1}{a}$ parallel to the x -axis
$\frac{y = e^{kx}}{\frac{\mathrm{d}y}{\mathrm{d}x}} = ?$	Translation by b units in the negative direction parallel to the x -axis and then a stretch by a factor of $\frac{1}{a}$ parallel to the x -axis
Tangent to $y = f(x)$ at $x = a$	a^{mn}
Normal to $y = f(x)$ at $x = a$	a^{m+n}

Given n independent events, each with probability p of success, what's the probability of exactly r successes?	$\int_{a}^{b} f(x) dx$ where a and b are points with $f(a) = 0$ and $f(b) = 0$ with $a < b$, provided that $f(x) \ge 0 \text{ in } a < x < b.$
When does $ax^{2} + bx + c = 0$ have exactly two real solutions?	f(x) + c for some constant c
The polynomial $p(x)$ has a root at $x = a$	$x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \dots$ $\cdots + \binom{n}{n-2}x^{2}y^{n-2} + \binom{n}{n-1}xy^{n-1} + y^{n}$
The polynomial $p(x)$ has a repeated root at $x = a$	$\binom{n}{r} = \frac{n!}{r!(n-r)!}$
Prime number, p	$\frac{n!}{(n-r)!}$

$\log_a(x^n)$	Complete the square $a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}$
$\log_a(xy)$	Difference of two squares $(a-b)(a+b)$
$\log_a \frac{1}{f(x)}$	$(f(x))^2 \ge 0$ for all x .
Length?	First solve $f'(x) = 0$
Area?	Look for turning points and check $f''(x)$, or try to complete the square. Also, check the ends of the range.

Another way to write $ax^2 + bx + c$	$n \log_a x$
$a^2 - b^2$	$\log_a x + \log_a y$
$(f(x))^2$	$-\log_a f(x)$
Turning point of $f(x)$	$2\pi r \times \frac{\theta}{360^{\circ}}$
Maximum of a function	$\pi r^2 \times \frac{\theta}{360^{\circ}}$

$\cos(180^{\circ} - \theta)$	The gradient of the line AB gets close to the gradient of C at A .
$\sin(180^{\circ} - \theta)$	Consider sketching $y = f(x)$ and $y = g(x).$
$\tan(90^{\circ} - \theta)$	$\cos \theta$
Displacement vector from (x_1, y_1) to (x_2, y_2)	$\sin \theta$
Non-zero vectors a and b are parallel	$\tan \theta$