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Abstract

We are concerned with the Prandtl-Meyer reflection configurations of unsteady global solutions
for supersonic flow impinging upon a symmetric solid wedge. Prandtl (1936) first employed the
shock polar analysis to show that there are two possible steady configurations: the steady weak
shock solution and the strong shock solution, when a steady supersonic flow impinges upon the solid
wedge — the half-angle of which is less than a critical angle (i.e., the detachment angle), and then
conjectured that the steady weak shock solution is physically admissible since it is the one observed
experimentally. The fundamental issue of whether one or both of the steady weak and strong shocks
are physically admissible has been vigorously debated over the past eight decades and has not yet
been settled in a definitive manner. On the other hand, the Prandtl-Meyer reflection configura-
tions are core configurations in the structure of global entropy solutions of the two-dimensional
Riemann problem, while the Riemann solutions themselves are local building blocks and determine
local structures, global attractors, and large-time asymptotic states of general entropy solutions of
multidimensional hyperbolic systems of conservation laws. In this sense, we have to understand the
reflection configurations in order to understand fully the global entropy solutions of two-dimensional
hyperbolic systems of conservation laws, including the admissibility issue for the entropy solutions.
In this monograph, we address this longstanding open issue and present our analysis to establish the
stability theorem for the steady weak shock solutions as the long-time asymptotics of the Prandtl-
Meyer reflection configurations for unsteady potential flow for all the physical parameters up to
the detachment angle. To achieve these, we first reformulate the problem as a free boundary prob-
lem involving transonic shocks and then obtain appropriate monotonicity properties and uniform
a priori estimates for admissible solutions, which allow us to employ the Leray-Schauder degree
argument to complete the theory for all the physical parameters up to the detachment angle.

2010 Mathematics Subject Classification. Primary: 35M10, 35M12, 35R35, 35B65, 35165, 351,70, 35J70, 7T6HO5,
35L67, 35B45, 35B35, 35B40, 35B36, 35B38; Secondary: 35L15, 35120, 35J67, 7T6N10, 76L05, 76J20, 76N20, 76G25.

Key words and phrases. Prandtl-Meyer reflection, Prandtl conjecture, supersonic flow, unsteady flow, steady
flow, solid wedge, nonuniqueness, weak shock solution, strong shock solution, stability, self-similar, global solution,
transonic flow, transonic shock, sonic boundary, free boundary, existence, regularity, long-time asymptotics, de-
tachment angle, admissible solutions, elliptic-hyperbolic mixed type, degenerate elliptic equation, nonlinear PDEs,
monotonicity, a priori estimates, uniform estimates.






CHAPTER 1

Introduction

We are concerned with unsteady global solutions for supersonic flow impinging upon a solid
ramp, which can equivalently be regarded as portraying the symmetric gas flow impinging upon a
solid wedge (by symmetry). When a steady supersonic flow impinges upon the solid wedge — the
half-angle 6, of which is less than a critical angle (i.e., the detachment angle 64), Prandtl first
employed the shock polar analysis to show that there are two possible steady configurations: the
steady weak shock reflection with supersonic or subsonic downstream flow (determined by the wedge
angle that is less or larger than the sonic angle 65 < 4) and the steady strong shock reflection with
subsonic downstream flow, both of which satisfy the entropy conditions, provided that no additional
conditions are assigned downstream; see Courant-Friedrichs [22], von Neumann [41], and Prandtl
[42].

A fundamental issue is whether one or both of the steady weak and strong shocks are physically
admissible. This has been debated vigorously over the past eight decades and has not yet been
settled in a definitive manner (¢f. [22, 23, 39, 41, 44]). On the basis of experimental and numerical
evidence, there are strong indications to show, as Prandtl conjectured (see [3, 40, 42]), that it is
the steady weak shock solution that is physically admissible as the long-time asymptotics of the
Prandtl-Meyer reflection configurations.

Furthermore, the Prandtl-Meyer reflection configurations are solutions of the lateral Riemann
problem (Problem 2.6 below), and are core configurations in the structure of global entropy solutions
of the two-dimensional Riemann problem for hyperbolic conservation laws. On the other hand,
the Riemann solutions are building blocks and determine local structures, global attractors, and
large-time asymptotic states of general entropy solutions of multidimensional hyperbolic systems
of conservation laws (see [4, 5, 6, 11, 32, 35, 36, 37, 43, 49] and the references cited therein).
Consequently, we have to understand the reflection configurations in order to fully understand
global entropy solutions of the two-dimensional hyperbolic systems of conservation laws, including
the admissibility issue for the entropy solutions.

A natural mathematical approach is to single out steady shock reflections by the stability
analysis — the stable ones are physically admissible. It has been shown in the steady regime that
the steady (supersonic or transonic) weak reflection is always structurally stable in Chen-Chen-
Feldman [8] and Chen-Zhang-Zhu [17] with respect to the steady perturbation of both the wedge
slope and the incoming steady upstream flow (even L!-stable for the supersonic weak reflection with
respect to the BV —perturbation of both the wedge slope and the incoming steady upstream flow
as shown in Chen-Li [15]), while the strong reflection is also structurally stable under conditional
perturbations (¢f. Chen-Chen-Feldman [8, 9] and Chen-Fang [19]). The first rigorous unsteady
analysis of the steady supersonic weak shock solution as the long-time behavior of an unsteady
potential flow was due to Elling-Liu [27], who dealt with a class of physical parameters determined
by an assumption for angle 6, less than the sonic angle 65 € (0,6q) (see Chapter 3).
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The purpose of this monograph is to establish the stability theorem for the steady (supersonic
or transonic) weak shock solutions as the long-time asymptotics of the global Prandtl-Meyer re-
flection configurations for unsteady potential flow for all the admissible physical parameters, even
beyond the sonic angle 65, up to the detachment angle 64 > 5. As a corollary, the assumption in
Elling-Liu’s theorem [27] for the case that 6, € (0,6;) is no longer required. The global Prandtl-
Meyer reflection configurations involve two types of transonic flow boundaries: discontinuous and
continuous hyperbolic-elliptic phase transition boundaries for the fluid fields (transonic shocks and
sonic arcs). To establish this theorem, we first reformulate the problem as a free boundary prob-
lem involving transonic shocks and then carefully establish the required appropriate monotonicity
properties and uniform a priori estimates for admissible solutions so that the approach developed
in Chen-Feldman [11] can be employed. This involves several core difficulties in the theory of the
underlying nonlinear PDEs: optimal estimates of solutions of nonlinear degenerate PDEs and cor-
ner singularities (at the corners between the transonic shock as a free boundary and the sonic arcs,
and between the transonic shock and the wedge when the wedge angle 6y, across the sonic angle
0s), in addition to the involved nonlinear PDEs of mixed elliptic-hyperbolic type and free boundary
problems. Some parts of the results have been announced in Bae-Chen-Feldman [2].

More precisely, in Chapter 2, we first formulate the physical problem of supersonic flow im-
pinging upon the solid wedge as an initial-boundary value problem. By using the invariance under
a self-similar scaling and the physical structure of the problem (see Fig. 1.1), the initial-boundary
value problem is reformulated as a boundary value problem in an unbounded domain (Problem
2.9), and further as a free boundary problem (Problem 2.34) for a pseudo-steady potential flow in
a bounded domain in the self-similar coordinates § = (£1,§2) = ¥ for ¢t > 0. Next, we introduce
the notion of admissible solutions that we seek in this monograph for all the admissible physical
parameters (too, ) € Pweak, Where uo, represents the speed of the incoming supersonic flow,
and wug represents the horizontal speed of downstream flow behind a steady weak shock which is
uniquely determined by u., and angle 6y,. For simplicity, the density of incoming supersonic flow
is normalized to be 1 without loss of generality. In §2.3, the existence of admissible solutions for all
(Uoo, Up) € Pweak is stated as one of the main theorems.

sonic

(O.L’UOC)

FIGURE 1.1. Admissible solutions in the (ve,S)—parameters in the rotated co-
ordinates (£1,&2) by angle 6, counterclockwise (Left: 0 < 8 < ﬁs(v""’); Right:
B < B < By,

In order to prove the existence of admissible solutions for all (ue,up) € Pweak by employing
the Leray-Schauder degree argument, the first essential step is to introduce a new parameter set
Ruweak 0 §2.4. Given (Ueo, up) € Piveak, the half-angle by, of the symmetric solid wedge is uniquely
determined. Define vs := U sinfy,. As we will discuss later, ug > 0 represents the horizontal
speed of the downstream flow behind the weak oblique shock So. Then we define 3 € (0, 5) as the
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angle between the wedge boundary and So. Parameters (voo, ) were first introduced in [27]. In
Lemma 2.19, we show that there exists a homeomorphism 7 : PByeak — T (Pweak) =: Rweak. More
importantly, we show that Ryeax is in the form of

Rucak = | {vee} x (0, 87).

Voo >0

This structure of Ryeak enables us to prove the existence of admissible solutions for all 5 € (0, ((iv‘”))

for any fixed vo, > 0 via the Leray-Schauder degree theorem. In particular, for each v, > 0, there
exists an admissible solution for § = 0 and, in §5.3, we prove that the Leray-Schauder fixed
point index of this solution is 1. We also show that, for each vy, > 0, there exists a unique
ﬁg”“’) € (0, é”“’)), called the sonic angle, so that the structure of admissible solutions becomes

different as 3 increases across 5 = B§”°°> (see Fig. 1.1). Finally, we restate both the definition and
existence of admissible solutions for (vee, 8) € Ryeak in §2.5.

In Chapter 3, we establish all the a priori estimates which are essential for solving the free
boundary problem introduced in Chapter 2. Furthermore, the a priori estimates are achieved
uniformly on parameters (v, ). In particular, this chapter contains the following estimates:

(i) Strict directional monotonicity properties of g — ©;
(ii) Strict directional monotonicity properties of ¢ — o and ¢ — po;
(ili) Uniform positive lower bound of the distance between I'shock and I'yedge away from the
wedge vertex;
(iv) Uniform positive lower bound of dist(Tshock, 9B1(0, —vs0));
(v) Uniform estimates of the ellipticity of equation N(p) = 0 in £, given in (1.1) below;
(vi) Uniform weighted C%% estimates of admissible solutions in 2.

In the above, ¢, o, and par represent the pseudo-velocity potential functions for the state of
incoming supersonic flow, the state behind the oblique shock Sp, and the state behind the normal
shock Sy, respectively. Moreover, 9B1(0, —voo) is the sonic circle of the incoming supersonic flow:

0B1(0, —vo) = {€ € R : | Dy (€)] = 1}.

For fixed v, > 0 and 0 < 8 < B§”°°), let © be the bounded region enclosed by I‘Smic, Tshock,
N .., and & = 0 in Fig. 1.1. In order to find an admissible solution in the sense of Definition

2.24, we need to solve the following free boundary problem for (¢, I'shock):

N(p) = div(p(|D¢[*, 9) Dp) + 2p(|Dp[*,) =0 in Q,
¢ =0, p(ID@>,0)Dp-v = Dpoo-v  on Lanock,
(1.1) 0= o on 'Y

sonic?

p=9¢xy onT%

sonic?

Oz, 0 =0 on 90 N{& = 0},

where p = p(|q|?, 2) is smooth with respect to (q,2) € R? x R for |q] < Ry and |z| < Ry for some
positive constants Ry and R;. Moreover, v is the inward unit normal vector to I'gpock. In particular,
we seek a solution so that equation N () = 0 is strictly elliptic in §2, but its ellipticity degenerates

onT9 . UTN . As B € (0, ﬁs(v"")) tends to B, @ .. shrinks to the wedge vertex Ps, and the

ellipticity of N(¢) = 0 degenerates at Pg for § = B§”°°). For g > B§”°°>, N(p) = 0 is strictly elliptic
at Pg. For g > B{") the boundary condition ¢ = o on I8 .. given in (1.1) becomes a one-point
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Dirichlet boundary condition. Therefore, it is crucial to achieve estimate (v) and then employ the
result to establish uniform a priori estimates of admissible solutions in £ by estimate (vi).

Once estimates (i)—(ii) are established, we adjust the argument in [11] to achieve estimates
(iii)—(vi), although there are several technical differences, due to the structural differences of the
solutions constructed in this monograph compared to those in [11]. We also point out that estimate
(iv) is the key to achieving estimates (v)—(vi). Using the argument in [11], for any fixed ve > 0,
we are able to establish a uniform estimate of positive lower bound of dist(T'shock, dB1(0, —v0))
for all admissible solutions corresponding to 8 € (0, 8.] whenever S, € (0, ((iv“’)). Owing to this
property, we prove the existence of admissible solutions for all the admissible physical parameters

(Voo, B) € Ryeak, €ven beyond the sonic angle B§”°°>.

&2

eo
cone(ex, eo)

en

FIGURE 1.2. The cone of monotonicity

Even though the overall argument follows [11], there are several significant differences from
[11]. One of them is the choice of directions for the monotonicity properties of ¢oo — ¢, ¥ — Y0,
and ¢ — ppr. For fixed (voo, 8) € Rweak, define exr := (0, —1) and ep := (cos §,sin 8). Then ey is
the unit tangent vector to the normal shock Sy, and ep is the unit tangent vector to the oblique
shock S». Moreover, we define the cone of monotonicity as shown in Fig. 1.2 by

Coneo(eSO,eSN) = {aies, + azes, : a1, az > 0}.
In §3.1, we show that any admissible solution ¢ satisfies
(1.2) Oe(poo — ) <0 in Q for all e € Cone’(es,, esy ),

from which many essential estimates of admissible solutions can be further obtained. For example,
(1.2), combined with the Rankine-Hugoniot conditions on T'shock, implies that Tgpock is represented
as a graph of a function & = fe (&) with f2,(&1) > 0. This property is a key ingredient in the
proof of the separation of I'ypoek from the sonic circle 9B1(0, —vs) of the incoming supersonic flow.
Notice that this separation property is crucial for establishing the uniform estimate of the ellipticity
of equation N(p) =0 in Q. In addition, further monotonicity properties of ¢ — o and ¢ — @ in
COHGO(ESO, es, ) are achieved, which play important roles in the a priori estimates of admissible
solutions near 19 . UTH . .

In Chapter 4, we define the iteration set K consisting of approximate admissible solutions.
Note that the pseudo-subsonic region ) of each admissible solution is different. Furthermore,
as [ increases across BS(U"’"), the shape of €2 changes from a rectangular domain to a triangular
domain. This is because the sonic arc I'9 . corresponding to the oblique shock So shrinks to the

sonic

wedge vertex Pg as [ € (O,ﬁs(”“’)) tends to ﬁs(”“’), and T9 . = {Pg} for B > Bs(v‘”). For this

sonic 8
reason, it is necessary to introduce a diffeomorphism § so that §=1(£) is the fixed domain Q" :=
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(—=1,1) x (0,1). Moreover, § should be defined so that § depends continuously on 8 € [0, ((iv‘”))
and on admissible solutions in an appropriately chosen norm. In §4.1, we define a mapping § for
each admissible solution such that

F(Qiter) = Q, F(Tshock) = {(5,1) : =1 <5 < 1},
S(Fg)nic) = {(_17t) 0<t< 1}7 S(Fé\c{nic) = {(17t) 0<t< 1}
N

sonic

Since the sonic arc I" corresponding to the normal shock Sy is fixed so as to be the same for

all g €0, ((iv‘”)) (see Fig. 1.1), the definition of § in this monograph can be given more explicitly
than the one given in [11]; see Definition 4.15. In §4.2, the definition of § is extended to a class of
approximate admissible solutions. Then we set up the iteration set L and analyze its properties in
§4.3-§4.5. The iteration set K is given in the form

K= U {B} x K(B) for fixed v, > 0 and S, € (O7ﬂévoo))7
BE[0,B.]

where each K(f3) is a subset of C1:*(Qiter) for some a € (0, 1).
In Chapter 5, for fixed vo, > 0, we define an iteration map

I(-,8) : K(B) = C2* (Q*r) for Qiter := (—1,1) x (0,1) C R?,

(*,1)

where C** (Qiter) is a weighted C*“ space. The iteration mapping Z is defined so that, if

(*,001)

Z(ux, B) = us for u, € K(B), then (p, Ishock), given by
® = Ux O s(:iﬁ) + @E} in Q= S(u*,ﬁ)(Qiter>a Fshock = S(u*,ﬁ)({(sv 1) t-l<s < 1})5

solves the free boundary problem (1.1). In the above, ¢} is a smooth interpolation of po and @pr.
The precise definition of ¢} is given by (4.1.42). Finally, the existence of a fixed point of Z(:, B)
in KC(B) for all 8 € (0, 8,] is proved by employing the Leray-Schauder degree argument in §5.3. In
this way, we establish the existence of admissible solutions for all (v, 8) € Ryear (Theorem 2.31),
hence the existence of admissible solutions for all (oo, ug) € Pweak (Theorem 2.31).

Theorem 2.16, or equivalently, Theorem 2.33, which pertains to the optimal regularity of ad-
missible solutions, is established in Chapter 6.

To make the monograph self-contained, we also include Appendices A—C, which include some
results required for establishing the main theorems and a proof of the non-existence of self-similar
strong shock solutions.

A closely related problem to the one we have solved here is the shock reflection-diffraction
problem which was addressed in Chen-Feldman [11]. Even though the two problems are two
different lateral Riemann problems and have different issues and features, the approach developed
in Chen-Feldman [11] for the shock reflection-diffraction problem has been adopted for solving
our Prandtl-Meyer reflection problem in this monograph. As discussed earlier, one of the main
contributions of this monograph is to identify appropriate monotonicity properties and establish
suitable uniform a priori estimates for admissible solutions, based on the new and careful choice of
the directions for the monotonicity properties; as a result, the Chen-Feldman approach in [11] can
be employed.

In this monograph, we have solved the Prandtl-Meyer reflection problem up to the detachment
angle in the framework of the potential flow equation, which has been widely used for discontinuous
flows in applications in aerodynamics, especially when the amount of vorticity is relatively small
in the region of interest. When the flow regions of interest have large amounts of vorticity, the
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full compressible Euler equations are usually required. Nevertheless, for the solutions containing a
shock of small strength, the potential flow equation and the full Euler equations match each other
well, right up to the third-order of the shock strength. Furthermore, for the problem analyzed in
this monograph, the Euler equations for potential flow is actually ezact in two important regions of
the solutions near the two sonic arcs in the subsonic domain 2. Even in the other part of domain
Q, under the Helmholtz-Hodge decomposition for the velocity field, the full Euler equations in the
self-similar coordinates can be decomposed as the potential flow type equation, coupled with the
incompressible Euler type equations plus a transport equation for the entropy function. These can
be shown by directly following the arguments in §18.7 in Chen-Feldman [11]. In this sense, the
analysis and related methods/techniques developed in this monograph could also play an essential
role in finding a solution of the problem in the framework of the full Euler equations. In particular,
our results for the potential flow equation have provided useful insights on what will happen for
the case of the full Euler equations.

Finally, we remark in passing that, for the uniqueness/stability problems, it is necessary to
consider solutions in a restricted class. Recent results [20, 21, 29, 34] show the non-uniqueness
of solutions with flat shocks in the class of entropy solutions of the Cauchy problem (initial value
problem) for the multidimensional compressible Euler equations (isentropic and full). The Prandtl-
Meyer reflection problem under consideration in this monograph is different — the problem for
solutions with non-flat shocks for potential flow on the domain with boundaries, so these non-
uniqueness results do not apply directly. However, these results indicate that it is natural to study
the uniqueness and stability problems in a more restricted class of solutions. Since the completion
of this monograph, some progress on the uniqueness in the class of self-similar solutions of regular
shock reflection-diffraction configurations with convex transonic shocks (which are called admissible
solutions) has been made, as announced recently in [13]. A similar uniqueness result can also be
obtained by combining the approach in [13, 14] with the estimate techniques developed in this
monograph. Technically, restricting the uniqueness to the class of admissible solutions allows us to
reduce the problem to a corresponding uniqueness problem for solutions of a free boundary problem
for a nonlinear elliptic equation, which is degenerate for the supersonic case.



CHAPTER 2

Mathematical Problems and Main Theorems

In this chapter, we first formulate the physical problem of a supersonic flow impinging upon
the solid wedge into an initial-boundary value problem. Then, based on the invariance of both
the problem and the governing equations under the self-similar scaling, we reformulate the initial-
boundary value problem as a boundary value problem in an unbounded domain (Problem 2.9), and
further as a free boundary problem in a bounded domain (Problem 2.34) for the existence of Prandtl-
Meyer reflection configurations involving two types of transonic flow boundaries: discontinuous and
continuous hyperbolic-elliptic phase transition boundaries for the fluid fields (transonic shocks and
sonic arcs). The main theorems of this monograph are presented in §2.3 and §2.5.

2.1. Mathematical Problems

The compressible potential flow is governed by the conservation law of mass and the Bernoulli
law:

(2.1.1) Op + Vx - (pVx®P) =0,
1
(2.1.2) P + 5|vx<1>|2 + h(p) = B,

where p is the density, ® is the velocity potential, B is the Bernoulli constant determined by the
incoming flow and/or boundary conditions, and h(p) is given by

o) = [P ap= [,

for the sound speed ¢(p) and pressure p. For an ideal polytropic gas, the sound speed ¢ and pressure
p are given by

(2.1.3) Fp)=ryp’™",  plp) = kp"
for constants v > 1 and x > 0. If (p, ®)(t, x) solves (2.1.1)~(2.1.2) with (2.1.3), then (5, ®)(t,x) =
(p, ®)(a?t, ax) with o := \/% solves

Oup+ Vy - ()Vx®) =0,

- 1 - 571 1
0® + = |Vud2 + L——— = a?B.
2 v—1

Therefore, we choose k = % without loss of generality so that

p y-1 _
(2.1.4) h(p) :/1 h'(e)do = %, Ap)=p"

7
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The case of the isothermal flow can be included as the isothermal limit v — 14 in (2.1.4). Therefore,
we define (h,c?)(p) by

Pt -1y
(2.1.5) (h () = 7T for v > 1,
(Inp,1) for v = 1.
By (2.1.2), p can be expressed as
1
(2.1.6) p(04®,Vi®) = h™ (B — 0,® — 5|vx<1>|2).

Then system (2.1.1)—(2.1.2) can be rewritten as
(2.1.7) p(0,®, Vi ®) + Vi - (p(01®, VxP)Vx®) = 0,
with p(0;®, Vx®) determined by (2.1.6).

A steady state solution ®(x) to (2.1.1)—(2.1.2) yields the steady potential flow equations
Vs - (3Vx®) = 0,
(2.1.8) 1
SIV®P 4 h(p) = B.
A symmetric wedge W of half-angle 6, € (0,%) in R? (Fig. 2.1) is defined by
(2.1.9) W= {x = (z1,72) € R? : |2a| < 21 tanfy,z; > 0}.

On the wedge boundary W, ® must satisfy the slip boundary condition d,,® = 0 on OW, where

Poo > 0, Uso > Pgﬂ)ﬂ

FIGURE 2.1. Supersonic flow impinging upon a solid wedge

n, indicates the outward unit normal vector to dW. Denote D := R?\ W, and consider the
boundary value problem for (2.1.8) in D with
(2.1.10) On,® =0 on 9D = OW.

If a supersonic flow with a constant density p > 0 and a velocity Uso = (oo, 0), Uoo > pgéfl)ﬂ,

moves towards wedge W, and if 0y, is less than a critical angle called the detachment angle, then
the well-known shock polar analysis shows that there are two different steady weak solutions to
the boundary value problem (2.1.8)—(2.1.10): the steady weak shock solution and the steady strong
shock solution. For more precise arguments, we first define a class of weak solutions of the boundary
value problem (2.1.8)—(2.1.10).

DEFINITION 2.1. Iiet Iy, be a Cl—curve that lies in D and divides D into two open subsets D~
and DT, We say that ® € W>°(D) is a steady entropy solution with a shock I'y, of the boundary
value problem (2.1.8)—(2.1.10) if ® satisfies the following properties:
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(i) B—3|Vx®® > h(0+) a.e. in D;
(ii) For each ¢ € C§°(R?),

/ P(|Vx®|?)Vx® - Vi dx = 0;
D
(iii) ® € C1(DE)NC?(D*);
(iv) Entropy condition: for ®* := ®|p+ r_,
Ong, @™ > On, @ >0 on Iy,

or equivalently, p(V,®~) < p(Vx®T) along the flow direction, where ng, represents the
unit normal vector to Iy, pointing from D~ towards DT.

REMARK 2.2. By performing integration by parts, condition (ii) of Definition 2.1 implies that
any entropy solution with a shock T'gpeex of problem (2.1.8)—(2.1.10) in the sense of Definition 2.1
satisfies the conormal boundary condition:

p(|Vx®?)Vx® -n, =0  on IW.

Furthermore, combining conditions (i) and (iii) of Definition 2.1 with the conormal boundary con-
dition stated immediately above yields that the entropy solution ® indeed satisfies the boundary
condition (2.1.10) if p(]Vx®|?) > 0 holds on OW.

In particular, Definition 2.1, via integration by parts, leads to the following Rankine-Hugoniot
jump conditions for the steady potential flow equations (2.1.8):

(2.1.11) [@]r., = [0(|Vx®[*)V® - na]r,,, =0,
where [F(x)|r,, := FT(x) — F~(x) for x € Tg.

DEFINITION 2.3 (The steady Prandtl-Meyer reflection solution). The steady Prandtl-Meyer
reflection solution for potential flow is an entropy solution ® with a shock I'y, of the boundary
value problem (2.1.8)—(2.1.10) in the sense of Definition 2.1 with the following additional features:

(i) Tep = {x = (z1,22) ERZ\ W : |z2| = 21 tan s, 1 > 0} for some O, € (Oy, )

(ii) For some constants ug, v > 0,

B( Uoo X1 in D- ={x€D : x1 < |x2|cotbs},
X) = R
wox1 + voxe in DT :=D\ D—;

Uoo —UQ .
Vo ’

(iii) tanfg, =
(iv) Entropy condition: for the unit normal vector ng, to I'sy pointing from D~ towards DV,
VO™ -ng > Vi@ -ng, >0 on Iy,
or equivalently, p(|Vx®~|?) < p(|Vx®T[?).
LEMMA 2.4. Given any v > 1 and (poo, Uoo) With Uee > Cop = pgé*l)ﬂ > 0, there exist unique
ulPoetioo) € (0, us) and 93’)‘”’“‘”) € (0, %) such that the following properties hold:
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(a) For each 6y € (0, 93’)""’“"")), there are exactly two constants us and Uy with w(Pet=) <
Ust < Uwk < Uoo Ylelding two steady Prandtl-Meyer reflection configurations in the sense
that, if (ug,vo) = ust (1, tanby,) or uwk(1, tanby,) in Definition 2.3, then the corresponding
® is an entropy solution of the boundary value problem (2.1.8)—(2.1.10) with shock Ty,
given by Definition 2.3(1) with O, being determined by Definition 2.3(iii);

(b) ust and uwk depend continuously on (poo, Uoo,7y) and Oy € (0, 9§p°°’u°°)), and Ug = Ui Ot

Oy = 0=,

)

(¢c) For each 8 € (0, 9§p°°’u°°)) let u! k) denote the value of uwk corresponding to 0y,. Then

there exists a unique 6°="">) € € (0, 9§p°°’u°°)) such that

(g(poo uoo)) (gépooﬂboo)) 2
luy, ] i Il

(1, tan 00~ =))| = (p(|u,, (1, tan o)) [2)) 07D/,

9(/300>u00)

In other words, the flow behind the weak shock corresponding to 0 1S sonic.

— o p(Pooitios)
T = tanfy

% — tan eﬁﬁoo oo )

FIGURE 2.2. Shock polars in the (u,v)-plane

PRrROOF. (a) and (b) can be checked directly from Lemmas A.1 and A.3.
Define ¢(6y,) := |u(0‘”)||(1 tanfy)|. We first observe that |q(6,)|*> = (ﬁ(|q(9w)|2))7_1 if and
only if |q(0y)|* = 'y+1 (1+ (y = 1)B) =: Ko. To prove (c), it suffices to show that there exists a

unique 6, € (0, 9(p°°’u°°)) satisfying |q(6.)]? = Ko.
Condition u2, > p2- ! implies that |¢(0)|*> > K. This can also be checked from the Bernoulli

(0)) 0) _

law (z e, 3|Vx <I>|2 + h(p) = B) and the conservation law of mass (i.e., p(ug’ g’ = Poolico SO that

|u |2 < Ko). Then there exists a unique point P, = wu.(1,tan6,) on the shock polar Y (Pec:tec)
satisfying | P.|? = Ko (see Lemma A.3). It remains to verify that u, = ufﬁk), that is, P, is the weak
shock point corresponding to 6, € (0,6 p°°’u°°))

In Lemmas A.1 and A.3, it is shown that the shock polar curve Y (P %=) as shown in Fig. 2.2,
is given as the zero-level curve of g(u) in the first quadrant of the (u,v)-plane and that Y (Pec:tec)
is convex. Furthermore, gu(u) is a normal vector to Y (P>-ue) at u € T(P=-u=) towards the u-axis.
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From this observation, we see that

. . 0.
gu(Py) - P, >0 if and only if  w, = ugt ),
gu(P.) - P.=0  ifandonlyif 6, = 6",
gu(Py) - P <0 if and only if  w. = u‘(:lz).

Now we compute gy(Py) - Pi. A direct computation by using (A.7) gives that

1 o U — U Uy — U ) PU — Poolso
u) = — ¢ (o ———)u) - ———|
ulw) = o (P (o )

where p = p(|ul?), & = p771, and us = (Uso,0). Combining (2.1.11) with |P,|? = Ko yields
gu(Py) - P = =(p(|P.]*) = poc) (P. - )%,

where T represents a unit tangent vector to shock Sy corresponding to state P,. Since P, - 75 # 0,
we obtain from the entropy condition p(Py) — pso > 0 that gu(Ps) - P« < 0. From this, we conclude
that u, = u‘(:g). Choosing 9§p°°’u°°) = 0., we complete the proof. O

DEFINITION 2.5. Fix parameters (poo, Uoo, ¥, Ow). In Lemma 2.4, ® with (w0, vo) = ugt (1, tan by,)
is called a steady Prandtl-Meyer strong reflection solution, and ® with (g, v0) = uwk(1,tan by) is
called a steady Prandtl-Meyer weak reflection solution in the sense that

[(thoo, 0) — ust (1, tan Oy,)| > |(too, 0) — twi (1, tan Oy )| for 0 < 6y < Hép‘”’u‘”);

that is, the shock strength of a steady Prandtl-Meyer weak reflection solution is weaker than the
steady strong one.

The goal of this work is to prove the existence of global unsteady Prandtl-Meyer reflection
configurations for unsteady potential flow, determined by Eq. (2.1.7), which converge to the steady
Prandtl-Meyer weak reflection solution as ¢ tends to infinity for all possible physical parameters
v > 1, U > Coo, and Oy € (0,6‘(({) °°’u°°)). Therefore, we consider the following initial-boundary
value problem for (2.1.7):

PROBLEM 2.6 (Initial-boundary value problem). Given v > 1, fix (poo,Uoo) With Use > Coo-
For a fixed 0, € (O,@ép"’"’u"’")), let W be given by (2.1.9). Find a global weak solution ® €
WL (Ry x (R?\ W)) of Eq. (2.1.7) with p determined by (2.1.6) and

2

(2.1.12) B= %"’ + h(pec)
so that ® satisfies both the initial condition at ¢ = 0:
(2.1.13) (0, @) |1=0 = (Poos UcoT1) for (z1,12) € R*\ W,

and the slip boundary condition along the wedge boundary oW:
(2.1.14) Vx® - nylow =0 for t > 0,
where ny, is the exterior unit normal vector to OW.

REMARK 2.7. In particular, we seek a solution ® € WL (Ry x (R?\ W)) that converges to
the steady Prandtl-Meyer weak reflection solution ® when ¢ tends to infinity in the following sense:

if ® is the steady Prandtl-Meyer weak reflection solution corresponding to the fixed parameters
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(Pocs Uos, Y, bw) in the sense of Definition 2.5 with p = h=*(B — $|V®|?), then, for any R > 0, ®
satisfies

(2.1.15) Jim ([[V®(t, ) = V@l ropw) + ot ) = pll(Baopw)) =0
for p(t,x) given by (2.1.6).

The definition of a weak solution of Problem 2.6 is given as follows:

DEFINITION 2.8. A function ¢ € Wli’coo (Ry x (R?\ W)) is called a weak solution of Problem
2.6 if @ satisfies the following properties:

(i) B—0,® — 3[Vx®|?> > h(0+) a.e. in Ry x (R2\ W);
(i) (p(0p®, Vic®), p(0,®, Vic®)|Vic®|) € (LL (Ry x (R2\ W)))*;
(iii) For every ¢ € C°(Ry x R?),

/ / (p(atfl), V)¢ + p(0:P, V@)V P - VXC) dxdt + / PoC(0,x) dx = 0.
o JrRa\w RZ\W

Since the initial data (2.1.13) does not satisfy the boundary condition (2.1.14), a boundary layer
is generated along the wedge boundary starting at ¢ = 0, which is proved to form the Prandtl-Meyer
reflection configuration in this monograph.

Notice that the initial-boundary value problem, Problem 2.6, is invariant under the scaling

(t,x) = (at,ax), (p,®) = (p, %) for a # 0,

in the sense that, if (p, ®)(£,x) is a solution, then so is (5, ®)(t,x) = (p, 2)(at,ax). Based on this
observation, we look for self-similar solutions of Problem 2.6 in the form

. X
(2.1.16) p(t,x) = p(&), P(t,x)=1tp(€) with € = (£1,6) = n for t > 0.
For such ¢, introduce the pseudo-potential function ¢ given by
Lo
p=¢- §|§| .

If ® solves (2.1.7) with (2.1.6), then ¢ satisfies the following Fuler equations for the self-similar
solutions:

(2.1.17) div(pDy) +2p = 0,
1
(2.1.18) §|D90|2+g0+h(p) = B,

where the divergence div and gradient D are with respect to the self-similar variables & € R2. Solve
(2.1.18) first for p and then substitute the result into (2.1.17) to obtain

(2.1.19) N(¢) = div(p(|Dg]*, ) D) + 2p(|Dg]*, ) = 0
for
1
14 (7= 1)(B - LDy|? — )T it > 1,
(2.1.20) p(|D(p|27(p):{( (7= (B = 51Dy @) ity
exp(B — 3[Vel* = ¢) if y=1

Note that the Bernoulli constant B is given by (2.1.12).
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The local sound speed ¢ = ¢(|D¢p|?, ) > 0 for the pseudo-steady potential flow equation (2.1.19)
is given by

(2.1.21) A(|Del @) =1+ (y—1)(B— %IDsDI2 — ).

Eq. (2.1.19) is a second-order nonlinear equation of mixed elliptic-hyperbolic type. It is elliptic if
and only if

2
(2.1.22) | D¢| < c(|Dp|*,¢) <= |Dy| < \/ﬁ(l +(y—=1)(B—¢)) (pseudo-subsonic),

and (2.1.19) is hyperbolic if and only if

2 .
|Dy| > c(|Dg|?, p) <= |D¢| > \/m(l +(y—1)(B—¢)) (pseudo-supersonic).

In order to find a function (&) such that ®(¢,x) with p(¢,x) given by (2.1.16) is a solution of
Problem 2.6 satisfying (2.1.15), we make the following additional observations:

(i) Symmetric domain: Since the solid wedge W is symmetric with respect to the axis x5 = 0,
it suffices to consider Problem 2.6 in the upper half-plane {(z1,z2) € R* : 25 > 0}. In
the self-similar plane, define

(2.1.23) Dg, = {E€R? : & >0} \ {€: & < & tanb,,, & > 0}
Then Problem 2.6 is reformulated as a boundary value problem in Dy, .

(ii) Initial condition: For each x € R?\ (W U{0}), |¢| = |¥| — oo as t — 0+. This means that
the initial condition (2.1.13) in Problem 2.6 becomes an asymptotic boundary condition
in the self-similar variables.

(iii) Time-asymptotic limit: For each x € R2\ W, || = |%| — 0 as t — oo. To find a global
weak solution of Problem 2.6 satisfying (2.1.15), we seek a self-similar weak solution (&)
satisfying

1

lm —— Ve — V| dE =0,
R—0+ |BR(O) n ©9W| Br(0)NDy,, ¢

where @ is the steady Prandtl-Meyer weak reflection solution of problem (2.1.8)-(2.1.10),
and |Br(0) N Dy, | is the area of Br(0) N Dy, .

(iv) Constant density state: If p > 0 is a constant in (2.1.17)—(2.1.18), then the corresponding
pseudo-potential ¢ is given in the form

(21.2) P(€) =~ €1+ (u,0) €+

for some constant state (u,v) and a constant k. In Problem 2.6, the initial state has
a constant density po, > 0 and a constant velocity (us,0). Then the corresponding
pseudo-potential ¢, in the self-similar variables is given by

(2.1.25) Poo = —%ISI2+(uoo,0)-£+koo

for a constant k. It follows from (2.1.12) that ko = 0.
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Hereafter, we assume without loss of generality that p,, = 1, so that ¢, = 1. This can be
achieved by the scaling
Err ety (ppyus) & (L 2 =)
Poo €A Coo
for any v > 1.

Given v > 1, poo = 1, and u, > 1, we now reformulate Problem 2.6 in the self-similar variables.
Hereafter, we denote (95’)""’“""), 9§p°°’u°°)) by (9((1““’), 9§u°°)), since po is fixed as 1.

Taking into account the additional observations stated above, we reformulate Problem 2.6 as a
boundary value problem in the self-similar variables.

PROBLEM 2.9 (Boundary value problem in the self-similar variables £). Given v > 1, uso > 1,
and 6y € (0,9((1“‘”)), find a weak solution ¢ € W1>°(Dy,) of Eq. (2.1.19) in Dy, satisfying the
following conditions:

(i) Slip boundary condition on I'yedge:
(2.1.26) Dy -ng, =0 on Iyedge = {€ @ & = & tanby, & > 0},
where n,, represents the exterior unit normal vector to the wedge boundary I'wedge;
(ii) Time-asymptotic limit condition in the self-similar variables:
1

2.1.27 lim —— —
(2.1.27) R84 TBa(0) N D] Jon oo,

|Vep — Vi®@|d€ =0,

where @ is the steady Prandtl-Meyer weak reflection solution corresponding to fy;
(i) Asymptotic boundary condition at infinity: For each 6 € (b, 7],
(2.1.28) Jim [l = ¢oolle(re\B. (0)) = 0
for each ray Ry := {&1 = & cot 0,&, > 0}; see Fig. 2.3.

Ry ={(&1,&) : & =& cotf,& >0}

FIGURE 2.3. Asymptotic boundary condition at infinity

DEFINITION 2.10. A function ¢ € W, (D, ) is called a weak solution of Problem 2.9 if ¢

loc
satisfies conditions (i)—(iii) of Problem 2.9 and the following additional properties:

(i) p(|Dp|?,9) >0 a.e. in Dy;
(i) (p(1DpI?, ), p(IDpl, ©)| D)) € Lioc(Ds,):
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(iii) For every ¢ € C°(R?),

(2.1.29) / (p(|D|?, ) Dy - D¢ — 2p(|Dep|?, 0)¢) d€ = 0.

w

For p > 0, note that (2.1.26) is equivalent to the conormal boundary condition:
(2.1.30) pDp-ny, =0 on I'yedge-

Condition (ii) of Problem 2.9 indicates that a solution of Problem 2.9 converges to a steady
potential flow with a shock near the wedge vertex. To find such a solution, we define an entropy
solution of Problem 2.9 with a shock. The definition is given in a way similar to Definition 2.1.

DEFINITION 2.11. Let I'y, be a C'—curve that lies in Dy, and divides Dy into two subdomains:
D, and @jw. A weak solution ¢ of Problem 2.9 is an entropy solution with a shock T'yy, if ¢ satisfies
the following properties:

(i) ¢ € W™ (Ds,);
(ii) ¢ € Clho(Dy,) NC*(D5);
(iii) For (p'f‘ = 90|’D:{WUFsh and ¢~ = (p|©§WUFsh’
O~ > Oyt >0 on Ty,
where ng}, represents a unit normal vector to I'yy pointing from @e_w towards @jw;
(iv) ¢ satisfies the Rankine-Hugoniot jump conditions on Tgp:
(2.1.31) [elr,, = [(ID¢l?, ) Dy - nau]r, =0,
which is similar to the steady case (2.1.8).

If ng, = Ig:;i:gﬁi‘ is oriented so that anhcpi > 0, and if 9y~ > On, T holds on Ty,
the shock solution is said to satisfy the entropy condition. By (2.1.31), the entropy condition is
equivalent to p(|De~|%,07) < p(|De™|?,¢T) on Tgp.

2.2. Structure of Solutions of Problem 2.9

Given v > 1, poo = 1, and us, > 1, fix 0 € (0,6‘((1““’)).

2.2.1. Near the origin. We seek a solution ¢ of Problem 2.9 so that the solution at the
origin coincides with the steady Prandtl-Meyer weak reflection solution corresponding to parameters
(1, %00, 7, yw) in the sense of Definition 2.5. For ¢., given by (2.1.25), define

(2.2.1) wo = —3€|% + (uo, v0) - &, So={€€Ds, : ¢o(§) =vc(§)}-
Choose the constant vector (ug,vg) as

(2.2.2) (ug,vo) = ufﬁ:”)(l,tan&v),

and define

(&) := max{peo(£), o (£)}-
Then ¢ := @ satisfies (2.1.26)—(2.1.27) and (2.1.31) with Tgpock = So.
For the nonlinear differential operator N defined by (2.1.19), equation N(po) = 0 introduces
the pseudo-sonic circle OB, (ug,vo) with ¢ = pd ™" for po = p(|Dyo|?, ¢o) in the following-sense:

e N(po) = 0 is elliptic in B, (ug, vo),
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e N(po) = 0 is hyperbolic in R?\ B, (uo,vo)-

REMARK 2.12. Let (") be from Lemma 2.4(c). Then wedge vertex O = (0,0) satisfies the
following;:

° O€R2\mfor0<aw <9§“oo),
e Oc 6BCO(UO,U0) at 0y, = 95“"0),
e Oc Bco (UO; UO) for 0§u°") < 9w < eéuoo)

2.2.2. Away from the origin. To determine a solution ¢ of Problem 2.9, we look for a
solution ¢ with a piecewise constant density p(|Dp|?, ), defined by (2.1.20) in Dy, \ Br(O) for
some sufficiently large R > 0, so that such a solution ¢ satisfies the asymptotic boundary condition
(iii) of Problem 2.9. For this purpose, we introduce a straight shock solution in ®g, \ Br(0). In
fact, the only straight shock solution that satisfies (2.1.28) is a normal shock solution. This can
be seen more clearly in §2.4. We now compute the normal shock solution and discuss its useful
properties.

To compute the normal shock, denoted by 51, and the corresponding pseudo-potential ¢ below
S1, it is convenient to rotate the self-similar plane by angle 6, clockwise. In the rotated self-similar

13

ux (cos Oy, —sinBy)
(0, oo Sin Oy ) \ s,

(1)
2

(oo €OS Oy, 0)

Bw Fwedge

FIGURE 2.4. The normal shock

plane, @oo in (2.1.25) is written as
1

= —51€]* + uoc(cos by, —sinfy) - &

Poo

Then ¢; is in the form
1 .
w1 = —§|€|2 + Uoo (c08 Oy, — sin By, ) - (&1, él)),

where 551) is the distance of S from I'yedqge. Denote

(2.2.3) Voo i= Upe SIN Oy

It follows from (2.1.20)—(2.1.31) that density p; and distance 551) satisfy
92.2.4 () _ Yoo

2:2.4) ) = =

1
(2.2.5) hpr) = h(1) = S0% + M,
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where h(p) is defined by (2.1.5).

Consider )
F(p) 1= (h(p) ~ H(D)(p — 1) — £ (p— 10, o2
A direct computation shows that F(1) = —vZ < 0, lim F(p) = o0, F'(1) = —3v% < 0, and
p—00

F"(p) > 0 whenever p > 1. This implies that there exists a unique p; € (1, 00) such that F(p;) = 0.

Then (2.2.4) yields that 551) > 0. Rotating the self-similar plane back by angle 6, counterclockwise,
we find that ¢, is given by

(2.2.6) Y1 = —%|£|2 + Uoo €OS Oy (COS Oy, sin by, ) - € — uooﬁél) sin Oy,
and the normal shock S; by
S$1=1€ : @oo(€) = @1(6)} = {£ : & = Gutanb + 6" sechy}.
LEMMA 2.13. For any given us > 1 and the wedge angle 6., € (0, gé“oo))7
dist(S1, Tedge) < 1 := p' /%,

PROOF. By the mean value theorem, there exists a constant p,. € (1, p;) satisfying

h(p1) — h(1) = p(p1 — 1) for = p) 2.
Then F(p1) = 0 implies that

1,2 [12 (1,2
1 5”00 + voo(Zvoo + 4:“)
plor =17 = Sui(pr =) =0 =0 = p—l= 2 :
Since veo > 0, (2.2.4) yields that
Q. An <
2 \/16,u+vgo—|—voo_\/ﬁ'
By the definition of u above, it can directly be checked that
VAT <yl =a ity >
VE<S1 <\ Jp7 = o if1<~y<2,
l=¢ if v=1,
which implies that &V < ¢;. 0

2.2.3. Global configurations of the solutions of Problem 2.9. Following Remark 2.12,
our desired solution of Problem 2.9 has two different configurations depending on the two different

intervals of the wedge angle: 6y, € (0,6{"=)) and 6,, € [9£u°°),9§u°°)).

Case I. Fix 60, € (0,95““’)). Let o and ¢; be defined by (2.2.1) and (2.2.6), respectively.
Define Qo := Dyo(O) and Q1 := Dp1(0O). Consider two sonic circles 9B, (Qo) and 9B, (Q1).

The left sonic arc: The sonic circle OB, (Qo) and the straight oblique shock Sp := {€ : ¢o(€) =
Voo (€)} intersect at two points in Dy, which will be verified in detail in §2.4. Let P; be the
intersection with the smaller £;—coordinate. Also, 9B, (Qo) intersects with I'yedge at two points;
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FIGURE 2.5. Admissible solutions for 0 < 6y, < glues)

let P, be the intersection point with the smaller £&3—coordinate. Denote wy := ZPyQoPy € (0,7).
We define

FO

sonic

= {P € 0B¢,(Qo) : 0 < ZP,QoP < wo},
which is a closed subset of 9B, (Qo). We call TC .. the sonic arc corresponding to pq.

sonic
The right sonic arc: By Lemma 2.13, the sonic circle B, (Q1) and the normal shock S; =
{€ : 01(€) = vo(€)} intersect at two distinct points; let P, be the intersection point with the
larger {;-coordinate. Also, 0B, (Q1) intersects with I'yeqge at two distinct points; let P3 be the

intersection point with the larger £&3—coordinate. Denote wy := ZP3Q1 P2 € (0, 7). We define

Cionic == {P' € 0B,,(Q1) : 0 < LP3Q1 P’ < w1},

sonic

We call T'L

which is a closed subset of 9B, (Q1), similar to T . . sonic
to P1-

For each j = 1,---,4, let &5 = ( fj,gzpj) denote the £—coordinate of point P;. Let Sp e be
the line segment OPy, and let Qy C Dy, be the open set enclosed by Soseg, ['%ier and the line
segment OP,. Next, let S1,scg be the portion of S; with the left endpoint P», and let 1 C Dy, be
the unbounded open set enclosed by S1 seg; I'l s and yedge N {&2 > 55*}.

Our goal is to find a curved shock I'ypock that connects P; with P, and a solution ¢ of Problem

2.9 to satisfy both (2.1.22) in the open region Q (enclosed by I'ghock, I': PyP;, and T? . ) and

sonic? sonic

the sonic arc corresponding

®o in QO)
Y =93% in Qlu
Voo in@gw\QoUQUQl.

Problem 2.9 is now a free boundary problem given in a bounded region (2 with a free boundary
T'shock to be determined simultaneously with .

Case 2. Fix 6, € [95““’),6‘((1%")). The right sonic arc I'! is given in the same way as

sonic
Case 1. By Remark 2.12, since the triangular region Qg in Fig. 2.5 shrinks to the origin as

0w € (0, 95”""’)) increases up to 95”"’"), we look for a curved shock I'gpock that connects origin O with

Py for 6y, > 6{"=) and a solution ¢ to satisfy both (2.1.22) in the triangular domain © (enclosed
by Tshock, I'} and the line segment OP3) and

sonic’
_ )% in Qla
7T ow inDe, \OUD,
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Fshogk‘ -

Q

FIGURE 2.6. Admissible solutions for 8,, > 9§u°°)

with
(2.2.7) lim o(P) = ¢0(0), lim Dp(P) = Do (0).
PeQ PeQ

(uoo)

The condition that ¢ = g in g for 6, < 65 is replaced by (2.2.7) so that our desired solution
still satisfies (2.1.27).

2.3. Main Theorems

Fix v > 1 and us > 1. For each 6y, € (0,6")), let ug be given by (2.2.2). By Lemmas A.1

and A.3, ug decreases with respect to 6y,. Define
uéu"o) = lim  wuo, uf

uoo) R

S =
(uoo)

Ow—04 —

lim  wg.
By —654>)
For each us > 1, define an open interval (V=) = (ugz,l“’)
Given v > 1, we introduce a set of parameters

= (uoo)
B uooU>1{u°°} x IT\te),

, Uoo ), Where ujf;‘”) is from Lemma A.3.

Then B consists of three disjoint sets Pyeak, Pdetach, a0d Ptrong:

Puca = U {uoc} X (ug"™, uoc),
(2.3.1) Pactach = { (too, u") : use > 1},

mstrong = umU>1{UOO} X (ug\?m)vué’um))

Our goal is to prove the existence of a global weak solution of Problem 2.9, satisfying the entropy

condition, for each (uwso,up) € Pyeak so that, if O, < 95”""), the solution has the configuration of

Fig. 2.5 and, if 6y, > 9§u°°), the solution has the configuration of Fig. 2.6. We first give a definition
of admissible solutions of Problem 2.9 for (too, ug) € Pweak-

DEFINITION 2.14 (Admissible solutions). Given v > 1, tso > 1, and (o, %) € Pweak, define

(2'3.2) ta,n ow = M,

Uo
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where fpolar is determined in Lemma A.3. Let ®g, be the domain defined by (2.1.23), and let ¢q
and ¢y be defined by (2.2.1) and (2.2.6), respectively. A weak solution ¢ € C%!(Dy, ) of Problem
2.9 is called an admissible solution of Problem 2.9 if ¢ satisfies the following properties:

Case I ug > ul"), or equivalently, 8, € (0,65")):

(i) There exists a shock curve T'ghock Wwith endpoints P = ( fl, 51) and Py = ( f2, 52) such
that the following properties hold:
(i-1) Curve T'gpock satisfies

(233) ]——‘shock - QOW \Bl (u007 0)7

where 0B (w0, 0) is the sonic circle of the state in Q> := Dy \ Qo U UQ;

(i-2) Curve Tghoek is C? in its relative interior. That is, for any P € Tghoek \ {P1, P2},
there exist r > 0, f € C?, and an orthogonal coordinate system (S,T) in R? such
that Tshock N Br(P) =4{S = f(T)} N B,(P);

(i-3) Curve Sy seg U shock U St seg is C, including at points P; and Px;

(i-4) Tshock lomics Tlonicr a01d Dwedge = {€2 = &1 tanby, & > 0}N{€ : &7 <& < &7} do
not have common points except for Py, P2, P3, and Py. Thus, Tshoec UTL ;o UTS - U
I'wedge is a closed curve without self-intersection. Denote by {2 the bounded domain

enclosed by this closed curve.

(ii) ¢ satisfies the following properties:
(ii-1) ¢ € CPe(De,) N CL. (Do, \ Someg U Lshock U S1.s0g)

loc
(i12) ¢ € C3(Q) N C*(Q\ Tpse U Thonic)) N CH(Q);
(ii-3)

Poo in QQW\Q()UQUQl,
(234) Y = [%2ls} in Qo,
©1 in Qla

where Qq shrinks to {O} = {P,} = {P;} when 0, = o=,
(ii-4) ¢ satisfies
- Eq. (2.1.19) in Q with p(|Dp|?, ) defined by (2.1.20),
- the slip boundary condition: d¢,¢ = 0 on I'yeqge N 042,

- the Rankine-Hugoniot conditions: [¢]r.,... = [p(|Dy|?, ¢)Dy - ngulr.,... = 0
for the unit normal vector ng, to I'shock towards the interior of €.

(ii) Eq. (2.1.19) is strictly elliptic in Q\ (I% . UTL . ); that is,

sonic

|Dg| < c(|Dg|?, @)  inQ\ (T9 . ULL ..

sonic

(iv) max{po, 1} < ¢ < oo in Q.

(v) Let 7w = (cosfy,sinfy), which is tangential to the wedge boundary I'ywedge. Let eg, be
the unit vector parallel to Sy and oriented so that eg, - 7w > 0, and let es, be the unit
vector parallel to S; and oriented so that eg, - 7 < O:

OP, (v0, Uso — Up)

es, = = , es, = —(cosby,sinfy).
’  |OP] (up — Uoo)? + V3 ! ( )
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Then
6350 (SDOO - SD) S 07 aesl (spoo - SD) S 0 in Q.

(UOO)

Case II. ug < us ™/, or equivalently, 6, € [95”""’), 9((1”"’")):
(i) There exists a shock curve Igpoex with endpoints O = (0,0) and P, = (£17,£42) such that
the following properties hold:
(i-1) Curve Tghock satisfies

(235) 1—‘lshock C (©9w \Bl (U’OOv O))a

where 0B (o, 0) is the sonic circle of the state in Q> := Dy \ QU Qy;

(i-2) Curve [gpock is C? in its relative interior. That is, for any P € Tghock \ {O, P2}, there
exist 7 > 0, f € C?, and an orthogonal coordinate system (S,7T) in R? such that
T'shock N BT(P) = {S = f(T)} N BT(P)v

(i-3) Curve Tghock U St seg is C1, including at point Py;

(i-4) Tshocks [l pics and Tyedge 1= {&2 = & tan by, & > 01N{€ : 0 < & < &%} do not have
common points except for O, P, and Ps. Thus, I'shock U I‘éonic U I'ywedge is a closed

curve without self-intersection. Denote by {2 the bounded domain enclosed by this

closed curve.

(ii) ¢ satisfies the following properties:
(ii—l) e COJCDOW) N Clloc (:DGW \ Cshock U Sl,seg);

loc
(i-2) ¢ € C3(Q)NC2(Q\ ({O}UTL,,,)) N CHQ);
(ii-3) Dp(O) = Dyo(0O) and
Yoo Dy, \QUQ,
(2.3.6) p=4qwvo atO,
1 in Qg
(ii-4) ¢ satisfies
- Eq. (2.1.19) in Q with p(|Dp|?, ) defined by (2.1.20),
- the slip boundary condition: J¢, ¢ = 0 on I'yeqge N 02,

- the Rankine-Hugoniot conditions: [¢]r.,. .. = [p(|D¢|*,¢)D¢ - nsnlr.q = 0
for the unit normal vector ng, to I'shock towards the interior of €.

(iii) Eq. (2.1.19) is strictly elliptic in Q\ ({O}UTL . ); that is,

sonic

IDel < e(IDpf? ) in @\ ({0} UTL ).

sonic

(iv) max{¢o, 1} < ¢ < Qoo in Q.

(v) Let 7 = (cosfy,sinfy), which is tangential to the wedge boundary I'yedge. Let eg, be
the unit vector parallel to Sy and oriented so that eg, - 7w > 0, and let es, be the unit
vector parallel to S; and oriented so that eg, - 7, < 0. Then

6651 (SDOO - SD) S 07 6650 (spoo - SD) S 0 in Q
Our two main theorems are as follows:

THEOREM 2.15. Fiz v > 1 and ux > 1. For any (uso, up) € Pweak, there exists an admissible
solution of Problem 2.9 in the sense of Definition 2.14.
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THEOREM 2.16. Fiz v > 1 and us > 1. Given (tco,up) € Pweak; let ¢ be an admissible
solution with the curved shock TUsphock of Problem 2.9 in the sense of Definition 2.14. Then the
following properties hold:

Case 1. ug > ugum)7 or equivalently, 6y € (0, 95%0)):
(a) The curved shock Uspock is C™ in its relative interior, and o € C™(Q\ ( 0 i UF;onlc)) N
Ol 1( )

(b) For a constant o > 0 and a set D given by
D = {& : max{po(£),21(8)} < poe(€)} N Dy,

define
(2.37) Dy =DN{E : dist{€ pnic} < o} N Bey(Qo),
- Dl Dn {5 dlSt{€ 1—‘lsonlc} < U} n BC1 (Ql)v
where ¢; = p(v_l)/ and Q; = Dg;(0), j = 0,1. Then, for any o € (0,1) and any
& € (FgonlcUF;onlc)\{Ph Py}, there exist eg depending on (7, us), and K < 0o depending
on (Uoo, 7, bw, €0, @), [|llcr1 (@n(pg up)), and d = dist{&o, Dsnock} such that
(2.3.8) 115 078, aenrume 5y < K-

(c) For any & €T0 . UTL . \{P, P},

bOnlC bOnlC
1
(2.3.9) lim (Dypp — Dy max{1,00}) (€) = —,
v v

where r = |€ — Q1| near TL ;. and r = |€ — Q| near T'Y,
(d) Limits lim D%y and lim D?p do not exist.
£— P £— Po

£eQ £eQ

sonic*

(€) S0,seg U lshock U ST seg 5 @ C?—curve for any o € (0,1), including at points P; and Ps.

Uoo ) (uco) 9(“00))

Case I1. ug < ug >/, or equivalently, 0y € |05

(a) The curved shock Tshock is C™ in its relative interior, and ¢ € C*(Q\ ({O}UTL . )N
CHLQ\ {0}) N CY¥(Q) for some & € (0,1) that depends on us and 6y and is non-
increasing with respect to Oy, .

(b) For a constant o > 0, define DL by (2.3.7). Then, for any o € (0,1) and any & € TL .\
{Py}, there exist ey depending on (v, us), and K < oo depending on (tco, Y, Ow, €0,
||90||Cl’1(QOD;0); and d = dist{éo, Fshock} such that

(2.3.10) lelly o 575 2Emmr, = K
(¢) For any & € Fgonic \ {P},
1
2.3.11 lizp (Drrip = Drr R
( ) %S ( ® 901)(5) v F1

where r = |€ — Q1.
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(d) Limait £ILI£}2 D%y does not exist.
£eq
(€) Tshock U S1seg 15 a CY—curve for the same & as in statement (a). Furthermore, curve
Tshock U St seg \ {0} is C*% for any o € (0,1), including at point Ps.

2.4. Change of the Parameters and Basic Properties

2.4.1. Straight oblique shocks in the self-similar plane. Given a constant v,, > 0,
denote

1
(2.4.1) Poo 1= —5E" = v
LEMMA 2.17. For any given 8 € [0,5), there exists a unique pseudo-potential function
1
o = —§|€|2 + (uo,v0) - € + ko

satisfying the following properties:

(01) So :={€ €R? : v (&) = po(€)} forms a line of angle B with the & —axis, as shown in
Fig. 2.7;

So

3

(8)
2

e &

Voo

FIGURE 2.7. Sp is a line of angle § with the & —axis

(O2) po satisfies the Rankine-Hugoniot conditions (2.1.31) on Se:
90 = ¢oor  p(|Dgol? 90)Dpo - Vsn = Dpos - Vsh on So

for
1
(2.4.2) p(IDg|?, ) = (L4 (v = 1) (B = 5|D¢* =) "7 for v >1,
exp (Bos — 3|De|* — ) for v =1,
with )
1 v
Boo =—-|D ) 2 oo — ;.07
5| Deocl” + ¢ 5
D(goo—0) .
where vy, 1= m,
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(O3) Entropy condition:
p(|IDgol?, vo) > 1, 0 < Do - Vsh < Do - Vgn;
(O4) @o satisfies the slip boundary condition on the & —axis:
e, 00 =0 on {& = 0}.
PROOF. By choosing (up,vp) as
(2.4.3) (up,v0) = (—voo tan 3, 0),

o satisfies conditions (O;) and (O4). If line Sp has the &x—intercept at (O,{éﬁ)), then po can be
written as

1
(2.4.4) vo = —§|£|2 — &1uso tan B — ’Uooféﬁ).

It remains to find the &—intercept 555) of So so that pe satisfies conditions (O3)—(O3). Define
po = p(|Deol?, o).
Then po satisfies
1 1
(2.4.5) h(po) + 5|Dwol* + po = h(1) + 5| Dpec | + o,

where h(p) is defined by (2.1.4).

In order to determine §§’B )

and M, by

, we follow the idea from [27]. Define the pseudo-Mach numbers Mo

8Vsh90(9 -

(2.4.6) Mo = o for co = p;T and My := Ou_,, Poo-

Since 8% (pos — po) = 0 on S for k = 0,1, for a unit tangent vector 7 of So, it follows from
(2.4.5) that

1 1

(2.4.7) h(po) + 5(aush<po)2 =h(1)+ 3
~—
(=0)

By (2.4.6), p(|Dyo|?, 00)Dpo - Vsh = Dpso - Vgn can be rewritten as

(O, Voo )? on So.

w1 My
We substitute this expression into (2.4.7) to obtain

y—=1_ 4 _20=1) y—1_ _2(v=1)
(2.4.9) (1+ TMO)MO = (14 TMOO)MOO gl

Notice that f(M):= (1+ WTAMQ)Mf% satisfies
20 —1), 2ocn
v+1

Therefore, if My = 1, then Mp = 1 is the only solution of (2.4.9). If M, € (0,00) \ {1}, then
(2.4.9) has a unique nontrivial solution Mo in (0,00) \ {1} with My # Mo. Furthermore, a direct
computation from (2.4.9) shows that

dMe
dM

lim f(M) = oo, A}iinoof(M):OOa (M) =

2 —
M—0+ (M7~ 1).

(2.4.10) <0 for all Mo, € (0,00) \ {1}.
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It follows from (2.4.8) that conditions (O2)—(Os3) are satisfied if there exists 555) so that Mo, > 1
holds.

Denote goo := Moo and qo := coMp. Note that ¢o = dist(Se, (up,0)) and go = dist(So, (0, —vs))
for up given by (2.4.3). Then

(2.4.11) (oo — O = Vo SEC 3.
—1
We substitute the representations of ¢.c = My and go = Moco = Mo Mg ) 577 into (2.4.11) to
Mo
obtain
-1 2y 2y
(2.4.12) M (MQO+1 — M(ﬁ)“) = Voo 5€C 3,

where Mo < 1 solves (2.4.9) for M, > 1. As a function of My, > 1, the left-hand side of (2.4.12)
is strictly increasing for M., > 1, and its value at Mo = 1 is 0. Therefore, for given constants
Voo > 0 and f € [0, F), there exists a unique

(2.4.13) My > 1
satisfying equation (2.4.12). Once My, > 1 is decided, it follows from (2.4.3) and (2.4.11) that

(2.4.14) e = Moo sec B — veo.
It can be seen from 0 < Dyo - Vsh < Do - Vsh that the Eo—intercept §§ﬁ) given by (2.4.14) satisfies
& > 0.
Case v = 1 can be proved similarly. O

2.4.2. New parameters (v, 3). We define & = (£, &) by

&\ [ cosby sinfy )\ (€ Uoo COS Oy,
(2.4.15) (é) = (—smow cosow) (g;) —~ ( 0 ) :

In the new coordinates (£],&5), center Q1 of the sonic circle 0B, (Q1) becomes the origin, and
Iywedge lies on the horizontal axis &, = 0.

Hereafter, for simplicity of notation, we denote & = (£, &) as the new coordinates (&1, &5) given
by (2.4.15). In the new coordinate system, ¢o, @0, and o1, defined by (2.1.25), (2.2.1), and (2.2.6),
are expressed respectively as

(&) = —%|€|2 — &Uoo Sin by, + %ugo cos? Oy,
(2.4.16) eX (&) = —%|€|2 + (€1 + Uoo cos Oy ) (g sec By — Une O8Oy ) + %uio cos? Oy,
(&) = —%|€|2 - uooéél) sin Oy, + %uio cos? Oy,
We define (¢oo, 9o, par) in the new coordinates by
Peel€) = $22(€) — 50 cos? Oy,
(2417) Po(€) = B (€) — 3l cos? by,

1
on (&) = o (€) - 51@0 cos? Oy,
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are denoted as S, Sy, I'9 and TV

: 0 1
In the new coordinate system, Sy, 51,1’ and I Sonic? Conics

sonic’ sonic
respectively.
DEFINITION 2.18 (New parameters (voo, 3)). For each (o, uo) € P, we introduce new param-
eters (voo, ) € (0,00) x (0, %) as follows:
(i) For 6y € (0, 9((1%")) given by (2.3.2), define v by

Voo = Uso SiN Oy;
(ii) Let Sy be the straight oblique shock corresponding to point wg(1,tanéy,) on the shock
polar (Fig. 2.2) with the incoming state (us0,0). For such Sp, let 6, be the angle of
So from the horizontal ground (i.e., & = 0 in the coordinates & before (2.4.15)). Define
B € (0,3) by
(2.4.18) B =05, — Oy
Note that the definition of v, stated in (i) coincides with (2.2.3).

The weak shock configuration in the new self-similar plane is shown in Figs. 2.8-2.9 for
(Vso, B) € (0,00) x (0, %).

1§
X
Rh;,ek
Y e i
0
FIGURE 2.8. Weak shock solutions in the new self-similar plane when 6,, < oéuw)
¥
&

Fs_bock‘ -

™

sonic

(07 Ll’oo)

(uoo)

d

(uoo)

FIGURE 2.9. Weak shock solutions in the new self-similar plane when 6g <0y <0

We define a parameter set R by
(2.4.19) R = {00, B) : Voo >0, 0< B < g},
and define a mapping 7 : B — R by
(2.4.20) T (too, o) = (Voo, B) for (veo, B) given by Definition 2.18.
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LEMMA 2.19. For any given v > 1, mapping T : P — R is a homeomorphism.

PROOF. Fix (ueo,ug) € B. By Definition 2.18(i), the corresponding half-wedge angle 0, is
given by

ar (U
(2.4.21) Ow = arctan(m),

Ug
where fpolar is the function introduced in Lemma A.3.

By Definition 2.18(ii), a unit tangent vector g, of the straight oblique shock Sy corresponding to
(Uoo, ug) is Ts, = (cosfg,,sinfg,) in the coordinate system introduced right before transformation

(2.4.15). Substituting this expression of Tg, into one of the Rankine-Hugoniot conditions:

(Uoo,0) - Ts, = (uo, fpolar(U0)) - Tsy s

we have
Uso — UQ

2.4.22 tanfg, = —=—.
( ) 5 fpolar(UO)

From (2.4.18) and (2.4.21)—(2.4.22), we obtain

tan § = tanfg, — tanfy, _ up(Uoo — Ug) — (fpolar(uo))2 > 0.
1+ tan 950 tan Oy, uOfpolar(“O)

By Definition 2.18(i) and (2.4.21), we can express voo as
f 1¢ r(UO)
(LRolarl 0y,

Voo = Uso Sin(arctan
U
Therefore, mapping 7 : 8 — R is continuous.
In order to show that 7 : P — R is invertible and its inverse is continuous, for fixed (v, 8) € %R,

we find a solution (4, ug) € P of the following equations:

(2.4.23) U SIN Oy, = Voo,
(2.4.24) Uoo COS Oy = §§ﬁ) cot 3,
(2.4.25) ug sec by, = §§ﬁ) cot 8 — Vs tan 3,

so that the definitions of ¢ in (2.4.4) and (2.4.17) coincide. Combining (2.4.23) with (2.4.24), we
have

(2.4.26) oo = /02 + (87)2 cot? B =: T (v, B).
Using (2.4.1), we can rewrite (2.4.26) as

Uoo = | Dpoe (=€) cot B, 0)).

Then we obtain from (2.4.13) that us > M > 1.
Once uq is given by (2.4.26), we combine it with (2.4.24)—(2.4.25) to obtain ug as

(&7 cot B — v tan B) L cot B
(2.4.27) o = S

Note that (— éﬁ) cot 3,0) is the & —intercept of line Sp from Lemma 2.17. Therefore, it can be
seen from Fig. 2.7 that {é’@) cot B 4+ up = {éﬁ) cot S — v tan 8 > 0. This implies that vy > O.

= TQ('UOO,B).
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Since tan 6y, = m > 0 is obtained from (2.4.23)—(2.4.24), we conclude that (ueo,uo) given by

(2.4.26)—(2.4.27) is contained in .
Finally, the continuity of 7! follows directly from the definitions of (T7,T%). a

For any given (veo, 8) € R, the {a—-intercept {é’@) > 0 of the oblique shock S» of angle 8 from

the &—axis is uniquely defined. Moreover, {éﬁ ) varies continuously on § € (0,%), and ﬂlirg {éﬁ )
—0+

exists, which is positive. Denote 5%“ = {éﬂ)mzo. Let pa denote po corresponding to § = 0. Then
N is given by

(2.4.28) en(§) = —%Iél2 — Vol

REMARK 2.20 (The normal shock: Case f = 0). For fixed v > 1 and vy > 0, the straight
shock of angle 8 = 0 from the horizontal ground (i.e., £&2 = 0 in the new coordinates & given by
(2.4.15)) can be considered by taking the limit 8 — 0+ in the argument above. The state of 5 =0
is that of a normal shock, which corresponds to the state of ;> = 1 with 6,, = 0. Even though
the case of f = 0 is not physical because u., = 0o, we still put ¢ this case under our consideration
as it is useful in applying the Leray-Schauder degree argument to prove the existence of admissible
solutions of Problem 2.9 for all (too,up) € Pweak-

REMARK 2.21. According to Lemma A.4, for each v, > 0, there exists ﬁé”“’) € (0,%) such
that, if the parameter sets Ryeak, Rdetach, and Rgirong are defined by

_ (voo)
ERWoak — 'UOQU>O{UOO} X (O; d )a

(2.4.29) Rictach = U {vac} x {8},
Rurons = | U (v} x (8. 5),
then
(2.4.30) T (Rweak) = Bweaks T (Rdetach) = Paetach: T (Rstrong) = Ptrong,

for Pweak, Pdetach, and Peirong defined by (2.3.1). In Lemma 2.22, we will also show that, for
any vs, > 0, there exists a unique BS(U""’) € (O,Bév"’")) such that T5(veo, 3) > ul*) if and only if
B < B for use = Th (Voo, 3), where ul"=) denotes the value of ugflj) for Oy, = 05",

For fixed (voo, 8) € Ryeak, let Mo be defined by (2.4.6). In the proof of Lemma 2.17, it is shown
that 0 < Mp < 1. This implies that the corresponding straight oblique shock Sy intersects with
the sonic circle 0B, (uo,0) = {§ : [Dpo(§)| = co} at two distinct points. For each 3 € [0, §),
let €9 = (£9,£8) be the intersection point P; with the smaller ¢;—coordinate (see Fig. 2.10).
Moreover, let (§£B),O) be the &;—intercept of Sp. If £&§ > 0, then [Dyo| > co at (5;6),0), which
means that an admissible solution in the sense of Definition 2.14 for (us,ug) = T (v, 3) has
the structure shown in Fig. 2.8. On the other hand, if £ < 0, then an admissible solution for
(toos o) = T~ H(voo, B) has the structure shown in Fig. 2.9.

LEMMA 2.22. Fiz v > 1 and ve > 0. The & -—coordinate €S of point Py satisfies

aeg

43 <0 for all B € (0, g) and ,Bl—igl— £ = —oo.
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So

FIGURE 2.10. Two intersection points of Sp with the sonic circle 9B, (up,0)

Therefore, there exists B§”°°> € (0, %) such that

(B8)
9 >0 — [Deo& 701 - for B €0, §”°")),

co

(8)
(2.4.31) 55) =) <— %@1’0)' -1 for B = Bs(voc)7
(8)
9 <0 «— 7‘17“"%01 Ol 1 for B € ( S(”“’),g).

In addition, ﬁs(v"") satisfies the inequality:

(2.4.32) Blee) < gl
PROOF. For My, and Mo given by (2.4.6), define
(2433) (q007 q@) = (M007 MOCO)'

For each 8 € (0, %), let £™ = (£, £3") be the midpoint of two intersections of So with 9B, (uo,0).
By (2.4.6), we have

(2.4.34) £ =& — coy/1 — M3 sin .
Since (£ — up, £5*) is perpendicular to So,

Orp0(€™) = 0 = 07,000 (§™) = (=€1", =£3" = Voo) - T
for a unit tangent vector Ty, = (cos 3,sin 3) to So. Then we have

€™ = (0, —Vo0) — gooVsh = (0, —Uoo) — ¢oo(sin §, — cos 3)

for the unit normal vector vg, to Sp pointing towards the & —axis. This yields that

(2.4.35) ' = —Vo + Qoo COS .
We differentiate (2.4.11) and (2.4.35) with respect to 8 to obtain
déy* . dgoo dgos _ Goo — g0
(2436) ﬁ = —(o Slnﬁ + w COSﬁ7 w = @ anﬁ,
and combine the results to obtain
o dgo
ey 1@ W
(2.4.37) d; = _qodq_g £ tan f.

dgeo
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If gq& < 0, then

9o dgo

1m0 o 2
I T+l

A direct computation by using (2.4.6)—(2.4.9) shows that

dgo (Mo)#(v—l 2 MOOdMO)

dgoe  \ Moo y+1 41 Mo dMy
(2.4.38) :( Goo )ﬁq_o(v—l 2M,, dM@)
poqo oo \Y+1  (v+1)Mp dM
<2-lao
T+ 1las

If gqﬂ > 0, it follows from 0 < 1 — gqﬂ < 1 that

deo dg0.

" o dgo s dgo 2
— —_— > —
1- g2 g0 dgoc — v+ 1
— L«»g& 9
We apply inequality _qcéq_gm P to derive from (2.4.37) that
oo
der 2 . i
(2.4.39) ﬁ < g &' tan g forall B € (0, 7).

Next, we differentiate c% =1 + vT_l(qgo — ¢?) with respect to 3 and use (2.4.11) to obtain

dc? d dgso
&:(”y—l)%o(l—q—oﬂ)q_

(2.4.40) dp o 1) Goo oo/

> ﬁvm sec ftan 3 for all g8 € (O,g).
From this, we have
(2.4.41) Blir?_ & =0, ﬂgr?_ co = 00, BEIE_ £ = —c0.
Notice that
(2.4.42) dj—; > 0,

which can be obtained from differentiating (2.4.12) with respect to 8, where 0 < Mp < 1 < My is
used. From (2.4.10), we obtain

dM@ - dM@ dMoo . dM@ dqoo <0
d3 ~ dMs. d3  dMs dB '

(2.4.43)

Therefore, we conclude from (2.4.34) and the monotonicity properties of (£5*,c2,, Mp) with

respect to 8 that 88%9 <0 forall € (0,%). -
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2.5. Main Theorems in the (v, 3)—Parameters

With Lemma 2.19 and Remark 2.21, we can restate Theorems 2.15-2.16 by using parameters

('Uoovﬂ) € ERWcak-
For fixed v > 1 and (veo,8) € R, we recall the definitions of (¢, po, @A) given by (2.4.1),

(2.4.4), and (2.4.28) as follows:
1 1 1
(251) g0 = —5lEP —vmbe, w0 =3l tuoti —vets”, on = —ZlEP — v,

for &) given by (2.4.14).
Let

po = p(|Dgol*,v0),  pn = p(IDen]? o)
y—1
for p(|Dy|?, ) defined by (2.4.2). Note that & satisfies that & < cy for cyr = py7 . Define
Oo = (’UJ(/),O), O_/\/ = (0,0).
Since 55\/ < ¢py 0Bey (Onr) intersects with Sy = {& = {é\/} at two distinct points. For each
Be0,%), &2 = fo(&1), obtained by solving the equation o (£1,82) — wo(&1,&2) = 0 for &, is given
by
(2.5.2) Jo(€) = € tan + &7,

Note that So = {&2 = fo(&1)} intersects with 0B, (Op) at two distinct points. The &;—intercept
of Sp is

(25.3) Py = (=& cot 8,0) =: (&7, 0).
The line passing through Pg and O = (0, —v) is given by
(2.5.4) Ly = {€ : &= fultr) = tanfus (&1 — 7))
for v -
tanfy = — with 0 € (=, 7).

e 2

Then Ly, represents the horizontal ground in the self-similar plane before the linear transformation
(2.4.15) of the self-similar variables (£1,&2). Moreover, tanf,, and Ly depend continuously on

(Voo B).

DEFINITION 2.23. For each vo > 0 and 3 € [0, §), define
O = (0,—vs), O :=(up,0) = (v tan 8,0), O :=(0,0),
Ag=RI\{E€R” : & < fu(&1)},
Tlnic 1= 0Bey (Ox) N {61 > 0,0 < & < &},
es, = (cos f3,sin B).
For ¢oo, w0, and @pr given by (2.5.1), define

Sv=A{€ 1 pc(§) = on(§)}, So ={€ : (&) = vo(§)}-

Let 2V be the unbounded open region enclosed by Sxr, TV . . and line {(£1,0) : & > €%} so that
OV is a fixed domain for all 8 € [0, év“’)) for fixed vy > 0. Denote the two points P, and Ps by:
N

sonic’

N

sonic*

(2.5.5)

e P, — the intersection point of line {3 = §é\[ and I
e P — the intersection point of the &;—axis and I"
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3

P, S
Thoctc 2 Sw

Pl_,——; Tt
So QN
Ly
3 QO Fg)nic Q F'b/'\é’“i

FIGURE 2.12. Admissible solutions for ﬁs(v""’) <pg< Bév""’)

For each vy, > 0 and 8 € [O,ﬁs(”“’)), define

Ponic = 0Beo (00) N{& < 0,0 < & < fo(&1)}.
Set the two points P; and Py as

o (P} =TQ,.N{& = fol&)},
hd {P4} = 1—‘lg)nic N {52 = 0}

Let Q© be the bounded open region enclosed by Sp, I'©

sonic?

and the line segment PgP;.
By Lemma 2.22, we have

lim [P —Pgl= lim |P—Py=0.
B—B{v) — BBl —

This implies that, as 3 tends to 88" from the left, 19 .. and QO shrink to a single point Ps =
P, = Py;. Therefore, the definitions of I'9 Py, and Py for B € | S(U“’) Z) are given by

sonic? D)

(2.5.6) Ponic = {P1} = {P1} := {Ps}.
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DEFINITION 2.24 (Admissible solutions with parameters (veo,/3) € Ryweak). Fix v > 1 and

(Voo, B) € Ryeak, and let (poo, 9o, par) be defined by (2.5.1). For Sp and Syr given in Definition
2.23, define

SO,scg =S0N {_géﬁ) cot B < 51 < 5{)1}7 SN,scg =Sy N {51 > 5{32}

A function ¢ € Cloo’cl(Aﬁ) is called an admissible solution corresponding to (veo, ) if ¢ satisfies
the following properties:

Case 1. g € (0, §v°°)):

(i) There exists a shock curve Iypoe with endpoints Py = (£9,£9) and Py = (&Y, €)) such
that

(i-1) Curve Tghock satisfies
(257) I‘lshock - Aﬁ \Bl(ooo);

where dB1 (0, —vs) is the sonic circle of the state in Q% := Ag\ Q°© UQ U OQV;

(i-2) Curve Tghoek is C? in its relative interior. That is, for any P € Tghoek \ {P1, P2},
there exist a constant » > 0, a function f € C?, and an orthogonal coordinate system
(S,T) in R? such that Tshock N Br(P) = {S = f(T)} N B,.(P);

(i-3) Curve So seg U Lshock U Snrseg is C', including at points P, and Px;

(i-4) Tshock, Fé\gnic, anic, and Tyedge := {€2 = 0,u0 —co < & < cpn} do not have common
points except for Py, Py, P, and Py. Thus, I'gpock U Fé\gnic U anic U T wedge is a closed
curve without self-intersection. Denote by {2 the bounded domain enclosed by this
closed curve.

ii satisfies the following properties:
(i) ¢ g prop
(ii-1) @ € Ct(Ap) N CLo(Ap \ S0 seg U Tshock U SN ses);

loc

(ii-2) ¢ € C3Q)NC2Q\ (19, UTN,) N CH(Q);

sonic

(ii-3) For QO defined in Definition 2.23,
Yoo MAg\QOUQUON,
(2.5.8) =L o inQ°,
on  in OV,

where QO shrinks to {Ps} = {P,} = {Ps} when 3 = B,
(ii-4) ¢ satisfies
- Eq. (2.1.19) in Q with p(|Dy|?, ) defined by (2.4.2),
- the slip boundary condition ¢¢, = 0 on I'yeqge,
- the Rankine-Hugoniot conditions: [¢]r.,... = [p(|Dy|?, ¢)Dy - nglr.,... = 0
for the unit normal vector ng, to I'spock towards the interior of €).
(iii) Bq. (2.1.19) is strictly elliptic in 2\ (T2 . UTN ).
(iv) max{po, on} < ¢ < poo in Q.
(v) Let es, be the unit vector parallel to Sp and oriented so that eg,, - e; > 0, and let eg,,

be the unit vector parallel to Sy and oriented so that eg,, - e < 0, where e; is the unit
vector in the &—direction, i.e., e; = (1,0). That is,

(2.5.9) es, = (cos f3,sin ), es, = (—1,0).
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Then
(2.5.10) Oesp (oo =) 0, Deg, (poc — ) <0 in Q.

Case II. B € [55”00),6((1%0)):

(i) There exists a shock curve I'shock With endpoints P = (— éﬁ) cot 3,0) and P, = (&, &)
such that

(i-1) Curve T'gpock satisfies

(2.5.11) Tshoek C (Ag \ B1(Ow)),

where OB (0, —v.,) is the sonic circle of the state in Q% := Az \ QU QN

(i-2) Curve Dgpoek is C? in its relative interior: for any P € Danock \ {Ps, P2}, there
exist 7 > 0, f € C?, and an orthogonal coordinate system (S,7) in R? so that
Tshoek N BT(P) = {S = f(T)} N BT(P)v

(i-3) Curve Tghoek U Sy is CF, including at point Py;
(i-4) Fshock,Fé\gniC, and I'yedge := {2 = 0, —§§B) cot 8 < & < ca} do not have common
points except for Pg, P, and P;. Thus, I'shock U v .U I'wedge is a closed curve

sonic

without self-intersection. Denote by 2 the bounded domain enclosed by this closed
curve.

(ii) ¢ satisfies the following properties:
(ii-1) % € Cige (45) N Cloc (A \ Tonock U SN seg);
(i2) ¢ € C3(@) N C2@\ ({3} UTT,.0) N CH@);
(ii-3) Dp(Pg) = Dpo(Ps) and
Yoo I Ag\QUON,
(2.5.12) ¢=1qvo at Pg,
o in QY
(ii-4) ¢ satisfies
- Eq. (2.1.19) in Q with p(|Dy|?, ) defined by (2.4.2),
- the slip boundary condition ¢¢, = 0 on I'yedge,

- the Rankine-Hugoniot conditions: [¢]r.,... = [p(|Dy|?, ¢)Dy - nglr,... = 0
for the unit normal vector ng, to I'spock towards the interior of €.

(i) Eq. (2.1.19) is strictly elliptic in @\ ({Ps} UTN, ).
(iv) max{po,px} < @ < o in Q.
(v) ¢ satisfies (2.5.10).

REMARK 2.25. The inequalities in (2.5.10) for two directions eg,, and eg,, imply that
(2.5.13) Oe(oo — ) <0 in © for all e € Cone(eg,,es, ),
where

(2.5.14) Cone(es,, es, ) = {a1es, + azes, : a1 >0, az > 0}.
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LEMMA 2.26 (Entropy condition of admissible solutions). Let ¢ be an admissible solution cor-
responding to (Voo, ) € Rweak in the sense of Definition 2.24, and let Tshock be the curved shock
satisfying condition (1) of Definition 2.24. Let v be the unit normal vector to Tspock towards the
interior of Q. Then the following properties hold:

(a) (9,,9000 > 81/(/7 >0 on Fshock;

(b) Let
Ov oo Ov
Moo,u =5~ — O P, Mll = =5~
c(|Dposo|?, o) c(|Dpl?, ¢)
for
—1
(2.5.15) c(lal®,z) = p™= (Jal*, 2),

where p(|q|?, ) is defined by (2.4.2). Then
0< My <1l< Moo,u on I‘shock-

PROOF. Denote w := ¢oo — . From (2.1.19), (2.4.2), and (2.4.5), it can directly be checked
that
(C2 - <P§1)w£1£1 - 29051 P, We g, + (C2 - <P§2)w£z£z =0 in Q

for ¢ = p?Y(|Dy|?, ), where p(|Dpl|?,¢) is given by (2.4.2). By condition (iii) of Definition
2.24, the minimum principle applies to w so that w cannot attain its minimum in €2, unless it is a
constant in Q. By conditions (ii) and (iv) of Definition 2.24, we see that w > 0 in Q, and w = 0
on Igpock. Furthermore, w is not a constant in ©, because Oz, W = —VUs 0N yedge by (2.4.1) and
the slip boundary condition J¢,¢ = 0 on I'yedge, stated in (ii-4) of Definition 2.24. Then it follows
from Hopf’s lemma that d,w > 0 on I'sphock. This implies that

(2516) 61/9000 > auSD on I'ghock-

If 9,p(P) = 0 for some P € Dynock, then it follows from the condition: p(|Dp|?, p)dup(P) =
Ov oo (P) stated in (ii-4) of Definition 2.24 that 0y e (P) = 0, which is impossible, due to (2.5.16).
Therefore, we have

(2517) |8V</7| >0 on I'shock.
By conditions (ii-2)—(ii-3) of Definition 2.24, we have
Dp(P2) = Don (P2).

Then it follows from the definitions of (Yo, @ar) given in (2.5.1) and conditions (ii-4) and (iv) of
Definition 2.24 that

Dypoo — Doy
2.5.18 v(Py) = =P 2PN _ 1),
( ) (P) |Dpoc — Doy| 0.~
(2.5.19) O (Poo — ©)(P2) = Do — Don| = Voo > 0, 9pp(Po) = Bponr(P2) = €52 > 0.
Similarly, at P;, we have

Dp(Pr1) = Dypo(P1),
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so that (2.4.3), (2.4.35), (2.4.39), and (2.4.41) yield that

Dspoo - DQPO .
P)= = y )
v(Py) Do —Dyol (sin B, — cos B)
(2.5.20) v (Poo = ©)(P1) = |Dpos — Do = veo sec f > 0,
(2.5.21) Oup(P1) = 0bpo(P1) = O0ypoc(P1) — Voo sec f = &5 > 0.

Then statement (a) follows directly from (2.5.16)—(2.5.21) and the continuity of d,¢ along I'shock
up to its endpoints P; and Ps.

Note that the calculations given in (2.4.8)—(2.4.9) are still valid when (po, Mo, M) are re-
placed by (p, My, M ) o0 I'shock- Then we see that, on I'shock,

’YT“ _ Moo,u
M,
~1
(2.5.23) (1+ WTME)|MV|

(2.5.22) p

—2(y=1)

- -1
= (L T M) Mo [

This is because (2.4.8)—(2.4.9) are all derived from the Rankine-Hugoniot conditions stated in

Definition 2.24(ii-4). By the result obtained in statement (a) and the Rankine-Hugoniot condition
Moo

PO = OuPoo ON Danock, (2.5.22) implies that =F*= > 1 on I'yhock. Since (M, M ,) satisfy
(2.5.23) and Moo, # M, on I'shock, it follows from the observation right after (2.4.9) that

0< M, <1< My, on I'ghock-
This completes the proof of statement (b). O

In (2.5.2)—(2.5.4) and Definition 2.24, the values of ﬂﬁ), 556), 0, co, and uep depend continu-
ously on 3 € (0, §) with

B—0+

As a result, we obtain
. (P N — 0= 1 T
B]ifg-‘,-'Pl ( 1 752 )| 0 B%—{-'PL} ( CN70)|7

S, lpo = enlles(Broy) =0  for any R > 0.

For § =0, we define Py, Py, Aglg=0, and So seg|s=0 by
Pl:(_ 52752/\[)7 P4=(—CN,O),
Aplp=o =R xRy, Soseels=o={(£1,8") : & < —&*}.

Then two points P; and P, depend continuously on 8 € [0, %), so that Ag and So sg depend
continuously on 3 € [0, ). Using this, we extend Definition 2.24 up to 3 = 0.

(2.5.24)

DEFINITION 2.27 (Admissible solutions when § = 0). Given v > 1 and v > 0, a function
© € COYRxR,) is called an admissible solution corresponding to (veo, 0) if ¢ satisfies the following
properties:

i) There exists a shock I'ghock With endpoints Py = —§N, §N and P, = §N, §N such that
162 162
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(i-1) Curve Tghock satisfies

(2.5.25) Tshoek € (R X R1)\ B1(Owo),
where 9B1(Ox) is the sonic circle of state Os = (0, —vs) in 2 = (R x Ry) \
QO UQUQV:
(i-2) Curve Tgpock is C? in its relative interior; that is, for any P € Tghock \ {P1, P2},

there exist r > 0, f € C2, and an orthogonal coordinate system (S,T) in R? so that
Pshock N B (P) ={S = f(T)} N B.(P);

(i-3) Curve S0 seg U shock U SAr seg 18 C', including at points P; and P»;

(i-4) Tshock, Fé\gnic, ro .. and Fywedge := {(£1,0) 1 —en < &1 < cnr} do not have common
points, and I'spocx U v . uro . u I'wedge is a closed curve without self-intersection.

sonic sonic

Denote by €2 the bounded domain enclosed by this closed curve.
(ii) ¢ satisfies the following properties:
(ii-1) ¢ € COMR x Ry)NCH((R x R4) \ So,seg U Lshock U SN seg);
(i-2) ¢ € C*(Q) N CHQ\ ([Qpse UTE ) N O ();
(ii-3)

Yoo I (RxRy)\QOUQUONV,
B {cpN in Q° U QV;
(ii-4) ¢ satisfies
- Eq. (2.1.19) in Q with p(|Dy|?, ) defined by (2.4.2),
- the slip boundary condition ¢¢, = 0 on I'yedge,

- the Rankine-Hugoniot conditions: [¢]r.,... = [p(|Dy|?, ¢)Dy - ngulr.,... = 0
for the unit normal vector ng, to I'shock towards the interior of €.

(iii) Eq. (2.1.19) is strictly elliptic in @\ (I'C ., UTN ..
(iv) on < ¢ < oo in Q.
(V) Oe(poo — ) <0in N for alle € R x RT.

REMARK 2.28. Condition (v) of Definition 2.27 is a continuous extension of condition (v) of
Definition 2.24 in the sense that

(i) Cone(es,,,es, ) for 8 > 0 defined by (2.5.14) monotonically increases as § > 0 decreases
in the sense that, if 0 < 81 < 82 < §, then

Cone(es,,, esy )]s, C Cone(es,,esy)|s,;

(ii) Uo<p<z Cone(esy,esy)ls =R x RT.

REMARK 2.29. Similarly to Definition 2.10, it can directly be checked that any admissible
solution corresponding to (Veo, 8) € Rweak U {(Voo,0) : Uso > 0} in the sense of Definitions 2.24 or
2.27 satisfies the following properties:

(i) ¢ € Wioe (Ag);
(i) p(|Dp|?,¢) > 0in Ag for p(|Dy|?, ¢) defined by (2.4.2);

(iii) p(IDel*,¢), p(IDpl, @)Dl € Liye(Ap);
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(iv) For every ¢ € C§°(R?),
/A (P(ID@P2, 0)Dg - DC — 20(|Dl?, 9)C) d€ = 0.
B

Specifically, property (iv) here is obtained by condition (ii) of Definitions 2.24 and 2.27, and
via integration by parts. Property (iv) indicates that any admissible solution ¢ is a weak solution
of the boundary value problem rewritten from Problem 2.9 with respect to parameters (v, 3).

LEMMA 2.30. For any given v > 1 and vo, > 0, there exists at least one admissible solution
corresponding to (veo,0) in the sense of Definition 2.27.

PROOF. The conditions stated in (ii-4) and (v) of Definition 2.27 imply that

Tonook = {(61,8)) + &V <& <&}

that is, S0 seg U'shock U SArscg is a normal shock. Therefore, the pseudo-subsonic region Q is
enclosed by TO ., T . Tyedge, and the line segment (—&, &) x {€)}. Tt can directly be checked

sonic? ~ sonic?

that a function @perm € Co’l(A5|ﬁ:0) defined by

e mRxRL)\NQOUOQUON,
Prom = mQPuQuUOV

is an admissible solution corresponding to (ve,0) in the sense of Definition 2.27. O

For a fixed (v, 8) € Ryeak, let ¢ be an admissible solution corresponding to (v, 3) in the
sense of Definition 2.24. Let (uoo, 1) be given by (teo, o) = T 1 (Voo, ) € BPweax for mapping T
from Lemma 2.19. Let 6y, be given by (2.4.21). For each & = (£1,&}) € Ag, let &€ = (£1,£2) be given

by
-1
T cosfly, sinfy NT Uoo COS Oy,
¢ = <—sin9w COSHW) <(£) +( 0 ))
This is the inverse transformation of (2.4.15). Finally, let a function ¢ be given by

(2.5.26) o(&) =&+ %(uoo cos Oy, )? for & € Ag.

Then ¢ is an admissible solution corresponding to (oo, ug) € Pweak int the sense of Definition 2.14.
From this perspective, Theorem 2.15 is equivalent to the following theorem:

THEOREM 2.31 (Existence of admissible solutions). For any given v > 1 and (veo, 8) € Rweak;
there exists an admissible solution in the sense of Definition 2.24.

REMARK 2.32 (Non-existence of self-similar strong shock solutions). Fix v > 1. For (ve, 8) €
Rdetach U Rstrong, 16t (Ag, Yoo, 90, onr) be defined as in Definition 2.23. We call ¢ € C%1(Ag) an
admissible solution corresponding to (veo, ) € Rdetach U Rstrong if it satisfies conditions (i)—(v)
stated in Definition 2.24 for Case II. By the convexity of the shock polar for steady potential
flow, which is shown in Appendiz A, and condition (iv) of Definition 2.24, it follows from the non-
existence result as proved in Appendiz B (see also [25]) that there exists no admissible solution
corresponding to (vso, ) € Retrong i the sense of Definition 2.24.

The existence of admissible solutions corresponding to (veo, Bév"’")) is still an open question.
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THEOREM 2.33 (Regularity of admissible solutions). Given v > 1 and (veo, ) € Rweak, let ¢
be a corresponding admissible solution with the curved shock Ushock in the sense of Definition 2.24.
Then the following properties hold:

Case 1. g € (0, ﬁé”“’)):

(a) Tsnock is C in its relative interior, and o € C*°(Q\ (T2 . Somic U Fi\gmc)) ncti(Q);
(b) Define a set D by
(2.5.27) D = AgN{§ : max{po(£), pn(€)} < po(§)}-

For a constant o > 0, define DO and DN by
DY =DN{¢ : dist{&, T} < 0} N Bep (0o),

(2.5.28) N
DN =Dn{¢ : dist{&, TV ..} <oln B, (On)
for e = p(7 1)/2 co = pg_l)/z, Oo = (up,0), and Oy := (0,0). Fiz any point
& € (FngUFé\gmc)\{Pl, Py}, and denote d := dist{&o, Tshock }- Then, for any « € (0,1),
there exists a constant K < oo depending on (veo,?, €0, ,d) and H(PHCI,I(SZQ(D%LJ'D%))
such that
(2.5.29) 11,0005, @nme 00 ) < K
(C) For any 50 € ( sonic Y Fi\gmc) \ {P17 P2}7
1
(2.5.30) 51;2%1 (DTTQD — D, max{po, SDN})(S) = m,

where 7 = |€] near T .. and r = |€ — (uo,0)| near TS

sonic

(d) lim D%y and hm D?p do not exist;
sszﬂl EEQ

sonic 7

(€) S0,seg UTshock U SN seg 15 @ C?—curve for any a € (0,1), including at points Py and Ps.
Case II. 8 ¢ [Bé”“’), é%")):
(a) Tshock is C™ in its relative interior, and ¢ € C=(Q\ ({Ps} U Fsomc)) NCHLHQ\ {Ps}) N
CH%(Q) for some & € (0,1);

(b) For a constant o > 0, let DY be defined by (2.5.28). Fiz any point & € I‘bomc \ {P:},
and denote d := dist{&o, Tshock }- Then, for any a € (0,1), there exists a constant K < oo
depending on (Veo, 7, €0, , d) and ||g0||01,1(QﬂD%) such that

(2.5.31) 11,0005, Erox,, < K
(¢c) For any & € l—‘é\({nic \ { P},
. 1
(2.5.32) ‘1}3 (Drrp — Drpion) (€) = o

where r = |€|;

(d) £hrg D?¢ does not exist;
— 2
£eq
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(€) Tshock U SN seg 15 CY—curve for the same & as in statement (a). Furthermore, curve
TCshock U S\ seg \ {Ps} is C** for any o € (0,1), including at point Ps.

Since Theorems 2.15-2.16 follow directly from Theorems 2.31 and 2.33 through (2.5.26), the
rest of the monograph is devoted to establishing Theorems 2.31 and 2.33.
We will prove Theorem 2.31 by solving the following free boundary problem:

PROBLEM 2.34 (Free boundary problem). Given v > 1 and (veo, 5) € Rweak, define ¢ and
Fsonic by

(2.5.33) ¢p = max{Yo, oA}, Laonic 1= I pic UTN e

Find a curved shock Tghockx and a function ¢ € C3(Q) N C?(Q\ (m U m)) N CH(Q) satisfying
the following:

2.5.34
2.5.35
2.5.36
2.5.37

Eq. (2.1.19)  in Q,
v =s, Dp=Dypg on I'sonic,
65290 =0 on 1—‘wedgea

( )
( )
( )
( )

¥ = Poo pDSﬁ'Vsh:D<Poo'Vsh on FShOCk7

where vy, is the unit normal vector to I'shock towards the interior of 2, and p is defined by (2.4.2).

Note that I'9 ), Therefore,

=)

sonic 15 & closed portion of a circle, which becomes one point for 5 > ﬁé”“’
the boundary condition (2.5.35) on T'Y

sonic Decomes a one-point boundary condition for 5 > 3

REMARK 2.35. It can be checked from the definitions of (¢o,@ar) given in (2.5.1) that, for
each 8 € (0, %), there exists a unique £} such that

Yo for & < &7,
ep(€1,&2) = { vo =N at & =&,
ON for & > &7

Moreover, £} satisfies that fo (&) = &Y and 5{3‘3 < & < 0. In particular, g = po on I'Q .. and

sonic
N

P = PN OI Fsonic'

2.6. Further Features of Problem 2.34

Fix v > 1. For (voo,8) € Rweak with 8 < B§”°°>, let P, and P> be the points as defined in
Definition 2.23. Let Lo be the line segment connecting P; with P». For 0 < vy < 1, there exists a
unique line L, that passes through P> and is tangential to 9B1(O«) so that the intersection point
of Lo, with 0B1(Ox) has a negative £;—coordinate; see Fig. 2.13. Let tanfp and tanf. be the
slopes of Lp and Ly, respectively. Then

> 1 iff 0p < O,

dist(Lo, Oa
ist(Lo )){<1 i 0o > On.

Note that tan 6., is independent of 5 € (O,BS(U"’")), and O = (0, —Vs0)-
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Sy (&Y. )

FI1GURE 2.13. Top: 0o < 0~; Bottom: 6o > 0

PROPOSITION 2.36. For any given v > 1, there exists a constant v, € (0,1) so that, if 0 <
Voo < Vs, then there is 3(V>) e (0, §”°°>) such that

(2.6.1) dist(Lo, Os) > 1 for B8 € (0, 3U=)),
(2.6.2) dist(Lo, Os) < 1 for B e (Bv=), glv=)),

PrROOF. In this proof, we consider only case v > 1. Case v = 1 can be handled similarly. The
proof is divided into seven steps.

1. Claim: For each v > 1, P, = (g{\f,gg\f) and ppr depend continuously on ve > 0 and

(2.6.3) lim &' =0, vi%+pN—vi%+§2 = 1.

Voo —0+

Substituting po = par into (2.4.5), we have

v—1
p -1 1
(2.6.4) Fi(pn,vc) == %(PN -1)- gvgo(/w —1) = v, =0.
We differentiate F; with respect to par to obtain
_ JE T
(2.6.5) O L = pl 2o — D)+ B — = g2
v—1 2
y—1 1 1 2
. . PN - 2 Vo . . . . .
Using (2.6.4) to obtain that =TT ~ 3% + T substituting this expression into (2.6.5),
v - PN —

and then applying ppr > 1, we have

2
_ v,
Ao Fr = p) 2 (pw — 1) + prs Rl

Then the implicit function theorem implies that pr is of the C'~dependence on vo, > 0.
The C'-dependence of P, on v, follows directly from (2.2.4) and &Y = Ve — (&)
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By the C'-dependence of pnr on vse, we have
dox

_ dFl(pN(UOO)a Voo)

0 =0, F —1)V0.
d'Uoo pnL1 dvoo (p/\/ )U

Since 0, F1 > 0 is shown above, then gz% > 0. This implies that par(vs) is bounded above by a
finite constant for ve, > 0 sufficiently small so that it follows directly from (2.6.4) that
(2.6.6) vilg%wr pn = L.

By (2.4.8) and (2.6.6), we find that lin%Jr Mo (P3) = 1. We combine this limit with (2.4.14)

Voo —>
to obtain
: N _
(2.6.7) Jim g =1,
Finally, lirerr &) = 0 is obtained from &V = A — (€37)2, and the limit of & is given in (2.6.7).
Voo —>

The claim is verified.

2. For each v > 1, there exists a small constant ¢ > 0 so that 5{\[ < 1 whenever 0 < v < 0.
Fix v > 1. For 0 < vs < 0, define a function F : (0, §U°")) — R by

(2.6.8) F(B) :=tanfp — tan 6.

Claim: For any given v > 1, there exists a constant v, € (0,0] so that, if 0 < v < v, there
is B(ve=) € (0, §U°°)) such that

F(B)<0  forall B € (0,50)),
F(B)>0  forall § € (3), p{*~)).
Once the claim is verified, then (2.6.1) directly follows.

(2.6.9)

3. We first show that, for each v, € (0,0], F'(8) > 0 holds for all g € (0, S(U“’)). Fix
Vo € (0,0].
We use the equation of line L.:

(& — M) tanbs — (&2 — &) =0

to see v N
tan O, —1, —&N tan O (0, —ve, 1
dlSt(LOO, (0, _Uoo)) _ |( an 51 an +§2 ) ( v )| _ 1,

V1 + tan? 0

and then solve it for tan 6., to obtain

V(v +87)7 = 1) + (&) = (ve + &N
1—(&Y)? '
Let (goo, qo) be given by (2.4.33). By (2.4.34)—(2.4.35) in the proof of Lemma 2.22, we have
shown that £ = —v., + goo cos B — sin Bv/A with A= ¢4 — g%. Substituting this expression into
€9 =up — /% — (£9)? and then using (2.4.11) and (2.5.5), we have

tan O, =

€0 = —voctan B — (cos By/c% — ¢ + qo sin ),
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so that
gé\[ 55) 7UOO_QO0C055+SiDﬂ\/Z+§£/
&N —¢9 cos BVA + qeosin B+ &Y

Since tan 6, is independent of 3, we have

tanfp =

G(B)

F(8) = (f{v + oo sin B + cos fv/A)2

where

d
GB) = (10 + 5= 37 (1 + €1 08 = (v + ) cos )

dgeo
+ (VB = ) (VB + € cos B + (v + ) sin ).
By (2.4.33), (2.4.40), and (2.4.43), we obtain
da _ deh (1 — M3)
dg dg
A direct computation yields that
Goo —I—{{vsinﬂ— (Voo —I—{é\[)cosﬂ =(P,—P;) -ng, >0

>0 for all B € (O,g).

for the unit normal vector ng, to Sp pointing towards O = (0, —vs,) for all 8 € (O,ﬁs(v""’)).
Combining the two previous inequalities, we have

G(8) > (\/Z—d—ﬂ)(\/_—i—{NcosB—i—(voo—i—SQ )sin 3).

Therefore, we can conclude that F'(3) > 0, provided that /A — dq"o >0for0< B < ﬁb”“’ can be
proved.
A straightforward computation by using (2.4.9), (2.4.36) and (2.4.38) yields that

dges  ( - q )tanﬁ
dﬁ QOo +Q(9

Using (2.4.8) and (2.4.33), we obtain that ¢, = (%) ~'. Then

p (Mo _ B - a5 (1 N q?o“)tarfﬂ)

s’ gt (037% + ¢d)2
(=i0)
dgoo
It can be checked directly that (;]B > 0, by differentiating (2.4.12) with respect to 8 and applying
(2.4.10). Then we have
y—2 Y d
(2.6.10) G gyt = e Tlox

tanf  dp
Since £€§ = —voo + oo cos B — sin By/A > 0 for B < ploe) (2.4.11) implies that qo > ¢ sin® B.

Substituting ¢ = ply " = (Z—*’(’;)'yf into this inequality, we find that ¢! gc’z 5, Which implies
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— K Voo
0——q_0+1)2 <1 forallﬁE(O,Bs( )),

1
as"

where K = T This implies that /A — ddq—g’ >0for0< < BS(U""’).
Therefore, F'(3) > 0 for all B € (0, 3{">).
4. At f =0, (5 = &), This directly yields that F(0) = — tan 6., < 0.
5. Fix v € (0,0]. At 8 = ﬁg”“’), €9 = 0. Let €97 denote the & —coordinate of point Py at

B = pl

where

(2.6.11)

). Then we have
—b
F(3)) = - =
= (1= (E)A)E —¢)

a:= (&Y =€) (veo + &)Y — & (&) - 1),

bim (6 = €0")y o + €2 + ()2 - D).

Claim: £°" depends continuously on v, € (0, 0].
This can be seen as follows: fix 8 = Bs(v‘”), then

(5-1) Since £ =0 at 3 = 88" we derive from (2.4.34)-(2.4.35) that

(2.6.12)

cor/1— M(% sinﬁb(”“’) = —Voo + 4o cosﬁév“’).

We combine this equation with (2.4.11) to yield that My = sin Bs(v‘”) and substitute this
into (2.4.8) to obtain
y+1

qo—_l = Sin2 ﬁgvm)
9%

(5-2) By (2.4.7) and the Rankine-Hugoniot jump condition: pogo = goo, we have

y—1 2

Po —1 1 doo 12
F. )i =04 (2] — 2 =0
2(P0, Goc) po— +2<p0> 54

The fact that 8,F(po, ge0) = p%(c?o —¢%) > 0 implies that po is of the C'~dependence
ON (oo, SO that go = ‘,1)—*"(;’ is of the C'-dependence on ¢u.

(5-3) It can be derived directly from (2.4.11) and (2.6.12) that

(2.6.13)

q
Fy(aeesvse) = (a0 —00)* (1= ) =02 =0,

where qo is regarded as a C'-function of g, by (5-2). A direct computation by using

(2.4.11), (2.4.38), and (2.6.12) shows that 9, _ Fa(goc, vec) > 222" 5 0 This implies

that g is of the C'-dependence on ve.

(5-4) {?* is the & —intercept of Sp so that 59* = —Us tan ﬁs(v""’) — qo csc ﬁs(v""’). By the C'—

dependence of "> and go on ve, we conclude that €97 is of the C'~dependence on V.
The claim is verified.
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6. Claim: For a and b defined in (2.6.11), limOJr(a2 -b?) =1.
Voo —>

It suffices to show that sup,_ ¢(o,0] €97 is bounded, due to (2.6.3). From (2.6.13), we have two
y+1
o  _
=1

. o .
cases: lim g0 _ 1 and lim —
Voo =04 (oo Voo —0+ qgo

For the case that lin%Jr g0 _ 1, (2.6.12) implies that sup ¢ is finite. Then it follows from
Voo = Goo (0,0]

oo = Dpoo(P1) -ngy = —£9% sin B) + vy cos B> that SUp,,_ (0,01 €7 sin B8] is finite. We
multiply (2.6.12) by (€97)2 to obtain
y+1

*\2 . 2q
sip (€02 < sup (€97 sin ) < oo,
Voo €(0,0] Ve €(0,0] %

where we have used the fact that g., > 1 for each vy > 0.
y+1

For the case that lim %
Voo —0+ qgo

1 (a1 [qu' 1 11 gt 1
) (s g) b
2 \ qo v—1 4o a5 2 7—1q0 2
From this, it follows that sup,_ ¢ (o o] [£2| is finite. Then we use (2.6.12) to see that sup, ¢ (g,0) 4o
40

is finite. Finally, we repeat the argument for the case that lim — =1 to conclude that
Voo 0+ Qoo

=1, we substitute po = ‘é—z’ into F5(po, ¢so) = 0 to obtain

sup (5?*)2 is finite, which implies the claim.
Voo €(0,0]
7. By the result obtained from Step 6, there exists a constant v, € (0,0] such that F(0) <

0 < F(BS(U"’")) for all v, € (0,v.]. Finally, the monotonicity of F(3), proved in Step 3, yields
Proposition 2.36. O

When (2.6.1) holds, the existence of a solution of Problem 2.34 has been proved in [26]. This
implies the global existence of a weak solution of Problem 2.9 with the structure of Fig. 2.5,
provided that (2.6.1) holds. In this monograph, we establish the global existence of admissible
solutions for all (veo, 8) € Rweak (i-€., the global existence of weak solutions to Problem 2.9 for all

(Uoo, Up) € Pweak ), Which includes the case that(2.6.2) holds, or the case that 5 > ﬂ§”°°>.






CHAPTER 3

Uniform Estimates of Admissible Solutions

As in [11], we employ the Leray-Schauder degree to prove Theorem 2.31. In order to construct
an iteration set (as a subset of a properly defined Banach space) and an iteration mapping, we
first establish uniform estimates of admissible solutions corresponding to (ve,5) with respect to

B e o, ((iv“’) — ¢] in the sense of Definitions 2.24 and 2.27 for each vo > 0 and small ¢ > 0. In
particular, it is crucial to establish the uniform estimates of the size of the pseudo-subsonic region
), and the pseudo-potential function ¢ restricted to 2 in properly chosen norms. Following the
approach of [11], we establish various uniform estimates of admissible solutions in the following
order:

e Strict directional monotonicity properties of v — ¢,

e Strict directional monotonicity properties of ¢ — @ar and ¢ — o,

e Uniform positive lower bound of the distance between I'shock and I'yedge away from Pg,

e Uniform positive lower bound of dist(Tshock, 9B1(0x0)),

e Uniform estimates of the ellipticity of Eq. (2.1.19) in Q,

o Uniform weighted C%® estimates of admissible solutions in €.

Fix v > 1 and vo, > 0. For each 8 € [0, %), let (¢oo, onr, v0) and (Ouo,O0,Ox) be de-
fined by Definition 2.23. We also follow Definition 2.23 for the notations of (I'Y .. .T'C .) and
(P17P2,P3,P4).

Note that the definitions of (I'Q . . Py, P,) are different for the respective cases 8 € [0, S(v‘”))

and 8 € | S(U“’), %), but they depend continuously on 3 € (0, 5).

3.1. Directional Monotonicity Properties of Admissible Solutions

In this section, we establish directional monotonicity properties of woo — @, ¢ —ar, and ¢ — o
for admissible solutions ¢ in the sense of Definition 2.24.

3.1.1. Strict directional monotonicity of ¢., — ¢. For an admissible solution ¢ in the
sense of Definition 2.24 for (veo, 8) € Rweak, define

(3.1.1) D=0 — QN in Q.
Then ¢ satisfies the equation:

(312) (CQ - ¢§1)¢§151 - 2‘/751(/752 ¢£1E2 + (02 - @22)(255252 =0
in the pseudo-subsonic region Q for ¢? = ¢?(|Dyp|?, p, €) given by

(3.1.3) 02(|p|2727£) = pV—1(|p|2,27£),
where p(|p|?, 2, £) is defined by (2.4.2).

47
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LEMMA 3.1. Fizv>1 and v > 0. Let ¢ be an admissible solution in the sense of Definition
2.24 for (Voo, B) € Rweak with B >0, and let ¢ be given by (3.1.1). Then, for any given unit vector
e € R?, 0.0 is not a constant in ).

PRrROOF. By condition (ii) of Definition 2.24, ¢ satisfies
(3.1.4) Dep =0 on TV

sonic?
(3.1.5) 0 = Oe(po — on) = € (up,0) on I‘Smic

for each unit vector e in R2.

Suppose that Je¢p is a constant in 2. Then (3.1.4)—(3.1.5) imply that e must be parallel
to es = (0,1), because up # 0, by Definition 2.23. Then J¢,¢p = 0 in Q, which implies that
Oe16,0 = Ogpe, @ = 0 in Q. Since Eq. (3.1.2) is strictly elliptic in €2, it follows that Jg ¢, ¢ = 0 in
Q. Thus, there exist constants (u, v, k) such that ¢(&1,&2) = u&y + v€a + k in Q. Since the length

of I‘é\gnic is nonzero, we obtain from the boundary condition ¢ = 0 on I‘é\gnic that D¢ = 0 in €,
so that ¢ = 0 in . However, this contradicts the boundary condition (2.5.35) on I'? . | because
=90 — N =uokl — voogéﬁ) + voogé\[ on I'9 . by Remark 2.35. 0

LEMMA 3.2. Fizv>1 and v > 0. Let ¢ be an admissible solution in the sense of Definition
2.24 for (Voo, B) € Rweak With B > 0. For vectors es,, and eg,, given by Definition 2.23, ¢ satisfies

(3.1.6) Des, (oo — ) <0 in Q\T¢

sonic?

(3.1.7) s, (oo — ) <0 in Q\ TN

sonic*

PROOF. By Definition 2.24(v), any admissible solution ¢ satisfies that e, (¢o0 — ) < 0 and
Des,, (Poo — ) < 0in Q. Therefore, it suffices to prove the strict inequalities.

For e = eg,, or es,,, we introduce a coordinate system (5, T') so that e = (1,0) and e+ = (0,1)
in the (S, T')—coordinates. We note that Eq. (2.1.19) is invariant under a coordinate rotation. Also,
D?(¢oo — ) = —D?¢ for ¢ given by (3.1.1). Then ¢, — ¢ satisfies

(3:1.8)  (® = 9) (oo — ¥)ss = 20597 (o0 = P)sT + (¢ = 9F)(Poo —P)rT =0 I Q.
Denote v := ds(poo — ¢). Then v satisfies the following properties:
(i) v < 0 in Q. We differentiate (3.1.8) with respect to S and use the expression:

(2 = 0%)(Poo — @) 55 — 20507 (Vo0 — @) ST
22
C @T

(Yoo — Q)T = —

to obtain a second-order equation for v. Since Eq. (3.1.8) is strictly elliptic in Q\(T9 . UT¥ . ) by
Definition 2.24(iii), the equation for v is strictly elliptic in Q\(I'Q . UT¥ . ), because the coefficients
of the principal part of the equation for v are the same as those in Eq. (3.1.8). Moreover, v is
not a constant in 2 by Lemma 3.1, so v cannot attain its maximum in €2 by the strong maximum

principle. Thus, v < 0 holds in €.

(i) v < 0 on I'wedge-: On TI'yedge, the slip boundary condition (2.5.36) for ¢ implies that
Oty (Yoo — ) = —Voo, 80 that O¢ ¢, (oo — @) = 0. In Eq. (3.1.8), we replace (S,T) by (&1,&2) to
obtain

(3.1.9) (¢ = ©2,)0e,6, (oo — ) + (2 = ©F,)0es65 (Poc — ) =0 0n Tyedge.
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Let {eg,, e, } form an orthonormal basis for coordinates & = (£1,&2). By setting a1 := e - e¢, and
ag = e - eg,, v is expressed as v = a10¢, (Poo — ©) + a20¢, (Poo — ©) S0 that ve, = a10¢,¢, (Yoo — @)
and ve, = a20g,¢, (Poo — ) O I'yedge-

Substituting these expressions into (3.1.9), we obtain the following boundary condition for v:

az(c* — ¢

(e —¢g,)

(3.1.10) O, v + Oe,v =0 on I'yedge-

Since e - e¢, # 0, i.e., a1 # 0, (3.1.10) is an oblique boundary condition for v on I'yedge. Thus,
Hopf’s lemma applies. Therefore, v cannot attain its maximum on I'yedge, Which implies that v < 0
on I'yedge-

(iil) v < 0 on Tghock. Suppose that v(ﬁ’) =0 for some P € Typock. Let ng, be the unit normal
vector to I'gpock towards the interior of €2, and let 7y, be the unit tangent vector to I'gpock With
Ten-€sy < 0. Differentiating the Rankine-Hugoniot jump condition: [p(|D¢|?, @)Dy ng)
in the direction of 7y, we have

Tshock

(3.1.11) D?*(poe — ©)[Ten, h] := T - D* (000 — )R =0 on Dshock,
where h = hyng, + hy T, with

(3.1.12) hn = —pion., (¢ = ©3_), hy = (% + ppi_ )r,-

We refer to §5.1.3 of [11] for the verification of (3.1.11).
It follows from Lemma 2.26(a) and the ellipticity of (2.1.19) in @\ (I'C . UTN . that

sonic

(3113) hn <0 on I'shock-

Since it is assumed that v = 9 (oo — ) has a local extremum at Pe Tshock, we have
(3.1.14) D?(po0 — ©)[Ten, €] =0 at P.
We express e = bing, + bo7en. Then we rewrite (3.1.11) restricted at P and (3.1.14) as a linear
system for (Yoo — ©)runa, (P) and (Yoo — @)rmy, (P). By this linear system and (3.1.8), we find
that D?(ps — )(P) = 0, unless

(3.1.15) R L N e
by by

On the other hand, v is not a constant in Q by Lemma 3.1, so that D?(¢ — ¢)(P) = 0 is, by

Hopf’s lemma, impossible. Therefore, (3.1.15) must hold, so that e = kh at P for some constant
k # 0. This yields that

[0(P)| = |khu(P) D(poo — ¢)(P)| > 0.

This contradicts the fact that v(P) = 0. Therefore, we conclude that v < 0 on Tgpeck.

: ; _ _ _ (Ve0,=u0)(0,~vs0)
(iv) v < 0 on the sonic arcs. If e = eg,,, then v = Oy (Yoo — A7) = # < 0on
N ... This proves (3.1.6).

If e = egy, then v = Oy . (Poc — Y0) = — (U0, V) - (—1,0) < 0 on r@ . . This proves (3.1.7).

sonic*
This computation holds even for the case that TS . = {Ps}, i.e., 8 > ﬂs(v“’) by the condition

stated in (ii-3) for Case II. O
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Define the following set:
(3.1.16) Cone(es,, es, ) = {a1es, + azes, : a,az > 0},

and let Cone’(eg,,,es, ) be the interior of Cone(eg,, s, ). By Lemma 3.2, if ¢ is an admissible
solution corresponding to (v, 3), then ¢ satisfies

(3.1.17) Oe (oo — ) <0 in Q for all e € Cone’(es,, es,)-
REMARK 3.3. By (2.5.9), Cone’(es,,, €s, ) can be represented as
Cone’(esy, esy) = {re?? : r>0, B <0 <}

D(ps — ¢)
, |D(¢0 — @)
(3.1.6) that —ng,(P) € {e? : g — T <0< p+ 7%} forall P e gpock- Moreover, it follows from
(3.1.7) that —ng,(P) € {e : 3 <0< 37”} for all P € I'shock. Therefore, we have

Note that the unit normal vector ng, to I'shock 18 expressed as ng, = . It follows from

™

(3.1.18) —ng,(P) € {e¥ : 5

<0< B+ g} C Coneo(ego,eSN) for all P € I'yhock,

since 8 € (0, év“’)) c (0,%).

’ 2
PROPOSITION 3.4. Given 7 > 1 and vy > 0, let ¢ be an admissible solution in the sense of
Definition 2.24 for (vso, ) € Rweak- Then there exists a function £ = fun(£1) such that

(1) Dehoek = {& : &o = fan(&1), €7 < & < €2}, where §fj is the & —coordinate of point P;

for j =1,2;
(i) fen satisfies
(3.1.19) 0= fL(7) < fo(&) < fL(ED) =tan B for 7 < & < €.

0

PRrROOF. Note that e¢, € Cone”(es,,, es,,). By (3.1.17), we have

(3.1.20) Og, (Yoo — ) <0 on I'shock.

This, combined with Definition 2.24(i), implies that there exists a unique C'-function fy, satisfying
statement (i) above.

Since Yoo —¢ = 0 holds on Tgpock, fsh satisfies that (oo — @) (&1, fsn(€1)) = 0 for 551 <& < §f32.
We differentiate this expression with respect to &; to obtain

) _ Oe(pos — @) (&1, fsn(&1))
Jl&) = =5 (o =) e, fanler))”

By condition (i-3) of Definition 2.24, we have

(3.1.21) P& =tan g, fL(&7*) =0,
By conditions (ii-3) and (iv) of Definition 2.24, the unit normal vector ng, to Tspockx towards the
interior of 2 can be expressed as

nsh(P) . D(‘Poo - (p)(P) _ (fb{h(gl)’_l) at P — (51,fsh(€1)).

D —0)(P) /T (F(60))2
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By Lemma 3.2 and the definition of (es,,, es,,) given in Definition 2.23, we have

ay cos B(— fL,(&1) + tan B) — az £, (&1)
(3.1.22) = \/1+ (fiu(&1)) e (P) - (a1€50, + azesy)

D(voo —p)(P) - o : 3
- i RtEmgO e <o e <q <l

for any constants a; > 0 and as > 0.
If we choose (a1, a2) = (1,0), then (3.1.22) yields

Finlér) <t for & <& <&
Choosing (a1,as) = (0,1), then we have

fa€@) >0 for gt <& < g
Finally, (3.1.19) is obtained by combining the previous two inequalities with (3.1.21). 0

Given v > 1 and ve > 0, if B, € (O, Bé”“’)) is fixed, then Proposition 3.4 directly implies that

3.1.23 inf  dist{Tshock, Dwedge } > inf €51 > 0.
( ) st {Tshock Iwedge } (onf &

LEMMA 3.5. Fizy > 1 and ve > 0. Let ¢ be an admissible solution corresponding to (veo, B) €
Ruweak N the sense of Definition 2.24, and let Q) be its pseudo-subsonic region. Then there exists a
constant C' > 0 depending only on (vso,7y) such that the following properties hold:

(3.1.24) Q C Be(0),

(3.1.25) mﬁ&XlwI <0 eleoa@ <6
(3.1.26) () <p<C inQ, 1 <p<C on o,
where

2 )T fory > 1,
pr(y) = (F7)
e

5
1 . =11
7 = limy 14 (%)v 1 fory=1.

PROOF. To prove this lemma, we follow the ideas in the proofs for [11, Proposition 9.1.2,
Corollary 9.1.3, Lemma 9.1.4].

1. Proof of (3.1.24). For an admissible solution ¢, let fi, be as in Proposition 3.4. From
(3.1.19), it follows that 0 < &3 < fun(€1) < €22 on &1, €2]. Then

QC{€=(&,8) uo —co <& <cn,0< & < €52}

For any given ve > 0, co and up depend continuously on 3 € [0, %), and Bé”“’) depends con-
tinuously on v > 0. Therefore, there exists a constant C; > 0 depending only on (ve,7y) such
that
sup  (|uo| + |col) < Ch.
BE[0,85">]
This proves (3.1.24).

2. Proof of (3.1.25). By Definition 2.24(iv), we have

igf max{pe, oa} < ¢ < SUp Yoo-
Q
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By (3.1.24) and the definition of (¢, Yo, ¢ar) given in Definition 2.23, there exists a constant Cy >
0 depending only on (vs,y) such that —Cs < min max{po, on} < max s < Cs. Then condition
Q Q

(iv) of Definition 2.24 implies that
(3.1.27) max || < Cs.
Q

By conditions (ii)—(iii) of Definition 2.24, (2.1.22), and (3.1.27), we can choose a constant
Cy > 0 depending only on (ve,7) such that max|Dy| < Cs holds for each admissible solution
Q

corresponding to (Veo, 8) € Rweak. This, combined with (3.1.27), yields (3.1.25).

3. Proof of (3.1.26). A uniform upper bound of p in (3.1.26) is obtained directly from (3.1.25)
and (2.4.2).
By condition (iii) of Definition 2.24, any admissible solution ¢ satisfies

2
1 —
hp)+ 5 > hip) + 51DeP T
Moreover, by (2.1.18) and condition (iv) of Definition 2.24,

1 1 _
h(p) + 5D¢l> > h(1) + S[Dpc> >0 in Q.
2 - 2

(=0)

Then we have )

h(p)—l—%ZO in 0,
so that the first inequality in (3.1.26) is proved.

By Definition 2.11 and condition (iv) of Definition 2.24, any admissible solution satisfies that
Ou oo > Op on Tyyocx for the unit normal vector v to Tgpock towards the interior of 2. Then the
Rankine-Hugoniot jump condition stated in Definition 2.24(ii-4) implies that p > 1 holds on Tgpock,
because poo = 1 is the density of the incoming state corresponding to . This verifies the second
inequality in (3.1.26). O

3.1.2. Directional monotonicity of ¢ — pn and ¢ — pp. Let ¢ be an admissible solution,
and let v be the unit normal vector to I'shock towards the interior of €2. For each point P € T'gpock,
define

d(P) = 0ppoo(P),  w(P) = 0u(poo = #)(P)
so that
Op(P) = d(P) —w(P).
By Lemma 2.26, d(P) > 1 and w(P) < d(P) on I'shock- By the Rankine-Hugoniot conditions stated
in Definition 2.24(ii-4), p(|Dypl|?, ) = ﬁ on Tghock. Then it can be derived from (2.4.2) and
Yoo —© = 0 on I'gpock that
G(w,d) = h(%) + % (d—w)>—=d*) =0 on Ighock,
where h(p) is defined by (2.1.5). For a fixed constant d > 0, it is direct to see that
G(0,d) =0, lim G(w,d)= o0,
w—d—

=1 < <w<d(l—d 7T
Gw(wad): d d_CU){_O foro_w—d(l d +1)7

(d—w)W_( >0 forw>d(l—d 7).
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Therefore, for each d > 0, there exists a unique wq € (0, d) satisfying that G(wg,d) = 0. Define a
function H : (1,00) — RT by

(3.1.28) H(d) = wy.
By continuation, H can be defined up to d = 1 with H(1) = dli}l{1+ H(d) =0. It is shown in [11,
Lemma 6.1.3] that
(3.1.29) H e C([1,00)) N C*((1, 00)), H'(d) > 0 for all d € (1,00).
Therefore, we have
(3.1.30) H(1)=0,  H(d)>0 if and only if d > 1.
For each P € I'ghock, We have
(3.1.31) O (oo = ) (P) = H(Oupoo (P))-

The function, H, is useful in proving several properties of admissible solutions, which include the
lemma stated below. The lemma is essential to obtain uniform a priori estimates of admissible
solutions near I'C . UTY

sonic sonic*

LEMMA 3.6. Fiz v > 1 and ve > 0. For vectors (es,,es,) given by Definition 2.23, any
admissible solution ¢ corresponding to (Voo, 8) € Rweak with B> 0 satisfies

(3.1.32) Des,, (9 = oN)s Deg, (P — 00) >0 in 9,
(3.1.33) — 0, (p — o), —0e(p —p0) 2 0 in Q.

PROOF. Since poc — ¢ is a linear function that vanishes on Sx, de,. (0 —9pN) = Oes,, (9~ ¥0)
in Q. Then (2.5.10) yields that Des, (¢ —pn) = 0 in Q. Similarly, (2.5.10) also implies that

Des,, (¢ — po) > 0 in Q. This proves (3.1.32).
Define

w = O, (¢ — o).
We first differentiate Eq. (3.1.2) for ¢ = ¢ — g with respect to £ to obtain
(€ = 9 Jwere, — 206 PeaWer s + (€ = OF, JWee,
+(c* = 0 )ebas — 2paPe)owe + (¢ — 0 )owe, =0 in Q.
Since ¢ — gofl > 0 from condition (iii) of Definition 2.24, we use Eq. (3.1.2) to express ¢¢,¢, as

(3.1.34)

29051 P Wey — (02 - ‘sz)wﬁz
2 _ A2 '
¢~ P

¢51§1 =

A direct computation by using (2.4.2) yields that ¢, = —(y — 1)(e, we, + @e,we, ). Finally, (@¢, ¢, e,
i,7 = 1,2, can be expressed in terms of (¢, , pe,, W, We, , We, ). Therefore, Eq. (3.1.34) can be rewrit-
ten as
2
(02 - ‘Pgl)w&&l - 2()051 P, We &, + (02 - 9‘%2)“}5252 + Z aj(%"& ) Peoy Wy Wey wﬁz)wﬁj =0 in €.
j=1
This equation is strictly elliptic in €2, and w is not a constant whenever 5 > 0, due to Lemma 3.1.
Then the maximum principle implies that maxw = Iax w.
Q
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OnT9 . UTY . it follows from the definition of (oo, ) given in Definition 2.23 and con-

sonic sonic’
ditions (ii-1) and (ii-3) of Definition 2.24 that
) — =0 ro .
(3135) w = &2 (SOO SDN) on j\(}nlc’
652 ((P/\/ - (P/\/) =0 on I'ric-

Using the slip boundary condition: ¢, = 0 on I'yedge, stated in Definition 2.24(ii-4), we have
w=20 on I'yedges

since Og, pnr = 0 holds on I'yeqge-
Suppose that there exists a point P € I'ghock sSuch that

w(P) = max w, w(P) > 0.
Q

Let v be the unit normal vector to I'shock towards the interior of €2, and let 7 be a tangent vector
to Dhock. Since D2, = D?pp = —1Ia, we can rewrite (3.1.11) as
(3.1.36) D*(¢p — on)[T,h] =0 on Ishocks
with h = hyv + h,7 for (hy,h;) given by (3.1.12).

From the assumption that w(P) = max w, it follows that d;w(P) = D*(p — onr)[T,e¢,] = 0

Q

at P. Also, by Hopf’s lemma, w satisfies
(3.1.37) dyw(P) = D*(p — on)[v,ee,] <0 at P.

Then we can use similar arguments as to those for the proof of Lemma 3.2 to obtain

(3.1.38) e¢, = kh(P)
with some constant k # 0. By Remark 2.20, eg, € Cone’(es,,, €s,.), so that (3.1.17) implies that
eg, - v < 0 on I'ghock. Then, at point P, it follows from (3.1.12) and (3.1.38) that

kh,(P) = kh(P) - v(P) = eg, - v(P) < 0.

Then we obtain from (3.1.13) that k£ > 0.
By the invariance of Eq. (3.1.2) under a coordinate rotation and condition (ii) of Definition
2.24, ¢ = p — s satisfies

(3.1.39) (2 = 02w — 20700 s + (2 — 92)prr =0 at P.

Here and hereafter, we denote ¢, = d, = Dy - v and pr = 0r¢p = Dp - T for any function ¢,
Using (3.1.36), (3.1.39), and Definition 2.24(iii), we have

he 2pvpriE + (2 = ¢7) :
(3.1.40) (Gums bun) = =G = — Jorr  at P.

Substituting e, = kh(P) into (3.1.37), we obtain

(3.1.41) D?*¢[v,h] <0  at P.
Using (3.1.40), we rewrite (3.1.41) as

A2 + p?Ppl (2 — |Dyl?) i P
PP

Aprr(P) <0 for A=
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Then it follows from Definition 2.24(iii) and Lemma 2.26 that A > 0. Thus, we conclude that

¢++(P) < 0. This implies that

(¢ — poo)rr (P) <0
Let f := fsn be from Proposition 3.4. Then, using (¢ — ¢oo)r+(P) < 0 and (3.1.17), we have
(‘P - <Poo)-r7- (1 + (f/)2)
e, (o0 — )

since eg, € Cone’(es,,, s, ) implies that g, (Yoo — ) < 0 at P € Tghoex, due to (3.1.17).
Let & = L(&1) be the equation of the tangent line to Igpock at P. Denote F(&) := f(&)—L(&).
Then there exists a point P, # P on int Iyoc such that F(&7) = max r Py F(&), due to
1 °S1

(3.1.42).
Note that P, ¢ {Py, Py}, due to (3.1.19) in Proposition 3.4. If P, = P;, then F’(£&]") < 0 must

hold, but this is impossible because f'(£;*) = tanf > F1(ehy = L'(&™). Similarly, if P, = P,
then F’(¢1?) > 0 must hold, but this is also impossible because f/(€1*) =0 < f/(¢F) = L/(¢]*).
Therefore, we conclude that f/(£17*) = L'(¢7*) = f(¢F). This implies that v(P,) = v(P). Denoting
v :=v(P,) = v(P) by v, we use the definition of ¢, given in Definition 2.23 to obtain
(3.1.43) By oo (Py) = 0y oo (P) — (Oppoo(P) — Oupos(Pr)) = Bypoc(P) — (P — P) - v
For each point P € T'gpock, We represent P as (&1, fsn(£1)) and rewrite the expression as
P = (&, fan(&1)) = (&1, F(&1) + L(&1)) = (&1, L(&1)) + (0, F(&1))-

By using this expression, P, — P is represented as

P.—P=(&" =&)L L&) + (F(Tr.) = F(Tp))ee,.
Since L'(€P) = f/(¢P), (1, L' (€0)) v = (1, f/(¢F)) - v(P) = 0. This yields that

(P, — P)-v=(F(Ip,) - F(Tp))ee, v.

By substituting this expression into (3.1.43), Oy e (Px) is represented as

oo (Pr) = Bupoc(P) — (F(Tp,) — F(Tp))ee, - v(P).
By (3.1.17) and the definition of P., (F(Tp,) — F(Tp))ee, - v(P.) < 0, which implies that

Oy poo(Ps) > 81/‘%700(16)-
This, combined with (3.1.29) and (3.1.31), leads to
(3.1.44) (P00 — ) (Pa) > Bu(000 — 9)(P).
We rewrite w(Py) as

W(Py) = O, (¢ = ¢oo) (Pr) + O, (oo — o) (Pe),

(=—veo)

(3.1.42) 7Py = >0 at P,

and further express Og, (¢ — ¢oo)(Pr) = (W (Py) - €g,)0u (¢ — 9oo)(Ps), where we have used that
97 (¢ — Poo) = 0 holds on Tgheex. Note that v(P,)-eg, = v(P)-eg, < 0, by (3.1.17). Then it follows
from (3.1.44) that

w(P.) = (V(P.) - €e,) 0u (¢ — oo ) (Po) + O, (000 — o) (Pr)
> (U(P) - ec,) O (9 — 0o0)(P) + e, (900 — o) (P) = w(P).
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However, this contradicts the assumption that w(P) = max w.
Q
Therefore, we conclude that

O (p—on) <0 in Q.
Since ¢, (pn — o) = 0, we also obtain that dg, (¢ — po) < 0 in Q. This proves (3.1.33). O

3.2. Uniform Positive Lower Bound of dist(Tshock, 9B1(Os))

In order to obtain a uniform estimate of the ellipticity of Eq. (2.1.19) in the pseudo-subsonic
regions of admissible solutions, it is essential to make a uniform estimate of positive lower bound
of dist(Tshock, 0B1(0x)) for admissible solutions. Once the estimate of dist(Tshock, 9B1(Os0)) is
achieved, the ellipticity of Eq. (2.1.19) at each point & € (2 is uniformly controlled by dist(&, TS ..U
F's,'\({nic)'

PRrROPOSITION 3.7. Fix v > 1 and v > 0. Then there exists a constant C' > 0 depending only

on (Vso,y) such that any admissible solution corresponding to (v, 3) satisfies
1

(3.2.1) dist(shock, 0B1(0)) = -

To prove Proposition 3.7, some preliminary properties are first required, as shown in Lemmas
3.8-3.13 below.

We rewrite Eq. (2.1.19) as

(3.2.2) divA(Dy,¢) + B(Dy, ¢) =0,
with p = (p1,p2) € R? and z € R, where
(3.2.3) A(p,2) = p(Ipl*, 2)p,  B(p,2) :=2p(pl*,2)
for p(|pP’,#), given by
2 1
2 )= e Ll )T
(3.2.4) p(|pl?, 2) = (1 + (= D57~ 5Pl 2))
We also need the definition of ¢(|p|?, 2):
—1
(3.2.5) c(Ipl,2) = p" (|p|* 2).

For a constant R > 1, define

_ 2 . 2 -1 |p|2 -1
(3.2.6) Kr=1{(P,2) ER* xR : |p|+[z| <R, p(lp|]",2) > R ,WSI_R .
For each R > 1, there exists a constant Ag > 0 depending only on (vs, 7, R) such that

2
Z Op,; Ai(P, 2)Kikj > Ar|k|? for any (p,2) € Kr and k = (k1, k2) € R?.

ij=1
LEMMA 3.8 ([11, Lemma 9.2.1]). For R > 2, let Kr be given by (3.2.6). Then there exist
functions (A, B)(p, z) in R? x R satisfying the following properties:
(i) If |(p,2) — (P, 2)| < € for some (P, Z) € Kg, then
(3.2.7) (A, B)(p, 2) = (A, B)(p, 2);
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(ii) For any (p,z) € R? xR and k = (k1, k2) € R,

2
(3.2.8) Z Oy, Ai(p, 2)Rikiy > Ak
i,j=1
(iii) For each k =1,2,---,
(3.2.9) |B(p, 2)| < Co, |D (p, z)(fi,é)(p,zﬂ < Cy in R? x R,
where the positive constants €, A, and Cy, with k =0,1,2,---, depend only on (veo,7, R).
For a € (0,1) and m € Z*, we now define the standard Holder norms by

DR _pB
(3210) HuHm’O’U = Z sup |DIB’U’(X)|7 [u]m,a,U = Z sup | U(X) « U(y)|
0<|8]<m *€Y A XYEUXEY Ix —yl

Where /B = (ﬂl,ﬂg) Wlth ﬂj Z 0 fOI‘j = 1 2 Dﬂ = 8518ﬁ2 and |/B| = ﬂl —|—ﬂ2

1 Tx2?

3

LEMMA 3.9. Fiz~y > 1 and ve > 0. For any given constants « € (0,1), k € N, and r > 0, there
exist constants C,Cy > 0 depending only on (ve,7, a, 1) with Cy depending additionally on k such
that any admissible solution ¢ corresponding to (Veo, B) € Rweak Salisfies the following estimates:

(i) For any By-(P) C Q,

(3.2.11) lelly o 5y < Cs
(3.2.12) el 5my < Ch-
(ii) If P € Dyedge, and By, (P) N is the half-ball B}, (P) = By, (P) N {& > 0}, then
(3.2.13) 113,07 P00 <
(3.2.14) el 5 @ne < Ck-

Proor. Fix g € (0, év"’")), and let ¢ be an admissible solution corresponding to (veo, ) with
the pseudo-subsonic region Q. Using Definition 2.24(iii) and Lemma 3.5, we can apply Lemmas
C.1-C.2 to estimate the ellipticity of Eq. (2.1.19).

Suppose that By, (P) C € for some constant r € (0, 1). By (3.1.26), there exists a constant ¢ > 0
depending only on (v, ) such that any admissible solution ¢ corresponding to (veo, ) € Rweak
in the sense of Definition 2.24 satisfies

O<supc(|Dgp|2 p) < é.

One can choose a smooth function b(é) satisfying the following properties:

- . = C
b=1 inBs(P), b=0 ondBy(P), [D'<—X in By (P),
r
for constants Cj > 0 depending only on k for each k = 1,2,---. For a constant 6, > 0 to be
determined later, we define b(€) := 6,b(€). Then b satisfies
C.
(3.2.15) |Db| + ¢[D?| < =6, in By, (P)
r

for some constant Ci. -
Since diam(§2) < d for some constant d > 0 depending only on (vs,7y) due to Lemma 3.5, it
follows from Lemma C.1(b) that there exists a constant Cy > 0 depending on (ves,7) such that,
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for any given & € (0,1), if |Db| 4+ ¢/D?b| < ¢ in By, (P), then either the pseudo-Mach number

C

M = % satisfies that M? < Cyd in By,.(P) or M? + b does not attain its maximum in
By (P).
Now we fix §, in the definition of b as 6, = g7y z- Then (3.2.15) leads to
1
Db| +¢|D%h| < ————
DD < g T e
which implies that M = % satisfies
1
either M? < = in By,(P) or max M?+b= max M?<1.
8 Bar(P) OBy, (P)
Therefore, there exists a constant o, € (0,1) depending on (v, 7y, 7) such that ¢ satisfies
Dol .
3.2.16 - <1—-0, in B3, (P).
(3:2:10) Z( D) v ()
For a C'~function ¢ defined in U C R?, denote £(¢,U) as
(3.2.17) E(@,U):={(p,z) : z=¢(&),p=D¢p(&),& € U}.

By (3.2.16) and Lemma 3.5, there exists a constant R, > 2 depending only on (ve,v,7) so
that £(p, B3, (P)) C Kg,. Let (A, B)(p, z) be the extensions given by Lemma 3.8 for R = R,..
In order to prove (3.2.11) by applying Theorem C.3, we rewrite Eq. (2.1.19) as

2 2
=1~ i=1
(:tAij(Dsa,sa))

(:iA(D%w))
By Lemma 3.8, (A;;, A)(Dey, ¢) satisfy (C.2.2)—-(C.2.5). Then (3.2.11) is obtained from Lemma 3.5
and Corollary C.4.
Also, (3.2.13) is similarly obtained from Lemma C.2 and Theorem C.7.

Once we have (3.2.11) and (3.2.13), estimates (3.2.12) and (3.2.14) can be obtained by a boot-
strap argument and [30, Theorem 6.2, Lemma 6.29]. O

For an admissible solution ¢ corresponding to (veo,3) € Rweak, We define an extension ¢
into R by

ext L <P(€) if € S Aﬁa
(3.2.18) P = {cpoo(ﬁ) otherwise.

For So seg and Sprseg defined by Definition 2.24, denote I'SEE | as
cht {SO,seg U 1—‘shock U SN,seg if B < Bs(UOO)a

shock — _
shee Dshock U SN seg otherwise.

By (2.5.12) and the Rankine-Hugoniot condition: ¢ = ¢, on 'S | the extension function p™*

satisfies the following:

(i) ¢t € Cle (R2) NCL(RZ\TSE L)

loc
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(ii) ¢™¢(€) = o™ (&) + 3 [€|? satisfies || DG oo (rz) = [ DSl L (a,) for d(€) = @(€) + 51€I>.

In the following corollary, we regard each admissible solution ¢ as its extension ¢t given by
(3.2.18):

COROLLARY 3.10. Let {¢®)} be a sequence of admissible solutions corresponding to (veo, 3¥)) €
Ruweak 1 the sense of Definition 2.24 with

lim 8% = g*  for some 8* € [0, 3">)].

k—o0

Then there exists a subsequence {¢(*)} converging to a function p* € C&; (Ag-) uniformly in any
compact subset of Ag«, where Ag- is defined by Definition 2.23 for 5* > 0 and by (2.5.24) for
B* = 0. Moreover, ¢* is a weak solution of (2.1.19) in Ag+ in the sense of Remark 2.29(iv). For
the rest of the statement, let superscripts (k) and * indicate that each object is related to B*) and

5*, respectively. Then we have the following properties:

(a) For P, 1=1,2,3,4, defined by Definition 2.23,

lim P*) =Pr forl=1,4.

]—)OO

Note that P; and Ps are fixed to be the same for all g € [0, (U“’)]

(b) Let f ) be the functions from Proposition 3.4. Extend f

kj)

(
fsli“”(gl)_{fo @) oo
52 for 51 Z 51

where f(’) (51) is given by (2.5.2) with 8 = i), Then sequence {f(kj)} is uniformly
bounded in C%* ([§PB *,€F2]) and converges uniformly on [{f ,€72], where Ps denotes the
& —intercept of the straight oblique shock S of angle § with the & —axis. Denoting the
limit function by f% , we see that 3 € C%1(| PB*, =)

(c) For each kj, the sonic arcs T’ O (ks ) and TV

SOnlC bOl’l]C7
(Voo, B(kf)) € Ryweak, can be represented as

FN = {(&1,gns0(&)) : €2 <& < &b,
(k )

(kj)
somc = {(51790 50(51)) . 5 i <6 < 51 }7
for smooth functions gar s, and ggcjs)o Note that garso is fixed to be the same for all

g € [o, dv""’)] and that g§9 b)o depends continuously on 8 € [0, ((iv“’)]. Therefore, ggci)o

defined by Definition 2.23 corresponding to

converges to g ., on ( f“, fl) as k; — oo. If §* > BS(U"’"), then it follows from (2.5.6)

that T9* isa point set.

sonic

Define
= {(6.&) € [ P xRY 1 0< & < fry(€1)}
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for a function fi¥; given by

Goumler) for& <& <gr,
foal€r) = § fa(6)  forgt <& <€,
gN,so(gl) for 5{32 <§1 §§f3

Denote by Q* the interior of {*. Define Thok =16 = fi(&) « & € ( fl* P2y} and
[heage == {(61,0) = & € ( f“ 3)}. Denote by I‘:;Bdgc the relative interior of I'} 4. \
I occ- Then ¢* satisfies the following properties:

C_l) <P* = Poo ON1 F:hock7

¢-2) "€ C(Q UT ),

*,0

wedge’

(
(
(c-3) o®i) — * in C? on any compact subset of Q* UT
(c-4) Oe(poo —*) <0in Q* for all e € Coneo(esé,egN),
(

¢-5) Eq. (2.1.19) is strictly elliptic in Q* UT*?

wedge’
where we have followed Definition 2.23 for (0w, TS 0, €50 ). If 8* =0, Coneo(esé,egN)
is understood in the sense of Remark 2.28.

(d) In Ag«\Q*, ¢* is equal to the constant density states ¢, par, and ¢o in their respective
domains as in (2.5.8), where ¢, is defined by (2.4.4) corresponding to 3*.

(€) f2,(&1) >0 forall & e (&7,&r).

PRrROOF. We divide the proof into four steps.

1. Statement (a) directly follows from Definition 2.23 and the continuous dependence of
(Oo,co) on (vs, 3). Statement (b) directly follows from Proposition 3.4.

2. Statement (c-1) directly follows from Definition 2.24(ii-4), Corollary 3.10(a), and the uniform
convergence of (o), fb(}]f’)) to (¢*, f4,). For a point P € Q*, there are constants rp > 0 and N € N
such that Bz, (P) C Q) for all k; > N. Then it follows from Lemma 3.9(i) and the Arzela-Ascoli
theorem that ¢* € C°°(Bs,(P)), which implies that ¢* € C*(Q*). We can similarly check from
Lemma 3.9(ii) that o* € C°(Q* UT%Y, ), which proves (c-2).

wedge

For a fixed compact set K C Q* UI‘:V’BdgC, there exists a constant Nx € N so that K is contained
in Q%) N F‘E;Zgge for any k; > Ng. By Lemma 3.9 and the compactness of K, {gp(kf)}kaNK is

sequentially compact in C?(K). Then the uniform convergence of {¢*)} to ¢* in K implies that
the subsequence converges to ¢* in C?(K). This proves (c-3).
For any e € Coneo(esa,eSN), there exists Ne € N such that e € Coneo(eswj),es,\,) for any
[¢]

k; > Ne. Then (c-4) follows from Lemma 3.2 and (c-3).
For a point P € Q*, we choose rp > 0 small so that B,,(P) C Q*. Then we fix Np € N
sufficiently large so that B,,(P) C Q%) for all k; > Np. Since o, € (0,1) in (3.2.16) is a given
(UOO)

constant independent of admissible solutions corresponding to 3 € (0,5, =’), we can fix a constant
op € (0,1) such that

|D(p(kj)|2
(| D) |2, ki)

<l-—op in By, (P) for all k; > Np.
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This estimate, combined with statement (c-3), implies that Eq. (2.1.19) for ¢ = ¢* is strictly

elliptic in 2*. We can use similar arguments by using Lemma C.2 to conclude that Eq. (2.1.19) for
* 3 : . . *,0 . . .

© = " is strictly elliptic on chdgc’ which implies (¢-5).

Statement (d) follows directly from statements (a)—(c) and Definition 2.23.
3. Observe that

e f, given by (2.5.4), P, Py, T9

sonic?

o P, P3, SN scq, and N . are fixed to be the same for all 8 € 0,%).

sonic

and So scg depend continuously on 3 € [0, %);

Combining this observation with statements (b), (¢-3), and (d) implies that, for any compact set
K C R?,

(i) KN Agej) converges to K N Ag+ in the Hausdorff metric;
(ii) Dp*s) converges to Dy* almost everywhere in K N Ag-.
Then it follows from Definition 2.24 that

/A (p(|D¢* |2, ¢*)D* - D¢ — 2p(|Dp*|?,0*)¢) d€ =0 for all ¢ € C§°(R?).
»

In other words, ¢* is a weak solution of (2.1.19) in Ag+ in the sense of Remark 2.29(iv).
4. To prove statement (e), we consider two cases separately: 5 < ﬁg”“’) and 8 > ﬁg”“’).

By Proposition 3.4 and statement (b), £}, increases monotonically on | f 1*, 2]

If p* < ﬂs(v“’), then it follows from statement (a) and the monotonicity of f3 that

fan(€1) > fan( ff)zfégf >0 for all &; € | fl*a 2.
Py

It g* > ﬂ§”°°>, it follows from statement (a) and Definition 2.23 that f5 (£,') = 0. Suppose
that f3 (§1) =0 for some & € (ffl ,€72), and define

& = sup{&1 € (€7, €12) ¢ fh(&) =0}

Since £ (£72) = & > 0, then & € (617, ¢/2). Note that &7 = &7 = ¢ for 8* > A=), By the
monotonicity of fj with respect to &1, we have

* Pgx
(3.2.19) fa&) =0 forall& e[¢ 7, €.

Pﬂ* "
Let @ be the midpoint of Pg« and (£},0). Then @ lies on I'yeqge. Denote d := 51%51. Then it
follows from (3.2.19) that

P71 =00 I By (Q)NAge = By, (Q)N{& > 0}

However, this contradicts the fact that ¢* is a weak solution of (2.1.19) in Ag« in the sense of
Remark 2.29(iv), because a direct computation by using the definition of ¢ given by Definition
2.23 shows that a test function ¢ € C§°(By, (Q)) can be chosen so that

/ (P(ID@so|?, o0 ) Dpos - D¢ — 2p(|Dpos |2, 00 )C) d€
Ba. (Q)N{€:>0}

— Voo / Cdgy #0.
F:/edgeﬂBd* (Q)
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Pl Py

Therefore, we conclude that f3 (£1) > 0 holds for any & € (§',&; %), which implies statement (e).

This completes the proof. |
Define

(3.2.20) ry:= min |Pg|.

5€[0,85">]

For cach 3 € [0, 8{">)], we know that |Ps| > co > ey, by (2.4.31). For g € [8{"~, "], (2.4.3)
implies that |Pg| > veo tan f > v tan L") Therefore, we have
1 > min{cpr, Voo tan BV} > 0.

PROPOSITION 3.11. For every r € (0, %), there exists a constant C, > 0 depending only on
(Vso, ¥, 7) such that any admissible solution corresponding to (veo, 8) € Rweak Satisfies

(3.2.21) dist(Cshock \ Br(P3), Twedge) > C;
PRrOOF. This proposition is proved for two cases separately: (i) Py ¢ Bz(FPg), and (i) Py €
B (Pg) for Py defined by Definition 2.23 depending on 3 € [0, §). Fix r € (0, 3).
1. We first consider the case that P, ¢ Br(Pg).
Define ,
I :={B e (0,8")) : |Py— Ps| > 5)-

Then I, C (0, §v°°)). Since Pg and P4 depend continuously on 8 € (0, §v°°)), I is relatively closed

in (O,BS(U"’")). Then there exists dg > 0 such that, for any 8 € I, po given by (2.4.4) satisfies

(voo)
that \Df(;oi((;ﬂ)\ > 14 dp. By Lemma 2.22; there exists a constant o, € (0, 652
I, [0, 8") — 5,]. Then Proposition 3.4 implies that

(3.2.22) inf dist(Tshock, Dwedge) = inf n>o.
el Be[0,5{") —o,]

) satisfying that

2. Now consider the case that Py € Bz (Ps).
For an admissible solution ¢, define

J§ = {P € Tanoak : & — & < d}.
Claim: For any r € (0,7 ), there exists a constant C, > 0 such that any admissible solution
corresponding to (Voo, B) € Ryeak Satisfies

(3.2.23) sup dist(P, yedge) > Cy t.

Ple/2

This claim is proved by deriving a contradiction. On the contrary, the claim is false. Then

there exists a sequence {3*)} C (0, é”“’)) such that, for each k € N, there exists an admissible

solution p(*) corresponding to (v, 5*)) in the sense of Definition 2.24 with

1
(3.2.24) sup. dist(P, Fg“e)dge) < T
Ple/(2)

By Corollary 3.10, such a sequence {3(*)} can be chosen so that it converges to 3* € [0, é”“’)]

and the corresponding solution sequence ¢*) uniformly converges in any compact subset of Ag- to
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a function ¢* € Cloo’cl (Ag-) satisfying all the properties described in Corollary 3.10. Furthermore,
(3.2.24) implies that
max_ dist(P, T'jcqge) = 0.
PeJ?;,
This contradicts Corollary 3.10(e). Thus, the claim is verified.
For each admissible solution ¢, let fs, be given as an extension defined by Corollary 3.10(b).
Then
. P .
dlSt(Fshock \ B’I‘(PB)7 l—‘wedge) > fsh (51 o + T) > sup dlSt(P, l—‘wedge)a
SN A
where we have used the assumption that [Py — P3| < § in the second inequality. Finally, (3.2.21)
is directly obtained from this inequality, combined with (3.2.23). |

For 0 < vy < 1, define Bf(Ooo) := B1(Ox) N{& > 0}. Following Definition 2.23, for each

B € (0, é”“’)), po > px > 1 by (2.4.40). Moreover, the entropy condition yields that |Dyoo (Pg)| >
1. By combining these properties with condition (i-1) of Definition 2.24, any admissible solution
corresponding to (veo, ) € Ryeak satisfies

(3.2.25) By (0s0) CQ\T2 . UTgoa UTY
1

sonic sonic*

For ve > 1, (3.2.25) still holds, because B; (Ow) = (). Therefore, any compact set K C B} (Owo)
is contained in the pseudo-subsonic region §2.

LEMMA 3.12. Fiz v > 1 and va € (0,1). For every compact set K C By (Ow), there exists a
constant Cx > 0 depending only on (vso,y, K) such that any admissible solution  corresponding
t0 (Voo, B) € Rweak satisfies

(3.2.26) inf(poo — ) > Crl.

PROOF. Suppose that this lemma is false. By Definition 2.24(iv), there exist a compact set
K C Bf (Ow), a sequence {3;} C (0, é”“’)), and a sequence of points {Q,} C K so that

(o0 —99)(Q)) = 0 as j — oo,
where ¢) is an admissible solution for each B; in the sense of Definition 2.24. By passing to a

subsequence (without changing index notation), there exist 3, € [0, é”“’)] and @, € K so that

Bi = By Qj =@ as j — 00,
By (2.5.8) and (3.1.25), for any compact set L C R2 := {£ € R? : & > 0}, each o) satisfies that
[l ||00,1(L0A_5.) < Cf, for a positive constant Cy, depending only on (vso, v, L). Therefore, passing
J

to a further subsequence, we conclude that ) converges uniformly to a function ¢, € C%! (LNAg,)
in LN Ag, for a continuous function ¢, defined in Ag,, where Ag, is given by Definition 2.23. This

yields that (¢oo — ©,)(@)) = 0.

Since K is compact, there exists a small constant € € (0, 15) such that K C Bf" ,.(O). By

Corollary 3.10, sequence {¢@)} of admissible solutions is uniformly bounded in 03(Bf_€/2 (O))-
By the Arzeld-Ascoli theorem, there exists a subsequence (still denoted by) {¢)} that converges
to a function ¢, € CB(BT_G/Q(OOO)). Then ¢, satisfies Eq. (2.1.19) in Bi”_%(Ooo), where the
equation is strictly elliptic by Definition 2.24(iii). Moreover, ¢, satisfies the boundary condition
Oty (Poc — ) = —Use < 0 0n B;r_%(Ooo) N {& = 0}. Note that condition (iv) of Definition 2.24
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implies that ¢. — ¢, > 0 in Bt% (Os). By Hopf’s lemma, @, cannot lie on Bfi% (Oo)N{& =0}.
Thus, @, must lie in Bf_% (Ox). However, by the strong maximum principle, this is impossible since
Yoo —p cannot be a constant in Bi”_% (Oo), owing to O, (oo — ) = —Uso ON Bi”_% (Ooo)N{& = 0}.
This completes the proof. O

Let (r,0) be the polar coordinates centered at O:

(3.2.27) r(cosf,sinf) = (£1,&2) — Oxo.
In R? \ {Ow}, define the (z,y)-coordinates by
(3.2.28) (,y) = (coo — 1,0) with ¢ = 1.

Suppose that a C?—function ¢ satisfies Eq. (2.1.19), and define w := ¢, — . Then Eq. (2.1.19)
can be written as an equation for w in the (x, y)-coordinates:

1
Np(w) = (22 + (v + )ws + OF )was + O3 way + (c_ + 03 )wyy — (1 + 01 )ws + O5 wy =0,

with O;(Dw,w,x) = 0j(—-Dw, —w,x,¢x) for j =1,---,5, where O,(p, z,x,¢) for j = 1,---,5,
with p = (p1, p2), are given by

Oz =5+ I e = e ),
O2(p, z,,¢) = —ﬁ(m + ¢ —z)p2,

(3.2.29) O3(p,z,r,¢) = ﬁ (17(20 —2) = (y=1)(z+ (c—2)p1 + %pf) B (;(;_19);))? )
)
Os(p,..0) =~ 2P E 2

LEMMA 3.13. For constants 6, > 0, define
D5 := B 5(0x) \ Bi—c(Ou).

Suppose that veo € (0,1) so that D 5 # 0 for e > 0. Then, for any o € (%, 1), there exist constants
A,e0 > 0 depending only on (veo,7y, @) such that, if ¢ is an admissible solution corresponding to
(Voo, B) € Ryeak With voe € (0,1), then w := po — @ satisfies
w(z,y) > Azt in Dg°.

PROOF. The proof is divided into three steps.

1. Define Oy (Dw, z) := O] (Dw,w,z) — (v — 1)w and
(3.2.30) Ni(v) == (2517 + (v +Dve + 07 + (v - 1)“’)“9696 + 03 vay + (1 + O3 )vyy

— (1401 vy + Oy vy,

with 61? = B?(Dv,x) and O; = O; (Dv,v,z) for j =2,---,5.
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Fix a € (5,1), and define a function

1
2
U(z) := Ax' T

for a constant A € (0,1) to be determined later. For each g9 > 0, U satisfies
Ni(U) > (22 + (v + 1)U, + Oy (DU, z)) Uy — (1 + O (DU, U, 2))U,

—

2(1+a)Axo‘(2a—1+O—1—O;) in Dg°,
x

where we have applied the fact that w > 0 in Q by Definition 2.24(iv). Using the definitions of Oy
and Oy, we can choose g9 > 0 sufficiently small depending only on (v, 7, @) such that

05 (D 2 — 1 20— 1
O D] 201 o (py, v, ) < 22 in DS
T 4 4
Under the choice of ¢y above,
(3.2.31) Ny (U) — N1(w) >0 in Dg°.

2. Claim: There exists a constant A > 0 depending only on (veo,, ) such that U —w cannot
attain its nonnegative mazimum on OD°.

On 9D;" N{x = 0}, condition (iv) of Definition 2.24 implies that U —w = —w < 0. By Lemma
3.12, there exists a constant C¢, depending only on (vs,?, @) such that
U—w< Agjt™ — O, on 9D;° N{x = e}

Thus, a constant A € (0,1) can be chosen sufficiently small to satisfy that Aej™® < 1C.,. Then
we have

U-—w<0 on ID° N{x =ep}.

Since ¢ satisfies the slip boundary condition on I'yedge, w satisfies that we, = —vo on 8D8° NIwedge
so that

O, (U —w) = A1+ oz)xag% + Voo on D" N 'yedge-
2

Therefore, we can reduce A > 0 depending only on (vso, 7, @) so that
O, (U —w) > %O on 0D;" N T'yedges

which implies the claim.

3. Suppose that max(U — w) > 0. Then there exists a point Py € int Di° such that
Dg°

U —-w)(R) = mgx(U —w).
DO

At Py, we have
(U = w)a(Po) = (U —w)y(Po) =0,
(3.2.32) (U = w)ea(Po) <0, (U —w)yy(F) <0,
Uy(Po) = wy(Po) =0, —wyy(Po) = (U —w)yy(F) <0.
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A direct computation by using (3.2.29)—(3.2.30) and (3.2.32) gives that
Nl(U) — N1 (’LU)

v—1
1—x

=2z+(y+1)U, + B?(DU, z)+ (v = Dw) (U — w)ee
(3.2.33) — (1+ 05 (DU,w)) wy,  at Py.

(U —-w)U,

Note that w(P) > 0, by Definition 2.24(iv). Since |O; (DU, )| < Co, Ae3® for some constant
Co, > 0 depending only on v, and constant A depends only on (7, v, ), we can choose g9 > 0

sufficiently small depending on (7, vso, @) such that 2z + (v + 1)U, + O7 (DU, z) + (y — 1)w > 0 at
Py. Moreover, (U — w)U; > 0 at Py. Therefore, we obtain from (3.2.33) that
N1(U) = Ni(w) < — (1 + O3 (DU, w)) wyy at Py.

By Definition 2.24(iv) and (3.2.29), there exists a constant C, > 0 depending only on v such that
1+ O3 (DU,w) > 1 — Cief at Py. Reducing e further, depending only on (v, «), to satisfy that

1—C.e§ > L, we obtain that Ni(U) — Ny(w) < 0 at P,. This contradicts (3.2.31). Therefore,

we conclude that there exist constants (A,eo) depending on (7,v0, @) such that w > Az!T® in
Dy O

Now we are ready to prove Proposition 3.7.

PROOF OF PROPOSITION 3.7. Let ¢ be an admissible solution corresponding to (veo, ) €
Ruweak. Define
dy, = diSt{Bl (OOO), Fshock}~
We consider two separate cases: Voo > 1 and 0 < v < 1.

1. We first consider the case that ve, > 1. Then B1(Os) C R x R™. By (2.4.42) and Lemma

2.26, there exists a constant dy > 0 depending only on (v, ) such that, for any 8 € (0, ﬁé”“’)),

dist(P3, B1(Ox)) = |P30cc| — 1 = | Do (P3)| — 1 > Moo, (P3) — 1 > do.

Denote 7 := %min{rl,do} for r1 from (3.2.20). By Proposition 3.11, there exists a constant
Cr > 0 depending only on (vs,7y) such that any admissible solution corresponding to (v, ) €
Ruweak satisfies

diSt(Fshock \ Bg (Pﬁ); Bl(ooo)) > diSt(Fshock \ Bg (Pﬁ)7 chdgc) > Cf_l > 0.
By the definition of 7 above, dist(I'shock N Br(P3), B1(Ooc)) > % > 0. Then

d, > min{C: !, %} >0
for any admissible solution ¢ corresponding to (veo, ) € Rweak With ve > 1.
2. Now we consider the second case that 0 < voo < 1. Let Py € T'shock be a point such that
d, = dist(Ps, B1(Ox)).
At point P, we have
(3.2.34) dy = 0ppoo(Pi) — 1
for the unit normal vector v to I'ghock at P. towards the interior of 2. Denote

(3.2.35) Wy = Oy (Poc — @) (Ps).
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Claim: There exist two positive constants dy and di depending only on (veo,) such that, if
d, > dg does not hold, then w, > di holds.

Fix an admissible solution ¢ corresponding to (veo,3) € Rweak. For the (z,y)—coordinates
defined by (3.2.28), let ¢g > 0 be the constant from Lemma 3.13 with o = %. In other words,
W 1= Py —  satisfies

w(z,y) > Az’ in Dg°

for some constant A > 0 chosen depending only on (v,7). For constants k and € € (0,¢¢), to be
determined later, define a function V in D= d, by

(3.2.36) V= (v +dy)? + k(z + dy).

For a constant dg > 0 to be specified later, assume that d, < dp. Then a direct computation by
using (3.2.28)—(3.2.29) and Definition 2.24(iv) shows that V satisfies

Ni(V) >3k —4dy— Cle +do +k)*>  in D%, ,
V=0 ondD°, niz=—d,},
(3.2.37) V < (e +dp)? + k(e + do) on 9D, N{z=c¢},

Ve, > % (2(e +do) + k) on D%, N Tuedge,
for a constant C' > 0 chosen depending only on (7, vy, ). Choosing
k = 2¢, dy = ¢,
we obtain from (3.2.37), w > 0 in , and (2.4.1) that
Ni(V) = Ni(w) > 26 = 16Ce*  in D2,
V-—w<0 on 9DZ,; N{zx = —d,},

(3.2.38) V—w < 10e? — Aet on 0D ,; N{x = e},
")
6voo
(V —w)g, > Vo0 — 11;_2 on 0D ; N Twedge-

Then we can fix a small constant ¢ € (0,ep) depending only on (ve,7) such that, by (3.2.38),
N1(V) = Ni(w) > 0 in De,,,V—-—w<0ondD:, N {r = —dy ore}, and (V —w)g, > 0 on
oDe da, N I'wedge- Thus, the maximum principle yields that

(3.2.39) V-w<0 inDE,.
Since P, € 0DZ,; N{x = —dy}, (V —w)(Ps) = max(V —w) = 0. Note that spock is tangential
’DE

—dy

to 0D, N{z = —dy} at P so that (V —w)s(Px) = 0u(V — w)(Px). Then (3.2.39) implies that
(V—w)y(Px) = 0 (V —w)(Ps) < 0. Combining this with (3.2.35)—(3.2.36) implies that

wy > Vi (Py) = 2e.

Therefore, the claim is verified by choosing (dy, d1) := (e, 2¢).

According to the claim, either d,, is bounded below by € or w, is bounded below by 2¢. By
(3.1.31) and (3.2.34), w, = H(d, + 1) for H defined by (3.1.28). Then it follows from (3.1.30) that
d, is uniformly bounded below by a positive constant if and only if w, is uniformly bounded below



68 3. UNIFORM ESTIMATES OF ADMISSIBLE SOLUTIONS

by a positive constant. Therefore, the claim implies that there exists a constant 6 > 0 depending
only on (veo,7y) such that
dy, > min{e, 6} >0
for any admissible solution ¢ corresponding to (veo,7) € Rweak With 0 < v < 1.
The proof of Proposition 3.7 is now completed. g

3.3. Uniform Estimates for the Ellipticity of Eq. (2.1.19)

Given v > 1 and v > 0, let  be an admissible solution corresponding to (veo, 8) € Ryeak- A
direct computation by using (3.2.3) shows that Eq. (3.2.2) (the same as Eq. (2.1.19)) satisfies

|Dg|?
(8:3.1) p(1— -

2
)|k|? < Z Op. A (Do, )ik < 2p|k|? in Q for any k = (K1, K2) € R%

ij=1
Fix a function h € C*° (R4 ) such that

if 0,1
(3.3.2) ey = bl 0 o<w<2 ok,
1 ifs>1,
For each 8 € (0,%), let Oo be defined by Definition 2.23, and denote

co if B < B,
|00Ps| if B> BL").

Let Qo € So N{& > 0} be the midpoint of the two intersections of circle [§€ — Op| = 73 and
So N{& > 0}, and let

rg = min{co, |O(9PB|} = {

) rg M for B < ﬂs(v""’),
rg = |OOQ(’)| = B .O (Vo)
rgsinf8  for B > s >,

for Mo defined by (2.4.6). Note that 75 and #s depend continuously on 3 € (0, %). It follows from
(2.4.43) and the definitions of (rs,73) stated above that rg — 75 > 0 for all 8 € [0, §). Therefore,
there exists a constant dp > 0 depending only on (vee,y) so that rg —7g > o for all § € [0, ((iv“’)].
We define (9o, gn; Q) by

1 . dist(§, 9Br,(00))

go(&) := 5(rs —75) h — )
Tﬁ Tﬁ
. 1 dist(€,0B., (O
(€)= Jim g0(€) = (e - &) n(THELEOV),
Qn = lim Qo.
B—0+

Let Q* = (&5, §év) be the midpoint of Qar and P, for point P given by Definition 2.23. Moreover,
we fix a function x = x(&1) € C*°(R) such that

1 for & < Q, 5

x(&) = b < 29 — = <X'(&) <0 forall & e R,
0 for & > 5 31

Finally, we define a function gg : R* — R by

(333)  g5(€) = x(&1) (90 (€) + max {1 - % 01) + (1 - x(€0))an(©).
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REMARK 3.14. By Definition 2.24 and Lemma 3.5, there exist constants d > 0 and C' > 1
depending only on (v, y) such that, if ¢ is an admissible solution corresponding to (veo, 8) € Rieak,
and if €2 is its pseudo-subsonic region, then gg satisfies the following properties:

(i) For & € Q satistying dist(&, TV ..)

C~ dist(&, TN o) < g5(€) < Odist(&, TN i)
( ) For E €N S&tleylng dlSt(€ 1—‘lsonlc) < d’

C_ldlStB (S? I‘SOI]iC) S gB (S) < CdlStB (S? SOIHC)

<d,

where distg(§, T’ is given by

SOIHC)

(3'3'4) dlStB(ﬁ’ SOIHC) = dlSt(£7 SOIHC) + (CO - |DSDO(P1)|) 7

(iii) Furthermore, for each € > 0, there exists a constant C. > 1 depending only on (v, 7, €)
such that, if a point & € Q satisfies dist(§, T2, UTX . ) > ¢, then g satisfies

SOnlC SOnlC
Co' < gp(€) < e

o .., and ¢o are defined by Definition 2.23.

In (1)7(111)5 FN sonic?

sonic’

For a constant Q: > 0, let us define

(3'3'5) dlSt (S’ sonic U I‘.é\C/)'nlC) = mln {C’ dlSt(£7 SOnlC) dlStB (S’ SOnlC)} ‘
Using properties (i)-(iii) stated in Remark 3.14, we can find constants ¢ > 1 and ¢ € (0,1)
depending only on (vs,7y) such that each gg for 8 € (0, (v“’)) satisfies

Cdist” (&, T Qe UTo0ue) < 95(€) < Cdist’ (€, T UTh0ne)  forall § € 9,

where ) is the pseudo-subsonic region of an admissible solution ¢ corresponding to (veo, 3).

Let A(p, z) be given by (3.2.3). The following proposition is essential to establish a priori
weighted C?“ estimates of admissible solutions:

PrOPOSITION 3.15. There exists a constant p > 0 such that, if ¢ is an admissible solution
corresponding to (Vso, 3) € Rweak and Q is its pseudo-subsonic region, then the pseudo-Mach
number given by

o |Dp(€)]
(3:3.6) MO = J1DeP (), o)
satisfies
(3.3.7) M?(&) <1—pgs(€) inQ,

and there exists a constant C > 1 such that

(3.3.8) Cdist’ (€, T e UTN o) ] < Z Vi L Q(€)) kit < Cr|?

1,j=1

for all ¢ € Q and k = (k1, ko) € R?, where constants p and C are chosen depending only on (veo, 7).
On the left-hand side of (3.3.8), dist’(-, ) is given by (3.3.5).
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PROOF. Once (3.3.7) is proved, (3.3.8) is obtained directly from (3.3.7), Lemma 3.5, (3.3.1),
and Remark 3.14. Therefore, it now suffices to prove (3.3.7).

In this proof, ¢ represents any admissible solution corresponding to (veo, ) € Rweak With
and Tyhock being its pseudo-subsonic region and the curved transonic shock, respectively. Unless
otherwise specified, all the constants appearing in the proof are chosen depending only on (veo,?)-
The proof is divided into four steps.

1. By Lemma 3.5, there exist constants R > 1 and ¢ > 1 such that
QC Bry2(0), lc(IDel, o)l comy <& Ngsllczmy < ¢

for gg given by (3.3.3). Since Op € {& = 0}, O¢,95 = 0 on {£2 = 0}. By Lemmas C.1-C.2, we
can choose constants Cy > 0, § € (0, %Co), and puy € (0,1) so that, whenever p € (0, 1], either
the inequality: M? + pugs < Cod < 1 holds in €, or the maximum of M? + pugg over 2 cannot be
attained in Q U @'yeqge-
Since M2 + pugs = 1 on TN . the maximum of M? 4 jigs must be attained on 992 \ T'yedge-
2. Let v be the unit normal vector to I'shock towards the interior of 2, and let 7 be a unit
tangent vector to I'shock.

Claim: There exist constants a € (0,3) and ¢ € (0,1) such that M?*(P) <1 — ¢ when |¢-|* <

a"Pu|2 at P € Tshock-

This claim is verified by adjusting the proof of [11, Lemma 9.6.2]. For a constant o € (0, 3)

to be specified later, assume that |p,|?> < alp,|? holds at P € Tgpeek. Since pp, = Oy o and
@+ = Orpoo hold along Iypock, we have

1o 2
[Dgocl? = 100 pocl? = lpr[* < alpul? < a 2E2)7,

which yields that
IDpocl? < (14 5)10upucl®  at P € Typonk
p

We combine this inequality with Lemma 3.5 and Proposition 3.7 to obtain

1—|—d0
2

%) P > -
100 oo (P)] “1+a/C

for some constants dy > 0 and C' > 1. Therefore, we can fix constants & € (0, 3) and d; > 0 small
so that |0y ¢eo(P)| > 14 dy when « € [0, a].

Define Mo 1 := |0 poo(P)| and M, := m. Then it follows from (2.4.9) that

_1 _2(y-1) _1 -
(1+ WTM,f)M,, (14 FYT(MOOJ,)Q)|MOOV,,|‘2(W+1U.
Owing to My » = |0u oo (P)| > 1+dy, there exists a constant (. € (0, 1) satisfying that M2 < 1—(,
at P € Dghock- By the assumption that |o|? < alp,|? at P € Tghock, we have

M2 < (1+Q)ME < (1+a)(1_C*) at P € I'shock-

Therefore, we can further reduce « € (0, @] so that the inequality right above implies that

M2§1_%:;1—§ at P € Ishock.

The claim is verified.
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3. Let p1 be the constant from Step 1. In this step, we follow the approach of [11, Steps 2-3
in the proof of Proposition 9.6.3] to find a constant u € (0, 1] so that M? + ugs cannot attain its
maximum on [gpock. Here, we give an outline to see how such a constant u is chosen. We refer to
[11, Proposition 9.6.3] for further details.

3-1. Suppose that the maximum of M? + [Lgg over Q is attained at Ppax € Ishock. Then
(M? + 11gg)(Pmax) > 1, which implies that

(3.3.9) M?(Ppax) > 1—Cipt

for some constant C, > 0. Moreover, we have

(3.3.10) 07 (M? + 1195)(Pimax) = 0,
(3.3.11) O (M? + 1195) (Pumax) < 0.
For simplicity of notation, denote

(3.3.12) k(&) := pugs(&)  for £ € R2.

By using (2.4.2) and (2.5.15), a direct computation yields that, for each unit vector w,

(24 (v = 1)M?) D%p[w, Dy] + (v — 1) M2y

(3.3.13) (M?)y =

c
where we have defined
D*plqi,q2] == (D*¢pa1) - qo for qi,q2 € R
By (3.3.13), we obtain from (3.3.10) that
(v = D)M*pr + ks
=B t Prax-
2+ (v — 1)M? Lo

(3.3.14) D?*¢[T,Dy] = —

3-2. Next, we differentiate the Rankine-Hugoniot condition:

(3.3.15) (pDp — Do) - D(poo — ) =0 on Ishock

in the tangential direction 7T of T'spock, and then use (2.4.1)—(2.4.2) and (Yoo — @)+ = 0 on Tghock

to obtain
p

(3.3.16) (pD*o7 = 5 (D (D*¢T) + ¢7) D) - (Dpoe = Do)

—(pDip—Dgooo)-(D2ng+T):0 on I'shock-

Using the Rankine-Hugoniot conditions (3.3.15) and (¢ — ¢)r = 0 on Typoek, we see that
D(poo — ¢) = Op(voo — @)V = (p — 1)ppr. Then we obtain
Dy - D(poo —¢) = (p— )¢z on Tehock-
Owing to the condition that (¢oo — @)+ = 0 on Tgpock again, we have

(ngD - D‘POO) T = (P - 1)907' on I'gshock-

We substitute the expressions of Dy - D(pe — ¢) and (pDy — Do) - T given above into (3.3.16)
to obtain

D*p[T, pD(pos — @) + D]
(3.3.17) .
C

1 P
= p(1+ ——1)D*¢[r, D] + S - Derer + (p—1)¢er  on Tahock-
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3-3. Define

levl lor|
M1 = M2 = —_—
c(|Del?, ) (| Del?, )
We substitute the expression of D?[r, D¢] given by (3.3.14) into the right-hand side of (3.3.17)
to obtain

D*¢[1,pD(poo — ) + D]

=p(L+(p=1)MP)B1+p(p = DMipr + (p = 1)pr =: B at Prax.

A direct computation shows that

20 = 1)1+ pM?) = (y = 1)M?) o7 — p(1 + (p — 1) M}) kr
24+ (y—1)M? '

Apply « and ¢ from Step 2, and assume that

(3.3.18)

(3.3.19) By = (

: ¢
3.3.20 0 < —t.
(3.3.20) << min (i, 5o

Then it follows from (3.3.9) and Step 2 that
(3.3.21) 0 < a|@y(Puax)|? < |@r(Puax)|?,  or equivalently, 0 < aM?(Puax) < M3 (Prnax)-
Using (3.3.9), (3.3.21), and « € (0, 3), we have

(3322) M22(Pmax) > %(1 - O*,“)

We rewrite (3.3.14) and (3.3.18) as the following linear system for (@pr, ©r+):

A <‘P"T> = <Bl) at Ppax for A = < Pv 9"*).
Pvr BQ P Puv Or
By (3.1.26) and (3.3.21), |det A| = |(p? — 1)ppr| > 0 at Puax. Thus, (¢ur, pur) can be written
as

B1 — B2 p2B1 — BQ
<PVT - 7T o\ <PTT = T 5 N
(1= p%)ew (P> = Der
Note that Eq. (2.1.19) is invariant under a coordinate rotation. We rewrite Eq. (2.1.19) as
(3:3.24) (= ¢l)oww = 200Prpur + (2 — 1) prr = D> —2¢%  in Q\ (T2, UTN,i0);
and use this to express ¢, in terms of (M, M-, M, p, oo+, 0++). Then we use (3.3.23) to obtain

(3.3.23) at Prax.

M2 -2 1 M1 Mo p?(1 — M3) B
(3.3.25) IR T T\ Dew | (P D )
h 1 1— M2 2 M, M.
+ 5 ( 3 2 3 12 > By at Puax-
1-— Ml (p - 1)901' (p - 1)9011

Using (3.3.14), (3.3.19)—(3.3.23), and (3.3.25), we can also express (@ur, @uy) in terms of M, My,
Mos, p, o1, v, c, and kr at Ppax € Tshock-

3-4. Now we choose a constant p € (0, 1] sufficiently small so that a contradiction is derived.
By (3.3.13), (3.3.11) can be written as

(2 + (v - 1)M2) (PrPvr + Popuw) + (7 — 1)M290u + %k, <0 at Prax-
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Using (3.3.12) and the expressions of (¢ur,ppy) in terms of M, My, Ma, p, o1, pu,c, and k-, we
can further rewrite the inequality stated above as
(3.3.26) A =2M35 +22p+ )M (M? = 1) 4+ p (110pgs — 120-95) <0 at Prax

for

o (1 = p?)MPM3 + p* M7 + M3
(p+ -

By (3.3.9), Lemma 3.5, and the definition of gz given in (3.3.3), there exists a constant C' > 0
such that

h=cpr(p+1)(1-M7), l=c

220+ )M (M? —1) > —Cpu at Puax,
(3.3.27) | <C  on Tspock,
|Dgsllcomsy <€ forall B e [0, 57].
Moreover, by Lemma 3.5 and (3.3.22), we have
1

3.3.28 b € ———== at Prax.
( ) |l2] < O
From (3.3.22)—(3.3.28), we obtain
1
A>a(l-Cip)—Cull+ ——— at Prax
( 1) u( a(l—C*u))

for some constant C' > 0, provided that u satisfies (3.3.20). Therefore, there exists a constant

w2 € (0, p3] for pi = min{us, %} such that, if 0 < p < po, then A > ¢ > 0 holds at Pyax,

which contradicts (3.3.26). Therefore, we conclude that the maximum of Mf, + pgp over Q) must
be attained on 99 \ (I'wedge U I'shock), provided that p > 0 is chosen sufficiently small, depending
only on (veo, 7).
4. For constant ps given in Step 3, we fix a constant p € (0, u2]. Then Mf, + pgp satisfies
sup (Mg + ugs) = sup (M + pgg) = 1.
Q sonic sonic

This proves (3.3.7). O

REMARK 3.16. By Remark 3.14 and (3.3.7) in Proposition 3.15, there exists a constant pe > 0
depending only on (v, y) such that, if ¢ is an admissible solution corresponding to (veo, 8) € Rweak,

(3.3.29) MZ2(€) <1~ padist’ (€, T UTN ) in Q.

sonic sonic
3.4. Uniform Weighted C*“—Estimates Away From I'¢ ..
According to Proposition 3.15, the ellipticity of Eq. (3.2.2) (or equivalently, Eq. (2.1.19))
depends on dist(¢,T9 . UTY . ). In particular, (3.3.5) indicates that the ellipticity of (3.2.2)

sonic sonic

depends continuously on § € (O,ﬁé”“’)), even across ﬁg”“’) up to é”“’). For this reason, we can
establish uniform weighted C?®—estimates of admissible solutions.
We first estimate (weighted) C%®-norms of admissible solutions away from 'S .. We will

discuss the uniform (weighted) C?“-estimates of admissible solutions near I'C . in §3.5.

sonic
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3.4.1. C*“—estimates away from T'Q . UTY . . Fix v > 1 and vy > 0.
For a set U C R? and a constant £ > 0, define N;(U) := {€ € R? : dist(¢,U) < e}
Let C > 0 be the constant from Proposition 3.7. Then there exists a constant dy > 0 depending

only on (vso,7y) such that
(3.4.1) [Dgoc|? 2 14+do on N1 (Tshock)-

i) Ify=1, then it follows directly from Definition 2.24 that any admissible solution ¢ satisfies
that |De| < 1in Q. Thus, it follows from (3.4.1) that

(3.4.2) |Dgos|? = |Dgl* > do on N o (Tshoek) N2
(ii) If v > 1, then we can rewrite the Bernoulli law (2.4.2) as
_ v—1 v—1
(3.4.3) p? 1—|—T(|D<p|2—|—<p) = 1+T(|Dg000|2—|—g000).

Let ¢ be an admissible solution corresponding to (vVeo,3) € Rweak. Since |Dpl? < p?~! and
oo — > 0 hold in Q, we obtain from (3.4.1) and (3.4.3) that

+1 _ -1 —1 _
,YTP’Y ! >p7 1+7T|D(p|2 > 1+/YT(1+do) ODN%(FShOCk)ﬁQ.

This implies that p?~! — 1 > §; for some constant 5y > 0 depending only on (vs,7). Then

271 _ 1 20 Q
27— 1) + (Poo — 0) > =L 4 (poo — ) on N% (Dshock) N €2

DOOQ_D 2:
|Doo|” — [Depl — po—

Since oo — ¢ = 0 on Typoek, it follows from (3.1.25) in Lemma 3.5 that there exist small constants
e € (0, ) and &, > 0 depending only on (7, v ) such that

(3.4.4) [Dpoo| — | D] > 6 on Nz (Tsnoex) N Q.

Let (r,0) be the polar coordinates defined by (3.2.27). Note that |[Dyss| = —0r¢se. Then
(3.4.2) and (3.4.4) imply that there exists a constant d; > 0 depending only on (v, y) such that
(3.4.5) Or(poo — ¥) < —(|Doo| — |Dypl) < —dy on Nz (Tshock) N Q.

Therefore, by the implicit function theorem, there exists a unique function fo_ sn(#) such that
(3.4.6) Fshock = {T‘ = fow7sh(9), 6‘p2 <0< le},

where (fo.. su(0p,),0p;) represent the (r, )-coordinates of points P; for j = 1,2, given by Definition
2.23. By Lemma 3.5 and (3.4.5), there exists a constant C; depending only on (v, ) such that

(3.4.7) [ fowsullcoror, 0m)) < Cr-

LEMMA 3.17. Fix v > 1 and vy > 0. There exists a constant 61 > 0 depending only on (veo,7)
such that, if ¢ is an admissible solution corresponding to (Voo, ) € Ryweak, then

(348) au(spoo - SD) > 51 on Pshocka
(349) 61/9000 > Oy > 01 on Tshock

or the unit normal vector v = — 0 I'snock towards the interior of €.
the unit I vect BE=ZE 0 Tanoek towards the int )
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PROOF. If ¢ is an admissible solution corresponding to (ve, ), then it follows from (3.4.5)
and po — @ = 0 on Igpock that

(3.4.10) D (pc — @) = |D(po — @) = |[Dpoo| — [Dep| = dy on Ispock-

Since dpp = %, Oupoo > 1, and p(|Dy|?, ) > 1 on Tgpoek, Lemma 3.5 yields that 0,0 >
Oy > C~1 for a constant C' > 0 depending only on (vso,7). The proof is completed by choosing
01 as
51 = min{dl, C_l}.
|
LEMMA 3.18. Fizx v > 1 and veo > 0. Let ¢ be an admissible solution corresponding to

(Voo, B) € Rweak- Then, for each d >0 and k = 2,3,---, there exist constants s,Cy > 0 depending
only on (Voo,7,d) such that, if P = (rp,0p) € Tshock in the (r,0)—coordinates, defined by (3.2.27),

satisfies that dist(P,T9 . UTX . ) >d, then
(3.4.11) D fo...sn(0p)] < Ck, |D*¢| < Gy, in Bs(P) N Q.

PROOF. The proof is divided into three steps.

1. Let ¢ be an admissible solution corresponding to (veo, ) € Rweak, and let Q be its pseudo-
subsonic region. For a constant d > 0, define

d
)

Let £(p,Qq) be defined by (3.2.17). Moreover, for a constant R, let Kz be given by (3.2.6).
By Lemma 3.5 and Proposition 3.15, there exists a constant My > 0 depending only on (veo,, d)
such that £(¢p, Q4) is contained in Ky, .

Let A(p,z) = (A1, A2)(p,2) and B(p, z) be defined by (3.2.3), and let (A, B)(p,z) be the
extensions of (A, B)(p, z) onto R? x R described in Lemma 3.8 with M = M,.

2. We express the Rankine-Hugoniot jump condition: pDy - v = Dy, - v as
(3.4.12) gSh(Dgo, 0,€) =0 on Ighock
for g*'(p, 2, €) defined by

Q= {€cQ: dist(¢, 19, uTN ) >

sonic sonic

(3.4.13) 9 (P, 2,€) = (A(p, 2) — Dpoo(€)) - %-

For §; > 0 from Lemma 3.17, define a smooth function ¢ € C*°(R) by

t ont>345
t) = AT ") >0 R.
C() {571 fort<%1, C()_ on

Also, we define an extension of g;ﬁ‘od(p, z,€) onto R? x R x Q4 by
Dspoo (S) - P

(3.4.14) Gimoa(p:2,€) = (A(p, 2) = Dpoc (€)) - :

(1D (§) —PI)
Fix a point P € Dgpoar with dist(P, T . UTN . ) > 2d for d > 0. Then ¢ satisfies
divfl(Dcp, ©) + 3(D90, ©)=0 in By/o(P)NQ,

(3.4.15) N
anod(D% 12 5) =0 on Bd/2(P) N Tshock-
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For € > 0 from (3.4.5), define
d
R:= min{i,a}.

Note that such a constant R > 0 is given depending only on (v, 7, d), but independent of ¢ and
P. By (3.4.5), we can write DpgSh (D, p, £) as

Dpgima(De, ¢,€) = Dp((A(p, 2,€) — Dpo(€)) - 0a(p, €))  in Br(P)NQ

for
n(p,§) =

Since

a direct computation yields that
2

Dpgiroa(Dp, ¢,€) - (D, &) = Z A;(Dp, ¢, E)iviin; = A(Dg,€)  in Bp(P)N T

for n; = &; - (D, ).
By Lemma 3.8(ii), there exists a constant Ay > 0 depending only on (vs, 7, d) such that
Dpginoa(Dg, 9, €) - 8(Dp, &) > A\g >0 in Br(P)N Q.
This implies that
(34.16)  |Dpgioa(De,9,€)| = Dpgroa(Dp, ¢,€) (D, €) 2 Aa >0 in Br(P)N Q.

3. By estimate (3.1.25) of Lemma 3.5, (3.4.7), Lemma 3.8, and (3.4.16), the boundary value
problem (3.4.15) satisfies all the conditions necessary to apply Theorem C.8. Therefore, there exist
B8 €(0,1) and C > 0 depending only on (vso,,d) such that

lell1.6,8./.P)ne < C for all P € Dhook N Qa.

Combining the C!P-estimate of ¢ with (3.4.5) implies that fo_ e is C*# away from 6§ =
0p,,0p,. Then we apply Theorem C.9 to the boundary value problem (3.4.15) to obtain the estimate:

lll2,8,B.,s(P)ne < C for all P € Tghock N Q4

for some constant C' > 0 depending only on (vao,7,d). This implies that fo__ o is CH® for any
a € (0,1) away from 0 = 0p ,0p,, so that ¢ is C*“ for any o € (0,1) on [ghoax away from
ro UTN . by Theorem C.9.

sonic sonic
Finally, the C*-estimates, k = 2,3, - - -, are obtained by a bootstrap argument via application
of Theorem C.9 and Corollary C.10. O

As a result, directly following from Lemmas 3.9 and 3.18, we conclude the following uniform
C*—estimates of admissible solutions:

COROLLARY 3.19. Fix v > 1 and vy > 0. For each d > 0 and k = 2,3, -, there exists a
constant Cy ¢ > 0 depending only on (v, 7, k, d) such that any admissible solution ¢ corresponding
t0 (Voo ) € Reak Satisfies

el N (At Er? Ut ysd) = Ch,a-

sonic sonic
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3.4.2. C%“—estimates near 'V For fixed v > 1 and v, > 0, the sonic arc 'V . defined

sonic*® sonic?
by Definition 2.23 corresponding to the normal shock part of each admissible solution, is fixed to be
the same for all 3 € (0, ). By Definition 2.24(ii) and Proposition 3.15, the ellipticity of Eq. (3.2.2)
(or equivalently, Eq. (2.1.19)) degenerates near I', In order to establish a uniform weighted

sonic*
C?“—estimate of admissible solutions up to I‘g\gnic, the method of parabolic scaling is employed. We

keep following Definition 2.23 for the notations used hereafter.
Define

on + &
2
Note that ¢xr is the same for all 3 € [0,F). In Uy := (Bs_czM(ON) \ Ban (On)) N{€ : & > 0}, let
(r,0) be the polar coordinates with respect to Ox = (0,0). Define
(3.4.18) (x,y) == (car — 1, 0).

Let ¢ be an admissible solution corresponding to (veo, ) € Rweak, and let Q be its pseudo-subsonic
region. Define

(3.4.19) OV = (2N {& > 0}) \ Bey (On).
Then QV C B, (On) and QN  {(z,y) : = > 0}.

In OV, we define a function v by
(3.4.20) V= — N in OV,

We rewrite Eq. (2.1.19) and the boundary conditions (2.5.35)—(2.5.37) in the (z,y)—coordinates as
follows:

(i) Equation for ¢ in QN: For each j = 1,---,5, define Oé\[(p, z,x) by

(3.4.17) N =

Oé\/(p,z,x) = 0;(p, z,z,cn)
for O;(p, z, z, ¢) given by (3.2.29). Then Eq. (2.1.19) is written as
1
(3:421) (2= (7 + Do + O )thwa + 03y + (= + O3 by = (1+ 030 + 0570, = 0,

. N N o
with Oj —Oj (DY, ¢, x) for j=1,--- 5.

(ii) Boundary condition for v on Tapeac N OQV: By the definitions of (poo, @ar) given in Defi-
nition 2.23, we rewrite the condition that ¢o, — ¢ = 0 on I'gpoex N OV as

H=¢" - vi on Tghoak N V.
For ¢*I' (P, 2, &) given by (3.4.14), we define
z
(3422) M(pv 2751) = glsar?od(p + D@Na z+ @Nvglvgy - ’U_)

with (D, oar) evaluated at (&,&Y — 5—)- Then the boundary condition (2.5.37) is written as
M (D, ,&) =0 on Tghock. Denote

G = oo — PN
Then [D(¢Y — )| = |04 (poo — ©)] > 0 on Iypock. Rewriting the boundary condition |D(¢% —
V)M (D, 9, &) = 0 on Tgpoa N OV in the (z,7)coordinates, we obtain

(3.4.23) BY (s, 1y, 1, ) = 0 on Tsnocke N OOV
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for BY (ps, py, 2, x,y) defined by

(3.4.24) BY (pa,py. 2,0,y) := DL — pIM (P, 2,61)
with

B B _ [(—cosy —siny Pz
(3.4.25) &1 = (v — @) cosy, p= (—siny cosy ) (cﬁy_m> '

(iii) Other properties of ¥: By (2.1.30) and Definition 2.24(ii)—(iv), ¢ satisfies
Y >0 in QV,
(3.4.26) =0 onT¥,

sonic?

Py =0 on I'yedge N o0V
For each 8 € [0, %), let D be defined by (2.5.27), and define
AV = D0 (Bag (On) \ Bewe (Ow) 0 {&1 > 0}

Note that AV is the same for all ﬁ €[0,%), and AN C {& < &Y.

By using the definitions of (T%Y ., ¢uo, ar) given in Definition 2.23, the following lemma can
be directly verified:

LEMMA 3.20. Fix v > 1 and ve > 0. There exist positive constants €1, €g, dy, wo, C, and M
depending only on (veo,y) with 1 > ¢ and MM > 2 so that the following properties hold:

(a) {pn < @oo} NAN NN, (TN L) € {0 <y < T — 3o}, where No(T') denotes the e-

neighborhood of a set I' in the &—coordinates;
(b) {on < oo} NN, (Piic) N {y > yp,} € {o > 0}
(©) In {(z:3) ¢ o <1, 0< y < T — o}, 0 = o — o satisfic
m 2 m
= = <
2’ M~ -0 (boo =27

() [(DE, s D, )05 < Cin {|z] < a1}

(e) There exists a unique function fxo € C([—eo,e0]) such that

(3.4.28)
{{W\/ < oo} NAN NN (Ti0) N {l2] < o} = {(2,y) : J2] < 0,0 <y < fawo(@)},
)

(3.4.27) %y < 0,0l (x,y) <

Sn ﬁNal( somc) n {|‘T| < 80} = {(.’L’,y) S (_50760)7y = fN,O(x)};
fao in () satisfies
2wp < f.//\/,O <C on (—¢€o,€0)-

Let Q be the pseudo-subsonic region of an admissible solution ¢ corresponding to (veo,3) €
Rweak- For € € (0,21], define a set QN by

(3.4.29) QN =N NN )N {z < e}

for some € = &(e,wp) > €.
Note that QY ¢ {0 < z < }.
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LEMMA 3.21. Let gg, wo, and M be from Lemma 3.20. Then there exist constants & € (0, gg],
L>1,6€(0,%), and w € (0,wo] N (0,1) depending only on (ves,7) such that, whenever £ € (0, ],
any admissible solution o = ¥ + @ satisfies the following properties in Qév

()’t/]m(.’liy)<2—$<L(E

— 1+
(b) % >0 and |y (z, y)| < La;
(©) Hy— F22 < 0u(poo — ¢)(@,y) <M and gz < =8y (oo — ) < M;
(d) there exists a unique function fargn € C([0,€]) such that

O = {(z,y) : 2 € (0,8),0 <y < favn(2)},
Cahoek NI = {(2,y) : z € (0,¢), y = fwv.n(2)},
w< fha(@ <L for 0<az<e;

(€) 0 < () < La.

PRrROOF. We divide the proof into four steps.

1. By (3.3.8) and (3.4.21), there exists a constant § € (0,%) depending only on (ves,7) such
that

(3.4.30) 22 — (v + D)y + O (D (, ), ¥(z, y), > 20r  in QY

for QV defined by (3.4.19). Since O (D (z,y), ¥ (z,y), ) < by (3.2.29) and (3.4.26), w
obtain from (3.4.30) that

2-2
Vo(,y) € T in Qﬁg
(I+7)(1-22)

for

g0 = min{cy — én, €0}y
where ¢y is given by (3.4.17). Then & € (0,£¢] can be chosen, depending only on (ve,7), so that
1) satisfies

2-6
ST, T inﬂé\/.

Ve (z,y) <

This proves statement (a).
By Lemma 3.6, (3.4.18), and (3.4.25), we have

(3.4.31) Vacosy+ —20 sing >0, prsing— —2L cosy>0 i OV,

CN — T CN — T
By property (f) of Lemma 3.20, there exists a constant d; € (0, {5) depending only on (v, ) such
that
(3.4.32) OV cfo<y< g PR
Then (3.4.31), combined with statement (a), yields that

0 5

(3.4.33) 0 < thu(r,y) < 7 +jx in QY.

Owing to (3.4.32), the second inequality in (3.4.31) is equivalent to
Yy(@,y) < (en —a)u(z,y)tany  in OV,
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Then it follows directly from (3.4.33) that
(3.4.34) Yy, < Cx  in QY
for a constant C' > 0 chosen depending only on (ve, 7).

N

sonic?

2. In order to obtain a lower bound of i, by a linear function of x near I' a different

approach is used.
By Proposition 3.11 and (3.4.32), there exists ] € (0, {;) depending only on (v, ) such that

(3.4.35) O N Tapoex C {8 <y < g — 5},

where Tghock denotes the curved pseudo-transonic shock of ¢. Thus, the first inequality in (3.4.31)
is equivalent to 1, (,y) > —(cx — ), (x,y) coty on QY NTgpea.. Then (3.4.33) implies that there
exists a constant Cg, > 0 depending only on (v, ) such that

(3.4.36) Yy > —Caqnx on Dapoae NOQY.
By (3.4.26), we have
(3.4.37) Yy =0  on T . U (Dyedge NOXY).

By (3.1.25) in Lemma 3.5, there exists a constant Cj, > 0 depending only on (vs,7y) such that
satisfies

(3.4.38) Yy > —Ci  on OV,
3. By adjusting Step 3 in the proof of [11, Lemma 11.2.6], the following lemma holds:
LEMMA 3.22. Fiz constants v > 1, ¢ > 0, and ro € (0, §]. Given an open set
Uc{(z,y) €R* : 0 <z < 1o},

assume that a function ¢ € C3(U) satisfies the equation:

Npi(¥) := (22 — (v + 1)tby + O1)¥aa + O2thpy + (% + O3)yy — (1 + Og)tby + Ostpy =0 in U,

with O; = O;(DY(z,y),¢¥(x,y),x,¢c) for j = 1---,5, where each O;(pz,py, 2, x,c) is defined by
(3.2.29). Moreover, let v satisfy the following inequalities:

2 — do
>0, 0< v, <
V2 <Y 1+~

T m U,

for some constant §o € (0,1). Then there exists a constant € € (0,r¢) depending only on (v, ¢, do)
so0 that OyNyp(Y) = 0 is rewritten as a linear equation for w := 1), in the following form:

1
L = (20 — 1)O T O T - )
(3.4.39) w(w) 1= (20 = (v + DO + Oz + (3 + Oa)wyy
—l—bgd))wm +bg¢)wy+bg¢)w =0 inUN{z<e},
with

(3.4.40) b <0, bW<0  inUN{z<e)



3.4. UNIFORM WEIGHTED C%*-ESTIMATES AWAY FROM TI'9

sonic

81

By Definition 2.24(iv) and (3.4.33), we can apply Lemma 3.22 to ¢ = ¢ — ¢xr. Therefore, we
can further reduce constant & € (0,&¢] depending only on (vs,7) so that i, satisfies the elliptic
equation:

Ly(hy) =0  in QY.

For constants Cy, and Ciy, from (3.4.36) and (3.4.38), respectively, we choose M := max{Cyp,, <= }.
Then w = v, satisfies

w+Mx >0 on BQ?[,
Ly(w+ Mx)=Ly(Mz) = M(bglp) + b((fp)ac) <0 in Q.

The second inequality stated above is obtained from (3.4.40). Note that constant M is chosen
depending only on (v, ). By the maximum principle, we obtain

w(z,y) > —Mzx in Qjé\/
Combining this with (3.4.33)—(3.4.34) yields statement (b) of Lemma 3.21.
4. By Lemma 3.20(c) and Lemma 3.21(b), we have
Mm .
Oz(po0 — ) < (%d)% < o n Qé\/
By Lemma 3.20(c) and Lemma 3.21(a), we obtain
2 2-9
N Y

- = > Y27

Oulpoo = )@ y) = Datine(@,9) = V00 2 G = 7707

The estimate of 9y (p — ¢) stated in statement (c) of Lemma 3.21 is similarly obtained.

in Qév

The existence of a function far g, : [0,6] — RT satisfying statement (d) directly follows from
Yoo — @ = 0 on Tgpock, Lemma 3.21(c), and the implicit function theorem.

Finally, statement (e) directly follows from statements (a)—(b) and (d) of Lemma 3.21, and
Definition 2.24(iv). O

LEMMA 3.23. Write Eq. (3.4.21) in QV as

2 2
> AN(Dy, ¢, 2) DLy + Y AN(Dg, v, 2)Dip = 0,
ij=1 i=1

with (D1, Da) = (D, D) and Ay, = AY,. Then there exist ezr € (0, ] and Ay > 0 depending only
on (Veo,7) such that, for any admissible solution p = 1 + @ar corresponding to (Voo, 8) € Rweak, if

(z,y) € QﬁN, then

RiRj 2
ity — y
2= AN

A =,
(3.4.41) TNMF < Z AN (DY (z,y), ¢ (2, y), )

ij=1

k|2 for all k = (K1, Kk2) € R%

Moreover, B{\[ defined by (3.4.24) satisfies the following properties:
(a) BY(0,0,2,y) =0 for all (z,y) € R%;

(b) Foreach k =2,3,---, there exist constants o > 0 and C > 1 depending only on (veo, 7y, k)
such that, whenever |(pg, Dy, 2, )| < 0be and |y — yp,| < Obe,

1Dy y 20 B (P Py 2,2, 9)] < €5
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(c) There exist constants dpe > 0 and C' > 1 depending only on (veo,”) such that, whenever
|(px7py,Z,I)| S 5bc and |y — yP2| S 6bc;

Dip, py.2) B (02, 2, 2,y) < —=C71.
In (b) and (c) above, yp, represents the y—coordinate of point Py, defined by Definition 2.23.

PROOF. (3.4.41) can be checked directly from (3.2.29). Properties (a)—(b) of BV are the results
directly following from the definition of ¢y, (3.4.13), (3.4.22), and (3.4.24).

A direct calculation by using the definition of par in Definition 2.23, (3.2.3)—(3.2.4), (3.4.13),
(3.4.22), and (3.4.24) yields that

N

Voo
aZB'{v(Ov 0,0, yP2) = _Ma

N

pn —1

asz{\/(anvoaypz) = (5{\[)27

CN
5. BN _ N
ZDyBl (O,O,O,yp2) - _%(p.’\/voo + (p/\/ - 1)52 )

Then property (c) is obtained by combining the results stated immediately above with property

(b). O
LEMMA 3.24. Let €9 > 0 and L > 1 be the constants from Lemma 3.20 and Lemma 3.21,
respectively. Then there erist constants e € (0,%] and C > 0 depending only on (ve,7y) such

that any admissible solution p = @xr + 1 corresponding to (Vao, B) € Ryweak Satisfies the following
equation:

2
ZA““"d (DY, b, @) Dijip + Z AV (Dy,y,2)Dip =0 in QY

3,7=1

with coefficients (A(-r-md), AEmOd)) satisfying the following properties:

a) (Ao ANy = (AN AN in {(po, pys 2, @) ¢ |(peypy)| < La, |2| < La?, € (0,2)},

(a) e
(b) |(A<m°d Ao Ay, py, 2, 3)| < Cain R2 X R x (0,¢),
)

c || ( mod) A(l’n()d )

( llo,r2 xR x(0,e) < C,
(@ 1Dy (A, ATV o2 0.6 < C-

PROOF. This lemma can be proved by adjusting the proof of [11, Corollary 11.2.12].

Choose a function n € C*°(R) such that 0 < n < 1 with n(¢t) = 1 for |¢| < L and n(t) = 0 for
|t| > 2L. For such a function 7, we define (A(-r-md), A(-mOd)) b,

(3.4.42) (A0, A (b py 2. 0) = (A AV ) (an(P2), an(P2), a%n( ), @),

i i
Then Lemma 3.24 directly follows from (3.4.21) and Lemma 3.21. O

For the uniform weighted C?“ estimates of admissible solutions near T we recall the

definition of the norm introduced in [10].

sonic?

DEFINITION 3.25 (Parabolic norms). Fix a constant a € (0,1).
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(i) For z = (z,y), %z = (Z,9) € R* N {z > 0}, define

5P (2,2) i= (o — &[> + max{z, 3}y — 7).

(ii) Let D be an open set in R2N{x > 0}. For a function u € C?(D) in the (x,y)-coordinates,

define
lul = 3 sup(at5=200fu(z)]),
o0<k+i<2 *€P
k ql _ akal ~
[l = Z sup (min{xa+k+%*2,5ga+k+é*2}|awayu(z) 3m8yu(z)|)7
Oy k+l:2z,2€D,z7$2 5g‘par)(z72)
lullP2 = lull 55 + [l P2

(iii) Fix an open interval I := (0,a). For a function f € C?(I), define

2

IS = }: p(2" %0 (@),

k=
ar 82 _ 82 5,
A = s (nﬂn{wa,fa}'wfxx) %TDN
z,2€l,x#% |ZE — :E|
17115557 = 115507 + 15
(iv) Given constants o > 0, a € (0,1), and m € Z4, define
ar L_s
lulls™ = D= sup(a**E7|atopu(z)]),
0<kt+i<m *€P
. Okl u(z) — kOl u(z
[u]g)&(%ﬂ) — Z sup (min {$a+k+%*d,ja+k+éfo}| zY% (( ) ) Oy u( )|),
- ki #7€D 272 o (2, 2)

[ Zsup Fo10r f(@)1),

e O;EE
g ar . — ~ — 6777’ - am T
[f]gn)(;(l;[) ) = sup (mln {xa—i-m U7xo¢+m o’} | T f(i[]) _ x f($)|)7
” ©,Z€],a AT |z — Z|*
lullirals” = s B + Wl ™ = W™ + I
Note that norm || - ||2p§r)D in (ii) is norm || - ||22()1 %ar) above here.
(v) Denote by Cmapar) (D) the completion of set {u € C*(D) : ||u||m a%ar) < oo} under
norm || - [|$7: 5.

PROPOSITION 3.26. Let epr > 0 be from Lemma 3.23. For each « € (0, 1), there exists C' > 0

depending only on (ve, 7, @) such that any admissible solution ¢ corresponding to (veo, 8) € Rweak
satisfies

(3.4.43) lle — soNllgperN + 1 fxvsn = Faollya e (0,en) S C.

PROOF. The proof is divided into six steps.



84 3. UNIFORM ESTIMATES OF ADMISSIBLE SOLUTIONS

1. Re-scaling coordinates. Fix € € (0, %]. For 2 := (xo,%0) € QN\I‘bomc and r € (0,1], define
r
20,7 {(%y) : |:E - x0| < _:I:Oa |y - y0| < _\/ 1'0}7 RZO,T = Rzo,r N QJQ\Q

Ife< yp and zg € Ighock N QN then it follows from Lemma 3.21(d) that

R

3 5
(3.4.44) R., 1 C{(z,y) : P << Z;Eo}.

For r > 0, define the sets:
1
Qr = (_Tv T)27 diZO) = {(Sa T) €Qr 20+~ (IOS VI T) € Rzo T}

2. Re-scaled function ¢<z“). Let ¢ be given by (3.4.20). For z € oV N shock, define a function
P(=0)(S,T) by

1 z
$E(S,T) = —vh(ao + 2 S,y0 + @ﬂ for (5,T) € Q™).
0

By Lemma 3.21 and (3.4.44), we have
e <L WS <L [ < Lag Yt i QY.
Moreover, Lemma 3.24 implies that (*0) satisfies the equation:

2
ZA(“ (Dy) =), §)D; o) + 3~ A (DY) o) §)Dp=0) =0 in QL)

3,j=1 i=1
Where (Dl,DQ) = (Ds,DT), Dij = DiDj, and

itg

Z m S
Agjo)(pl,pg,z,S) =2 A( 0d)(43: p1,43:0/ P2, w8z, w1 + 4))

z 1 i1 mo S
Al(- 0)(p1,p2,z,5’) =—x> AE d)(4x0p1,4903/2]92,90%2,960(1 + Z))

>~

For farsh given in Lemma 3.21(d), we define

(3.4.45) F)(8) = \/ix_o (fN7sh(:C0 + %OS) - f,\/,sh(xo)> for -1 < S < 1.

It follows directly from Lemma 3.21(d) and (3.4.45) that F(*0) satisfies

(3.4.46) F)(0) =0, IFE| e -1,1) < Cv/ao

for some constant C' > 0 depending only on (vs,7y). Therefore, there exists e, € (0, 7] depending

only on (vss,v) such that F(0)(S) > —Z for S € (—r,r), whenever r € (0,1) and z € oV " N shock-
For zy € ng\f N I'shock, define

e = {(S.7) + S € (-1,1),T = F&)(8)} € 9Q;™.

shoc!

Then dist(T Shock,aQ“O N{T =-1}) > 1.
By Lemma 3.21(a)-(b) and (e), we can fix a small constant e, € (0, 5] depending only on
(Voo,7) so that any admissible solution satisfies

1 . : .
[(Var ¥y, 0,y = yp)| < JminfOue,duc} i Q3L
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for constants (Spe, dpe) from Lemma 3.23. Then we apply Lemma 3.23(c) and the implicit function
theorem to rewrite the boundary condition (3.4.23) as

(3.4.47) Vo = by (thy, ¥, 2,y)  on Denoax N .

By Lemma 3.23(a)—(b), we have

bar(0,0,2,9) =0  in QY |

(3.4.48) ( ) e
|Dkb/\/(py,z,x,y)| < Cy in R xR x Qﬁg* fork=1,2,3,---,

where constants Cj, > 0 depend only on (veo, 7, k).
For each zy € T'ghock N Qé\/ , denote

zZ 1 T
(3.4.49) B! 0)(pT,z, S, T) := mb/\/(élxgﬂp;p,x%z,x,y) for (z,y) = 20 + (S, ‘/;’T).

It follows directly from (3.4.48) that there exists a constant m; > 0 depending only on (v, y) such
that

BE(0,0,8,7)=0  in Q™

(3.4.50) 100, BN (b, 2, My geor <mavao  forall (pr, z) € R xR,
ID(pr.) B (07, 2, )| g SmiyE  forall (pr.2) €R xR,
By (3.4.47), ¢(*0) satisfies
(3.4.51) Y5 =BG (& ) S, T)  on T,

3. Uniform estimates of ¥(*0) for zy € Tghoek. By (3.4.46) and (3.4.50), we can apply Theorem
C.5 to find constants (e,d,C) € (0,e,] x (0,1) x (0,00) depending only on (v, ) so that, for any
zZo € Qév N I'shock, We have

(3.4.52) [

<C.

16.Q5Y =

By (3.4.45), for each 2 € QN N TCshock, gb = oo — PN satisfies
(3.4.53) ¢ (20 + IOS, Favsn (o) + gF(ZO)(S)) — 22 (S, FE) () =0 for -1 < S < 1.
Differentiating (3.4.53) with respect to S, we have
V0 (0x A — Awodsyp=0))
0,0, — Ay *orepzo)

By combining this expression with Lemma 3.20(c) and (3.4.52), a direct computation shows that
there exists a small constant ¢ € (0, ,] depending on (ve,7) such that F(%0) satisfies the estimate:

(3.4.55) ||F(Z°)||1751[,3/473/4] < Cy/xg for all zg = (20,%0) € Dshoek N QY

for some constant C' > 0 depending only on (v, 7).
This result, combined with Lemma 3.18, yields that Tgpeck is C10 up to T, .. away from T, .
Next, it follows directly from (3.4.55) and a direct computation by using (3.4.48)—(3.4.49) that
the boundary condition (3.4.51) satisfies all the conditions stated in Theorem C.6 with (a, ®, W) =

(6, \/LF(ZO) B(ZO)) for all 29 € T'shock N 8(2 , where € > 0 is the constant in (3.4.55). Therefore,

(3.4.54) (F0)y = —
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we can further reduce ¢ € (0,e,] depending on (vs,7y) so that, for each zp € Tshock N 89’5\/, the
re-scaled function (*0) satisfies the estimate:

3.4.56 (20) . < C
( ) llv IIQV&QW_ ;

where C' depends only on (veo, 7).

We combine estimate (3.4.56) with (3.4.54) to see that F'(*0) € C1([—1, 1) for any o € (0,1).
Furthermore, we have

(20)
sup F a-11<C,
20€TehocNOQY VT ” ”1 2]

where C' > 0 depends only on (vee,7). Then we can repeat the previous argument by applying
Theorem C.6 to conclude that, for each o € (0,1), the small constant e € (0,e,] can be further
reduced so that

sup |l s ——
20E€shock ﬁBQ/E\/ Qg/(zl) \V Zo

where C' > 0 is a constant depending only on (vs, 7, @).

4. Uniform estimates of 1) for zy & Isnock. If ngo) = @1, we apply Theorem C.3 to obtain
that, for each a € (0,1), |[1»*0)]| is uniformly bounded above by a constant depending

IFC g0 11 < C,

11
1°1

2,0,Q)7%

only on (veo,7, ). If zg € I'yedge N BQN then Q(ZO Q1 N{T > 0}, and (*0) satisfies that
g

0)(S, 0) =0 for all -1 < S < 1. This is owing to the slip boundary condition (3.4.37). In this

case, we apply Theorem C.7 to obtain a uniform estimate of ||1/)(Z°) I —oy forall zo € chdgcmaQN

1l /o

—zo7 are given independently

2,0,Q

5. Estimate for ||gp—<p/\/|\gpzr2w . Since the estimates of ||1(=0) |
3 e p Q1%

of 2o € QN \ TV

by combining the uniform C*-estimate of admissible solutions given in Corollary 3.19 and all the
estimates of |[1(%0) || from Steps 3—4, and by scaling back to the (z,y)—coordinates. For the

and j € [0, é”“’)), the estimate of ||90—cp,\/|\épaargw in (3.4.43) is finally obtained

sonic

~Gzo)
2,a, 1/8

details, we refer to [1, Steps 3—4 in the proof of Theorem 3.1] or [11, Lemma 4.6.1].

15,0 (par) By Lemma 3.20(e) and Lemma 3.21(d), we have

6. Estimate for ||fN,sh fN0|

(b'(/)\of(xa fN,O(I)) = Oa ((bé\g - 7/’)(337 fN,Sh('r)) = (9000 - @)(I5 fN,sh(I)) =0 for all z € [Oa EN]'
This yields that
(3.4.57) N (, v sn(@) — &Y (2, faro(@)) = ¥(x, frsn(z)) for all z € [0,en7].
Since [,#Y.| > 0 from Lemma 3.20(c), we can rewrite (3.4.57) as
Y, fanl@) '
Jo 0y (@, thxcan(@) + (1= 1) faro (@) dt

Then a direct computation by using Lemma 3.20 and the estimate of Hw||2pzrQ e < C achieved in

,(0,en)"

Fnsn(@) = fao(x) =

Step 5 implies that

1 Fvsn = Fnvoll 2 oy <€

where C' > 0 is a constant depending only on (v, 7, ). This completes the proof. |
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3.5. Weighted C?*-Estimates Near I'?

sonic
According to Definition 2.23, T'S . depends continuously on 8 € [0,%). In particular, the
sonic arc I'9 . shrinks to a point when /3 increases up to §v°°), and becomes a point Py for all

(voo) us

8> Bév"’"), although the location of Pg changes continuously on 8 € [#s >/, §). Furthermore, the
ellipticity of Eq. (3.2.2) on I'? . also changes. According to Proposition 3.15, the ellipticity of

sonic
(3.2.2) degenerates on I'? . for B < Bév"’"). On the other hand, for g > Bév""’), Eq. (3.2.2) (or

sonic
equivalently Eq. (2.1.19)) is uniformly elliptic up to I'Q_, away from 'V . . For that reason, the

weighted C?®—estimates of admissible solutions near T'C . are given for the following four cases
separately:

1. < B§”°°> away from ﬁg”“’),

2. B < B close to BV,

3. B> ) close to B,

4. B € (ﬁg”“’), é”“’)) away from B§”°°>.

3.5.1. Case 1: Admissible solutions for 5 < ﬂ§”°°> away from Bév"’"). For

(’Uooaﬂ) € Rweak N {ﬂ :0< ﬂ < ﬂévoo)},
let Op and P; be given by Definition 2.23. For each 8 > 0, let Mo be defined by (2.4.6). Define

_ P00+ oMo | =M for 5=,

(3.5.1) cH
2 co(1+M. (voo)
< coll: § o) for 8 > Bs =’.

In Up := (BSCTO (O0) \ B, (00)) N{€ : & <o}, use (r,0) as the polar coordinates with respect
to Op = (up,0) and define
(3.5.2) (z,y) = (co —r,m—0).
Also, define a set Q° by
09 == (2N {& <wuo}) \ Ber, (O0).

Since Q° C B., (00), Q° C {(z,y) : = > 0}. In the (x,y)-coordinates defined by (3.5.2), po
given by Definition 2.23 is written as

1 1 .
(3.5.3) o = —5(00 —z)? + §u?9 - voofé’@) in Up.

For an admissible solution ¢ corresponding to (ve, 8), let ¢ be given by
(3.5.4) Y =¢— 9o in 0%,

(i) Equation for ¢ in Q©: Similarly to (3.4.21), we rewrite Eq. (3.2.2) for ¢ in the (z,y)-
coordinates given by (3.5.2). For each j = 1,---,5, let O?(p, z,x) be given by

O?(pv 2, .I) = Oj(p7 z,Z, CO)
for O;(p, z, z, ¢) given by (3.2.29). Then Eq. (2.1.19) is written as

1
(35.5) (22— (v+ L)tby + OF )Yy + OF 0y + (5 + 0% )by — (1 + OF )b + Oy = 0,

i O _ NO .
with Oj —Oj (DY, ¢, x) for j=1,--- 5.
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(ii) Boundary condition for 1 on Tshoac N ONC: Similarly to (3.4.22), we define

s uob1 + 2
(356) Mﬁ(puzugl) :gn?od(p—’—DSDOuz""(pOaglugéﬁ) - vl )
for g5t | given by (3.4.14), where (Do, po) are evaluated at (&1, {éﬁ)——uc’vf;+z). Note that (uo, §§B))

s

depend continuously on 3 € (0, §) and that
lim (uo.&”) = (0,6).

B—0+
Define
(3.5.7) 99 = Poo — PO

Rewriting the boundary condition: |D(¢S — ¥)|Mg(D1,1,£1) = 0 on Tgpoek N INC in the (z,y)-
coordinates given by (3.5.2), we have

(3.5.8) BE (s, 1by, 0, x,9) = 0 on Tgnock N ONQC

for B?(pzvpyv z,7,y) given by

(359) B?(p:mpuu z,Z, y) = |D¢g)o - (p17p2)|M,3(p17p27 Zugl)
with

P2 —siny cosy

(3.5.10) & =uo — (co — x) cos y, <p1> = ( cosy Siny) ( ba ) '

co—x
(iii) Other properties of ¢: By (2.1.30) and conditions (ii) and (iv) of Definition 2.24, v satisfies
>0 in Q,
(3.5.11) b=0  onTQ,.,

Yy =0 on yeqge NINC.
For set D defined by (2.5.27), let an open subset Ag of D be given by
(3.5.12) A§ =D N (Bag (00) \ Be, (00)) N{&1 < uo}
for ¢, defined by (3.5.1).

LEMMA 3.27. Fiz v > 1 and vy, > 0. There exist positive constants 1, €, dg, wo, C, and M
depending only on (veo,7y) with €1 > o and M > 2 such that, for each B € (O,ﬁé”“’)], the following
properties hold:

(a) {po < wo} NAG NN, (TQ) C{0<y<F —B—do};
(b) {po < o} NN, (FQpic) N {y > yp,} C {z >0}
(c) In{(z,y) : |z] <e,0<y<Z—pB—0bo}, ¢S given by (3.5.7) satisfies

2 m 2 m
(3.5.13) gy Ttanf) 0ol < - on < -0y < T
(d) (D, 4)s D)0 < Cin {Jz] <1}

() There exists a unique function fo o € C™([—eo,e0]) such that
{‘PO < 9000} N Ag m'/\/'51 (anic) n {|$| < EO} = {(Iay) : |I| < 5050 <y< fo,o(x)}v

(3.5.14) )
So NN, (T ) N {lz] < eo} = {(x,y) : = € (—c0,20),y = foolx)};
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(f) fo.o given in () satisfies
2wy < fbo < C on (—¢o,€0)-

PRrROOF. Note that line Sp intersects with circle 9B.,(Op) at two different points, due to
(2.4.43) for any (vVeo,7y) € Rweak- Point P; is an intersection point of So = {€ : v = po}
with 0B, (O0). Let P| be the other intersection point of Sp and 9B, (0p), and let Qo be the

midpoint of the line segment P; P{. Then ZQoOop Py = § — . Since |P1Qo| depends continuously
on € [0,%), there exists €, > 0 depending only on (ve,7) such that |PLQo| > 2e; for all

B €0, (v‘”)] Let @}, be the midpoint of P;Qo, and let (2q,,,Yqy,) denote the (z,y)-coordinates
of Q. Then there exists a constant §o > 0 depending only on (ve, ") such that

T
Moreover, it follows directly from (3.5.7) that
0203, = Voo (siny + cosytan B), 0,63 = —veo(co — x)(cosy + siny tan ) in Ag).

Then statements (a)—(e) can be verified by performing a direct computation and using the obser-
vation obtained above.
Since (bf?o =0 on Sp, we have

(;50 (x,fao(:v)) =0 for |x| < eo,

so that f(’go(:zr) f;; (x fo o(x)) holds. This expression, combined with (3.5.13), yields state-
ment (f). O

23
9,

Similarly to (3.4.29), for an admissible solution ¢ corresponding to (veo, ) € Ryeak N {S <
ﬁ(”“’)}, let Q be its pseudo-subsonic region. Let £; be the constant given in Lemma 3.27. For
e € (0,e1], define
(3.5.16) Q9 =anMN,(T8,.) N{z < e}

Then Q9 = Q9 N {x > 0}.

Adjusting the proof of Lemma 3.21 by using Lemma 3.27 instead of Lemma 3.20, we have the
following lemma:

LEMMA 3.28. Let €g, wo, and M be three constants in Lemma 3.27. Then there exist € € (0, gg],
L>1,6¢€(0, %), andw € (0,wo]N(0,1) depending only on (veo,7y) such that any admissible solution
© =19+ po corresponding to (Voo, 8) € Ryeak N {B < ﬁs(v"’")} satisfies the following properties in
Q?:

(2) Yu(z,y) < 2o < Lay
(b) e 2 0 and |, (z,9)| < Lz
)
)

(c %(y+tanﬂ)—mx<8( —)(z,y) <M and

There exists a function fo g, € C([0,&]) such that

o < —0y(poe — ) <M

(d
Qf = {(z,9) : € (0,8),0 <y < fom(x)}
TCahock NONE = {(z,y) : € (0,8), y = fo,sh(fl?)},
wgfé’),sh(x)gl/ for 0 <z <g;
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(e) 0 <(w,y) < La.

LEMMA 3.29. Let ¢ be an admissible solution corresponding to (oo, 8) € Ryeak N{S < ﬁg”“’)}.
Let Eq. (3.5.5) in Q© be expressed as

2 2
(3.5.17) > AG(DY, v, 2)Dijtp + Y AL (D, 9, 2) Dit = 0,

i,j=1 i=1

with (D1, Dy) = (Dy, D), Dij = DiD;, and AS, = AS,. Then there exist o € (0, £l and Ao > 0
depending only on (vso,) such that, if (z,y) € QF.

Kik 2
(3.5.18) k|2 < Z A (DY(z,y), ¥(z,y),z )2—1] < — o —|k|? for all k € R?.

4,j=1
Moreover, BY defined by (3.5.9) satisfies the following properties:

(a) BY(0,0,2,y) =0 holds for all (z,y) € R?;
(b) Foreach k =2,3,---, there exist constants one > 0 and C > 1 depending only on (veo,, k)
such that, whenever |(pz, Dy, 2, )| < 0be and |y — yp,| < Obe,

o
|D pI7py7z m7y)81 (pLEpr?Z?x?y)l S C7

(¢) There exist constants Obe >0 and C > 1 depending only on (veo,7y) such that, whenever
|(Pas Py 2, 2)| < bbe and |y — yp,| < dbe,

D(pz,py,z)B?(pwapyaZaxay) S _C_l;
(d) There exists a constant & > 0 depending only on (ve,7), and constants dp. > 0 and

C>1in property (c (c) can be further reduced depending only on (veo, ) such that, whenever
|(Pas Py, 2, 2)] < One and |y — yp,| < dbe,

D, p,) Bl (Pa, Py, 2, T, Y) - V, ( ,y) > ! on Dshock ﬂ@QS,

where Dgnock TEpresents the curved shock of the admissible solution, and us(;f ) is the unit

(z,y)

normal vector to I'snock. The vector field v > is expressed in the (x,y)—coordinates and

oriented towards the interior of ).

In properties (b)—~(d), yp, represents the y—coordinate of point Py, defined by Definition 2.23.

Even though this lemma is similar to Lemma 3.23, the proof is more complicated, because
uE, co, 9o, and So depend on § € (O,ﬁé”“’)].

PRrROOF. We divide the proof into three steps.

1. As just mentioned above, (uo,co) depend continuously on 3 € (0,%). In particular, [uo|
and cp increase with respect to 5. Therefore, there exists a constant ¢ > 1 depending only on
(Vso,y) such that

luo| <&, 1<co<e  forall Be0,8").
Then inequality (3.5.18) and properties (a)-(b) can be directly checked from (2.4.4), (3.2.29),
(3.4.14), (3.5.6), (3.5.9), and Lemma 3.28.
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2. A direct computation by using (2.4.3)—(2.4.4), (3.2.4), (3.4.13), (3.5.6), and (3.5.9) yields
that

COVoo SEC .
823?(()’ 0,0, yPl) = _OTQB SID(yPI + ﬂ)a
O
81018?(07 0, O7yP1) = —Co(po - 1) COS2(yP1 + ﬂ)a
. COVoo SEC
aPyB{\[(()? 0, O7yP1) = _((p(’) - 1) Sln(ypl + ﬁ) + © co ﬂ) COS(ypl + B)

For 8 < B{"*), we have
7r
cos(z = B —ym) = Mo(B),
where Mo is defined by (2.4.6), which is a continuous function of 8 € [0, §) that satisfies Mo < 1.
Then there exists a constant dg € (0, 5) depending only on (v, ) such that yp, + 8 < § — dg for

all g € [0, S(v‘”)]. This implies that there exists a constant my > 0 depending only on (v, ) such

that
Dy, p,)B7(0,0,0,yp,) < —my"' for all € (0, ")),
We combine this inequality with property (b) to obtain property (c).

3. By (2.4.6) and (A.18), we have
Dpginod(Deo(Pr),p0(Py), Pr) - vo = po(1 — M)

for the unit normal vector vo to the straight oblique shock Sy pointing towards the £;—axis. It is
shown in the proof of Lemma 2.22 that
dMe
dg

Therefore, there exists a constant my > 0 depending only on (vs,~y) such that

Pz Py,

<0  forall Be (0, g).

vo - Dpgiti(Dpo(P1),po(Py), P) > mi'  for all § € (0,55"].
A direct computation by using (3.5.2), (3.5.6), and (3.5.10) leads to
(35.19) Dy, ,)BY(0,0,0,0,yp,) - vy (0,yp,) = vo - Dpgitoa(Dpo(P1), po(Pr), Pr) > my™.

Owing to (3.5.19) and property (b), there exist small constants dbe >0 and &, > 0 depending only
on (Veo,y) such that, whenever

((Pas Py 2 2)| < Ober [y —yp] < ber, [ =50, yp,)| < by,

we have

x, 1
D(Pm;py)B?(pmapZU?va?y) ! V:Eh 2 2 4—77’L1

D x oo T -
Note that us(ﬁf’y) is represented as us(ﬁf’y) = wl® o ~¥)
|D(z,y)(</7oo — Yo — 1/}>|

we can choose a small constant ¢’ > 0 depending only on (vs,7y) so that, by properties (a)—(b) of

Lemma 3.28, |ub(]:y) - usi’y)(O,yplﬂ < 3, on Dgpoek N INY. This completes the proof of property

(d) of Lemma 3.29. O

on Tghock N ONC. Therefore,
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PROPOSITION 3.30. Let & > 0 be the constant introduced in Lemma 3.28. Fix o € (O,ﬁs(”“’)).
For each a € (0, 1), there exist € € (0, ] depending only on (v, 7, ), and C > 0 depending only on

(Vso, ¥, @) such that any admissible solution ¢ corresponding to (veo, 8) € Ryeark N {8 < ﬁs(v"’") —o}
satisfies

(3.5.20) le = poll o + I fo.m — fooll oty . < C:

Proor. For each g € (0, §v°°)], point P; defined by Definition 2.23 satisfies

P

(3.5.21) sinyp, = 2—.
co

In the proof of Lemma 2.22, it is shown that 551 is a decreasing function of 8 € (0, §v°°)] with
2Pl =0at 8= ﬂs(v“’), and cp is an increasing function of 3. Therefore, for each o € (0, S(U“’)), there

exists a constant d; > 0 depending only on (v, ¢s, o) such that yp, > 67 for all § € (O,ﬁg”“’) —o].
By combining this estimate with Lemma 3.28(d), we obtain a constant Iy, > 0 depending only on

(Voo, ¥, 0) such that any admissible solution ¢ corresponding to (veo, ) € Rweax N{B < Bs(vm) —o}
satisfies
(3.5.22) fosn >l on0,4].
We choose
Ex = min{g, 2}

Then we repeat the proof of Proposition 3.26 to find a constant € € [0, €,] depending only on (vee, )

such that any admissible solution ¢ corresponding to (veo, ) € Rwear N {B < B§”°°> — o} satisfies
estimate (3.5.20) for a constant C' > 0 depending only on (veo, v, @).
The main difference from the proof of Proposition 3.26 is that the uniform positive lower bound

of f(’),sh for admissible solutions corresponding to (veo, 8) € Rweak N {L < ﬂg”“’) — o} depends on

o € (0, S(U“’)) so that the choice of € to satisfy estimate (3.5.20) becomes dependent on o as well,
due to Theorem C.11. O

REMARK 3.31. Note that 551 depends on 3 € [0, %) continuously. Furthermore, 551 > 0 for
b < ﬁg”“’), and 551 =0 for g > B§”°°). Since
(3.5.23) lim &' =0,
B>
we have
lo=0  at §=p4=
for constant ls, from (3.5.22).

3.5.2. Case 2: Admissible solutions for § < ﬂs(v“’) close to BS(U"’"). Now we extend
Proposition 3.30 up to 3 = A",

PROPOSITION 3.32. Let € > 0 be the constant introduced in Lemma 3.28. For each « € (0, 1),
there exist ¢ € (0,¢] and o1 € (0,1) depending only on (vs,7), and C' > 0 depending only on
(Voo, ¥, @), such that any admissible solution ¢ = ¥ 4+ pe corresponding to (Veo, 8) € Rweak N
{BS(U"’") —01 <p< BS(U"’")} satisfies estimate (3.5.20).
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PRrROOF. We divide the proof into five steps.
1. Owing to Remark 3.31, we cannot apply Theorem C.11 directly to establish estimate (3.5.20)
up to 8 = ﬁg”“’). We first observe that there exists a constant k£ > 1 depending only on (ve,?y)

such that, for any admissible solution corresponding to (veo, 8) € Ryeak NS < B§v°°)},

(3.5.24) {0 <z <2¢, O<y<yp1+%}CQg§C{0<x<2E_, 0<y<uyp +kz}.

Using (3.5.24) and Lemmas 2.22 and 3.28, we can adjust the proof of Proposition 3.26 to conclude
that, for each o € (0,1), there exist a small constant o* > 0 depending on (ve,y) and a constant
C > 0 depending on (veo,7, ) such that any admissible solution ¢ corresponding to (veo,3) €
Ryeak N {ﬁs(”“’) —o* <A< ﬁs(”“’)} satisfies

(3.5.25) le = vollyne < C.

vp,

2. Claim: There exist € € (0,5], o’ € (0,0*], and C* > 0 depending only on (vss,7) such that
any admissible solution ¢ = 1 + po corresponding to Ryeax N {ﬁé”“’) -0 <B8< B§”°°>} satisfies

2
(3.5.26) 0<d(zy) <Ca'  mO2n{z> %}.

In what follows, unless otherwise specified, the universal constant C' represents a positive con-
stant depending only on (vs,7y), which may be different at each occurrence.

For an admissible solution ¢ corresponding to (veo, 3) € Rweak N {S < ﬁé”“’)}, let ¢ be given
by (3.5.4). We regard Eq. (3.5.17) (or equivalently, (3.5.17)) as a linear equation for ¢ in Q€ and
represent it as

2

2

i,j=1 i=1

with (aij,a:)(z,y) = (AQ, A9)(D(x,y), ¥ (x,y),z) for i,j = 1,2, where A(g and A? are from

170 7
Lemma 3.29. By (3.2.29) and Lemma 3.28, there exists a constant C' > 0 depending only on
(Voo,7y) such that a;;,4,j = 1, 2, satisfy

(3.5.28) z<apn(z,y) <3z, C'<an(r,y) <0, |(a12,a21)(z,y)| <Cx in Q2
(3.5.29) a1(z,y) <0, Jaz(z,y)| < Cx in Q2.

By properties (a)—(b) and (e) of Lemma 3.28, there exists €1 € (0, &] such that i satisfies the
estimates:

L. & 1. . o
|(¢17wy7 1/17 :E)| < 5 mln{&bcv 5bC}7 |y - yP1| < 5 mln{ébcu 6bC} m Qg

for constants (dpe,ope) determined in Lemma 3.29. Then the boundary condition (3.5.8) can be
written as a linear boundary condition:
(3.5.30) BEy = by (z,y)1he + ba(z, Y)by + bs(z,y)p =0 on Ighock N 892,

and Lemma 3.29 implies

(3.5.31) —C<b;<—C" forj=1,2, (by,by) -v"¥ >C! on Tghoet N 9NS.
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By (3.5.24), we have
(3.5.32) Q° c{(z,y): 0<a <& 0<y<yp +kz}.

For constants m, > 1 to be determined, define a function v by

v(z,y) = (x +muyp,)"* — m(z +muyp, )*y>.

Suppose that

3.5.33 < ——
( ) Yyp > (m‘u)27
for £o from Lemma 3.29. Then a lengthy computation by using (3.5.28) and (3.5.32) shows that
constants (m, 1) can be fixed sufficiently large depending only on (ve,7) such that

1

¢ < —min{ey, ep, m—u}

N | =

1 .
v(z,y) 2 5@+ muyp,)*  in QF,
(3.5.34) Lv<0 inQZ,
BlLv <0 on I'gpock N BQ%.

For detailed calculations to obtain (3.5.34), we refer to [11, Lemma 16.4.1].
For é := %min{al, €0, mi#}, we define
‘= —  max .
262 909 N{z=2¢} v
Note that, by the strong maximum principle, a is a positive constant. By Lemma 3.28(e), a is
uniformly bounded above depending only on (ve, 7).

Note that ¢ satisfies the boundary conditions (3.5.11) on 9QS. \ ({z = 22} U ghock). Since

lyl < yp, on TE .. and pu > 1, we have
av>0=1 onT9 ..

On I'yedge N 89%, vy =0 =1y

By the maximum principle, we have

P < av in Qg)é,

provided that yp, satisfies the inequality that yp, < (mpu)=2.

By (3.5.21) and (3.5.23), there exists o’ € (0,0*] such that each yp, corresponding to 3 €
[ (Vo) _ g ﬁg”“’)) satisfies the inequality that yp, < (mu)~2. This verifies the claim.

3. Let ¢ = 9+ po be an admissible solution corresponding to (veo, 8) € Ryeak N {ﬁé”“’) -0’ <

JR— 2
B8 < ﬁg”“’)}. For zg = (%o, y0) € Q¢ N {z > y%} and r € (0, 1], define the sets:

) 372 %o
Ry, = {(x,y) : |$ — CL‘Q| < —I%k T, |y - yOl < mT}a

Ry =R, . NQS.

Herev Rzo,l may intersect with 1—‘lshockUrwodgc- HOWGVGI‘, if RZD,I mrshock ?A @7 then Rzo,lmrwcdgc = @7
and vice versa. Note that the dimensions of rectangle R, , are given such that

(i) the re-scaled function (*0) defined below satisfies a uniformly elliptic equation, due to
(3.5.18) stated in Lemma 3.29;

(ii) R.,,1 does not intersect with I'shock and I'yedge simultaneously.



3.5. WEIGHTED C%*-ESTIMATES NEAR 'Y 95

sonic

For r > 0, define the sets:
QT = (_Tv T)Qv

QE) = ((S,T) € Qs + 20+ Y22 (005, VT T) € Ruy s}

10k
- 2
For zg € Q¢ N {z > y%}, define
1 3/2
YEN(S,T) = —iplwo + To-S,yo + <o-T)  for (S.7) € Q).
IO 10k
For constant L from Lemma 3.28, choose a function n € C*°(R) such that 0 < n < 1 with
n(t) =1 for |t| < L and n(t) = 0 for [¢| > 2L. For such a function 7, we define
2O, (mod mod Pz p z
(3.5.35) (A5 D AP D)y py, 2, 2) 1= (AG, AD) (en(50), an(Z2), (), ).

ij

Then (Aw (mod) A mOd)), i,7 = 1,2, satisfy the following lemma, which is a generalization of
Lemma 3.24:

LEMMA 3.33. Let eg > 0 and L > 1 be the constants from Lemmas 3.27-3.28, respectively.
Then there exist constants € € (0, 2] and C > 0 depending only on (veo,) such that any admissible
solution ¢ := po + 1 corresponding to (Voo, 8) € Rweak satisfies the following equation:

2 2
(3.5.36) ST AT Dy, 2) Dy + Y ATV (DY, 2)Dip =0 in Q2
ij=1 i=1
with coefficients (Ag-’(m()d), AQ’(mOd)
20, (mod) A ,(mod
(a) (A7 ) = (49, A9)

in {(pm’py’ ) |(pma )| S L‘Tv |Z| S LI27 TE (075)}7

(b) [(AS 0D AN ATD)(p,, py, 2, 2)| < Cz in R2 x R x (0,¢),
() (A, A2 7o)

) satisfying the following properties:

llo,r2 xR x(0,e) < C,
(d) 1D pa,py.=, m)(AO (mOd),A?’(mOd))||o,R2xRx(o,a) <C.

Substituting the definition of ¥(0) into Eq. (3.5.36), we have
(3.5.37)

2
5 A DU, 5150, 5, 7Dy + 3° A (D), ), S TIDH =0 in QL

7,7=1 =1

with
i 3/2
Al(-;“ (p,z,8) = :EO AO mod(10f072 pl, 10kx3po, 232, 20 + —2— 10k S),
( i—1 O | 3/2
AP (p, 2, 8) = 10k A me (1Ok:100 pl,lokxopg,xoz xo + 10k —39).
By (3.5.26), there exists a constant C' > 0 depending only on (v, ) such that
(3.5.38) )| < in QP

- 2
for all zo € Q2 N {x > 21},
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312 X
zo+ 20_8) — foysh(xo)) for —1 < § < 1.

For fosnh from Lemma 3.28, define
10k
(f 0.5h( 10k

FEo(g
() ==
Similarly to (3.4.46), a direct computation by using (3.5.39) and Lemma 3.28(d) shows that there

| F| (117 < Cv/To.

(3.5.39)
exists a constant C' > 0 depending only on (vs,7y) so that, for each zo = (2o, fo.sh(%0)) € Tshock N

BQO (20) satisfies
(3.5.40) F®0)(0) =0,
However, it follows from ¢, — ¢ = 0 on [ghock that
3/2
(3.5.41) ¢2 (20 + 22—, fo an(10) + —= F0)(§)) — a0 (S, F0)(8)) = 0
10k 10k
for ¢ given by (3.5.7)
Similarly to (3.4.47), by using Lemmas 3.28-3.29, we can further reduce ¢ € (0, %] depending
only on (veo,7y) so that the boundary condition (3.5.8) can be rewritten as
1/11 =bo (1/}7;, Y, T, y) on I'shock N 8925)

(3.5.42)
where b satisfies the following properties
in Q?E,
meRxQ—%,forl:l 2,3

bo(0,0,2,y) =0
, we substitute (%) into (3.5.42) to obtain the following boundary

(3.5.43) l
|D bo(pyuzuxﬂy” < Cl

for C; > 0 chosen depending only on (veo,7,1)

For each zp € I'ghock N 8(2
condition on Féhock ={T = F(ZO)(S’) -1<S<1}
G0 =BG (), w0, 5.7),

3/2

10k

(3.5.44)
for B(ZD)(wFEFZO), Y(20) S T) given by
—4+3/2
B (), 00, 8.7) = 2o bo 10k, wfv*), o
It can be checked directly from (3.5.43) that, for each zp € I'shock N 890 B(ZO) satisfies
BSY(0,0,8,T)=0  in Q)
(3.5.45) 105 BG (0, 2, My geer < mavawo  forall (pr, z) € R xR,
1D, 2) BSO)(pT, z, )Hl o < mov/To for all (pr,2) € R x R,

where mo > 0 is a constant depending only on (veo,7y)
), C, and o1 € (0,¢'] depending only on (veo,7)

4. Using (3.5.18), Lemma 3.33, (3.5.40), and (3.5.45), we see that Eq. (3.5.37) and the boundary
condition (3.5.44) satisfy all the conditions required to apply Theorem C.5. Therefore, by (3.5.38)

and Theorem C.5, there exist € € (0,€], & € (
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such that any admissible solution ¢ = ¢ + po corresponding t0 (Veo, 3) € Rweak N {BS(U‘”) -0 <
B < B{")} satisfies

2
o <C for all zg € Tgpoek N INC N {z > %}

3.5.46 P(20)
( ) | ”1@,@3/4

To obtain the C*% estimate of F(*0) we follow the approach given in the latter part of Step 3
in the proof of Proposition 3.26. Namely, we differentiate (3.5.41) with respect to S to obtain

VD (020 (@s,ys) — 10kag 2050 (5,T)

3.5.47 F(zo)y — _

( ) ( : 0y (rs,ys) — 10kz30ryp(20) (S, T)
$3/2 ) -

for (:CSJJS) = ((EO + ﬁs, f@,sh(fEO) + mF(zo)(S))

Then a direct computation by using Lemma 3.27(c), (3.5.46)—(3.5.47), and the smoothness of
2 yields that there exists a constant C' > 0 depending only on (vso,7) such that

1 v
3.5.48 —|FO |, 4 <C for all Cshock N 9N N Zhan,
( ) \/%H ||1,a,[ 3/4,3/4] > or all zgp € Lshock . {x > 5 }

For higher order derivative estimates of 1)(*¢) and F(%0), we follow the bootstrap argument given
in the latter part of Step 3 in the proof of Proposition 3.26 by using (3.5.46), (3.5.48), and Theorem
C.6. As aresult, we find constants € € (0,¢] and ;1 € (0, ¢'] depending only on (v, ) such that, for
each a € (0, 1), any admissible solution corresponding to (vee, 8) € mweakﬂ{ﬁb(”“’)—ol <B < B§”°°>}
satisfies

Il =)

1 vz

I (20) < (@] Py
2,01,@52/%) + \/LL'—OHF ||2,a,[—1/2,1/2] =~ C for all 20 € Fshock N 895 n {.I > 5 },
where the estimate constant C' depends only on (veo, 7y, @).

Furthermore, by repeating the argument of Step 4 in the proof of Proposition 3.26, it can be
shown that, for each o € (0, 1), there exists a constant C' > 0 depending only on (ve, 7, @) such that
any admissible solution ¢ = 1) + o corresponding to (Veo, 8) € Rweax N {BS(U"’") -0 <8< ﬂs(v“’)}
satisfies

1
Vo

2
Denote Ue := Q2 N {x > y%} Collecting all the estimates of 1(*0) established above, scaling
back to the (z, y)—coordinates, and following the argument of Step 3 in the proof of [11, Proposition
16.4.6], we have

2
2 z S50 Yy
||w( 0)”2 QTO) + HF( 0)”270‘1[,1/271/2] S C for all 20 € Q? n {.’I] > %}
»ley /o

sup (% 4174050}y (=) )

0<kti<2 2€U=

+ Z sup (min{I%(a+k)+174,i%(a+k)+zf4}|a§azl/¢(z) _8581111/’(5”) <c,

z,z€Ue, 65“(2,2)

k+l=2 .2z
where k and [ are nonnegative integers, C is a constant depending only on (v, "y, @), and we have
used the notation that z = (z,y) and Z = (Z,¢). This implies that

(3.5.49) ||| P2 <C.

2.0,00N{z>y3, /5} =
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5. Combining estimates (3.5.25) and (3.5.49) together, we obtain
le = ollSoae < C:

Q).
we consider two cases: (i) either z = (z,y),Z = (2,9) €

where constant C' > 0 depends only on (v, 7, @)
In order to estimate [p wo]é2l’gzr),
2 < 2
Q% Jor2,2€00n{z> "1 and (11):v>ypl>y%>:i.
950y (2) — 0y 0,0 (2))

5P (2, 2)

Py
For k + [ = 2, define
qk l(z 2) = min{xa+k+2*2, jaJrkJr L 2} |

(par) )
2, Q?ﬁ{z>y12,1 /5}

AL+ Il
yP

For case (i), qx,1(z, Z) satisfies

> ara(z %) <

k+1=2

)

2)> 22 > L2 we have
par) par)
2,0, QO + Hd)”g 0,Q2n{x>y3, /5}

For case (ii), since 6% (
> aralz2) < 272 (|

Therefore, we conclude that there exists a constant C' > 0 depending only on (vee,?, @) such

k=2

||90 </7(9||2p;r90 < C.
(0,e) We adjust the argument of Step 6 in the proof of
|

that

(par)

In order to estimate ||fosn —
Proposition 3.26 by using Lemma 3 27 instead of Lemma 3.20
)—coordinates given

3.5.3. Case 3: Admissible solutions for 5 > B(v‘”) close to B(v‘”)
0,84")).

T:=x—Tp.

LEMMA 3.34 (Extension of Lemma 3.27 for all 8 € (0, 8")). For the (

which implies

by (3.5.2), define
(3.5.50)

Then there exist positive constants 1,0, do, wo, C, and M depending only on (veo,y) with g1 > &g
and M > 2 such that Lemma 3.27 holds for any admissible solution corresponding to (veo, )
Ruweak, where x is replaced by T in all the properties stated in Lemma 3.27.

_ (voo)

Since

PROOF. By the definition of P; given in Definition 2.23, xp, = 0 for 8 < s>
Therefore, Lemma 3.34 coincides with Lemma 3.27 for g < [3(%")
Z) as well.

that £ =z for g < g
For 8 > ﬁb(”“’), T < z, since xp, >0

S(00)
coMp csc B for Mo defined by (2.4.6). Note that [POol _ MopcscB =1 at 8 B(U“’
) d
(Voo) s

Mo is decreasing with respect to 8 by (2.4.43), we see that $Moc8 < o for g e (

. ef
For 3 > Bs"’, we repeat the proof of Lemma 3.27, except for replacing co by |P1Oo]|
. 0,1
Then we conclude that 0 < Mo cscf],_ g0 < Mocescp < 1 for § > Bs"’ with Mpcscf =1
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at = ﬁs(”“’), and |P1Qo| > 0 depends continuously on j for all 8 € (O,ﬁé”“’)]. Therefore, there
exists a constant e; > 0 depending only on (v,7y) such that

PiQo| > 25 forall B e (0,87).

Then we can also choose a constant dy > 0, depending only on (vs,?), to satisfy (3.5.15) for all
B € (0, év""’)). The rest of the proof is the same as for the case 8 < ﬂs(v“’). O

LEMMA 3.35. Let &1 be the constant introduced in Lemma 3.34. For e € (0,e1), let QF be given
by (3.5.16). For each o € (0, év“’) — S(U“’)), define a half-open interval I(o) by

(3.5.51) I(0) := (0, =) + o).

Then, for any given € € (0,e1), there exists o > 0 depending only on (veo,7,€) such that, for any
admissible solution p corresponding to (voo, 3) € Rweak N {B € I(0)}, QF is nonempty.

PRrROOF. For § < ﬁs(”“’), Q9 is always nonempty, owing to Proposition 3.11.

Suppose that g > ﬂs(v“’). It follows from Definition 2.24(i-4) of Case II, Proposition 3.11, and
the definition of the (z,y)-coordinates given by (3.5.2) that QF is nonempty if zp, < e. From this
perspective, we need to find a small constant o > 0 so that xp, < ¢ holds for all 8 € I(0).

For each admissible solution ¢, define M (P) := %; that is, M(P) is the pseudo-
Mach number of ¢ at point P. For each 8 € (0, %), let Ps be the & —intercept Ps of the straight

oblique shock Sp. By Definition 2.24(ii-3), we have

_ [Do(Ps)l

M (Pg) o

= Mo csc 8

for Mo given by (2.4.6). According to the proof of Lemma 2.22, My is a decreasing function of
B € (0,%). This implies that

dM (Ps) ™
0. —= < -
(3.5.52) a5 <0 for allBE(O,Z),
so that
(3.5.53) pinf M(Ps) = M(Pype, ) <1, liminf M(Pg) = 1.

By (3.5.2), 2p, can be expressed as

(3.5.54) ,Tpﬁ = Co — |D90(9(P3)| = Co (1 — M(PB)).
Moreover, we obtain from (2.4.40) and (3.5.52) that

dzp T
3.5.55 >0 f 0,—-).
(35.55) B or f€(0,5)
Furthermore, (3.5.53) yields that
(3.5.56) SUP Tp, = Tp,|a_awee), . >0, lim sup zp, =0.
perloy PR o0t ger(o)

Therefore, for any given € > 0, we can choose o > 0 depending only on (v, 7,¢€) so that zp, < e
for all 8 € I(o). O
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LEMMA 3.36 (Extension of Lemma 3.28 for 5 > Bs(v‘”)). Let g¢, wg, and N be from Lemma
3.34. Then there exist constants € € (0,&¢], 02 € (0,1), L >1,6 € (0,%), and w € (0,wo] N (0,1)
depending only on (veo,7) such that any admissible solution ¢ = ¥+ @e corresponding to (Veo, 8) €
Ruweak N {B € I(02)} satisfies properties (a)—(e) of Lemma 3.28 with the following changes:

(1) The definition of QF in (3.5.16) is replaced by

(3.5.57) Q0 =QNN.T2 . )n{zp < <zp +£},
( ) QQ:{(:E y) TE ('rpl’xpl +§)a0<y<f(’),sh(x)};
(111) shock ] 89? = {(Ia y) T E (IPI’IPI + 5)7y = fA(’),sh(I)};

(iv) w< ffgbh(x) <L forxzp, <z <zp +E€,
where I(o2) is given by (3.5.51).

PROOF. As in Lemma 3.28, this lemma is proved by adjusting the proof of Lemma 3.21.

Let & be given by (3.5.50). Since & = z holds for 8 < ﬁs(”“’) so that Lemma 3.36 is the same as
Lemma 3.28, it suffices to consider the case that 8 > ﬁs(v""’).

By Definition 2.23, Remark 3.14, and Proposition 3.15, combined with (3.3.4)—(3.3.5), (3.5.5),
and (3.5.54), there exist constants o’ € (0,1), ¢’ € (0,&9), and §" € (0, %) depending only on (vee, )
so that any admissible solution corresponding to (veo,¥) € Rweak N{B € I(c’)N [Bb”“’) 7)} satisfies

o / |Dyo(P1)]
(35.58) 20 — (7 + 1)ty + OF (DY, 1, 2) = & (dist (€, TSuie) + co (1 - T))
=0((w—ap)+ap,) =0z  nQf,

where we have used P; = Pg for § > B{") and (3.3.8) in Proposition 3.15.
Since ¢ > 0 holds in Q€ by Definition 2.24(iv), we use (3.2.29) to obtain

1
09Dy, pz) < L wp, Q9.
O

Then we can choose € € (0,¢'] and § € (0, ) depending only on (vs, ) so that, for any admissible

solution ¢ = ¥ + po corresponding t0 (Voo,7y) € Rweak N {B € I(c’) N [ﬁs(v"’"), 5)}, (3.5.58) implies
that

Ye(@,y) < 7 "
in domain Q€ given by (3.5.57).

By Lemma 3.28, we can adjust § € (0,0'] and &€ € (0,¢'] depending only on (ve,7y) so that
property (a) of Lemma 3.36 holds for any admissible solution corresponding to (veo,?y) € Rweak N
{8 €100},

Next, we choose a constant o3 € (0,0’] depending only on (ve,7) so that QF is nonempty for
any admissible solution corresponding to (Veo,¥) € Rweax N {B € I(02)}. Such a constant oo can
be chosen due to Lemma 3.35. Then property (a) of Lemma 3.36 is verified.

The proofs of properties (b)—(e) of Lemma 3.36 for 5 > ﬁg”“’) are the same as for the case that
8 < ﬁs(”“’), except that x is replaced by Z for the range of variables for which the lemma holds, and
Lemma 3.34 is applied instead of Lemma 3.27. More details for proving (b)—(e) of this lemma can
be given by adjusting the proof of Lemma 3.21. 0
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LEMMA 3.37. For each o € (0, ((iv‘”) — S(v‘”)), there exists a constant g > 0 depending only on
(Voo, 7, 0) such that, for any € [ﬁs@“’), ((1”“’) — 0], g defined by (3.4.14) satisfies the following
properties:

O, Goma (Do (Pr), oo (P1), Pr1) < —po forj=1,2,
0-Gima(Deo(Pr), po(P1), P1) < —po.

PROOF. Since Pg = P, for § > B§”°°> due to (2.5.6) in Definition 2.23, we apply Lemma A.4
to obtain

8;Dlgls‘lﬁlod(D<PO(Pl)a @O(Pl)vpl) S _Oil fOI' any B € [ﬂévm)vﬂéUOO) - U]v

with a constant C' > 1 depending only on (veo,7, o).
A direct computation by using O¢, 9o (P1) = O¢, 00 (Ps) = 0, (2.4.3), Definition 2.23, and (A.18)
yields that
paGimod (Do (P1), o (P1), P1) = —(po + 1) cos B.
By using (2.4.2), it can be directly checked that

S CoM@
azgnlfod(Dwo(Pl); @O(Pl),Pl) = _p’y—72
(@]

for Mo > 0 given by (2.4.6).
Since (po, co, Mo) depend continuously on 3 € [0, 5), we conclude that there exists a constant
C > 1 depending only on (v,7) such that
(Dpa» 0:)G5m0a (Do (P1), po(P1), Pr) < —=C71 for all B € [8"), B{"].
a

COROLLARY 3.38. Let £ and o5 be the constants in Lemma 3.36. Then Lemma 3.29 holds for
all (oo, B) € Ryeare with B € [B=), 8" + ).

PRrOOF. It suffices to check property (c¢) of Lemma 3.29 for 8 > Bév""), as the rest of the

properties of Lemma 3.29 can be verified for § > ﬁg”“’) in the same way as for the case that
B < ). Since P, = Pg for g > Biv=), yp, = 0. From (2.4.3) and (3.5.9)-(3.5.10), we have

1 S
(Dpszpy)B?(OvovovxPUyP1) = Voo SeCB(DPU %D;Dz)gn?od(D(po(Pl)v SDO(Pl)vpl)'

Then property (c¢) of Lemma 3.29 is obtained for the case that B§”°°> <p< B§”°°> + 09 from Lemma
3.37 and the smoothness of BY. O

We now establish the uniform C?%-estimate of the admissible solution ¢ = 1)+ e correspond-
ing to (Veo, 8) € Rweak for 8 > B§”°°) close to B§”°°>.

PROPOSITION 3.39. Let & and o2 be the constants in Lemma 3.36. Then, for each « € (0, 1),
there exist constants € € (0,&] and o3 € (0, 02] depending only on (vs,7), and a constant C' > 0
depending only on (ve,7, ), such that any admissible solution ¢ = ¥ + o corresponding to

(Uooaﬁ) € mweak N {Bs(vw) S B S BSJW) + 03} satisfies
”djncz,a(@) S C,

(3.5.59) . .
|D£ Y(Py)| = |D£ Y(Pg)| =0 for m=0,1,2.
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Moreover, fo,sh from Lemma 3.36 satisfies

Hfo,sh - fo,o”z,a,[xpps] <C,
(3.5.60) am . . am . 2
—(fosn — fo.0)@p) = ~——(foum — foo)(@p,) =0  form=0,1,2.

dz™ dz
PROOF. In this proof, all the constants are chosen depending only on (v, ), unless otherwise
specified.
1. For a fixed 8 € [Bs(v‘”),ﬁs(”“’) + 03], define
dso(z) =2 — xp,.

If B> B8 then dyo(z) < x for all z € Q9.

£
12
solution o = 1 + po corresponding to (Voo, 8) € Rweak With B € [ﬂs(vw), ﬂs(voo) + 03] satisfies

Claim: There exist constants € € (0,5], o3 € (0,02], and m > 1 such that any admissible

IPI S TA
(3.5.61) 10
0 < ¢(w,y) <m(dsw(r)”  in 0.

A more general version of the claim stated immediately above can be found from [11, Lemma
16.5.1].

Note that ¢ > 0 holds in ©, due to Definition 2.24(iv).
For a large constant M > 1 to be determined later, define

1
’U(,T,y) = (‘T - $p1)5 - M(‘T - xP1)3y2'
By Lemma 3.36, there exists a constant £ > 1 such that

(3.5.62)
1
{(z,y):axp, <z <& 0<y< E(x—acpl)} CQ? C{(z,y) izp <2< 0<y<k(z—zp)}

As in the proof of Proposition 3.32, we regard i as a solution of the linear boundary value
problem:

LYy=0 inQY,
By =0 on Dgoa N NG,
Yy =0 on Tyedge N QY

where the linear operators £ and B¥ are given by (3.5.27) and (3.5.30), respectively.

It follows from (3.2.29) and Lemma 3.36 that there exist constants £; € (0,&] and C' depending
only on (vs,7) so that the linear operator £ satisfies properties (3.5.28)-(3.5.29) in QF for any
admissible solution corresponding to (veo, 8) € Ryweak With Bs(v‘”) <p< Bs(v"o) + 09.

From Corollary 3.38, there also exist constants €2 € (0,£;] and C depending only on (vee, ")
so that the boundary operator BF satisfies (3.5.31) in Tspock N 8(2?2 for any admissible solution
corresponding to (veo, ) € Ryear with A=) < 8 < ") + 0.

Similarly to Step 2 in the proof of Proposition 3.32, a lengthy computation by using (3.5.28)—
(3.5.29) and (3.5.31) shows that there exist a sufficiently large constant M > 1, a sufficiently
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small constant ¢ € (0, 2], and a small constant o3 € (0,02] such that, for any admissible solution

© =1 + po corresponding to f € Ryeax With 8 € | S(v‘”), Bs(v‘”) + 03], we have

€
Tpy S 1_07

E’U < 0 on 95957

Bfv <0  on ghoek NONS.,
v, =0 on Tyyedge N ONS,

1 .
v(z,y) > 5(:17—3:131)5 in Q?E

Detailed calculations for the results stated above can be obtained by following the arguments in
the proof of [11, Lemma 16.5.1].

Note that o3 := 03(v0, 7, €) € (0,02] can be chosen sufficiently small so that QS is nonempty
for any admissible solution ¢ = ¥ 4 @@ corresponding to 8 € Ryeax With 8 € | §v°°), §v°°) + o3].

For £ € (0, 2] fixed above, define m,, for (3.5.61) as

Y(z,y).

My = —  max
€2 998 N{z=2¢}

By (3.1.25) stated in Lemma 3.5, there exists a constant m > 0 depending only on (7, vs) such
that
My <m

for any admissible solution ¢ = ¥ + p@ corresponding to 8 € Ryeax With € [ﬁng), ﬁb@“’) + o3).
Moreover, we have
Y(z,y) < mou(x,y) on 00S N {z = 2¢}.

Then the maximum principle implies that
m .
Uey) < Tlo—wp)®  in 05,

The claim is verified.

2. Takee > 0 and o3 > 0 from Step 1. Let ¢ = 9+ v be an admissible solution corresponding
t0 (Voos B) € Ryeak with B € [, (") 4 o3]. For each r € (0,1) and zo = (0, y0) € Q0 \ {P1},
we define Q, and Q% by

dSO
Q= (—r,7)%, QS‘Z“) ={(S,T)eQ, : 20+ 71((;0) (vVxoS,T) € Qgg )
and a re-scaled function 1(*0) by
1 dSO(I ) dso(x )
()8 T) 1= — 0 \/ Zsol 0/ fi T (20)
1/) (Sa ) (dso($o))5 1/)($0 + 10k 33057 Yo + 10k ) or (Sa ) € Ql B

where k > 1 is the constant from (3.5.62).

We repeat the arguments used in Steps 3—4 in the proof of Proposition 3.32 with some adjust-
ments to obtain that, for each « € (0, 1), there exists a constant € > 0 depending only on (vs, 7y, &)
such that any admissible solution corresponding to (veo, 3) € Rweax With 8 € [ﬁé”“’),ﬁg”“’) + 03]
satisfies
(3.5.63) )] 5 <€ forall zp€ QO\ {P}.

c2(Qif) ~
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Following the argument of Step 2 in the proof of [11, Proposition 16.5.3] and using estimate
(3.5.63), we obtain

(3.5.64)

5k
sup ((z —ap,)"" 522|050 v (2)])
0<k+i<2 €922

+ ) sup ((max{:v, I} — xPl)k+l+a_5(maX{x7j-})
k+1=2 2,260Q0 2#Z%
<C¢

so [0EOLY(2) — OEALY ()|
5P (2, %)

for 5P (z,2) given by Definition 3.25, where we have used the notation that z = (z,y) and
= (2,9).
We further follow the proof of [11, Proposition 16.5.3] to obtain that, for all z, % € (xp,,¢),
(x — xpl)k"’l_‘r’x% > 235 for 0 <k+1<2,

(3.5.65)
(max{z, 7} — zp, ) 5 (max{z, 7)) F > (max{z,7})2ETOTS for k41 =2.

This is because k + [+« — 5 < 0 holds for k,l € ZT with 0 < k+1 <2 and « € (0,1). Since
3(k+a)+1—5<0holds for k,l € ZT with 0 < k+1 < 2 and a € (0,1), it follows from (3.5.65)
that

(x —zp ¥+ Sy > gaktl=5 for0<k+l<2

(3.5.66)

k+l+a—5
)

(max{x, T} — xp, max{x, 3:}) * > g3(kta)ti=s for k+1=2.

Assuming that ¢ < 1 without loss of generality, we also have
(3.5.67) 6P (2, 2) < |z —2*  for z,2€QP.
Using (3.5.64) and (3.5.66)—(3.5.67), we obtain

for some constant C' > 0 depending only on (veo,y, ), because the choice of e given in Step 1
depends only on (ves, 7).
Furthermore, it follows directly from (3.5.64) that

D2, (e, y)| < C€(z —xp)?  inQP,
which implies that
|Dg(Py)| = 0.

Note that (P1) = |Detp(P1)| = 0, due to Definition 2.24(ii-3) for Case 2. Therefore, (3.5.59) is
proved.

Finally, (3.5.60) can be proved by adjusting Step 6 in the proof of Proposition 3.26 and using
(3.5.59). 0
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3.5.4. Case 4: Admissible solutions for 8 > Bs(v‘”) away from ﬁs(”“’). We first introduce
a weighted Holder space.
For a bounded connected open set U C R2, let I' be a closed portion of OU. For x,y € U,
define
0y := dist(x,T), Ox,y := min{dx, dy }.
For k € R, a € (0,1), and m € Z™T, define the standard Holder norms by

DPu(x) — DPu
l[wllm.0,0 = Z sup | DPu(x)], (Um0 = Z sup | (|X)_ 0 ()|
0<8|<m *€Y |Bl=m XY EUXAY y

)

and the weighted Holder norms by
k),I max
||u||£n,)O,U = Z sup (8% (IB+5:0)| DBy ()] ),

o<|pl<m *<Y
[u](k)’r = sup (5max{m+a+k,0} |DEU(X) — Dﬁu(y”)
i x,y€U,x i |X - y|a 7
|Bl=m XY SUXFY
k),T k),I" k),T
lallmat = lulmow + flmaw, — Tulliyoy = lull oy + ke,
where DP := 9019% for B = (B1,B2) with 8; € Zy and |8 = 1 + B2. Denote CEZ;)O‘F(U) the
completion space of the set of all smooth functions whose || - ||5§?£U7norms are finite.

Let o3 be from Proposition 3.39. Then, by Proposition 3.15, there exists § € (0,1) depending
only on (vse,y) such that any admissible solution ¢ corresponding to (veo, ) € Ryeak With B§”°°> +
F<B< ﬁé”“’) satisfies

[ Dol
c(IDepl?, )
for c(|p|?, 2) defined by (3.2.5). By (3.5.68) and Lemma 3.5, there exists M, > 2 depending only

on (Veo,7y) such that (Dp(€),¢(€)) € K, for Ky, defined by (3.2.6). In particular, there exist
A« > 0 and R, > 0 depending only on (vs,7) such that any admissible solution ¢ corresponding

t0 (Voo, B) € Rweak With ﬂs(v“’) + 3 <B< ﬂév“’) satisfies

(3.5.68) <1-9§ in QN {& <0}

2

> 0y, Ai(Dp(&), (€))rir; > Al

i,j=1
for any € € QN B, (Ps) and any k = (k1, k2) € R2.

According to Definition 2.23, P3 = P, for g > ﬁs(v""’). In this chapter, we use Pg, instead of P,

to emphasize that Pjg is the &;—intercept of the straight oblique shock Se. In order to achieve the a
priori estimates of admissible solutions for 5 > B§”°°> away from ﬁg”“’), the convexity of the shock
polar curves is heavily used, particularly in establishing the functional independence property of
the boundary conditions for admissible solutions near Pg.

(veo)
LEMMA 3.40. For each small & € (0, Bc‘l—), there exist positive constants r and M depending
only on (Vso,7,T) such that any admissible solution ¢ corresponding to (Veo, 8) € Rweak N {ﬁs(v"’") <
8 < ﬂév""’) — g} satisfies

OpeGioa(DP(E), 9(€).€) <~ for all € € Tapos 11 Br(Py),
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where gsh | is given by (3.4.14).

PROOF. In this proof, all the constants are chosen depending only on (v, ), unless otherwise
specified. The proof is divided into six steps.

1. For & € R\ B1(Ow), denote ul) = |Dys(€)|, and denote f as fpolar defined by
Lemma A.3 corresponding to (poo, o) = (1, |Dyeo(€)]). Denote (ugﬁ),u((f), (-E)) as (g, ug, us)

corresponding t0 (poo, Uso) = (1, u((,g))

olar

(voo)
Fix 5 € (0, ﬁ 5—)- Let ¢ be an admissible solution corresponding to (veo, ) € RweakMN{ Bs(v‘”) <

B < B((iv‘”) 7}, and let T'shock be its curved pseudo-transonic shock. By Proposition 3.7, polar is

well defined for each & € Typock. For € € R2, denote

Dy (&)
(3.5.69) e(¢) == Dos &)

and let e* (&) be the unit vector obtained from rotating e(£) by Z counterclockwise. More generally,

for each e € R?\ {0}, let e* denote the vector obtained from rotating e by 7 counterclockwise.
The Rankine-Hugoniot condition (2.5.37) implies that Dp(&) can be expressed as

(3.5.70) Dyp(€) = ue(€) + fpolar( u)et (&) for each &€ € Tsnock,
with u = u(Dyp, &) given by

(3.5.71) u(Dep, &) := Dp(§) - e(§).

By Proposition 3.15, we have

(3.5.72) u(Dy, &) <u'®  for each & € Tenoek.

2. By (2.5.12) and Lemma A.4, there exists a constant My > 1 depending only on (veo,”,d)
such that any admissible solution ¢ corresponding to (vso, 8) € Rweak N {BS(U"’") <B< ﬂév“’) -}
satisfies

(3573) aplgfrlllod(D@(Pﬁ)a @(Pﬁ)a Pﬁ) = 8plgSh(D@O(P5)v <POO(P5)7 Pﬁ) < _M()_l'

Let (t1,t2)—coordinates be given so that (1,0)«, +,) = e(Pg) and (0,1)¢, +,) = e (Pg). For
€ € R?\ By(Oy), we define a function ¢(¢)(u) by

(3.5.74) 9% (u) = g(u)
for g(u) given by (A.7) with us = (|Dpeo(€)],0) (see Fig. 3.1). If we denote
Uy 1= e(P,@) -D(po(P[g),
then
Do(Ps) = (e frein(us). g (Do (Ps) = 0.

Since Do (Ps)-e¢, = 0, it can be checked directly from the definitions of g*" and g given in (3.4.13)
and (A.7), respectively, that

(3.5.75) 9 (Do (Py)) - €1 = 0y,9™ (Dpo(Ps). @oc(P5). P).
Moreover, from (3.5.73), we obtain

(3.5.76) 94 (Dgo(Ps)) - er < —Mg ™.
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&2

&1

FIGURE 3.1. The graph of curve ¢(#)(u) =0

Note that g( 5)(D<po(P[3)) is a normal vector of curve (u f( 5)( )) at u = ux. Let L,, be the

polar
tangent line of curve (u, (Ps) (u)) at u = uy. Then g( ﬁ)(Dcpo(Pﬂ)) is perpendicular to L,,. Let

polar
n, be the unit normal vector to L, with n, (Pg) > 0. Then n, -n <0 for n = %,

owing to the convexity of curve (u, polar (u))

It follows from (A.9) that g *) (Do (Ps)) - n, = —|gi? (Do (Ps))| < 0 (see Fig. 3.1). This
implies that

P P P
o o) (G fgof;i< )1
(Pg) (Pg) ’
1987 (u, fyome ()] ¢1 + (& 7 ()
and
d N
(3.5.77) sgn (g( o) (u, }Eii)r(u)) -ep) = sgn (d féff;)r(u)) for uépﬁ) <u<ul?

where we have continued to work in the (t1,t2)—coordinates with basis {e(Ps), e (Ps)}.

Pg)

olar(1)), we have

By the convexity of curve (u, fIE

1 2f(flﬁar( )<0  for u(PB) <u<ul?.
u

Then, from (3.5.75)—(3.5.77), we obtain

gﬁpﬂ)(u, (Ps) (u))-ex < —My* for Oe(p,) 0o (Ps) < uE?.

polar
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Note that (Pg, Do (Ps),e(Pg)) and the shock polar curve (u, (Ps) (u)) depend smoothly on

polar

RS [BS(U""’), Bév"’")] (for further details, see Lemma A.3 or [11, Claim 16.6.7]). Therefore, there exists
a small constant 1 > 0 depending only on (7, v, ) so that

1
(3.5.78) 9 (u, }Efg)r(u)) ce1 < oL for de(p,ypo(Ps) —e1 < u < ull?,

where 3 € [ﬁé”“’), é”“’) —al.
3. For u(Dy, &) given by (3.5.71), we define
(3.5.79) a3(u(Dy.£)) = u(Dp, €)e(Ps) + fin (D, £))e™ (o),

provided that a\"*) < u(Dg, £) < uS5?) holds.
By the definitions of ¢** and ¢(*#) given in (3.4.13) and (3.5.74), respectively, we have

(3.5.80) Op 0™ (@5 (1), 900 (Ps), P3) = g4 ”) (s (u(Dy, ) - ex.
Since ¢ — poo = 0 holds on T'ypeck, we have

(35:81) Opy M (D (€), (€), €) < B, g™ (s (w), oo (Ps), Ps)

+ |6plgilod(D@(£)a (Poo(g)v S) - 8p1gilod(q3(u)v SDOO(PB)v Pﬂ))lv

where u = (D, &) for € € Tgnock-

4. Claim: There exist a small constant r1 > 0 and a constant C > 0 so that, if r € (0,71] and

© is an admissible solution corresponding to 5 € [ﬁs(v""’), ((iv“’) — 7], then
(3.5.82) Oe(¢)P(&) > Oc(pyypo(Pp) — €1 on Tshock N By, (Ps)

for constant €1 > 0 from (3.5.78).
Similarly to (3.1.16), define a cone generated by vectors u,v € R? by
cone(u,v) := {aju+ asv : ag,as >0},

For each 3 € [BS(U""), év"")), it is clear that

(3.5.83) e(Pg) € cone(es,,, —€2)
for eg, = (cosB3,sin B) and ey = (0,1). We also find from (2.4.1) that
CoM@ cotﬁ Voo
es, -e(Pg) = ————=— >0, —ex-e(Pp) = >0
o T D (B 7 Do (Bo)]

for Mo defined by (2.4.6). Moreover, eg,, - €(Pg) and —e; - e(Pg) depend continuously on 8. Thus,
there exists a constant kg > 0 such that

min {esy, - e(Ps), —es - e(Pg)} > Ko.
Be[B{=) B{">)]

Therefore, we can fix a small constant r; > 0 so that

(3.5.84) min min{eg, - e(€),—ez-e(§)} > T for all g € [Bg”‘”),ﬁévm)].
EGBH(PB) 2
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By (3.5.83) and Lemmas 3.5-3.6, there exists a constant Cy > 0 such that any admissible solution
¢ corresponding t0 (Veo, 8) € Rweak N {BS(U"’") <pB< ﬁév"") — 7} satisfies
e(g)P(§) = Do) (¢ — 90)(§) + De(e) o (§)

> ae(Pg)‘PO(Pﬁ) - Oﬁ|€ - Pﬁ| for & € Tshock-

We choose a constant 7; > 0 depending only on (vs,7,7) to satisfy Cyry < 5 so that (3.5.82)
follows directly from (3.5.85). The claim is verified.

(3.5.85)

5. Claim: There exists a small constant ro € (0,71] depending only on (v, v, ) so that, if
is an admissible solution corresponding to 8 € [ﬁé”“’), ((iv‘”) — 7], then

(3.5.86) Dp(€) — as(w(Dp, )| < Cl& — Ps|  for all € € Topoak N By, (Pp).

Define
po = min (u((,fﬁ) —
pe(BL>) B>

Such a constant po is positive, depending only on (vs,7). Choose a small constant 7o € (0,71] so

that [ul® — u{"™)| < £2 for all € € B;,(Ps). Then we obtain from (3.5.72) and (3.5.82) that

(3.5.87) Doy po(Ps) — &1 S u(Dip,§) <uld” = B2

PB))'

on Ighock N Bf«2 (PB)'
By Lemma 3.5, (3.5.70), and (3.5.79), we have
(3.5.88) Dp(€) — as(w(D, €))] < C(1€ = Pal + | (foe — Fiehar) (w(D, ©))])

on m n Bf2 (Pﬁ).

By the continuous dependence of (ﬁ((f),u((f,)) and the smooth dependence of fégar(u) on & €
R?\ B1(Ox) for u € (ﬂ(()s), u((f,)) due to Lemma A.3, and by (3.5.87) and the continuous dependence
of Pz on 8 € (Vo) ((iv‘”)], there exist C' > 0 and ro € (0,72] depending only on (ve,7,d) such
that

(3.5.8) (S8 = 18, (D, €)) < Cl& — Ps|  on Taock N By, (Ps).

Then (3.5.86) follows directly from (3.5.88)—(3.5.89).
6. By (3.5.78), (3.5.80), and (3.5.87), we have

: 1 -
(3.5.90) 6p1gbh(q3(Dg0, S), Yoo (P,@), P,@) < —2—]\40 for & € I'shoek N By, (PB)

for any admissible solution ¢ corresponding to (veo, ) € Rweak N {ﬁé”“’) <pB< ﬁé”“’) -G}
By Lemma 3.8, (3.4.14), and (3.5.86), there exists a constant Cpolar > 0 such that

(3.5.91) |0p, Gioa (D (), 9o (£),€) — O, Gimoa (A5 (), Poo (Pp), Ps))| < Cholar|€ — Ppl
for € € Ishock N BTz (Pﬁ)
Choosing

)
4JZ\4OC'po1a]r ’

r = min{ry,
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we conclude from (3.5.81) and (3.5.90)—(3.5.91) that

1 -
8p1gSh(D<P(€)7 ©(€),6) < M on shock N By (Pg)
0
for any admissible solution ¢ corresponding to (veo, 3) € Rweak N {B§”°°> <pB< ﬁé”“’) — }. This
completes the proof. O

To simplify notations, let eg denote e(P3) for each 5 € [ﬂé”“’), é%")), and let ef; be the unit
vector obtained from rotating eg by 3 counterclockwise. By (3.2.27), (3.4.5), and (3.5.69), we have
aeg (9000 - 90)(5) 2 dl + (eﬂ - e(S)) . D(‘poo - 90)(5) for all 5 € Na(l—‘shock) N Qa

where constants dy and ¢ are from (3.4.5). Therefore, we can apply Lemma 3.5 to choose a constant
s« > 0 depending only on (v, ) such that any admissible solution ¢ corresponding to (veo, 3) €

Rweak N {ﬁs(vx) <pB< ﬁ((iv""’)} satisfies
d
(3.5.92) By (Po0 — @) > gl in By, (P3) N Q.

DEFINITION 3.41. Introduce the (S, T)-coordinates so that
(i) Pg becomes the origin in the (S, T)—coordinates,
(ii) eB = (1,0)(5771) and ef; = (0, 1)(S,T)-
In fact, the (S, T)—coordinates are the same as the (t1,%2)—coordinates in Fig. 3.1.

In the (S,T)-coordinates given by Definition 3.41, S, I'shocks I'wedge, and § near Pg can be
represented as

So N Bs«(Pg) ={S =as,(B)T : T >0} N B« (Pg),

Tshock N Bs+ (Pg) = {S = fe(T) : T > 0} N Bs+(P3),

Iwedge N B+ (Pg) = {S = aw(B)T : T > 0} N Bs«(Pp),

QN B« (Pg) ={(5,T) : Qes,, (B)T < fo(T) < S < aw(B)T, T > 0} N By« (Pg),

where ay, () depends continuously on 8 € (0, §), and ag,, (8) = tan g with 05 := tan™! a,(8)—f >
0 for each 8 € (0,%). Note that there is a constant C' > 0 depending only on (vs,7) such that
C 1 <ay(B)<Cforall Be] §U°"), ﬂév“’)). The representation of I'spock N By« (P3) as a graph of
S = fo(T) is obtained by the implicit function theorem, combined with (3.5.92).

PRrROPOSITION 3.42. Let positive constants o3 and r be from Proposition 3.39 and Lemma

(voo)
3.40, respectively. For small constants o5 € (0, %] and o4 € (0, 5‘11—), there exist constants

s€(0,7), a €(0,1), and C > 0 depending only on (v, 7, 0s, 04) such that any admissible solution
¢ corresponding to (Veo, 3) € Rweak N {ﬁs(”“’) +o0s < B < B((iv‘”) — 0q} satisfies the estimates:

—1—a),{P, —1—a),{0
ol amstted + el < .

|D¢' (¢ —po)(P)| =0 form =0,1.
PROOF. In this proof, all the estimate constants are chosen depending only on (veo,?, 05, 0d),

(voo)
unless otherwise specified. For fixed o € (0, %] and o4 € (0, B“T), let ¢ be an admissible solution
for 5 €| () | o, év“’) — 04l
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1. Denote ¢ 1= po — i, and rewrite Eq. (2.1.19) and the derivative boundary conditions
(3.4.12) and (2.5.36) in terms of ¢ as follows:

S Ay(D§,3,6)Dyyd=0  in Be-(P5) N,

(3.5.93) nI=t
on I'ghock,

on Fwedgea

where

Aij(p, 2,€) = (P, 2,€)0ij — (00 — Pi)(0jPo0 — Dj) for ¢,j = 1,2,
R 1
E(p2,6) = 1= (v = ) (5|Dpo = PI* + 900 = 2),

gSh(pazaé) = _gSh(D<POO(€) - b, 9000(6) - Zaé)a
gw(pv Zv&) =p2+ (52 + voo)a

(3.5.94)

where ¢g*! is given by (3.4.13) and s* € (0,7] is from (3.5.92).

Next, we apply a partial hodograph transform to ¢ in Bg«(Ps) N2 in the direction of eg. For
each (S,T) € By« (P3) N, define y = (y1,y2) = (¢(S,T),T). By (3.5.92), there exists a unique
function v(y) such that

(3.5.95) v(y1,y2) = S if and only if d(S,y2) =y

fory € ’Df* = {y = (¢(S,T),T) : (S,T) € Bs-(Ps)NQ}. By taking derivatives of v(¢(S, ya), y2) =
S, it can be directly checked that

1 oro
3.5.96 Oy v=—— Oyv=-T2
( ) y1U aS(b yZU as(b
By Lemma 3.5, (3.5.92), and (3.5.95)—(3.5.96), there exists a constant K > 1 depending only
on (7, veo) such that

1 8 —5
(3.5.97) — <d,v< =, |v|+|Dv| <2K in DY,
K ’ dl

Using the definition of v, (3.5.93) can be written in terms of v:

(3.5.98)
2
Z aij(Dv,v,y)0y,,,v =0 in D7,
ij=1
g (Dv..y) =0 on TG = {y = (0.7) : (S.T) € By (Ps) N Canoa.

g (Dv,u,y) =0 on T, = {y=(d(5,T),T) : (S,T) € Bs-(P5) N Twedgo}

wedge
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where (aij, gi, ¢%V)(p, z,y) are directly computed by using (3.5.94) and the definition of v. More
precisely, (aij, g3, g\ ) (P, 2, y) are given by

1
a11(p,2,y) = F(Au — 2poAyg + piAsy),
1
1
a12(p, z,y) = a21(p, 2,y) = F(AH — p2Aa),
1

P
az(p, 2,y) = — Ag,
D1

(g, o) (P, 2,y) = — (5, §™),

with

“sh Aw nsh Aw 1
(A1, A1z, Aoz, §™, §%) = (A11, A1z, A2, 5", § )((E,—%),yl,(z,yz))-

Define a set
U:={(p,zy) e R xR x DI}
We fix a cut-off function ( € C*(R) satisfying that ((t) = 0 on (—00, 1a) and ((t) = 1 on
(1%, 00). Furthermore, we define

mod _sh,mod _w,mod

(@, g5 ™% g ™) (P, 2,y) = C(p1)(aij, o ) (P, 2,y)  for i, j =1,2.
Then (3.5.98) can be rewritten as

2
Z aZ}Od(Dv,v,y)[)yiij =0 in Df*,
i,j=1
(3.5.99)
gih’mOd(Dv, v,y) =0 on Fiﬁz))ck’
w,mod D -0 F(h)
N ( ’0707Y) on wedge*
Furthermore, for any [ =0, 1,2, - - -, there exists a constant C; > 0 depending only on (7, Vso, ()
such that
mo sh,mod w,mod
(3.5.100) |Dép7z7y)(aij 4 g LN < on U.
2. In this step, we apply Proposition C.12 to obtain
(3.5.101) g (Du(y), v(y),¥) — gif (Dv(0),0(0),0)] < Cly|**  for y € D. N By-(0)
for some a; € (0,1), C > 0, and I* > 0.
Fiﬁick is flat so that it is C? up to its endpoints, and I“(:gdge is Lipschitz continuous up to its
endpoints. Then we regard Fg’e)dge and Fiﬁlek as I'! and I'?, respectively, in Proposition C.12. Then

(g}"lv’mOd,gih’mOd,O) in (3.5.99) become (b"), b h) in Proposition C.12. It follows directly from
(3.5.100) that (3.5.99) satisfies conditions (C.4.5)—(C.4.8).
Also, (3.5.97) implies that v satisfies condition (C.4.1) stated in Proposition C.12.
A direct computation by using the definition of v in (3.5.95) yields that
1 1

|ng]rv¥(D’U(y>av(Y)7Y)| = |T(vy2a —Uy1)| 2
Uyl |Uy1|

= |¢s| for allyED—f*.
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Thus, (3.5.92) implies that
d R
|Dpgyy (Du(y), v(y), y)| > gl for all y € D7..

This shows that b(!) = g}V satisfies condition (ii) of Proposition C.12. By (3.4.13), (A.18), Lemma
3.5, Remark 3.14, and Proposition 3.15, there exists a constant A, > 0 depending only on (v, 7, 05)

such that any admissible solution ¢ for 5 € [Bs(v‘”) + 0%, ((iv‘”)) satisfies

ngrsr?od(Dw(g)v <P(€)7 6) ! VS(&) Z )\1 for all E S FShock N BS* (Pﬁ)v

where vg is the unit normal vector to I'shock towards the interior of 2. Then a direct computation
by using (3.5.92) and (3.5.94)—(3.5.95) shows that

Op, 5™ (Do (y), v(y).¥) = [Délds Dprmoa(Dp(€). 0(€). €) - va(€) = M (%)2 on T

This implies that b(2) = gflh satisfies condition (iii) of Proposition C.12. In order to apply Propo-
sition C.12, we also need to show that (b, b)) = (g, gi") satisfies condition (iv). A direct
computation by using Lemma 3.40, (3.5.92), and (3.5.94)—(3.5.95) yields that

(3.5.102)

1 dl

N—@%@w“uw@xw@@nzjﬂg)g for y € T

<ngih (Du(y),v(y).y)

Dpgy/ (Du(y),v(y),y)

for constant M from Lemma 3.40. We have shown that condition (iv) of Proposition C.12 holds.
Then we apply Proposition C.12 to conclude that there exist constants ay € (0,1),C > 0, and
I* > 0 depending only on (ve,?,0s,04) such that (3.5.101) holds.
3. We know from (3.5.98) that v satisfies that |gi"(Duv(y),v(y),y) — g;*(Dv(0),v(0),0)] =0
on I‘églek. This, combined with (3.5.101), implies that condition (C.4.12) stated in Proposition
C.13 is satisfied with o = «. Tt follows from (3.5.100) that condition (C.4.9) holds. Also, (3.5.102)

implies that v satisfies condition (C.4.10) with yo = 0. Moreover, condition (C.4.11) holds for the
)

Lk~ Therefore, we obtain from Proposition C.13 that

line segment FS;
(3.5.103) |Du(y) — Do(0)] < Cly|**  fory € T . N Bi-(o)

for a constant C' > 0 depending only on (v, 7, 05, 04d)- - -
Since ¢(0) = 0 in the (S,T)-coordinates, then |y| < [¢(S,T) — ¢(0)| + |T| for each y =
(6(S,T),T) € D.. We apply Lemma 3.5 to obtain

(3.5.104) vl < C|(S,T)| = Cl§ — Ps

for a constant C' > 0 depending only on (7, vso).
By (3.5.95), |€ — Ps| = |(S,T)| < |v(y) — v(0)| + |y2| for each (S,T) € Bs«(Pg) N Q. Then we
apply (3.5.97) to obtain

(3.5.105) €~ Ps| = [(S,T)] < (2K + D)ly]

for constant K from (3.5.97).
We write (3.5.101) and (3.5.103) back in the &—coordinates, and apply (3.5.104)—(3.5.105) to
obtain

le, (&) — @e, (Pg)| < Cl€ — P in QN By, (Pp),

(3.5.106)
|Dp(&) — Dp(Pg)| < Cl€ — Pg|™  on Tsnoek N By, (Pp),
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where C' > 0 and s; € (0, s*] depend only on (vso,, 0s, 0a)-

For the rest of proof, each estimate constant is chosen depending only on (v, 7, 05, 04), unless
otherwise specified. For & € €, define f(€) := 7 - (D¢(€) — Dp(Pg)) for the unit tangent vector
Tw = (1,0) to I'wedge- Then (3.5.106) implies that

(3.5.107) [§(€) = §(Ps)| < Cl¢ = Ps|™*  for & € Tsnoer N By, (Ps).

Denote ¢3*(p) := 7w - (p — Dé(P3)), and regard g3*(D¢) = f as a boundary condition for
@ on I'shock. Since I'wedge is flat in the &-coordinates, we can apply Proposition C.12 by setting
(T, T?) := (Cshock, Dwedge) and (b 5(3)) := (g5, g*) for T9,50) j = 1,2, from Proposition C.12.
In particular, condition (C.4.8) holds with 8 = a1, owing to (3.5.107). Then we obtain constants
a € (0,a1],C > 0, and s5 € (0, s1] such that

192" (Dp(€)) — g3 (Dp(Ps))| < Ol — Ps|*  for € € QN By, (Fp).

Combining this with (3.5.106), and noting that both boundary conditions §,, and gS" are linear
with constant coefficients and are linearly independent of each other, we finally have

(3.5.108) |Dp(€) — Dp(Pg)| < C*|€ — Pg|® for £ € QN By, (Pg).

4. For each & € Tshock, define d(€) := |€ — Pg].
Claim: There exist constants wg > 0 and sz € (0, s2] such that, for all €& € T'ghock N Bs, (P3),

dist(&, Twedge) > wo d(&).

If this claim holds, then Q,, = QN By, (Pg) satisfies condition (ii) of Proposition C.14 so that
Proposition 3.42 follows from (3.5.108) and Proposition C.14, where we use (3.5.108) to satisfy
condition (C.4.13) stated in Proposition C.14.

Now we show the claim. For a fixed point P € T'gpock, let P’ be the point on Sp so that
PP’ 1 Tyeqge. Then

(3.5.109) dist (P, Tyedge) = d(P')sin 8 — |P' — P| > d(P)sin 8 — |P' — P|.

Denote P = (¢F,€0) and P’ = (¢F,€f") in the &-coordinates. Then we see that P/ — P =
(0,68 —€F). Since P’ € So and P € Tspock, (900 — 90)(P') = (9o — ¢)(P) = 0 so that

Vool€) = €5 = [(poo — 00)(P') = (¢oo — 90)(P)| = |(po — ¢)(P)]-

Since (vo — ¢)(Pg) = 0 by (2.5.12), the equation above gives

|P' — P| = —|(¢o — ©)(P) — (vo — ¢)(Ps)l.

|
Voo
Then we apply (3.5.108) to obtain

|P' — P| = (po — )(P)| < Cd(P)*+e for P € QN By, (Ps)

1
Voo |
for some constant C' > 0. Combining this estimate with (3.5.109), we can choose constants wg > 0
and s3 € (0, s2] so that the claim holds.

Then Proposition C.14, combined with (3.5.68) and the results from Steps 3—4, leads to Propo-
sition 3.42. O
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3.6. Compactness of the Set of Admissible Solutions

Fix v > 1, v > 0, and 8 € (0, év"’")). According to all the a priori estimates obtained
in Lemma 3.18, Corollary 3.19, Propositions 3.26, 3.30, 3.39, and 3.42, there exists a € (0,1)
depending only on (v, v, 8) such that the set:

el T e : ¢ is an admissible solution corresponding
Pllona@ TR shoadll€NT 5 4o (14, B) € Ryeare 1{0 < B < B}

is bounded. For each admissible solution, its pseudo-subsonic region €2 is a bounded domain enclosed

by Pg)nic’ I‘é\gnic, Dshock, and I'yweqge. These four curves intersect only at P; for j = 1,2,3,4.
According to Definition 2.23, l"g\gnic, Opr, P>, and Pj3 are fixed so as to be the same for all admissible

solutions. Moreover, TY . . Op, Pi, and P, depend continuously on 3 € [0, év"’")]. From this

observation, the following lemma is obtained:

LEMMA 3.43. Fiz v > 1, v > 0, and B € (0, é”“’)). For each 3 € [0, 3], let Ag be defined
by Definition 2.23. Let {pW)} be a sequence of admissible solutions corresponding to (v, ) €

Rueak N {0 < B < B}, and let limjo0 Bj = Boo for some Bos € [0,5]. For each j, let 00 qnd

I‘g{l)ock be the pseudo-subsonic region and the curved pseudo-transonic shock of o), respectively.

Then there exists a subsequence {pU)} € {©W} such that the following properties hold:

(a) {©U*)} converges uniformly on any compact subset of As_ to a function ¢(>°) € C'loo’i (Ag_.),
and (> is an admissible solution corresponding to (Voos Boo);

(b) QUK — Q) in the Hausdorff metric;

(c) If €9%) € QUX | and €U) converges to €°°) € Q) then

sD(jk)(g(jk)) N s0(00)(5(00))7 Dsp(jk)(g(jk)) — D> (5(00)),

where, in the case of £Ur) € Fif;’;)ck, Dga(j’“)(é(jk)) = limgcqun getv Dga(j’“)(é), and
D) (¢) for & € Fiiz)ck is defined similarly.






CHAPTER 4

Iteration Set

In order to prove the existence of admissible solutions in the sense of Definition 2.24 for all
(Voo, B) € Ryeak by employing the Leray-Schauder degree for a fixed point, we first introduce the
iteration set.

4.1. Mapping the Admissible Solutions to the Functions Defined in Q'

Fix v > 1 and v > 0. We continue to follow Definition 2.23 for the notations: O, Oo, O,
N . T9 . and Pj for j =1,2,3,4, etc.. Denote Q" = (—1,1) x (0,1).

sonic’ sonic’

DEFINITION 4.1. Let (¢oo, pa, o) be defined by (2.5.1).
(i) Definition of éo. For each 8 € [0, (v‘”)] define éop by

co for g < B(v‘”

.= dist ,00) =
co 1S ( sonic O) {'O(DPB| for B > B(UOO

Note that ¢o < co if § > BS(U""’)

(ii) Extended sonic arcs. Since ¢o depends continuously on 3 € [0, §), a constant dy > 0 can be
chosen depending only on (ve, ) such that S 60 ={teR?: (po gpN) (&) = —do} and 0B, (On)
intersect at two distinct points, and Sg) ={€e€ R2 (Yoo — o) (&) = =00} and OBz, (Op) intersect
at two distinct points for each § € [0, (vm)] Let T2:% be the smaller arc lying on 8Bz, (0Op) with

sonic

endpoints Py and P/, where P is the intersection point of Sg) and 0Bg, (0Op) closer to P;. Similarly,
let I‘;\gn‘j‘; be the smaller arc lying on 0B, (Ox) between Sﬁ? and & = 0 with endpoints P5 and
P5, where Pj is the intersection point of Sﬁ? and 0B, (Ox) closer to P.

(iii) Definition of Q®. Define Q® as the bounded region enclosed by 9% N 5’60 5% and

sonic’ ~ sonic’?
l—‘wedge'

For each 3 € [0, Bév"’")], we first define a mapping G : @® — R? such that

FO do

sonic’

(x+uo —co,y) for & near
(4.1.1) G1(¢) = o

sonic’?

for the (z,y)—coordinates defined by (3.5.2) near % and by (3.4.18) near V2% e take several

sonic sonic*

steps to construct Gy. The definition of G; is given in (4.1.28). First, we define a mapping
. QP — R2 such that Fy(€) - (1,0) = 2 + uo — co for &€ near <%0 and Fy(€) - (1,0) = cx — «

sonic

for € near TV:% Then we define a mapping Fy : F1(QP) — R? so that (Fyo Fy)(€) - (1,0) = Fy(€),

and (Fy o F1)(€) - (0,1) =y for &€ near I‘g)rff’c U I‘é\gn‘ifc’ Finally, G; is defined by G; = Fy o F} as in
(4.1.28).

(en — x,y) for € near "

117
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For £ > 0, define two sets DC and DY by
D2 = (Q° N {& < uo}) \ Beo-:(00),

DY = (Q° n{& > 0}) \ Bey—(On).

Since ¢o, So, and Op depend continuously on 3 € [0, 5 ), there exist constants k& > 4 and 0, € (0, §)

2
év‘”)] , we have

(4.1.2)

depending only on (v, ) such that, for each § € [0,

4 T
'D%QAOC{{EPI <z <zxp + —¢o, B<y+[3<§—51},

C

(4.1.3) k
2 C{O<:z:<é O<y<——&}
Loy kCN’ Y ) 1f-

Define cut-off functions (o, (v, X0, and xa as follows:
(i) Co,Cv € C4(R) satisfy

1 forr>ép(l—2),

(4.1.4) Colr) = 2l=0 g am<? ar
0 forr<céo(l—32), co
1 forr > cp(l— 2),

(4.1.5) v(r) = z e = 1) 0<(y(r) < 2k on R;
0 forr <epn(l— %), N

(ii) Let qu" be the distance between Op = (ue,0) and S’g’, and denote
(4.1.6) u%‘) =up —qg‘) sin .

Since up = —vs tan 8 < 0, u‘gg < 0. Then Yo, xn € C*(R) satisfy

1 for & < ud — 2o 2k
ok —— <Xo(6) <0 onkR;
0 for &1 > ug, Cco

(4.1.7) xo(&1) = {

A

0 for & < & 2%k
S 0<x(E) < 2 R

1 for & > 2, N

(4.1.8) xwv (&) = {

Choose constant k > 4 sufficiently large, depending only on (ve,?), such that

3cn

80 Bex
%)

(4.1.9) Dg,, N{& < ul} C {& < ul - -

s DJ%\[CN - {51 >

Next, define a variable r by

_[VE—wrTE  ra<ud,
V& + &3 for & > 0.

Since u%y < 0, 7 is well defined by (4.1.10).

For the cut-off functions (o, {n, X0, XA7) given by (4.1.4)—(4.1.8) under the choice of k to
satisfy (4.1.9), we define a function h; : Q” — R as

hi(&1,&2) == ((uo —r)Co(r) + (1 = Co(r)&) xo

+ (1= xo) (6(1 = xw) + (G (r) + (1 = G (r)€)xw)-
In (4.1.11), xo and xar are evaluated at &;.

(4.1.10)

(4.1.11)
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Define a mapping F : Q° — R? by
(4.1.12) Fi(&,&) = (hi(&, &), &)

LEMMA 4.2. There exist constants C > 0 and dp, > 0 depending only on (ve,”y) such that, for
each 8 € [0, é”“’)], Fy defined by (4.1.12) satisfies the following properties:

(@) [1Fill s gmy + 1Tl camrgmy) < € and det(DFy) = 6, in Q7
(b) Denoting F1(€) := (s,t), then
(4.1.13) Fi(Twedge) = {(s,0) : s € (uo —¢o,cn)};

(¢) For ¢oo := poc + 31€I%,
Ot oo (Ffl(s,t)) = —Vso for all (s,t) € W;

(d) For each j=1,---,4, denote P; = (§fj,§§j) in the €—coordinates. Then
Fi(Py) = (uo — ¢0.&"),  Fi(P2) = (en, &),
Fi(Bs) = (en, 0), Fi(Py) = (uo = o, 0);

(e) For hy defined by (4.1.11),

e~ [ro—corr e o) < %2,
1 pr—
P if dist(€, Tanie) < ¢

for the (x,y)—coordinates defined by (3.4.18) and (3.5.2).
PROOF. By the definition of F} in (4.1.12), we have
(4.1.14) det(DF,) = O¢, hy.

Choose constant k large to satisfy that xa-xp = 0 and (axyy = Coxp = 0. Then, from definition
(4.1.11) of hy and (4.1.4)—(4.1.8),

(4.1.15) ¢, hi(§) = iaj,

where B
m = (1080 4 (1 o) + 08— (w0 — £))ch ) o
a = (2o + (1= + 20 - )G )ul - xo),

az = (1 = xa)(1 — xo0)-
Then (4.1.3) implies that
uo — &1

&

r

O > (M€= ¢o + (1= o) Jxo + (2w + (1= ) + (1= xa) ) (1 = xo)

_51)

(4.1.16)

TP

> cos(
for ¢; from (4.1.3).
Moreover, it follows from (4.1.15) that

(4.1.17) sup Og, hi(§) < C
£€QP
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for a constant C' > 0 depending only on (7, vso).

For a constant a, if Qg N {& = a} is nonempty, then (4.1.16) implies that the one-dimensional
mapping (&1, a) € QsN{& = a} — hi(&1, a) is invertible. Then it follows directly from the definition
of Fy given in (4.1.12) that Fy is invertible. Also, we can directly check that F; and Ffl are C*
from (4.1.11), which yields (a). Finally, (b), (d), and (e) follow from (4.1.11)—(4.1.12).

By (2.4.1) and (4.1.12), ¢oo (Fy '(s,t)) = —vsot, Which gives

oo (F 1 (5,1)) = —vs0 for all (s,t) € F1(Q).
This proves (c). O
By the definition of hy in (4.1.11), we have

F1(QF) C [up — éo,cn] X [0,00).

LEMMA 4.3. Fiz v > 1, vs > 0, and B € (0, év“’)). Then there exists a constant mg > 0
depending only on (v, 7, B) such that any admissible solution ¢ corresponding to (Vao, ) € Ryeak N

{0 < B < B} satisfies

(4.1.18) Ot(Poo — ) (Fy 1 (s,1)) < —mp < 0 in Fy ().

Therefore, there exists a unique function gsn : [uo — ¢o, cn] = Ry such that
Fi(Dshock) = {(s,8sn(s)) : uo — o <s <cen}

PRrROOF. For each j € [0, é”“’)], we represent Fl_1 as

Fy (s, t) = (ha(s,t),t)  in F1(QP).
This expression yields that

(4.1.19) Ot (poo — (P)(Flil(svt)) = D(poo — (p)lFl’l(s,t) : (875;L1(87t)7 1).

It follows from (Fy o Fy ')(s,t) = (hl(ﬁl(s,t)),t) = (s,t) that d,hy(s,t) = —%. This implies
1

that

(Orfn(s,1),1) = —ﬁ(a&hl, 8¢, ),
where D¢, ¢,)h1 is evaluated at &€ = ) (s, t).
Next, we compute v := ﬁ(—a&hl,a&hl).
Case 1. If xo # 0 so that xxr = Xy = 0, we use (o(r)xp(&1) = 0 to obtain
(4.1.20) O¢, h1v = k1a; + kaao,

where
ai = (siny,cosy), az2=(0,1), ki = (Co+r(l—cosy)(o)xo, k2=1-Coxo
for the (z, y)—coordinates defined by (3.5.2).
Case 2. If xo = 0 so that xo = xp», = 0, we use (i (r)x\r(§1) = 0 to obtain

(4.1.21) O¢, hiv = l1by + labg,
where

by = (—siny,cosy), ba=(0,1), 1= (v +7r(l—cosy)Cy)xas lo=1—Cvxw
for the (z,y)-coordinates defined by (3.4.18).
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Claim: There exists a constant m > 0 depending only on (Voo, 7, B) such that any admissible solution
@ corresponding to (Voo, 8) € Rweak N {0 < S < B} satisfies

sup (D(poo — ) - v)(P) < —in.
PeQ

Fix an admissible solution ¢ for B € [0,3]. Let the unit Vectors a1, az, by, and by be from
(4.1.20)—(4.1.21). Then a;, as € Cone’ (eSO,esN) for all y € [0,Z — 8 — &1] for 61 > 0 from (4.1.3),
and by, by € Cone’(es,,, es,) for all y € [0 5 —01). Moreover, k: and I, j = 1,2, are nonnegative
and satisfy that k1 + ko > 1 and l; + 1o > 1 for all P € Q. Then (3.1.17) yields

sup (0e,h1 D(poe — ) - v)(P) < —my, <0
PeQ
for a constant m, > 0. Furthermore, Lemma 3.43 implies that there exists a constant m; >

0 depending only on (veo,7, B) such that any admissible solution ¢ corresponding to (veo,3) €
Rweak N {0 < B < B} satisfies
(4.1.22) sup (0e,hi D(poo — @) - ) (P) < —my.
Peq
Combining (4.1.22) with (4.1.16)—(4.1.17), we conclude that there exists a constant mg > 0 de-

pending only on (veo, 7, 3) such that any admissible solution ¢ for 3 € [0, 3] satisfies

(4.1.23) Bt (oo — P)(FY 1 (5,1)) = (D(poo — @) - ) (Fy ' (s,1)) < —mg <0

for all (s,t) € F1(9). O
Next,E define a mapping F5 : F} (W) — R? so that mapping G, := F» o F} satisfies property

(4.1.1) in QP.
For each g € [O,ﬁé”“’)], we define Fy : F1(QP) — R? by

(4.1.24) Fy(s,t) := (s, ha(s,1)),

and define a function hy : F1(Q8) — [0, 00) by

(1125)  ha(st) = Rosin™ (=) + (1 = Xo) (t(1 — W) + Tysin”'(3))

for the cut-off functions yo, xn € 04( ) satisfying the following conditions:

for s < up — é(/)(l — %),
for s > up — éo(1— 1),

for s < ear(1— 1),
for s > enr(1 = 37),

o Ak o
0<Xo.xwn <1, ——<Xo<0<x’N§—, XoXy =0,
CO CN

where k > 4 is the constant chosen to satisfy (4.1.9) and all the properties used in the proof of
Lemma 4.2.
Then ho satisfies

4.1.26 ha(s,t) = for (s,t) near Fy (D% yrN:%0).
( Y

sonic sonic
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LEMMA 4.4. There exist constants C > 0 and k1 > 0 depending only on (veo,v) such that, for
each 8 € [0, é”“’)], Fs defined by (4.1.24) satisfies the following properties:
(@) [ Bolloucr ey + I1F: loimor @) < C, and det(DFz) = dtha > &1 in Fy(QP);
(b) For Fy(s,t) == (5,1), (F2 0 F1)(Dyedge) = {(5,0) : 5 € (uo — éo,cn)}-

PROOF. A direct computation by using (4.1.24) shows that

det(DFz) = Bha(s, 1) = — fos)z — +(1- 5(0)((1 —Xw) + 7_;5’{ t2)'

For s < up — éo(1 — 57), we can write

(up — 8)2 —t2 =rcosy,

by (4.1.4) and (4.1.11), where r and y are given by (4.1.10) and (3.5.2) for & = F| (s, t). Similarly,
for s > cpr(1 — o), we can write as Vs2 — t2 = rcosy, where r and y are given by (4.1.10) and

(3.4.18) for &€ = F; (s, t). Then there exists a constant x; > 0 depending only on (vs,) such that

(4127) det(DFg) = 6th2 Z K1 in F1 (Q'B)
For a constant a, if F1(Qp) N {s = a} is nonempty, then (4.1.27) implies that the one-dimensional
mapping (a,t) € F1(Qg) N {s = a} — ha(a,t) is invertible. Then mapping F, given by (4.1.24) is
also invertible.

The C*-estimates of Fy and F, ' and (b) are obtained directly from (4.1.13) and (4.1.25). O

By (4.1.25) and the invertibility of Fy, there exists a function hy : [up — éo,car] = Ry such

that
Ey Y(s' t') = (s, ha(s', 1) for all (s',t') € (Fy 0o F1)(QP).

For Fy and F» given by (4.1.12) and (4.1.24) respectively, define a mapping G : QF = [up —
¢o,cn] X Ry by
(4.1.28) Gy = Fyo I,
and denote G1(€) = (¢',t'). Mapping G; satisfies property (4.1.1).

For each 3 € [0, év"’")], define
(4.1.29) 58 1= uop — Co.
Note that sg varies continuously on (v,vs) and § € [0, §). Define a linear function Lg(s") by

2
4.1.30 La(s') = ' —s5)— 1.
( ) s(s) PV (s" = s8)

Then Lg maps [s3, cx] onto [—1,1]. We define a mapping GY : QF — [—1,1] x Ry by
(4.1.31) Gl (&) = (Lp(s),t')  for (', 1) = G1(€).

LEMMA 4.5. There exist constants C > 0 and k > 0 depending only on (vso,7) such that, for
any B €10, é”“’)], gf defined by (4.1.31) satisfies the following properties:

(a) ”gf”c%@) + |‘(gf)71”c4(gf(@)) <C;
(b) |det(DG)| > i in OF;
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(¢) G7 (Tweage) = {(5,0) = s € (=1, 1)};
(d) For ¢oo := oo + %|£|2, 8t/¢oo((gf)7l(s,t’)) < —k <0 forall (s,t') € gf(@ﬁ).

In addition, for any j € (0, ((iv“’)), there exists mg > 0 depending only on (veo, 7, B) such that any
admissible solution ¢ corresponding to (Veo, 8) € Rweak N {0 < S < B} satisfies

(4.1.32) O (poe — DG N (s,t)) < —ma <0 in GI(R).

PRroOF. Fix 3 € (0,8."). It follows from (4.1.11), (4.1.25), (4.1.28), and Lemmas 4.2 and

4.4 that there exist constants C, ko > 0 depending only on (ve, ) such that, for any g € [0, év“’)],

mapping G; defined by (4.1.28) satisfies the following properties:
(@) Gillos@sy +IGT e a ooy < C;
(b') |det(DG1)| > kg in QF;
() G1(Twedge) = {(s',0) : s" € (uo — ¢o,cn)}-
These properties, combined with (4.1.31), yield (a)—(c) for some k < Ka.
By (4.1.12) and (4.1.24)(4.1.28), we find that, at £ = G (s, '),

— 7 7 D172(¢W_¢)'v
Oy (‘Poo - (p)(Gl 1(S/=t/)) = Ds(%o - (P) : (8th17 1)675']7’2 = s )8th2

for v given by (4.1.20)—(4.1.21). Then (4.1.32) follows by combining (4.1.16) and (4.1.23) with
Lemma 4.4(a) and (4.1.31). Assertion (d) can be verified similarly. O

By using (2.4.3) and the definitions of (Yo, Y0, @ar) given in (2.5.1), it can be directly checked
that So = {€ : (poo — o) (&) =0} and Sy = {€ : (Yoo — A7) (€) = 0} intersect at a unique point:

[N r_ &g

(4.1.33) Pr=(§,&) for§ = T tnp

where 555) is the &—intercept of Sp. Then Sg’ and Sﬁ? intersect at (&7, §év + %) It follows from
(2.4.14) and (2.4.42) that dfﬁ; LS 0for Be (0, ) so that

(4.1.34) & <o.

Since point Pj lies on Se, and its £&s—coordinate is greater than the {;—coordinate of P;, we have
(4.1.35) &> e

By (2.4.3), (4.1.3), and (4.1.20)—(4.1.21), there exists a constant mg > 0 depending only on
(vso,¥) such that, for each S € [0, év"’")],

0 (o0 — 0) © (G7) ' (5,1))
0 (o0 — o) © (G7) 7 (5,1)

for all (s,') € G7(Q#). By the implicit function theorem, there exists a unique function f5 €
C%1([-1,1]) such that

(4.1.37) G@Q%) ={(st): —1<s<1,0<t < fa(s)}, Ilfsllcorry <C

for a constant C' depending only on (veo,y)-

IN

—msg,

(4.1.36)

IN

—ms
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ProproSITION 4.6. Fix v > 1 and vs > 0. For each admissible solution ¢ corresponding to
(Voo, B) € Ryweak, there exists a unique function

g : [—1,1] = Ry

satisfying the following properties:

(a)

(4.1.39)

(4.1.40)

(4.1.41)

GHQ) = {(s,t') : =1 <s<1,0<t <gm(s)}

glﬁ(rshoCk) = {(87 gbh(s)) P-l<s< 1}
For any constant & € (0
such that

, ], there exists a constant Cz > 0 depending only on (v, ?)
lgshllos(-11e1-e) < Ce.

Let £§ > 0 be the minimum of ¢y from Lemmas 3.20 and 3.34. For each ¢ € (0, ¢§], denote

2

€= E.
CN — S

Let Qg be the bounded region enclosed by I'O

sonic? bOI]lC ?

QcQycq’

for Q° given by Definition 4.1(iii). For DY and D? defined by (4.1.2), there exist unique
functions gxr and ge so that

GPQENDYY={(s,t') 1 1—é<s<1, 0<t <gn(s)}

So, S, and I'yedge. Then

GHQINDE) ={(s,t") : —1<s<—-1+& 0<t' <go(s)}

for ¢ defined by (4.1.38). Moreover, there exists a constant C' > 0 depending only on
(Voo,y) such that

lonllos ez + llgolles—1,-1125) < C.

For any « € (0,1), there exists Cpar > 0 depending only on (vs,7, ) such that, for any
admissible solution corresponding to (veo, 8) € Rweak,

(par)

o (1—es,1) < Cpar,
where the norm, || - [|57 (par) (1—¢5,1) 18 defined by Definition 3.25(iii) with the replacement of
x by 1 —|s| for the Welght of the norm.

For each 3 € (0, (v‘”)) there exist & € (0,1) and Cj > 0 depending only on (Voo 7, B)
such that, for any admissible solution corresponding to 3 € [0, A],

—1-a),{-1
ol PGl <C (g —g0) (1) =0, (g — g0)'(~1) = 0.
We note that (4.1.41) is equivalent to

1+a& by
losn — gollS P, ooy < €5
1+a> (par)

for a constant Cé > 0 depending only on (v, 7, 3), where the norm, || - 2.4 (21 Atery 18
0

defined by Definition 3.25(iv) with the replacement of x by 1 — |s|.
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(e) For each 3 € (0, ((iv‘”)), there exists a constant k& > 1 depending only on (vs,7, 3) such

that, for any admissible solution ¢ for g € [0, 3],

min{gen(~1) + %1 %} < gan(s) < min{ f(s) — %,gsh(—m s+ 1))

for all -1 < s <1.

PROOF. By (4.1.32) and the implicit function theorem, property (a) is obtained. For an ad-
missible solution ¢, we differentiate the equation: (g — @) o (gf)_l(s, gsn(s)) = 0 with respect to
5 to obtain

n(s) = 2l =P 0 (G
O ((poe = ) 0 (9)7)
where the right-hand side is evaluated at (s, gsn(s)). Then property (b) is obtained from Lemma
3.18, Corollary 3.19, and Lemma 4.5. Similarly, properties (c¢) and (d) are obtained from (2.5.8),
(2.5.12), and Propositions 3.26, 3.32, 3.39, and 3.42.

By Lemma 3.34 and (4.1.1), there exist constants &1 € (0,é5] and m > 1 depending only on

(vso, ¥) such that, for each § € [O,Bév""’)], go satisfies

1
— <gp(s) <m forall -1 <s < —1+¢;.
m

For each § € (0, év“’)), by (4.1.41), we can choose é2 € (0,2;] depending only on (Vso, 7, B) such
that, for any admissible solution corresponding to (voo, ) € Rwear N {0 < B < S},

1
5 < gl(s) <2m for —1 < s < —1+4é,.
By combining this estimate with Proposition 3.11, property (e) is obtained as a result. O

REMARK 4.7. By Propositions 3.30 and 3.32, for each « € (0, 1), there exist constants €3 > 0
and C, > 0 depending only on (v, ) such that, for any admissible solution corresponding to

(Voo B) With 0 < 8 < B8,

Hgsh - go|‘é},}aa7r()_1,_1+53) < Con

where the norm, || - ||§pzr()71 _142,) is defined by Definition 3.25(iii) with the replacement of z by
1 — |s| for the weight of the norm.

By Proposition 3.39, for each o € (0,1), there exist constants £4 > 0 and C/, > 0 depending
only on (veo, 7, @) such that, for any admissible solution corresponding to (veo,3) for ﬂs(v“’) <p<
ﬂb(UOO) + g3,

m

lgsh — gollc2o((—1,—142 < Ch, ds—m(gsh —go)(—=1)=0 form=0,1,2.

By (4.1.34)-(4.1.35), &I given by (4.1.33) satisfies that &1* < &/ < 0 for any 8 € [O,ﬁé”“’)].

DEFINITION 4.8. Fix 8 € |0, ((iv‘”)]. For &{ given by (4.1.33), fix a smooth function xj such
that

I Py
1 for & <& — 825 10C \ .
10 — 5 < (xp) <0, Ixsllesm < C
- Sl

N €l
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for some constant C' > 0 depending only on (vs,7). For such a smooth cut-off function, define

(4.1.42) v5(8) = po(€)xi(&1) + en(€)(1 = x5(61)).
For later use, we list the following useful properties of ¢} for 8 € [0, ((iv‘”)]:
(i) Define
(4.1.43) pp :=max{po, px}.
By (2.5.1) and the definition of ¢ given in (4.1.33), we have
po(&i, &) if & <¢&f,
0s(81,&2) = vol(&,&) = pn(&, &) if & =€,
en (&1, &2) if & > ¢f,
so that
(4.1.44) o5 <¢s inR%.

(i) Let D and éo be given by (4.1.2) and Definition 4.1, respectively. Then there exists a

sufficiently large constant & > 1 depending only on (vw, ) such that, for any 5 € [0, év“’)],

¢ satisfies
% Yo in D? )
(4.1.45) Y5 == . - )
oy Iin{€eR?: & >0}
(iii) The set, {€ : &' <& < €2, (poo — ©5)(§) = 0}, is contained in Q? and

(4.1.46) Sup(Poo — ¥) — inf (oo — 95) > 6 >0
QB QP

for some constant § depending only on (v, 7).
LEMMA 4.9. There exists a constant m > 0 depending only on (vso,7) such that each ©h for
B €0, ((iv‘”)] satisfies
O (9o = B)(G)) (s, 1)) < —m for all (s,t') € GY(QP).

PROOF. We have seen in the proof of Lemma 4.5 that

0upme — e o8)) = 5

for v given by (4.1.20)-(4.1.21), where D¢(poc — ¢5) is evaluated at (G)~1(s,t'). By using (2.5.1)
and (4.1.42), a direct computation yields that

De(poo — 03) = Voo sec B(sin B, — cos B) x5 + (0, —veo ) (1 = x5) + (o — v0)(x3)'(1,0).

From (4.1.3) and (4.1.20)—(4.1.21), there exists a constant m, > 0 depending only on (ve, ) such
that

(4.1.47) De(poo — p0) -0 < =y,  De(poo — o) -0 < —mmy for all (s,t') € gf(Qﬁ).

De(poo — 90h) - v
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By (4.1.7)-(4.1.8) and the definition of xj;, we see that xo(xj) = X ~(x3) =0 on R. This,

combined with (4.1.20)-(4.1.21), yields that (ox — wo)(x3) (1, O) v . Then (4.1.47) implies
that

(4.1.48) De(poo —¢h) v < —m, forall (s,¢') € G (QF).

The proof is completed by (4.1.48) and Lemma 4.4. a

Each admissible solution ¢ corresponding to (veo,3) € Ruweak has a unique function gy, :
-1,1) — satisfying a e properties stated in Proposition 4.6. For such a function g, define
1,1 R satisfyi 11 th ties stated in P ition 4.6. F h a functi defi

a mapping Ga 4., : G2 (Q%) — R2 by
t/
4.1.49 G : (s, = (5, ——) =: (s,1).
(41.49) ot (3 (5 —) =t (5.)
By Proposition 4.6(e), G2 g, is well defined and invertible with
Gag.,(5:1) = (s,1gen(s))-
More importantly, we have
G2)gsh ° glﬁ(ﬂ) = (_17 1) x (0, 1) = Qitcr'
Therefore, a function u given by
(4.1.50) u(s,t) = (¢ —¢h) o (GY) oGyt (s,t)  for (s,t) € Q"
is well defined. To establish a uniform estimate of w given by (4.1.50) for admissible solutions
corresponding to (vVeo, 3) € Ryeak, We introduce a new weighted C*“—norm in Qiter,
DEFINITION 4.10. Fix constants o > 0, « € (0,1), and m € Z,..
(i) For s = (s,),8 = (3,%) € Ql* define
6B (g 8) = ((s —3)* + (max{1 — |s[,1 — |3]})*(t — £)*) 2.
For an open set U C Q'*", define

&
2

(subs) —c
lall s = D sup (1= [s)* 7|0k dfu(s)]),
0<k+i<m SEV
k ol kol (a
(U)x(SUbS) o ( : at+k—o aJrk o |a 8 ( ) a a (S)|)
N, = sup (| minq(1—|s ,(1— ,
"™ = smp (min{ (1= o) 40— s B
(subs) (subs) o),(subs
Jall 55 = a6 + [l .

(ii) (Hélder norms with parabolic scaling). For s = (s,t),8 = (5,1) € Q'**", define
5P (s,8) := ((s — 8)% + max{l — |s|,1 — |3[}(t — )?)*
For an open set U C Q" define
lully 6 & = > sup (1= |s)* 470 dfus)]),

0<kti<m SEU
o ar . « A « 0 |8kal ( ) 8kal (§)|
[u ]gn)a(% ). Z sup (mm{(l —1s|) thts (1 —13]) M } (par) )7
k+l=m S#SEU da"(s,8)
all o5 o= ull 75 + a0,
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For a constant r € (0, 1), denote

(4.1.51) . . .

Q0= N{-1<s<—1+7r}, QV:=Q"N{1-r<s<1}, Q":= Q% N{|s|<1—r}
REMARK 4.11 (Compact embedding properties of the norms in Definition 4.10). For m € Z,

€ [0,1), ¢ > 0, and an open bounded set U in R?, let C7 (), pd]r(U) be the completion under the

(0),(par)
m,o,U

(0),(par)
m,o,U
let C”Z)a cubs) (U) be the completion in norm || - [|;;
bs)
[ v

norm, || - || , of the set of all smooth functions whose || - ||

(cr) (subs)

—norms are finite. Moreover,
of the set of all smooth functions whose
—norms are finite. Then the following compact embedding properties hold:

(i) Let r € (0,1), a,& € [0,1) with @ < &, and m € {1,2}. Then Cl+a) (sub)(go) is

compactly embedded into C (Q9); see [11, Corollary 17.2.7].

1+o¢) (sub)
(ii) Let m1 and mo be nonnegative integers, oy, s € [0,1), and m; + a1 > ma + a9, and
let o1 > 02 > 0. Then le O‘lpar)(U) is compactly embedded into Cm2 O"‘;ar)(U); see [11,

Lemma 4.6.3].

For ¢ > 0 from Proposition 3.36 and sg from (4.1.29), define
€0

(4.1.52) el = .
maXﬁG[O,ﬁéU“J)] S
PROPOSITION 4.12. For each 3 € (0, év""’)), there exist constants M > 0 and & € (0, 3]

depending only on (v, 7, 3) such that, for any admissible solution ¢ corresponding to (ve, 8) €
Rueak N {0 < B < B}, u: Q" — R defined by (4.1.50) satisfies

ar 1+a),(par 1+o¢ subs
(4.1.53) lullcmsay, ) + Nullgn & + lullya 08™ + llull F<m

2,a QN 2,2,Q9 a QO
0

W=

PRrROOF. We divide the proof into six steps.

1. Estimate of u away from s = —1: A direct computation by using Corollary 3.19, Proposition
3.26, Lemma 4.2, Proposition 4.6, (4.1.45), and (4.1.50) shows that, for any a € (0, 1), there exists
a constant My > 0 depending only on (vs,7, @) such that

(2 ar
(4.1.54) [CEETN +||“||2l(5 F<an

for any admissible solution ¢ corresponding to (v, 3) € %weak.

2. To obtain the a priori estimates of u near s = —1, the following two embedding inequalities
from [11] are applied in the next two steps:

LEMMA 4. 13 (Lemma 17.2.10 in [11]). For a nonnegative integer m, o € (0,1), and o > 0, let
both norms || - || (Subs) g I| - H(U)a(pdr) be defined in Definition 4.10. For r € (0,1], there exists a

maU

constant C' > 0 independent of (r,a) such that
par) < Hu|‘(0)7(subS)-

”u”ma Qo m,0, Q9

LEMMA 4.14 (Lemma 17.2.11 in [11]). For a nonnegative integer m, a € (0,3], o > 0, and
€ (0,1), there exists a constant C > 0 independent of (r,c) such that

1+ b 2
0™ < Cllull & 5e”.
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The estimates of u near s = —1 for the admissible solution are given for two cases separately:

(i) B €[0,4"=) and (ii) 8 € [8", B].

3. Estimate of u near s = —1 for € [0, (U“’)) For each § € |0, (v“’ |, by (4.1.1), (4.1.31),
and Definition 4.15, we have

(4.1.55) u(s,t) = (¢ — po)(x,y)  for (s,t) € Q¥ N{-1<s< —1+¢eh}

with
Y )
(gsh o Lg)(z + uo — co)

(s,t) = (Lp(z + uo — co),
for the (z,y)—coordinates defined by (3.5.2). Differentiating (4.1.55), we have

e — S
Us = sz + tgéhwya Uy = gshwya

EN — S8 Y
Ugg = :m+2ts - +ts + (tg, ,
(4.1.56) ( 2 ) ¥ g h Yy + 190 Yy + (t05) " Vyy
N — 8
+ BgShwmy + tgéhgshwyya

Ust = Qghwy 2

_ 2
Ut = G Pyy-

A direct computation by using (4.1.50) and Propositions 3.30 and 3.32 shows that, for 8 € [0, §v°°))
and « € (0,1), there exists a constant C' > 0 depending only on (vs,, &) such that

(4.1.57) [[uf| 220 <

QQQO =

Furthermore, (4.1.57), combined with Lemma 4.14, implies that there exists a constant M} > 0
depending only on (v,7) such that

,(subs)
(4.1.58) [P Qo < Mj

13

for any admissible solution corresponding t0 (veo, 3) € Rweak N {0 < B < ﬁg”“’)}. Combining the
two estimates (4.1.57)—(4.1.58) together, we have
,(par) (143),(subs)

(4.1.59) 1 Qo

+ Jlul < M,

)

for a constant My > 0 depending only on (veo,?)-

4. Estimate of u near s = —1 for g € [ﬂ(v“’ ,ﬂ ves) + 03]: Denote ¢ := @ — <po By Proposition
3.39, any admissible solution corresponding to (veo, ) € Rweak N {ﬂs(v“’ <p< BSU"" + 03} satisfies

(4.1.60) ¥(Pg) = [Dy(Fg)| = 0.
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Regarding ¢ as a function of (x,y) in ’Dg) for eg > 0 from Proposition 3.36, one can directly
check by using (4.1.60) that ¢ satisfies the following estimate: For x = (z,v), X = (%,9) € D®

€07
(4.1.61)

—l-a — a
[l e = > sup (Jv—ap, [FC0F050) ()
0<k+1<2 X€PS,
2 k 52—k ko2—k,) (%
. ~ |awa (X) - 6ma (X)l
+Z sup (mln{|x—$pﬁ|,|x—xpﬂ|} 4 XX Y )

k=0 x,iGDg),x;ﬁfc

—1—a),{P,
< mall s el

for some constant k1 > 0 depending only on (veo,?y, ).
Since ggn(—1) = 0 for B > BLU=) Proposition 4.6(e) implies that

1— R
1 < gsn(s) < k(1—1s|) for s € [-1,—1+¢().

Then, following the calculations in the proof of [11, Lemma 17.2.5], we obtain from (4.1.56) and

Remark 4.7 that ( )
1+ bs —l—«
Il n;agcf“ Y < malllls 0

for some constant ko > 0 depending only on (veo,?y, ).
By Corollary 3.19 and Proposition 3.39, for each a € (0,1), there exists a constant C' > 0
depending only on (v, v, @) such that any admissible solution corresponding to (veo, ) € Rweak N

{ﬁs(v"’") <B< BS(U“’) + o3} satisfies
1—a),{P,
(4.1.62) |W)||2 . sm) AP < &

for g > 0 from Proposition 3.36. Therefore, there exists a constant M3 > 0 depending only on
(Voo, 7, @) such that u given by (4.1.50) associated with ¢ satisfies

(4.1.63) lellyiagl™ < llully s ga™ < Ma.
€0

5. Estimate of u near s = —1 for § € | §v°°) + &, 3): By Propositions 3.42 and 4.6, there
exists & € (0,1) depending on (v, 7, 3) so that ¢ = ¢ — @ still satisfies estimate (4.1.62) for all
B € [Bs (vo) 4 % B] and a € (0,4]. Then there exists My > 0 depending only on (vee, 7, 3) such

that any adm1s31ble solution ¢ corresponding to (Veo, ) € Rweak N {ﬂ(v“’ 2 < B < B} satisfies
estimate (4.1.63) with o = & and M3 = M.

6. Finally, (4.1.53) is proved by choosing & = min{&, 3} and M = 4 max{My, Ma, M3, My}. O

4.2. Mapping the Functions in Q'**" to Approximate Admissible Solutions

Fix v > 1 and vo, > 0. For each g € [O,Bév""’)], let Q? be defined by Definition 4.1(iii). For
each s* € (—1,1), define

(12.1) Q%(s") = @7 1 (61 ({5 = 5°}).
For each 8 € [0, 5), let ¢} be defined by (4.1.42). Then

inf (Yoo —95) <0< sup (Yoo — P5)-
Qﬁ(q)( 903) Qﬁ(il)(sﬁ’ /3)
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('Uoo

In particular, the nonstrict 1nequahty on the right above becomes strict when 8 < fs and

becomes an equality when g > BS

DEFINITION 4.15. Fix a € (0,1), 8 € (0,8")), and 8 € (0,5]. Let u € C'*(Q%r) be a
function satisfying that, for any s € (—1,1),
4.2.2 inf <u(s,1) < sup (Yoo — P5)-
(4.22) I8 (o0 = 98) < (s, 1) < 50D (o )

We define functions g S(“ ), and ¢(*#) as follows:
(i) By Lemma 4.9, for each s € (—1,1), there exists a unique ¢ > 0 such that
(poc = 93) 0 (G7) " (5,7) = u(s,1).
Define a function g( wh) (—=1,1) = RT by
(4.2.3) ol (s) =1
(ii) For g( “2) from (i), define Gy, (.9) by (4.1.49). For G given by (4.1.31), define a mapping
Fuwp) 1 Q" — Q° by
S(up) = (G) "o G; (w.8)°
(iii) For §(y gy from (ii), define the sets:
Lanock (1: B) 1= Fus) (—1,1) x {1}),  Q(u, ) 1= Fu,p) (")
Moreover, define a function p(*?) in Q(u, 3) b

(4.2.4) (€)= (uoF )€ +95(&)  forall§ € Qu,f).

For a € (0,1) and j € (0, (v‘”)) define
- - _ u, B) satisfy (4.2.2) for each s € (—1,1
(4.2.5) @2 = ¢ (u, B) € Ch(Qiter) x [0, 4] : (. 8) ( ) ( )
and (u, Du)(%1,-) = (0,0)
The next lemma follows from Definition 4.15. For details of the proof, we refer to [11, Lemmas
12.2.7 and 17.2.13].

LEMMA 4.16. Fiz o € (0,1) and 3 € (O,ﬁé”“’)). For each (u, B) € &5, the following properties
hold:
() g5 € €1 (=1,1)),
(b) For domain Ag defined by Definition 2.23,
Q(u, B) U Tshock(u, B) C Q° C Ap.
Denote Py = §(y,5)(—1,1), Po = Fup)(1,1), P3 = F(u,p)(1,0), and Py = §(y,p)(—1,0).

Then Tshock(u, ) is a Cl @ —curve up to its endpomts Py and P», and is tangential to So
at P1 and to Sy at Py. For f@ o and f/\/ o defined in Lemmas 3.20 and 3.27,

g1 (=1) = foo(zp), gD (1) = fur0(0),
(4.2.6) d

w,B CN — 88 » d (up CN — S8 »
oD = T o (wp). ol (1) = =L (0),
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where sg is defined by (4.1.29) and zg is given by

o s <,
T8 = 3> glve)
Tp, fB=>0s .

In the above, Pg is the & —intercept of So, and xp, represents the x—coordinate of Pg in the
(x,y)—coordinates defined by (3.5.2). Note that %giﬁ’ﬁ)(il), k =0,1, are uniquely deter-
mined depending only on (veo, B), but independent of u € &2. Boundary 0Q(u, B) consists
Of chdgc = S(u,B)((_lv 1) X {0})’ Fé\gnic = -S(u7ﬂ)({1} X (0’ 1))’ th))nic = %(u”@)({—l} X
(0,1)), and Tshock(u, ) = F(u,p) ((—1,1) x {1}) which do not intersect at the points of
their relative interiors.

Let 69 > 0 be from Definition 4.1. Let the (x,y)—coordinates be defined by (3.5.2) near
19 . . and by (3.4.18) near TN . . For a constant € > 0, define the two sets Q° and QN

sonic’ sonic*

by

Q0 = N, (P92 N {xp, <z < xp, +€}NQAu,B),

sonic

QN = N (MY {0 < 2 < e} NQ(u, B)

sonic

for g9 > 0 to be fized, where N,.(T') denotes an open r-neighborhood of T'. Then there
exists a constant 9 > 0 depending only on (veo,y) such that the following holds: for Lg
defined by (4.1.30), define the two functions fosn and farsn by

fosm@) = o™ o Lg(w +uo — co),  fyan(@) = ali” o Lo(ew — ).
Then
Q? = {(l’,y) RS (xP17xP1 + 5)7 0< y < f@,sh(x)}a
FShOCk(uaﬂ) N 89? = {(‘vaoysh(x)) T E (‘TPN‘TPl + 5)}a
Iyvedge N BQ? ={(z,0) : z € (zp,,xp, +¢)},
1—‘l?omic = anic N aQ? = {(Ovy) :0< y < foysh(o)}a
and

QY = {(z,y) : 2 € (0,2), 0 <y < fran(2)},

Tenock (1, 8) MO = {(x, farsn(2)) : x € (0,¢)},
IMwedge N BQJE\/ ={(z,0) : z € (0,e)},

T e = T N0 = {(0,y) : 0<y < fran(0)}.

Suppose that (u, B8), (ii, B) € &2 satisfy that H(“’ﬂ)HCLQ(W) < M for some constant
M > 0. Then there exists a constant C' > 0, depending only on (ve,7y, M, @), satisfying
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the following estimates:

oS e =11y + I8 wp)ll 1.0 @y < C

(u,B) @,8) <C o _B

||g gsh ||Cl’o‘([7l,1]) = (HU u”cl,a(giter) + |B ﬁ')u

||3(u,6) - g(ﬂ,[})||cl,a(W) < C(Hu - ’ELHCI,Q(W) + |B - BD,

||Q0(uy6) © S(u,ﬁ) - Qo(ﬁyﬁ) oF (@, ||Cl o (Qiter) < C(”U - ﬂ”cl,a(giter) + |B - Bl)a

||(<P(u1ﬁ) - @E) © S(u,ﬁ) - ( (@A) @ﬁ) (ﬁﬁ)”cl,a(W)
< C(”u - a”gl,a(ﬁ) + |ﬂ - 6|)

(e) P = pF) —max{pp, ox} =0 holds on TC . UTN . .
(f) Fore >0, let € be defined by (4.1.38). Let g9 > 0 be the constant from (c). Assume that,
for constants o € (0,1), o € (1,2], and M > 0,
,(par)
(427) ||u||21a)giterm{‘sl<17 9} + ||u||2 o, QiterN{|s|>1—¢&p} <M.
Then there exist C > 0 depending only on (veo,v,,0) and Cy > 0 depending only on
(Voo,y) such that
(428) ||g£ﬁ7ﬂ)”210‘)[71+i_8)1 ] + ||g(u>6) ||2 a, pdlr)—l-i-éo) + ||g(u>6) gN||2 «, F].)a‘r;o 1) < CM’

F0,5) in {1 —|s| < eo} x (0,00) defined by

—1

(GZBO © gf)
(GZQN ° Qf) -

N (s,t) for s e (—1,—-1+ &),
Som(st) = { (s,t) for s € (1 —¢ép,1)

satisfies

||g(0,ﬁ) ||CS(WO{‘S|21—50}) < Cy,

ar)
”S(u»ﬁ)||2,a,Qi°erﬁ{\s|<1—i—8} + ||5( 8) — B, B)Hz a, Q“erm{\ [>1—&0} = <C

(g) Let fg be from (4.1.37). For constants M > 0 and dsn > 0, assume that (u,f) € &0
satisfies (4.2.7) and

. u s+1 n . u
min {a™ (~1) + 8 6} < o (s) < min {al (~1) + M(s + 1), fi(s) — 17}

for all =1 < s < 1 and bg, > ggﬁ’ﬁ)(—l). Then, for any ¢ € (0,1 min{sg, crr}), there
exists a constant C; > 0 depending only on (veo, 7y, , dsn, &, M) such that

(—; ||(U) s(par) <C.,

||$u5 ||2Q¢Q (u, )\ (QOUQN) + ||S(u B8) 20¢QN

lle — SDEHz,a,Q(u,ﬂ)\(@u@) + [lp = @3”22’3&5) < C..

(h) Let (u,8) and (i, ) be as in (d). For any open set K € Q" so that K C (—1+ 6,1 —
0) x (0,1) for some § > 0, there exists a constant Cs > 0 depending only on (Veo,, @, 0,0)
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such that
188 = Sapllcram < Cs((w—a)( 1)lloza-1ts1-a) + 18— A,
) 0 F(u,p) — =P B o S lozem < Cs(llu = allzam) + 18 - Al),
167 0§ ) — P 055 )l cre iy < Co (1t = il gy +18 = Bl),
where (P is given by (P .= p(wh) — @ for each (u,B) € Qﬁg.
REMARK 4.17. By (4.1.1) and (4.2.6), for any (u, 3) € &2, we have
&>

Fix ¢ € (O,ﬁs(v""’)), and suppose that (u,3) € Qﬁg and 8 € [O,ﬁs(v""’) — 6]. Then it follows from
(3.5.22), (4.1.1), and (4.2.6) that there exists a constant ls, > 0 depending only on (v, 7, d) such
that

gl (1)

1) =sin~

giﬁ)ﬁ)(_l) Z lso-
Therefore, there exists b € (0,1) depending only on (veo,?, 0,8, M) such that, for any (u, ) € Qﬁ'g
with 5 € [O,ﬁg”“’) — 4], géﬁ ) satisfies
(4.2.9) b < g(“ sy <! for all s € [—-1,1].

Then there exist C' > 0 depending on (v, 7, @, 0,0) and Co>0 depending only on (ve,7,d) such
that

||$ (0,8) ||Cg(QﬁﬂDE ) S < Cy for D, = MN. (I‘O 60) UN. (FN 60)

sonic sonic

(4.2.10)

1 (0).(par)
I35l @raardn e + 180s) — S0 lzastumno., < CM.

Furthermore, ¢ = ¢(*#) defined by (4.2.4) corresponding to (u, 3) satisfies

% ar) A
(4.2.11) lle — SﬁﬁHCz,a(m llo — <P5||2 « é’(u 8)NDe, < CM.

4.3. Definition of the Iteration Set
DEFINITION 4.18. For ¢ > 0 from Lemma 4.16(c), let &y be given by (4.1.38).
(i) Define u(*™) € C3(Qiter) by (4.1.50) with 3 = 0 and ¢ = @xr. Note that % = ¢ in
Q” by (4.1.42) because po = @a when 3 = 0, which yields that
u(rorm) = in Qter,
(ii) For a € (0,1) and o’ € (0, 1], we introduce the norm:

(*,a) (1+a)(par) + || || (14-«),(par) + || ||(1+a (subs)
2,

|‘uH21Q)Qiter = ||u||02,a(@ot/4) + || ||2 a, Q @, Q 1,a, QO )

(*,a’)

where Qé”%, Qﬁg, and Q?O are defined in (4.1.51). Denote by C (Qiter) the set of
all C?(Q'*")-functions whose | - ||2*aag)lte;norms are finite. Note that C(Q*O‘a/)(lef) is

compactly embedded into C(Qfd,)(ler) whenever 0 < a<a<land 0< & <o <1.



4.3. DEFINITION OF THE ITERATION SET 135

For fixed v > 1, v > 0, and S, € (0, ((iv‘”)), we define the iteration set K C C1(Qiter) x [0, B,]
for some appropriate a € (0,1). For each 8 € [0, 8.], Kg := {u € Ch(Qiter) : (u,B) € K}. In the
definition to come, the iteration set K is given such that

e Ko contains u(orm):
o If 3 is sufficiently close to 0, then u € K3 is also close to «(™°™) in an appropriate norm;

e If B is away from 0, then any p(*#) given by (4.2.4) for u € Kp satisfies the strict
directional monotonicity properties (3.1.6)—(3.1.7);

o [Cg varies continuously on 8 € [0, 8.].

For v > 1 and vs > 0, fix 8, € (0, é )) For & € (0, 3] from Proposition 4.12, define
e}
4.3.1 .=
(131) o =

Let eg > 0 be from Lemma 4.16. For constants a € (0, ax], a; € (0,1), 01, d2, d3, € € (0,%), and
N; > 1 to be specified later, we now define the iteration set K C C s )(Qimr) x [0, B4

DEFINITION 4.19. For fixed S, € (0, ( )) the iteration set I C C'(* o )(Qim) x [0, B4] is the
set of all (u, B) satisfying the following propert1es.

(i) Fix a; = Z. Then (u, 8) satisfies
= w7 e < A (B)
for 71 € CY1(R) given by
01 if 8 < 3+,
H(B) =Ny B> &
linear if g€ (Fl QN—)
with No = max{10M, 1} for constant M from Proposition 4.12.

(ii) For set &2 defined by (4.2.5), (u,3) is contained in &2+. Moreover, let gg, = ggh”@),
Cshock = Dshoek(u, 8), @ = Q(u, ), and ¢ = gp(“’ﬂ) be defined by Definition 4.15.

(iii) Tshock and gsn satisfy

diSt(Fshockv Bl (OOO)) > N;17

(4.3.2) min{ge,(—1) + N3 (s + 1), N3 '} < gen(s) < min{gen(—1) + Na(s + 1), fa(s) — N3 '}

for all —1 < s < 1 with Ny = 2C for C from Proposition 3.7, and N3 = 2k for k from
Proposition 4.6(e) with gsn(—1) > 0, where fg is defined by (4.1.37).

(iv) Let the (z,y)coordinates be defined by (3.4.18) near T¥ . and by (3.5.2) near I'9

sonic sonic*

For @5 = max{po, px}, denote 1 := ¢ — pg. For v > 0, let D€ and D be defined by
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(4.1.2). Let ¢ and ¢ satisfy the following:
v > (8 nQ\ (D2 uDY),
Des,, (Poo — ) < —Ha(B) in 0\ DY,
—0¢, (oo — ) < —H2(B) in Q\ DY,

I+
|00 (z, y)| < Ks(B)z in QN (DS \Da/lo)
|0yt (, y)| < Naz in QN (D \ DS10) U (DX \ DY),
|(0at), Oytp)| < Nae in QN (DP UDY),
4.3.10) le = enllcor@) + e = vollcorg@ < Ns,
4.3.11) O (Yoo — ) > 1, Oup > 1 on Tshocks

)
)
)
2—po N
4.3.6) |00 (2, )| < x in QN (Dz, \Da/lo)
)
)
)

for the unit normal vector v to I'gpock towards the interior of 2. In the above conditions,
functions Ko, K5 € C(R) are defined by

(4.3.12) JHa(B) = 0y min{p — le, Nz}

2 i 0 <p< )+ g
K3(B) = { linear if 8" + 2 < B < B) 4 g,
Ny iU oy < B,
for constants g, 02, 1o, 41, N4, and N5 chosen as follows:
go is from Lemma 4.16.
o9 > 0 is from Lemma 3.36, and po = é for 6 > 0 from Lemmas 3.28 and 3.36.

w1 = 61 for §; > 0 from Corollary 3.17.
Choice of N4: By (3.5.55)—(3.5.56), for each o € (O,ﬁé”“’) - §”°°>),

(4.3.13) inf rp, =
L) to<p<plre

$P5|ﬂ:ﬂ§vm)+a =11z, > 0.

By Propositions 3.30, 3.32, and 3.39, there exists C; > 0 depending only on (v, )
such that any admissible solution ¢ = 1 + ¢g for 8 € (O,ﬁg”“’) + 03] satisfies that
(8, 0y ) (2, y)| < Craz in QN DY

Let @ € (0,1) be from Proposition 4.12. By Proposition 3.42 and (4.3.13), any
admissible solution ¢ = ¢ + g for § > Bgv"") + % satisfies

. a—1 .=

(0, 0y ()| < Caa® < Cy(zp, |B:B§v°")+%3) x in QNDY

for a constant Co > 0 depending only on (ve,7, S«). Then there exists a constant
C{ > 0 depending only on (v, 7, B«, o) such that any admissible solution ¢ = ¥+ g

for 5 € (0, 8] satisfies
(02,0 )¢(2,y)| < Cfz in QNDY.
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By combining this inequality with Proposition 3.26, there exists a constant C* > 0
depending only on (ve,?,B8x) such that any admissible solution ¢ for 8 € [0, SB4]
satisfies

|0z, O)Y(x,y)| < C*x in ﬁﬂ(Dg U’Dé\[{).
We choose N4 := 10C*.

(iv-5) By Lemma 3.5 and the continuous dependence of up and co on 8 € [0, %), there
exists a constant C' > 0 depending only on (ve,7y) such that any admissible solution
¢ for g €0, (U""’)) satisfies

le = enllcor + lle = pollcor < C-

For such C > 0, we choose N5 := 10C.
(v) Let c(|Dpl|?, ¢) be defined by

—1
(4.3.14) (Do, @) == p™= (1Del, )
for p(|p|?, z) given by (2.4.2). Then ¢ satisfies
(4.3.15) [De(&)" <1—adist’ (&, T2, Ul ) for £ € Q\ (DY,,UDY%,)
e ( )) f ) :soruc sonic e/10 e/10/*

(| Dp(€)[?,
n (4.3.15), ji = &t for jie > 0 from Remark 3.16.
(vi) p(IDp|?, ¢) given by (2.4.2) satisfies

Qs R
5 <AIDgl*.9) <2C i Q\ (DY UDSyp),

2 )v_il and C from (3.1.26) in Lemma 3.5. For such constants, denote

7+1

for a, = (

A4

Pmin ‘= 77 Pmax = 2C.
(vii) The boundary value problem

'/v(u,ﬁ) (({5) = Alléﬁlfl + 2A12¢§5152 + A22¢E£252 =0 in Q’

Mu DAaAv =0 Onrsocv
(4.3.16) A ( ,B)( ¢, 9,€) hock
(b = ma‘X{SDNv SDO} — PN on ngnlc U Fé\c{nlm
(;352 =0 on I'yedge
has a unique solution ¢ € C2(Q) N C*(Q), where Nu,py and M, g) are determined by
(u, 8) in §4.4. Moreover, this solution satisfies that (s, t), defined by
(4.3.17) i(s,t) == (¢ + on — ¥5) 0 Sup(s,t)  in Q"
satisfies
(4.3.18) o — qu";gm < 83.

REMARK 4.20. By (4.1.45), the boundary condition ¢ = max{@n, o} — @xr on TS . UTN .
given in (4.3.16) is equivalent to

¢E o PO — PN on 1—‘lsonlc’
0 on TV

sonic*
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REMARK 4.21. For a fixed 5. € ( (v°°)) let the iteration set I be defined by Definition

4.19. For each (u, ) € K, let gsn = gsh , Q= Qu, B), Tshock = Tshock (1, B), and ¢ = p(*#) be
defined by Definition 4.15. Then there ex1st constants Myom > 0 depending only on (v, ), C > 0
depending only on (vs, v, &), and Cjs, > 0 depending only on (veg, 7, B+, &) such that the following
properties hold:

(i) Let go and gpr be from (4.1.39). For Ny from Definition 4.19 (i), gsn satisfies

l1—a),{£1
||gsh||§a( 1)1{) }<CN

(4.3.19) g g
@(Esh—go)(—l): @(Qsh—w\/)(l) =0 for k=0, 1.
(i) Tshock is a C1:%—curve up to it§ endpoints. Furthermore, I'ghock ﬁDg and Ignock ﬂDﬁg are
graphs y = fo w(z) and y = fiv sn(z) for
(4.3.20) fosn(@) = (gm0 Lz (ss +2),  frnvan(@) = (gon o Ly (ew — @),
with fN sh and fo sh satisfying that

1 s = FnollSF 520" 1 fo i — foollS' 5P < Coa(B)

for faro and fo o from Lemmas 3.20(e) and 3.27(e), respectively.
(iii) ©Q C By, (0).
(iv) ¥ = ¢ — ¢} satisfies
DFp=0 onT9 UTN = fork=0,1,

sonic sonic

[¥llcram < CA1(B).
By Lemma 3.27(e) and (4.3.19), we can adjust €9 depending on (ve,?y) to satisfy

1
0< 59/0(_1) < gl (s) <4gp(-1) for all s € [-1,—1+ &)
Then, for each 8 < A",
| |)l+o¢

0,0, y)]| = % < ﬁ <O for (ny) € QN DC,
where 7 = min{g? (—1),0} (note that gsn(—1) > 0 for each (u,8) € KN{B < ﬁé”“’)}).
For each o € (0, S(U“’)), there exists a constant Nj (o) depending only on (ve,?, Bx, o)
such that, if (u,8) e KN{B < Blv=) — o}, then

1 @ T *
)15 meP™ < N (o).

aDO

(v) For each r € (0,&¢), there exists a constant Cg, , > 0 depending only on (veo, 7, Bx, 7, @)
such that
6l g2.0 @vepoTDRy) < CBlnr
DEFINITION 4.22. Define the following sets:
(i) Denote K®** as

(4.3.21) K= {(u, B) € O m)(Qm) : (u, B) satisfy Definition 4.19(i)—(vi)};
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(ii) K and Kt are the closures of K and K&t in C>* (Qi*r) x [0, B,], respectively;

(*,Otl)
(iii) For each C € {K, K K, K=t} and each § € [0, ., denote
Cp:={u: (u,B) €C}.
Note that Cz C C(Q’a (Qiter).

*,a1)

REMARK 4.23. Each (u, 8) € Kt satisfies property (ii) of Definition 4.19, as well as properties
(i) and (iii)—(vi) of Definition 4.19, and all the properties stated in Remark 4.21 with nonstrict
inequalities in the estimates.

4.4. Boundary Value Problem (4.3.16)

In order to complete Definition 4.19, it remains to define the nonlinear differential operators
Nu,p) and My gy in (4.3.16) for each (u, ) € K.

For each (u, ) € K&, let ggn = ggﬁ’ﬁ), T =T wp) Q= Qu, ), and Ispock = Cshock (u, 8), and
let ¢ = p(*P) be defined by (4.2.4).

4.4.1. Definition of NV, gy in (4.3.16). For s defined by (2.5.1), denote
= —pN.
For a C2-function ¢ in €2, we define /\/'(uﬁ)(qg) by
2

(4.4.1) Ny (@) = Y Aij(Do,€)0ee, 6

5,J=1

so that the following properties hold:

e Equation /\/(ug)(é) = 0 is strictly elliptic in Q\ (T9 . UTN . ;

e If ¢ is a solution of (4.3.16), then equation N, g)(¢) = 0 coincides with (3.1.2).

The coefficient functions A;;(p,&),4,j = 1,2, of the nonlinear operator N, gy are defined in
the following six steps:

1. For a constant 7 > 0, let D€ and DY be defined by (4.1.2), and let D, := D UDYN. Let
€0 > 0 be from Lemma 4.16. For a constant e.q € (0, 5) to be chosen later, we define AE;)(E) for
£e€Q\D., 10 by

(4.4.2) A (€) = AL (Do (€), 6(£), €),

where
APY(p, 2,€) = & — (1 + Oe, on),

(4.4.3) AP (p, 2,€) = AR (D, 2,€) = — (p1 + Oe, o8 (£)) (P2 + Deron (£)),
A (P, 2,€) = ¢ — (p2 + D00 (£))?

for ¢ = 2(|p + Don|?, 2 + on) given by (4.3.14).
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2. For pi9 > 0 from Definition 4.19(iv-1), fix a function ¢; € C3(R) such that

MO

s if |s| < 2

(4.4.4) () =1 1 wornis ”V ’
( 110JZ»Yg ( ) 1f| | > 1+77
(4.4.5) 0<¢i(s) <10, CGi(—s)=—C(s) for all s € R,
20(1
(4.4.6) _200+9) <(/(s) <0 for all s > 0.
Ho

Define cg, ug, r, and ¢g by

, in DS
(4.4.7) (s, up) = {(CO vo)  inDx,
(cnr,0) in Dé\éeq
(4.4.8) r=1/(& —ug)? + &3,
(4.4.9) bp =P — PN

for ¢ given by (4.1.42).
Denote ¢ := ¢ — ¢p = ¢ — ¢j. Suppose that ¢E is a solution of (4.3.16). We denote

— ¢p-
18) and (3.5.2) in Dé\éeq and Dg)aeq, respectively.

(4.4.10)

Let the (z,y)—coordinates be defined b
For p € R?, denote

% <
S

(3.

P’ =P~ Digy)ds.
Note that p’ = p in Dé\gcq and p’ = p — D(z ) (o — ¢n) in Dgcq. Let N4 be the constant from
Definition 4.19(iv-4). In Dy, = ’Dé\gcq u ’Dgscq, define O*°4(p, z,y) by

(4411) O?Od(plap%xay) ( 3/4C ( 3/4) (’7+ 1)N4$<1(p72)7 w(xuy)v Z, C,@)

(v+ 1)Nyzx
for j = 1,---,5, where each O;(p, 2,z) is given by (3.2.29). With O®°d = Om°d($,, ¢, x,y) for
j=1,---,5, define a nonlinear differential operator ./\/(1301;)r by
N2 (B) = (20— (4 1) (22) + 07 )iy + Oy + ( 050 )iby,
(4.4.12) — (1+05°Y g, + OE“"d%

= 11(D(s,4) 0, ¥, Y)Vaa + 2012(D 1,4y 0, T, Y)Vay + a22(D (), 2, y) Py
+a (D(I,y)év z, y)/lﬁlﬂ + a2(D(I,y)¢Eu T, y)z/AJU

3. For a C?-function ¢ w + ¢3, the expression of cﬂ/\/'(lD Olar(qﬁ) in the £&—coordinates is given
in the form:
2

2
(4.413)  pNIN(0) = > AP (De,€)0ee, 6+ > AP (D6, €)0c, 6 in QN Dy,

i,j=1 i=1
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where we have used that Dgw D2 ¢ holds in © N Dy, . In the expression above, cg is multiplied

to NV, pofg)r because the expression of 05./\/ po}‘” without cutoffs in the £—coordinates coincides with

the left-hand side of Eq. (3.1.2).
In QN ’Dgscq, a direct computation shows that

1

Agg) _ ((CO _ x)oénod . Oénod) siny + ((CO _ ;v)(% + Ognod) (1 + Omod)) cos Yy,
1

Aéz) _ ((Co B x)og“"d _ Ognod) cosy — ((Co _ x)(% + O§10d) _ (1 + Offod)) sin y.

From this, combined with (3.2.29) and (4.4.11), we see that A\ = A% = 0in QNDE,_. Similarly,
it can be checked that Agz) = Aéz) =0in Q2N Dé\gcq. Therefore, we have

A§2) = A§2) =0 in QN D2scq'
For £ € QN ’DN , define AN

(4.4.14) A (p.&) =AY (p,€).
For £ € QN Dg_.eq, define Ag- as
(4.4.15) A9 (p.&) = A (p.€).

By using Definition 4.19, the next two lemmas can be directly derived. We first discuss the properties
of coefficients (a;;,a;) near T . .
LEMMA 4.24 (Coefficients (ai;, a;)(p, z,y) in QHDJQ\éCq). There exist constants A1 € (0,1),eeq €
(0,%), and Nog > 1 depending only on (veo,7,Bx) such that, for any (u,B) € K<t N {0 < B <
év""’)}, coefficients (a;j,a;)(p,z,y) defined by (4.4.12) satisfy the following properties:

a) For any (z,y) € QNDY.  and p,k = (k1, k2) € R2,
Yy Yy 2€eq

2
Kikj
)\1|K’|2 S Z a’l](p7x y) 2 z+] — )\l 1|K’|2
ij=1
() aij,a; € CH(R? x (N Dé\[q \Fsomc)) forj=1,2, and

”(a’ll’au’az)HCle(szﬂﬁDé\g ) < Neg,

||(0227a1)||Loo(R2Xm) + HD(p,y)(@zzaal)HLm(szm—%) < Neg;

sup |x1/4Dz(a22,a2)(p,x,y)| S Nqu
(p,m,y)ERQXQﬁD'E'\g
suﬂg H(a”LJaaZ)(pv 7')”03/4 QQDN ) S N fOT Zv] = 172
pPE

(c) For each k =1,2, Dk(a;;,a;) € CH*(R? x (2N DQ/ \TN ) and

sonic

Suﬂg ||D (azjaaz)(pv 7')”01 o (R2x (QODN \NH(TN ) < Ncq""75 for each r € (0, 5%)
pe sonic
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(d) There exists a constant C > 0 depending only on (ve, 7, Bx) such that
8, (a11, a12)(p, x,y)| < Ca'/? for all p € R? and (z,y) € QN Dé\ch.
(e) For every (p,x,y) € R? x WDQ{C{,
(@11, a2, a2)((p1, —p2), 2, y) = (a11, a2, a2)((p1, p2), 2, y),

|aii(paxay) - a11(0;07y)| S Ncq$3/4 fO’I’i = 15 25
|a12(P7$7y)| S Nequ:,

1
al(p,-f,y) < _5

(f) For any p € R?, the values of (a;;,a;)(p,-,-) are given on v
by fizing p and taking a limit in (z,y) from QND,
p e R2 and (O y) e FbOl’llC’

aij(paovy) =0 fOT all (’Lv]) 7£ (25 2)7
as2(p,0,y) = cy', a1(p,0,y) =—1, ax(p,0,y) =0.
(8) ¢ =1+ ¢p satisfies
O;'nOd(gbma ¢y7$7y) = Oj(q/}vaya 1/}5 z,y, Cﬁ) in N ,Dé\ch fOTj = 17 e 55'
In addition, if ¢ satisfies

sonic T {‘I = 0} N 8(9 N Dé\efq)
C {x > 0}. More explicitly, for any

€eq

_ Ko
| < 1+5 in QN DY,
for e € (0,%] from Definition 4.19(iv), then, in QN DN

€eq’

NEZE(0) = (20 — (7 + 1)tbs + O1 )b + Oahry + (é +03)tbyy = (14 O)a + Osty

for O = O;(z, Yy, ¥, x,y,cnr). Therefore, equation /\/'(I;f?;(qb) = 0 coincides with Eq.
(3.1.2) in QN DY .

Let o3 be from Proposition 3.39. Coefficients A?
B e o, (voo) + 03]} to define Ny, g).

In the next lemma, we discuss the properties of coefficients (a;;, a;) near T . for 3 < B(v‘”)
o3. While TV

is fixed to be the same for all 5 € [0, 3), I'Q ;. changes as 3 varies. As 8 € [0, (voe))
tends to AL , 09 . shrinks to a point set {P;} for P, given in Definition 2.23, and it remains
to be the point set {P;} for 8 > ﬁg”“’). For that reason, the properties of (a;j,a;) near TS . are
different from Lemma 4.24.

&i»1,7 = 1,2, are used only for (u, 3) € K=tN{p :

sonic

LEMMA 4.25 (Coefficients (ai;,a;)(p,z,y) in QN Dg)aeq). For each (u,B) € KextNn{p : B €

[O,ﬂs(UOO) + 03]}, let (aij,a;) be defined by (4.4.12). Then there exists a constant coq € (0, %)
depending only on (veo,7, Bx) satisfying the following properties:
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(a) There exist constants A1 € (0,1) and Neq > 1 depending only on (veo,?y, B+) such that, for

each (u, ) € Kt with 8 € [O,ﬁs(v"") + 03], coefficients (ai;,a;) satisfy all the assertions

of Lemma 4.24 except for assertions (d) and (g) of Lemma 4.24 by replacing (Dé\ch,Fé\gHic)

with (D2 ,TS,..).
(b) Assertion (d) of Lemma 4.24 now takes the following form:
(b-1) There exists a constant C > 0 depending only on (Voo, Y, Bs, @) such that, for each
(u, B) € K& with B € [0, 5"~)),
|Dy(a’115 a12)(pa €L, y)| < CI1/2 fOT (pa €T, y) € R2 X (Q n D?)v
where r = min{g3 (—1), eq};
(b-2) Let oy > 0 be from Proposition 3.32. For any 0 € (0, %), there exists a constant Cs >
0 depending on (veo, 7, Bx,0) such that, for each (u,B) € K<t N{S € (O,ﬁg”“’) -4},
Dy(a11,a12)(p. 2, y)| < Cs2'/?  for (p,z,y) € R* x (N DY ).
(c) Assertion (g) of Lemma 4.24 now takes the following form: suppose that v satisfies

(4.4.16) e < C'm, |0y <C'2*? in QNDE

for some constant C' > 0; then there exists a small constant V) € (0, E;‘*) depending

on (Voo, 7y, C") such that, whenever e from Definition 4.19(iv) with ¢ < e, ¢ = + ¢p
satisfies

O;‘nOd(gbmv (byvx?y) = Oj(wma 1/}y7¢7$7y5 Cﬁ) in 2N ng fOT’j = 15 o 75'
(¢c-1) For Pg given by (2.5.3), suppose that

€ .
rp, < 0 Lo Q DDSIO # (.
If ¢ satisfies
_ Ko o
|the| < 1+;l’ mn QN Dy,

then, in QN ng,
N 1

NS (@) = (22 = (v + Dby + O1 ) + Ozthy + (5 + Oty = (1+ Oa)oba + Oty
for O; = O; (g, ¢y, ¥, x,y,c3). Therefore, if ./\/(ZO?;((b) =0 holds in QN ng, then
@ satisfies Eq. (3.1.2) in §2 ﬁ’ng.

(c-2) For B e (ﬂs(v“’),ﬂs(v“’) + 03], suppose that

ng 2 1_07
which is equivalent to the case that QN D?/lo = (. Then equation (UO?;((;S) =0
coincides with Eq. (3.1.2) in QN DY

€eq ’
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(d) For all (u,B) € K=t with § > ﬁs(”“’), (aij,a:)(P,+,-) and Dg(aij,ai)(p,-,-), k=12,
are in CH*(QN DS ). In particular, for each & € (0, %), there evists a constant Cs > 0
depending only on (v, 7, Bx,6) such that, if (u, B) € K with B € [Bs (veo) +4, ﬁg”“’)—i—“—;‘),

then
sup H(a’lj;al)(pv 7')”01 a QQ'DO ) < OJ;
peR
sup HD (aij,ai)(Ps M ora @rpg) < < Cs fork=1,2.
pPER?

4. In this step, we define NV, ) near ro .. for (u,B3) € Kt with 3 > BS(U"’") + .

LEMMA 4.26. For each (u, 8) € K, let gg, = ( A 5= S(u,B), = 0B and Q = Q(u, B)
be defined by Definition 4.15, and let

(4.4.17) ¢ = WP — oy
for o given by (2.5.1). For any given o € (0,1), there exists a constant C, > 0 depending only

on (Voo, 7, Bx, ) such that, for each (u, ) € K, there exists a function v(u A ¢ C*(QY) satisfying
the following two properties:

(2) 105" = bler@) < 0% and [ s < Co:

(b) 057 depends continuously on (u, ) € K=t in the sense that, if {(ug,Br)} C K=t con-
verges to (u,3) in CH¥(Qiter) x [0, B.] for some (u, B) € K, then

vl Br) o Bl ) = oA o Fw) in CTo(Qiter),

PROOF. For G defined by (4.1.31), denote
w(svtl) =¢o(g '8)_1(87 t/)

for (s,t') € GP(Q) = {(s,t') : =1 <s<1,0<t' < g(u ﬁ)( )}. For each small constant & > 0, define
a function w.(s,t’) by

t/ + €

~ S 2 M.
t') = 2

w5(87 ) w(l _|_ ML, 1 _|_ c )

for constants M7 > 1 and M, > 1 to be determined later. Then w, is well defined in the set:
€ s €
= t . 14—, — <t/ 1 S — }
Ae {(S’ )i lsl <1+ 90 2M <t <U+eealian) ~ o

Using (i) and (iii) of Definition 4.19, and Remark 4.21(i), we choose constants My, Ma, M3 > 1
depending only on (ves,, 8:) such that the ;7--neighborhood N_= (gl (€)) of GZ(Q) is contained
in A..
Define
we (s, ') = (we

) (5:1) i Gl(Q)

= X(%), where x(+) is a standard mollifier: y € C§°(R?) is a nonnegative function
B1(0) and [ x(£) d€ = 1. Then we define

VP (g) :=w.0G(€) Q.

For each o € (0,1), there exists a small constant e,(c) > 0 depending on (veo,?, B+, 0) such that

o5 V(u( B)) satisfies properties (a)-(b). a

with xs(&) =
with supp(x) C



4.4. BOUNDARY VALUE PROBLEM (4.3.16) 145

Let ¢ € C*°(R) be a cut-off function satisfying that

1 fort<1
t) = ’ 0<¢<1 R.
<®) {0 for t > 2, =e=0on
For a constant o > 0, denote
t
(4.4.18) So(t) = <()-

Let oot € (0,1) be a constant to be specified later. For each (u,3) € Kext, let 05" be the
function given by Lemma 4.26. For each i,j = 1,2, we define

AL 0,8) = o ([P — Dot (DAY (0, 6(6). €)
(4.4.19) + (1= sou(lp = Duf? (€)) AT (Du”) (€), 6(€), €)
for AP (p, z,£) defined by (4.4.3).
LEMMA 4.27. There exist two small constants €®) > 0 and (551) > 0 depending only on (veo,?y)
such that, whenever ¢ and §1 from Definition 4.19 satisfy
e < 8(2), 0 < (551),

there exist C' > 0 depending only on (veo,v,Bx) and A € (0,1) depending only on (veo,7) so that,
for each (u,B) € K=t N {p > Biv=) 4 %2}, the associated coefficients Ag’SUbS defined by (4.4.19)
with oef = /01 satisfy the following properties:

(a) For all (p,&) € R? x QN ng satisfying that |p — Dg(€)] < @7
AG(p, &) = AP (p, 6(€), €),
so that
AGMN(Do(€),€) = A (D(E), 6(€),€)  in
(b) For all (p,&) € R2 x QN QNDo

€eq’

AT (0,€) = A (Do(€). )] < CV/oy;
(c) For each p € R?, DkAZQ’SUbS(p, ) are in CH(QN ng) for k=0,1,2, with

O, subs
Z HD A ')Hcl,a QQ’DO ) < C

(d) For all € € Q ﬁng and p, k = (K1, k2) € R?,

2
Ael> < Y AT (p, &)kik; < A k[

ij=1
5. Let xeq € C*°(R) be a function satisfying that

1 <A+,
F<h 4 Xoq(B) <0 on R.

Xe (ﬂ): e
! {o it 8> Bl + 92, ‘
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For such a cut-off function x.q, we define
Xea(B)AG (0 €) + (1 = xea(B) AT ™ (0. €) = ATV (p.£) for & <0,
Aé\j/(l)aﬁ) for & >0

for Aé\jf and A given by (4.4.14) and (4.4.15), respectively.
6. Finally, we combine (4.4.2) with (4.4.20) to complete the definition of J\/'(uﬁ)(g?)) in (4.4.1).

(4.4.20) A®(p, &) =

ij

DEFINITION 4.28. We define the following:
(i) For a parameter 7 € (0, 3], introduce a family of functions (»(s,#; 7) so that
e (3,5 7) € CHR?) for each 7 € (0, 1];
e 0,(o(s,t;7) =0 for each 7 € (0, 3] and (s,t) € R%;
1 for |s| < 1—,
0 for |s| > 1 —3;

For each 7 € (0, 1], (o(s,t;7) = {

o Go(=s,6;m) = {(s,;7) for all s € R and 7 € (0, 3]
o —10<9.G(s,t;7) <0 forall s >0and 7€ (0,4);
e [[&2(-, 3 7)[lcagrey is a continuous function of 7 € (0, 3].

(ii) For B, € (0, évm)), define a set Q3 C R} x [0,%) as

Q5. = Ugep0,5.1Q° x {8}

for QP defined by Definition 4.1(iii).
For e > 0 and 3 € [0, B.], let € be given by (4.1.38). For (&,5) € QLBJ*, define a function

G QY >R by
(1.4.21) G7() = (6] (©):9).
The C'-dependence of (sg,cs,up) on B € [0, %) yields the following lemma:

LEMMA 4.29. Let g9 > 0 be from Lemma 4.16(c). For each € € (0, %), Cz(s’ﬁ) satisfies the
following properties:

(a) Céa’ﬂ) 1 Qp, — Rois C* with respect to € € QP for B € [0,5.], and is continuous with
respect to B € [0, Byl;
(b) There exists a constant C. > 0 depending only on (Vso,?,€) such that

1655 N gagm < Ces

ep 1 in Q(u, B) \ D,
(c) & = {0 in Q(u, 3) N Deys.

Finally, we define coefficients A;;(p, &) for the nonlinear differential operator N, g given by
(4.4.1) as follows:

(4.4.22) Aij(,€) = ()AL (©) + (1 - 7€) AP (p.8), ij=1.2.

Hereafter, we continue to adjust €oq > 0 depending only on (vee, ).



4.4. BOUNDARY VALUE PROBLEM (4.3.16) 147

LEMMA 4.30. For each (u,3) € K%, let coefficients AU (P, §),i,5 = 1,2, of N gy in (4.4.1)
be given by (4.4.22). Then there exist constants eoq € (0,%), Ao € (0,1), N, 2 1, and C > 0 with
Ao depending only on (Veo,7), (Neqs€eq) depending on (vVso,?, By), and C 0 depending only on
(Voo, ¥, B, @) such that the following properties hold:

(a) For all € € Q with Q = Q(u,B) and all p,k = (k1,k2) € R2,

2
)‘0 dlSt(£7 sonic Uré\gmc |F‘.’|2 Z Al] p?S)KV%J S )\ 1|K“|2

4,j=1
(b) A12(p, &) = A12(p, &) holds in R? x Q, and each A;j satisfies

| Aij || Loe (R2x2) < Neg;

(c) For& = (&1.6) € 2\ D.,,, Ayj(p,€) = AL} (€) and
14550l 1.0 @rvpry < G5

(d) For each p € R?,
[Ai (P, )l esra@) + 1PpAij (P, )l Lo (@) < Negs

(e) For each k = 0,1,2, DEA;; € CH*(R? x (Q \Fsomc U Fé\gmc) Furthermore, for each
s € (0,%), DEA;; satisfies
-5,
e, o (R2x (AN (TP TN ) = Cs

sonic sonic

| D} Asj ;
(f) For eachi,j=1,2, A;;(p,&) = Aé\j/(p,{) holds for all (p,&) € R? x (Q ﬁ’DE /2)
(8) 17 8 < A" + %, then Ay(p.€) = AG(p.€) holds for all (p,€) € B2 x D,

(h) If B € [B) +6,8.] for 6 € (0,%), then Ay(p,&) = AP (p,€) holds for all (p,£&) €
x (N ngﬂ)’ and

Xo(dist(&,T0 )+ 6)|k[? < Z Aij(p, €)rir; < XY K|? for all k = (K1, k) € R?,

7,j=1
sup HD Aij(p,- 7.)||CI,Q(W) <C  fork=0,1,2
pPER? ceq/2

(i) For each (u,3) € K¢, let ¢ = ¢(“P) be defined by (4.4.17). Suppose that ¢ from Definition
4.19 satisﬁes that 0 < € < =*. Then equation N, g (¢) = 0 coincides with (3.1.2) in
0\ (DY /10 Y ’Dé\;lo) In addition, if vp, > 15 or B > B§”°°> + % holds, then equation
Nu,p)(¢) = 0 coincides with (3.1.2) in Q \ ’Dé\;lo.

4.4.2. Definition of M, g)(p, 2,&) in (4.3.16). The definition of M, g)(p, 2,§) in (4.3.16) is
given in the following five steps:

1. For pn and ¢*" given by (2.5.1) and (3.4.13), respectively, define

(4.4.23) Mo(p, 2, &) == g™ (p+ Don(€), 2 + on(£),€) for p,&€ € R? and z € R.
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The nonlinear function Mg (p, z, €) is well defined on the set:
(p,z,é) € Bun, (O) x (_4N574N5) X BaMyom (O) L
_ 2 2
Amo =9 ¢ 200t > ol '+ (v = 1) (€ p—BE —2) > Lum
P — (0, —voo)| > &

for constants (£1, N5, Pmin, Pmax) {rom properties (iv) and (vi) of Definition 4.19, and Myom from
Remark 4.21. Since these constants are chosen depending only on (v, ), for each k = 1,2,---,
there exists a constant Cj, > 0 depending only on (v, 7, k) to satisfy

(4.4.24) IMoller ) < Ch-

2. Similarly to (3.4.22), we define a function M (p, z,&1) by
2

(4425) Ml(p,z,&) = MO(Pvzvflvfév - _)

Voo

M is well defined in the set:

(p727£) € B3N5 (O) x (_3N573N5) X B3Mdom (0)
Avy =95 200t > o+ (= D& e - 52) - B - 2) > P
P — (0, —veo)| > &
For each k =1,2,---, there exists a constant Cy > 0 depending only on (vso,?, k) such that

(4.4.26) ”MlHCk(TMl) < Cj.

In particular, M; is homogeneous in the sense of

(4.4.27) M;(0,0,&) =0, Mi(D(po —onN), 00 —pn,&1) =0 for all & € R.
3. For (po, pnr) given by (2.5.1), denote

(4.4.28) ¢0 = 9o — pN-

For a constant o > 0, let function ¢, be given by (4.4.18). For a constant op. > 0 to be determined
later, we define

M(p,z,€) = <o (| (P, 2) )M (P, 2,61)
(4.4.29) + (1= o (I(p 2)D)) (Gabc(l(p,Z) — (Do, o (€)M (p, 2, &1)

+ (1= 5. (B, ) = (Db0, 60(€))])) Mo (P, 2,€))

for (p,2,§) € Apm := Apmo N AMm, -

For cach (u, 8) € K, let gan = 657, § = Fup)r @ = Qu, 8), Tsnock = Tenoer (1, 3), and
¢ = (P be defined by Definition 4.15. Denote ¢ := ¢ — Q.

For a constant o > 0, we define

g(¢7 FShock) = {(pvzvg) € R2 x R x R2 - pP= Dd)(&)v z = (b(é); € S 1—‘lshock}

and

Es(0, Tsnock) = {(p, 2,€) €R? x R x R? : dist(&, Tshock) < 0, |p — Do(&)| < 0,|2 — ¢(§)| < o}
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LEMMA 4.31. There exists a constant o > 0 depending only on (veo,7y) such that, whenever
obe € (0,Tbc], there exists a constant Cy,, > 0 depending only on (Voo, Y, Obe) such that

Ml caang) < Cone-
Furthermore, it holds that, for each (u, ) € K¢,

(a) gﬂbc (¢7 Fshock) C AM;

(b) The mapping: B — M is in C([0,8.]; C*(Am));

(¢) OnTshock, M(Do,9,&) = Mo(D, 9, &) and OpM(D¢, ¢,8) = OpMo(Dg, ¢,8);
(d) ¢ satisfies

(4430) M(D¢, Qb, é) =0 on Fshock
if and only if p satisfies (3.4.12);
(e) M is homogeneous in the sense that

(4431) M(Ou 075) = 07 M(D(SDO - SDN)a Yo — @N?{) =0 for all 5 € B?Mdom (0)

LEMMA 4.32. For constant &y from Lemma 4.31, there exist constants ope € (0, 0bc], Ebe > 0,
and 8y > 0 depending only on (veo,y) such that, if € from Definition 4.19 satisfies that 0 < € < &y,
then, for each (u, ) € K=, M(p, z,&) satisfies that, for all &€ € Tsnock,
(4.4.32) She < DpM(D(£), 6(£),€) - van(€) < 6.,
(4.4.33) D . M(D¢p(§),#(§),€) < —bes

where Vg, is the unit normal vector to Ushock towards the interior of Q.

PrOOF. By Lemma 4.31(c), it suffices to estimate Do Mo(D¢, ¢, &) - vy to prove (4.4.32).
Following Definition 2.23, let £/ and €2 be the &-coordinates of points P; and P», respectively.
By Definition 4.19(i), Du(=£1,1) = 0, which implies that D¢ = D¢z — Dippr at €71 and €2, for ¢p
given by (4.4.9). By (4.1.45), we have

po(l—Mg)  forj=1,
~
pn (1= (32)%) forj=2,
for Mo given by (2.4.6). For each € [0,%), Mo < 1 < po. Furthermore, it is shown in (2.4.40)-

(2.4.43) that ‘{%’ > 0 and dé\éo < 0 for all 3 € (0,%). Then there exists a constant (51()16) € (0,1)

depending only on (v,7) such that

DypMo(DO(E™), 6(E7),67) - van(67) =

sV < inf DpMo(Dqﬁ(EPf),cﬁ(SPj),EPf)'Vsh(ﬁp”')S%

for j =1,2.
Be(0,85°] oy,

By (4.4.24), there exists a constant &,. € (0,e9) depending only on (ve,7y) such that, for each
(u, B) c K:ext7

5 2
T < DpMO(D¢7 ¢7£) : Vsh(g) < W
b

C

for all £ € I'shock N D,
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By Definition 4.19(v)—(vi), if ¢ from Definition 4.19 satisfies that 0 < & < &, then there exists
a constant 51()22 > 0 depending only on (vee,7) such that

2
DpMo(D(b, ¢,£) . Vsh({) = p(l — 02(|l)|i(92()£|2)| Sﬁ(é))) 2 61()%;) fOI’ all S € 1—‘shock \Débc/4'

Then (4.4.32) is obtained from the previous two inequalities.
A direct computation by using (4.4.25) yields that, for all & = (£1,&2) € By, (0),
cos 3
DM1(Do(£), ¢0(€),&1) = —poMo — (po —1)——,

o0

_ —1
D.M.(0,0,6) = —p3 e - N~

Voo
Then there exists a constant 5&? > 0 depending only on (ve,7) such that
max | {D-Mi(Do(€). 60(€):). D-Mi(0.0.61)} < =82 for all € € Punoae.
BE0.B847
By (4.4.26), there exists a constant oy, € (0, 1| depending on (v, y) such that

(3)

(4.4.34) D . Mi(p,2,&1) < —5‘;

for all € € By, (0) and for all (p, 2) satisfying that either |(p, z)| < obc or |(P, 2)—(Ddo, do(€))| <

Obe. By (4.3.11), (4.4.23), and Definition 4.19(vi), there exists a constant (51(;? > 0 depending on
(Voo,7y) such that

By Definition 4.19(i), p(|Dy¢|?,¢) = po on T .. and p(|Dy|?, ¢) = pa on T .. Using Defini-

tion 4.19(i), we can further reduce &,. > 0 depending only on (vs,”, 8x) so that p(|Dy|?, ) >
1—10 min{pe, part > 0 on Tgpoek N (Dg\éc U Dg)c). Therefore, if € € (0, &), then we obtain

(4.4.35) D.Mo(Dp(§), 9(§),8) = —

1
e

4
D van(€) < =05 on Tanoei \ (P15 UDY,).

5
pv_g DSD ! Vsh(&) < _51(30) on 1—‘lshock

for a constant 51()?;) > 0 depending on (veo,y)-
Then (4.4.33) is obtained by combining inequalities (4.4.34)—(4.4.35). O

Hereafter, let opc > 0 in (4.4.29) be fixed as in Lemma 4.32. This completes the definition of
M in (4.4.29).

4. For ¢g given by (4.4.9), denote v := ¢ — ¢g = ¢ — pj.

Let the (z,y)coordinates be defined by (3.4.18) and (3.5.2) near TN . and T .., respectively.
For M given by (4.4.29), and for & = ((cxr — &) cosy, (cxr — x) siny) near TV . . we use (3.4.25) to

define MV by

MN(qlu q2, Z,Jf,y)

4.4.36 i
( ) = M(—q1 cosy — g28iny

. 9 COS
,—qlsmy+q i
CN — T CN — T

For £ = (uo — (co — ) cos(m — y), (co — x)sin(m — y)) near 'Y

sonic?

MO (q,z,€) == M(q+ Do, z + ¢o, £),

y %y (CN - .I) cosy, (CN - .I) siny).

we first denote
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and then define M© by
(4437) Mo(q17q2727x7y)

go sin(m — y) qusin(r —y) — qo cos(m — y)
Co— X Co— X
up — (co — x) cos(m — y), (co — x) sin(w — y)).

= Mo(_Q1 COS(W_y) + 2

LEMMA 4.33. Let constant o3 > 0 be from Lemma 3.36. Following Definition 2.23, let (xp,;,yp;)
be the (x,y)—coordinates of P; for j = 1,2. Let &, be from Lemma 4.32. Then there exist epe €

(0,&be), Obe > 0, and C > 0 depending only on (veo,7y) such that, for any B € [0, (ve) 4 2] and
all (q,z) satisfying that
(4.4.38) (q, 2)[ < 6ne,
the following properties hold:

(a) If 0 <z —xp, <eépe, then

DuMO(a,z,2,y) < =C™' fori=1,2,  D.M%q,z2,y) <-C}
(b) If0 <z —xp, <éepe, then
D%MN(Q5 Z, T, y) S _Oil fOT 1= 17 27 DzMN(qla q2, vavy) S _Oil'
PrROOF. By (3.4.25) and (3.5.10), there exists a constant &}, depending only on (v.,7) such

that, for each 8 € [0, 5"~ + 2], if |(q,2)|] < &y, then M on the right-hand side of (4.4.36)

and (4.4.37) is the same as M; given by (4.4.25). A direct computation shows that there exists a
constant C' > 0 depending only on (vs,7y) such that, for each 8 € [0, §v°°) + 2],

DQiMO(Ov Oa Zp, yPl) < _O_lv DzMO(Oa 07 TP, yPl) < _é_la

inMN(Oa 07 TPy, yP2) < _é_la DZMN(Ov Oa TPy, yP2) < _O_l
for i = 1,2. Then, by Lemma 4.31, there exist constants 61, € (0,5;.] and C' > 0 depending only
on (veo,y) such that properties (a) and (b) hold. O

5. The next step is to extend the definition of M in (4.4.29) to all (p, z) € R? x R.

For each (u,8) € K<* and a constant ¢ > 0, let o8P e C*(Q) (from Lemma 4.26) be given.
For a constant ¢ > 0 to be fixed later, we define a linear operator:

L899 (p, 2,€) = M(DE D (€), 09 (€),€)

4.4.39
( : + DpM(Du§(€), 09 (€),€) - p + D.M(Dv{P) (€), 09 (€), €).

Let ope > 0 be from Lemma 4.32. By Lemma 4.26(a), if 02 < op., then £59) is well defined for

all (p,z,&) € R?2 xR x Q. For a constant o € (0,01,.) to be determined later, depending only on
(Voo 7, Bx), we finally define M, )(p, z,&) by

(4.4.40) M5 (P, 2,8) == oM(p,2,€) + (1 — o) L8P (p — Du{P)(€), 2 — v{"P) (), )

for <5 = <o (|(p, 2) — (DU (£), 057 (£))]), where <, is defined by (4.4.18).

The following lemma is obtained by adjusting the proofs of [11, Lemmas 12.5.7 and 17.3.23]
via use of Definition 4.19, Lemmas 4.31-4.33, and (4.4.39)—(4.4.40):
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LEMMA 4.34. Let constants &p. and en. be from Lemmas 4.32 and 4.33, respectively. Then
there exist positive constants 5%1), Nl(l), dbe, C, Cs,, and ep € (0,ene] with (5%1),]\71(1),51)6,0)
depending on (Voo,?), eEm depending on (Veo, 7, Bx), and Cg, depending on (voo,’y By, a) such that,
if parameters (e, 01, N1) from Definition 4.19 satisfy that € € (0,&c], 01 € (0, (5 ], and N1 > Nl(l),
then, for each (u,3) € Koxt, Mupy R? x R x Q — R given by (4.4.40) with o = /3, satisfies the
following properties:

(a) My :R2XRxQ—Risin C? and, for all (p,z) € R* xR,
[(Mw,5)(0,0,-), Dy s Mgy (02 Dllesy < Cs. for k=1,2,3;
(b) For [p — Dé(€)| +|= — 6(8)| < 43,
M) (P, 2,€) = M(p, 2,§)
for M defined by (4.4.29);
(c) For all (p,2,€) €R? xR x Q,
D5y M) (P> 2, §) = Dip oy M(D(€), (£), )] < C/os;
(d) For all (p,z,&) € R? x R X Tghock,

1
Obe < Dp My p)(P, 2, §) - Vs < e D, Mu)(P,2,§) < —0be,

where Vg, is the unit normal vector to Tshock towards the interior of €Q;
(e) Representing as £5"" (p = D2 (€), 2 = 052 (€), &) = BLY) | (p,2,€), define

B (p,2,€) = b (€)py + b5 (€)ps + b5 (€)= + W (¢).
Then
E, D) | o oy <
and, for all (p,z,€) € RZx R x Q,
Mup (P, 2,6) = B (p,2,6) < CVa(Ip— Do 2 (&) + |2 — o5 (€))),
D, M) (P, 2:€) = Dip oy B (€)] < CV/os

(f) Mu,p) is homogeneous in the sense that

{ 5(0,0,€) =0,
5)(Dgo(£), 60(£),£) =0
41

for all € € Tghock when B € |0, ], and for all € € Tgnock N D¢, when B € (N , Bx].

(g) Let the (x,y)—coordinates be defined by (3.4.18) and (3.5.2) near TN . and T9 .,
tively. For & € I'shock N D define

Cp. fori=0,1,2,

respec-

Ebc

M(uyﬁ)(qDQQazaIay)

(4.4.41) 2 sin cos
= Mu,p)(—q1 cosy — Z Y ,—q1 s1ny—|— e y

z,(ex — ) cosy, (ex — x) siny).



4.4. BOUNDARY VALUE PROBLEM (4.3.16) 153

€bc’

For S € Pshock nDY d@ﬁ’l’l@ M8175)(p7 2, S) = M(u,ﬁ)(p + D(b@u zZ+ (b@a 5)7 and
Ma”@) (Q17 q2,%,, y)
sin(m — cos(m —
(4.4.42) 1= MG, (=1 cos(m —y) + LI =Y) o sin(r — y) - ST Y)
Co— X Co— X
up — (co — x) cos(m — y), (co — x) sin(w — y)).
Then M(Nu 3) and ./\;lg 8) satisfy the following properties, provided that I'spock N Dgc 18
nonempty:
AN 10 .
(g-1) HM(u,B)”C3(R2 XRxXsnock "DY ) + ”M(u,ﬂ)HC3(R2><]R><FShOCkﬁD§9bC) < Cs.;
(g_2) For all |(qu)| S 5507

M(Nu7ﬂ)(q727x7y) = MN(q727x7y) m FshockmDé\éca

Ma,ﬁ)(quv'rvy) :Mo(q727$7y> n FshockﬁIDgDC

for MN and M© defined by (4.4.36) and (4.4.37), respectively;
(g-3) For each (q,2) ER* xR and i = 1,2,

D%M(Nuwﬂ) (q7 273373/) S _5bC; DZM(NUHB) (q7 vavy) S _5bC n FShOCk N Dé\_,/\/ﬂ

in./\;laﬁ)(q,z,:zr,y) < —dpe, Dz./\;laﬁ)(q,z,x,y) < —0be m Tshock N D?M,
provided that Tshock N D?M 18 nonempty;
(h) M) (Do, ¢,§) =0 on Usnock if and only if ¢ = ¢ + @nr satisfies the Rankine- Hugoniot
Jump condition (3.4.12) on Tshock = {¢ = Poo}-

By (4.4.22) and (4.4.40), the definition of the nonlinear boundary value problem (4.3.16) is
completed.

4.4.3. Well-posedness of the boundary value problem (4.3.16).

LEMMA 4.35. Fiz v > 1, v > 0, and B, € (0, év“’)). Let g > 0 be from Lemma 4.16(c)
with 8 replaced by B.. Let constant oo > 0 be from Lemma 3.36. Moreover, let & € (0,1) be from
Proposition 4.12 with B replaced by B.. Then there exist constants e™) € (0, 0], 5§W) € (0,1),
Nl(w) > 1, and o € (0, @] depending only on (veo, 7, Bsx) such that, whenever parameters (,01, N1)
from Definition 4.19 satisfy that e € (0,™)], 61 € (0, 55‘”)], and N1 > Nl(w), the following properties
hold:

Case 1. If B < ﬂs(v""’) + o9, then the boundary value problem (4.3.16) associated with (u,3) €
Kextn{p < Bl 4 o} has a unique solution ¢ € C2(Q) NCHQ\ (T2 .. UTN ) NCoQ) for
Q = Q(u, 8). Moreover, there exists a constant C > 0 depending only on (veo,?, Bx, ) such that
solution ¢ satisfies

(4.4.43) 18lee@ < C. 1B(E) — 63(8)] < Cdist(€, T, UTY,) i Q

sonic sonic

for ¢ = max{po, ox} — on. Furthermore, for each d € (0,e0), there exists a constant Cyq > 0
depending only on (Voo,7, Bx, d, &) such that

(4.4.44) I9l12.0.0210, < Ca-
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Case 2. For each 0 € (0, %), if ﬁs(”“’) + 6 < B < B, then the boundary value problem (4.3.16)
associated with (u,8) € K has a unique solution ¢ € C2(Q) N CY(Q\ (T2, UTY . )N COQ)

for Q = Q(u, B), and the solution satisfies (4.4.43)—(4.4.44) for constants C' > 0 depending only on
(Yoo, Y, Bxy 0) and Cq > 0 depending only on (voo, 7y, Bx, 0, d, a).

PrOOF. Fix (u,) € K=t N {p < Biv=) 4 o2}, Using G defined by (4.1.31), we rewrite the
boundary value problem (4.3.16) associated with fixed (u, ) in domain R = gf(Q(u,ﬁ)). Then
we follow the argument of Step 1 in the proof of [11, Proposition 17.4.2], by using Lemmas 4.2,
4.5, 4.24-4.26, and 4.34, to choose constants e™) € (0,¢0), 5§W) € (0,1), and Nl(w) > 1 such
that, whenever parameters (g,81, N1) from Definition 4.19 satisfy that ¢ € (0,e™)], 6; € (O,6§W)],
and N; > Nl(w), the newly written boundary value problem in R satisfies all the conditions of
Proposition C.15. Then the existence and uniqueness of solution (;3 of problem (4.3.16) satisfying
(4.4.43)—(4.4.44) directly follows from Proposition C.15.

In the case of Bg”“’) +6 < B < B, for § € (0,%), we follow the argument of Step 2 in the
proof of [11, Proposition 17.4.2] by using Lemma 4.27 and Proposition C.16 to prove that the

boundary value problem (4.3.16) associated with (u, 8) € K has a unique solution ¢ that satisfies
(4.4.43)—(4.4.44). O

For each (u, 3) € K<t the corresponding pseudo-subsonic region Q = Q(u, 3) depends contin-
uously on (u, 3). For later discussions, it is useful to rewrite (4.3.16) as a boundary value problem
for

(4.4.45) (s, t) = (QB +on = ©5) 0 Fup)(s,1) in Qiter
for mapping § = §(u,5) defined by Definition 4.15(ii), where ¢ is given by (4.1.42).

Substitute expression ¢ = @i o (S(u,8)) " — (par — @) into (4.3.16) and then rewrite (4.3.16) in
terms of @ to obtain

(4.4. 46)

Z A Du s, t @Ju—i—ZA(u #) (Dii, 5, 1)1 = [P in Qiter = (—1,1) x (0,1),
3,j=1 =1

G,8) =0  on g, Q" := (—1,1) x {1},
G=0  ondyoQ :={-1,1} x (0,1),
=0

B (D, s) = b (s)0ra + bSY (5) Dot on 9y Qiter .= (—1,1) x {0},

(u)B)
where (01, 02) = (05, O%).
Since ppnr — ¢ = 0 when B =0, we have
(4.4.47) fh) =0 if 8=0,
(4.4.48) M (4,0)(0,0,5) =0 on dg, Q1T

where (4.4.48) follows from Lemma 4.34(f).
From Lemmas 4.16, 4.30, and 4.34-4.35, the following lemma is obtained:

and b( )

LEMMA 4.36. For each (u, ) € K¢, let Agﬁ), Aﬁ“ﬁ), flwh) Mu,p), B i (w.6)

as those in (4.4.46). Then the following properties hold:

(w)
()’ be
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(a) AL AP € OR? x Qter), f0uP) € C(QM), My ) € C(R? X R x 8,Q"), and
B € C(R? xR x 0, Q1)
(b) Suppose that a sequence {(ug, Br)}5>, C K converges to (u, B) € K™t in C(Qfm)(Qiter) X
[0, B«] as k — oo. Then the following properties hold:
- (AZ(-;’“’BIC), Aguk’ﬁk)) — (Af-;’ﬁ), Agu’ﬁ)) uniformly on compact subsets of R? x Qter;
— flunsBr) 5 £WB) yniformly on compacts subsets of Qiter;

= Muy,pr) = A (u,p) uniformly on compact subsets of R? x R x O, Q';

— %’8’2 R s e%’gf)ﬂ) uniformly on compact subsets of R% x O, QteT.

From Lemmas 4.16 and 4.35—4.36, we obtain the following corollary:

COROLLARY 4.37. Let constants ("), 65‘”), and Nl(w) be from Lemma 4.35. Let parameters
£,01, and N; from Definition 4.19 satisfy that ¢ € (0,e™)], 6; € (0, 5§w)], and N; > Nl(w).

(a) For each (u,3) € K, ¢ solves the boundary value problem (4.3.16) if and only if @
given by (4.4.45) solves the boundary value problem (4.4.46). Thus, (4.4.46) has a unique
solution 4 € C?(Qr) N CL(Qiter \ d,,Qiter) N C(Qiter).

Furthermore, there exists a constant C' > 1 depending on (ve, 7, B, @) such that

[a(s,t)] < C(1 — |s]) in Qiter,
For each d € (0, %), there exists C; depending on (vso,7, B+, d, «) such that

Hﬂ”za;,Qitcrm{l—\s|>¢i} < Cy,

where constant af € (0, @] is from Lemma 4.35.

(b) For each (ug,By) € K¢, let 4y, be the solution of the boundary value problem (4.4.46)
associated with (uy,8). Suppose that sequence {(ug, %)} converges to (u, ) € Kt in
C(Qiter) x [0, B.]. Then there exists a unique solution & € C?(Q*")NCT(Qiter\ ,, Qiter)N
C(Qfter) to the boundary value problem (4.4.46) associated with (u,3). Moreover, iy
converges to 4 in the following senses:

— uniformly in Q'ter,

— in CY(K) for any compact subset K C Qiter \ 9., Qe and any o’ € [0, a}),

— in C2%(K) for any compact subset K C Q" and any o/ € [0, ).
(c) If (u, B) € K, then (u, 3) satisfies property (vii) of Definition 4.19 with nonstrict inequality
in (4.3.18).
REMARK 4.38. For a constant M > 0, define a set KF, by

KCEr = {(u, B) € C% (Q"*) + [|ull§2 ues < M, (u, B) satisfy (ii)-(vi) of Definition 4.19}.

(*,01 Jo, Qiter

Let KZ be the closure of KZ, in C(Q’O‘ (Q*er) x [0, B:]. Then Lemma 4.36 and Corollary 4.37 still

*,a1)

hold when Ke*t is replaced by @ for some constant M > 0.
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4.5. Properties of the Iteration Set K

4.5.1. Admissible solutions. As stated in Definition 4.19, parameter « for the iteration
set K will be chosen in (0, §], where & € (0,1) is the constant in Proposition 4.12.

LEMMA 4.39. Given v > 1 and veo > 0, fiz By € (0, év"’")]. Take a sequence {B;}32; C
(0, B«] such that B; converges to 0 as j — co. For each j € N, let 0 be an admissible solution
corresponding to (v, Bj). Let u'9) be defined by (4.1.50) corresponding to (¢;,B;). Then there

exists a subsequence of {u(j)} converging in C?;?al)(Qimr) to y@orm) = (.

PROOF. By Proposition 4.12 and (4.3.1), sequence {u)} is uniformly bounded in Cfff;(@iter).

Since 0(2 ;2103(@“”) is compactly embedded into C(iaal)(Qiter), there exists a subsequence (still

denoted as) {u())} such that the subsequence converges in C’éo‘al)(Qim) to a function u(®) €
C(an )(Qitcr).

*,001

By (4.4.47), Lemma 4.36, Corollary 4.37, and Remark 4.38, we see that u = u(®) is the solution
of the nonlinear boundary value problem:

2 2
Z AZ(-;"O) (Du, s,t)0;;u + Z AZ(-U’O)(DU, $,t)0u=0 in Qiter,
i,j=1 i=1
(451) %(u,o) (Du7u, S) =0 on 8shQitcr,
u=20 on Oy, Qlter,

%EX)O) (Du, s) := bgw)(s)[?lu + bgw)(s)azu =0 on O, Q'ter.
Owing to (4.4.48), u = 0 is the solution of the boundary value problem (4.5.1). Then u(>) =0 in
Q'er by the uniqueness of solutions. In other words, u(>) = y(rorm) jp Qiter, O

COROLLARY 4.40. Let constants ™), 5§W), and Nl(w) be from Lemma 4.35, and let parameters

(¢,01) in Definition 4.19 be fixed from (0,eM™)] x (0, (5§W)]. For each admissible solution ¢ corre-
sponding to (Veo, ) € Rwear N{0 < B < B} in the sense of Definition 2.24, let a function u = u(##)
be given by (4.1.50). Let N be the parameter in Definition 4.19. For each §; € (O,(ﬁw)], there
exists a constant Nl(a) € [Nl(w), 00) depending only on (vso,7, Bx, 01) such that, if Ny > Nl(a), then
(u(##), ) € K for each admissible solution ¢ corresponding to (ve, ) € Rweak N {0 < B < B}

PROOF. For a fixed admissible solution ¢ corresponding to (veo, 3) € Rwear N {0 < B < B}y
let u = u(##) be given by (4.1.50). For simplicity of notation, denote u as u(##) in this proof.

By the choice of constants N; (i = 2,3,4,5), u; (j = 0,1), f, o1, f, and C in Definition 4.19,
(u, B) satisfy properties (ii)—(vi) of Definition 4.19.

By the choice of constant Ny in Definition 4.19(i), u satisfies

= u oy e < No

for any admissible solution ¢ corresponding to (veo, 8) € RweakN{0 < S < B, }. Lemma 4.39 implies

(a) (w)

that, for any given constant d; € (0, 5§W)], a constant N;* € [N;™,00) can be chosen depending
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only on (Vso, 7, B«, d1) such that, whenever § € [0, ]\2]‘1(2)], u satisfies
01
||u — u(norm) Héi;ojlg)itcr 3

Therefore, if Ny > Nl(a)7 then any (u, 8) given by (4.1.50) for an admissible solution ¢ corresponding
t0 (Voo, ) € Ruweax N {0 < B < [.} satisfies property (i) of Definition 4.19. This implies that
(u,8) € K™ Therefore, Lemmas 4.24, 4.27, 4.30, and 4.34 apply to the nonlinear differential
operators (N(y,g), M(u,5)). Then, by Propositions 3.30, 3.32, and 3.39, and Corollary 4.37, we
conclude that w is the unique solution of the boundary value problem (4.4.46) associated with
(u,3). That is, & = u in Q"  for @ is given by (4.3.17). Thus, (u, 3) satisfies property (vii) of
Definition 4.19.

Therefore, we conclude that (u(¥#),8) € K for any admissible solution ¢ corresponding to
(Voo, B) € Ryeak N {0 < 8 < B,} in the sense of Definition 2.24. |

4.5.2. Openness of K. Let ¢, §1, d2, d3, and N7 be the parameters from Definition 4.19. In
this chapter, we further adjust parameters (e, d1), then choose 63 > 0 small, depending only on
(¢, 671) such that Definition 4.19 determines a relatively open subset of Cfﬁal)(gitef) x [0, B].

LEMMA 4.41. For each B. € (0, ((iv“’)), the function set K given by Definition 4.22 is rela-
tively open in Ci;f"al)(giter) x [0, B].

PRrROOF. For each j = 1,2, 3, function J¢;(53) of 5 in Definition 4.19 is continuous for 8 € [0, B].
Since po defined in (2.4.1) depends continuously on 8 € [0, §), 5 = max{po, px} and ¢} defined
in (4.1.42) also depend continuously on 8 € [0,%). Moreover, sg and Lg defined in (4.1.29) and
(4.1.30), respectively, depend continuously on 3 € [0, ). Furthermore, for each 3 € [0, 8.],

Sup (Yoo — @5) — Inf (Yoo —@h) >0 for all s* € [sg, cnr],
e B ok 2 g, ]
where Q”(s*) is defined in (4.2.1).

By Lemma 4.16 and the observations stated above, the set determined by conditions (i)—(vi)

of Definition 4.19 is relatively open in C>® | (Qiter) x [0, 8,], because C>*  (Q'r) is compactly

(*,001) (*,01)
embedded in C*(Qiter); for further details, we refer to the proofs of [11, Lemmas 12.8.1 and 17.5.1].
O

LEMMA 4.42. Let E(W),égw),Nl(w), and ay € (0,a] be from Lemma 4.35. Let ¢g > 0 be from
Lemma 4.16(c). Then there exists 1) € (0,e™)] depending only on (veo,, Bx) such that, whenever
parameters (¢,61, N1) in Definition 4.19 are from (0,e1)] x (O,&gw)] X [Nl(w),oo), there is 63 > 0
depending only on (Voo,?, Bx, 01,02, N1) for 83 from Definition 4.19(iv) so that, if parameter d3 in
Definition 4.19(vii) satisfies that 03 € (0, 83], then the following properties hold: For each (u¥, 3%) €
K, a constant 8% > 0 can be chosen depending only on (veo, 7, By, ut, B¥) such that solution QAS of the
boundary value problem (4.3.16) associated with (u,3) satisfies

(4.5.2) ¢ — (5 —9n) >0 in Q
for Q = Q(u, B), provided that (u,8) € K satisfies
(453> ”uji - u”cl(@) + |ﬁﬁ - ﬂ| < 5ﬁ'
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PROOF. We consider two cases separately: (i) 8% € [%, B.] and (ii) B* € [0, %]
1. Suppose that 8% € [2%, 3,]. By (4.3.3) in Definition 4.19(iv), uf satisfies

NE
102

3 iter €
’Lbu>N—12 ant m{1—|S|ZE}

for & = 25~ If 8 > 0 satisfies

(454) 527

b3 < 2L
® = N2

then it follows from (4.3.18) that 4% := (¢! + orr — ©hs) © B(us ) satisfies

" 01 =T 5
(4.5.5) ' > 2—Nl252 in Qiter N {1 — |s] > 10

for & = —2
cN—S8

with (uf, 8%).

Note that 4* is the solution of (4.4.46) determined by (u*, 3*). Then, by Corollary 4.37, there
exists a constant % > 0 small, depending on (veo, 7, Bx, 03, u¥, B%), such that, if (u, ) € Kt satisfies
(4.5.3), then (4.5.5) implies that 4 given by (4.3.17) satisfies
O
4N?

For a constant » > 0, denote D, := Dﬁvgﬂ)g for DV and D defined by (4.1.2). By Proposition
4.16(c), 3,5y (Do) = Q" N {1 = [s| < 5} Thus, (4.5.6) implies

, provided that (;ASﬁ is the solution of the boundary value problem (4.3.16) associated

(4.5.6) o> dy  in Qitern {1 —|[s| > 1_60}-

u.f)

(4.5.7) 6= (p5—pn) =0T 5 >0  inQ\ Dy
Define

(4.5.8) Vi=¢— (¥h — on) in QN D,s.

By (4.1.45), we have

- {45— (po —pn) I QNDY,,

4.5.9 =
( ) v in QﬂDgz,

o

provided that the condition:

0
(4.5.10) e < %

holds for k£ > 1 from (4.1.45).
By (2.5.1), po — @n is a linear function depending only on &. Since ¢ is a solution of the
boundary value problem (4.3.16) associated with (u, 3), Y satisfies
~ 2 ~ ~
Lowp) () =Y Aij(D,€)0e,e,0 =0 in QN DYy,
i,j=1

(@]
on lﬂsonic’

0
8521[) =0 on chdgc N 8@82,
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where {A;;(Dg¢, €)}2 7j=1 is given by (4.4.22). By Lemma 4.30(g)—(h ) uﬁ)(z/J) = 0 is strictly
elliptic in Da/2' By Lemma 4.34(f), the boundary condition M(U)B)(D ,&€) =0 on Tghock ﬂ@D
is equivalent to

M(u,ﬁ)(Déa (l;a S) - M(u,ﬁ)(D(SDO — (p/\/)u PO — PN, S) =0 on I'shock N aD?/Q

By Lemma 4.34(d), the boundary condition stated immediately above can be rewritten as
BV — pp =0 on Tanock N ODY)y,
where B and p satisfy
Sbe < B-Veh <001, 11> ne on Tshock N ODY),

for constant dp. > 0 from Lemma 4.34(d) and the unit normal vector vy, to I'shock towards the
interior of €.

By (4.5.7), the strong maximum principle, and Hopf’s lemma, we obtain that ¢ >0 in DS/2,
which implies that

(4.5.11) a>0 inQtTn{-l<s< —1+§},

provided that condition (4.5.10) holds.
By using (4.5.9), Lemma 4.30(a), and properties (d) and (f) of Lemma 4.34, it can be similarly
checked that

(4.5.12) >0 in Qimrﬂ{l—%<s< 1.

From (4.5.6) and (4.5.11)(4.5.12), we obtain that @ > 0 in Q!***, provided that §* > 0 is chosen

sufficiently small and e satisfies (4.5.10). This proves (4.5.2) for 5% € [?\%, Bs]-
1

2. Suppose that 3% € [0, ?\‘;;] Choose &* € (0, i‘;&) so that (4.5.3) implies that g € [0, J‘z,—ll)

By Lemma 4.34(d), the maximum principle applies to solution ¢E of the boundary value problem
(4.3.16) associated with (u, 8) € Kt satisfying (4.5.3) so that

(4.5.13) $>0 inQ.

For (v, @) given by (2.5.1), denote ¢p := wo — @ar. Since ¢g is a linear function of &, ¢ — oF
satisfies

Ny (b —65) = Nup (@) =0  inQ
for the second-order differential operator (4.4.1). From properties (d) and (f) of Lemma 4.34, it
follows that M, g) (D, $,&) — M5y (Dos, ¢p,§) = 0 for all £ € Tghock- This condition can be

written as

b De(¢— ¢p) +bo(¢—ds) =0 on Cenock,
where b and bg satisfy that b-vg, > 0 and by < 0 on ['ghock for the unit gormal vector Vg, t0 Tshock
towards the interior of 2. Then the comparison principle implies that ¢ > ¢g in 2. Furthermore,
¢=0>¢s onTY
(4.5.14) ¢>¢s  inQ

Then (4.5.2) is obtained from (4.5.13)-(4.5.14), because max{0, ¢s} > ¢ — ¢ holds in Q. O

‘onic- BY the strong maximum principle, we conclude that
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LEMMA 4.43 (Estimate of ¢ away from T2 ). Let eg > 0 be from Lemma 4.16(c). Let €™,
5§W , 1W), and ot € (0,a] be from Lemma 4.35. Let ™) and 63 be from Lemma 4.42. For a
constant v > 0, let DC be defined by (4.1.2). Then there exist ) € (0,e1)] depending only on
(Voo, ¥, Bx) and C > 0 depending only on (Veo, "y, Bx, &) such that, whenever parameters (¢,061, N1) in
Definition 4.19 are from (0,e™)]x (0, 5§W)] X [Nl(w), 00), and &3 € (0,83], then the following properties
hold: For each (u*, %) € K, a constant 5% > 0 can be chosen depending only on (veo, 7y, Bx, u¥, %) s0
that, if (u, B) € K& satisfies (4.5.3), solution ¢ of the boundary value problem (4.3.16) associated
with (u, B) satisfies the estimate:

(45.15) I <0
for Q = Q(u, 8), where norm || - H2 o p;ipo o is defined by Definition 3.25.

PROOF. The proof is divided into two steps.

1. Claim: There exists a constant C > 0 depending only on (vso,7, B«) such that, for each
(u, B) € Kext, ¢ satisfies
(4.5.16) b(x,y) < Ca? in QN Dﬁg

in the (x,y)—coordinates defined by (3.4.18).
For the (z,y)—coordinates defined by (3.4.18), denote

A
v(z,y) = 5:102
for a constant A > 2= —51 to be determined later, where p is from Definition 4. 19(iv-1). For
the elliptic cut-off ¢; defined by (4.4.4), (1(%) = 2,;1_1“. By Lemma 4.24 and (4.4.22), equation

J\/'(U)B)(qg) = 0 is rewritten in the (x,y)-coordinates as
NS (@) =0 inQnDY

for the nonlinear differential operator (puo ;)r given by (4.4.12), where e¢q € (0, %) is from Lemma

)
4.24.
2- 4

By (1(%) = =7 and (4.4.12), we have

=S

mod
i

olar Ho
./\/(};15)(1)):141:( -5+
with O = 04 (v,,0,2,y) for j = 1,4. It follows from (4.4.11)
for C > 0 depending only on (vss,7). Therefore, there exists & € (0, 1 mln{so, €eq) sbc}) dependlng
only on (vso,7y) such that

+ OZlod) in Q ﬁ Dé\f /2,

N0 < An(= (1= 58+ 0VE) < =GP (1= 13) <= AT menDy,

Note that 0 < up < 1 by Definition 4.19(iv-1) and Lemma 3.28.
On Tgnock(u, 8) N DY, properties (f)f( ) of Lemma 4.34 imply that

M u,p)(Dv,v, &) = ) (Dv,v,&) — M(4,5)(0,0,&)

A . A
< —Ope(Az + 5332) < 0= Mg (Do, ¢,§)
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for constant dp. > 0 from Lemma 4.34(g). On I'yedge N ’D6 , O, = 0yv = 0 = Oy (b On IV
v=0= QAS holds.

By (4.4.43) and Remark 4.21(ii), there exists a constant C > 0 depending only on (Voo, ¥, Bx)
such that ngS satisfies

(4.5.17) b(z,y) < Cx on 2N Dé\g.

sonic?

2 2—
=, 1+’Y

Choose A = max } so that v satisfies

b <w on QN {z =¢}.
By Lemmas 4.30 and 4.34, and the comparison principle, we have
(4.5.18) p<v imQnDY.
In order to extend this result onto Q N DY

> we adjust the choice of A as

9 _ ko
A= rnax{2c, 10,26:80},
£ 1+~ &2
so that, from (4.5.17),
A,
(4.5.19) b(z,y) < Cep < 55 < v(z,y) in QN (DY \DY).

Combining (4.5.18) with (4.5.19), we obtain (4.5.16) with C' = A for A given above before (4.5.19).

2. By Definition 4.19(iii) and Remark 4.21(ii), there exists a constant I > 0 depending only on
(7, vs0) such that

(4.5.20) Farsn(z) >1 on [0, &o].
By Remark 4.21(ii), fN sh satisfies the estimate:

1—«a),{0
(4.5.21) 1 snllS ot < I fav ol s o.eo)y + CNo.

By (4.5.16), (4.5.20)—(4.5.21), Lemmas 4.24 and 4.33-4.34, the boundary value problem (4.3.16)
associated with (u, ) € Kt satisfying (4.5.3) satisfies all the conditions of Theorem C.11. There-
fore, we conclude from Theorem C.11 that, for each o’ € (0,1), there exists a constant C,s > 0

depending only on (vee, 7, Bx, @) such that ¢ satisfies

(2 ar
(4.5.22) |85 s < Car-
Finally, (4.5.15) is obtained by combining estimate (4.5.22) with Lemma 4.35. O

defined in Definition 2.23 depends continuously on 3 € [0, §).
Therefore, the pseudo-subsonic region Q(u, 8) associated with (u, 8) € K depends continuously

on (u, ). In particular, Q(u, 8) N Dg changes from a rectangular domain to a triangular domain
as (3 increases from 8 < ﬂ§”°°> to B > ﬂ§”°°>. Furthermore, the ellipticity of equation N, B)(QB) =0

near I'Y . changes as 3 varies. For that reason, the a priori estimate of a solution ¢ of the boundary

value problem (4.3.16) is given for the three cases separately:
(i) B < p=);
(i) B > 8L close to B{");
(iii) 8 > ﬂs(v“’) away from BS

As pointed out earlier, T9 ..
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LEMMA 4.44 (Estimates of ¢ near T'9 ). Let €®) be from Lemma 4.43. There exist e© €

sonic
(0,e®2] and 5£E) depending only on (Veo,?, Bx) such that, whenever parameters (g, 01,03, N1) in
Definition 4.19 are chosen as in Lemma 4.43, and (g,01) further satisfy
0<e<e® 0<d <8P,
then, for each (uf, B%) € IC, there is a constant §* depending on (voo,?, Bs, 02,03, ut, B¥) so that, if
(u, B) € Kt satisfies (4.5.3), then the following properties hold:
(i) If B € [0, S(U“’)), for each o/ € (0,1), there exist constants £, € (0,e9] and Cor > 0

depending only on (Veo,7, B, ') such that solution ¢ € C*(Q) N CH(Q) of the boundary
value problem (4.3.16) associated with (u, 3) satisfies

n 2),(par
¢ — (o — sw)llé,l,(,%"‘mgp < Cu;
€p

(ii) There exists a constant b e (0, Bx — ﬂév"")) depending only on (vVoo,, Bx) such that, if
B e [ﬁb@“’), ﬂ§”°°>+5], then, for each o € (0,1), there exist constants &, € (0,¢¢] depending
on (Voo 7, B+) and Cor > 0 depending only on (ves,, Bx, &) so that ¢ satisfies

¢ — (o — SON)HCM/(Qanp) < Cur,

D™ —po +on)(P5) =0 form=0,1,2,
where Pg is defined in Definition 2.23;
(iii) There exist constants & € (0, %) depending only on (Vso, 7, PBx) and C > 0 depending only
on (Voo, 7, Bx) S0 that, if B € [ﬁs(v"’") + g, Bx], then b satisfies

- —1-a&),{P,
(4.5.23) 16 = (e0 = x5 aanpe ! < C,
(4.5.24) D™ (¢ — po +on)(P3) =0 form=0,1.

PRrROOF. We divide the proof into two steps.

1. Assertion (i): Owing to Remark 3.31, we need to consider two cases separately: (i) 8 < ﬂ§”°°>
away from ﬁg”“’) and (ii) 8 < B§”°°> close to ﬁg”“’).
By Lemma 4.2(e), (4.1.26), (4.1.31), Proposition 4.6, and Definition 4.19(iii), there exist € €

Voo

(0,e®P)] and &, € (0, ﬁ*l—) such that, for any (u,8) € K, it holds that, if o € (0,51], then we
can fix 7 > 1 depending only on (vs,7,0) and k > 1 depending only on (vse, ) such that

(a) if 0 < B < AL — 2. then
1
(4.5.25) {0<z<20<y< =} CcONDS c{0<z<20<y<2ml);
(b) if B{") — o < B < B{") | then

(4.5.26) {o<x<2é,0<y<yp1+%}cﬂmb§éc{o<x<2é,o<y<yﬂ+2/%x}.

For a fixed o € (0,51], suppose that 0 < 8 < ﬁg”“’) — 5. Let ¥ be given by (4.5.8). By Lemma
4.42, we have

(4.5.27) $>0  inQNDY,,
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provided that (u, 3) € Kot satisfies (4.5.2) for §* > 0 from Lemma 4.42.
Owing to (4.1.45), if condition (4.5.10) holds, then we can repeat Step 1 in the proof of Lemma
4.43 to obtain

(4.5.28) Y(z,y) < Cx? in QN DE for &y := min{eo, %9}

for C > 0 depending only on (v, 7, 8x), where the (z,y)—coordinates are given by (3.5.2), and
¢o and k are given by Definition 4.1 and (4.1.45), respectively. Repeating Step 2 in the proof of
Lemma 4.43 with (4.5.27)(4.5.28) and fo o given by (4.3.20), and using (4.5.25), we can show
that, for each o € (0,1), there exists a constant C, > 0 depending only on (veo,7, Bx, @) such
that

n (2 ar (2 ar
¢ — (vo sDN)IIQZY,(Em)Do = IWJIIQZY,%O)DO < Car.

Next, suppose that B(U“’ —0< B < B(U“’) In this case, we need to combine two estimates: (i)

in QN {z <yp } and (ii) in QN {z > 2 S} near T .-
In Qn{z< yPl} we repeat the argument of Step 2 in the proof of Lemma 4.43 to obtain

||¢_ ( SO-/\/)HQQ/P;;;)DO H¢||20/};;1;Do S CO/
Pl p1

for each o/ € (0, 1) where C* > 0 is given, depending only on (v, 7, Bx, o).

In QN {z >y} } near I'Y ., we adjust the argument in Step 2 in the proof of Proposition
3.32 to show that there exist sufficiently small constants @ € (0,01] and €* € (0,&0] N (0,P?0)]
depending only on (v, 7, B«) so that ¥ satisfies

2
Y(z,y) < Ca? in QﬁDgﬂ{x>y1i01}
for C > 0 depending only on (veo,?y,Sx). For fo,sh defined by (4.3.20) and zp = (xo,y0) €

2
QnD n{zr > y%}, we define F(30)(S) by (3.5.39) given in the proof of Proposition 3.32. By
Remark 4.21(1)-(ii), F*0) satisfies

I | o2(—1,17) < CNoy/Zig

for C' > 0 depending only on (vs,7, ). Then we apply Theorem C.6 and adjust the later part of
Step 4 in the proof of Proposition 3.32 to conclude that

6 = (po sw)l\za,%fmo = IWHM,%"‘;DO <Cu

for each o € (0,1), where C,y > 0 is given, depending only on (veo,?, S, @), provided that
€ (0,0].
The proof of assertion (i) is completed.

2. Assertions (i) and (iii): Assertion (ii) can be proved in a way similar to Proposition 3.39.
Estimate (4.5.23) in assertion (iii) directly follows from Proposition C.16.

For B > fs + 2, (4.4.43) implies that

(4.5.29) (¢ — ¢o)(Ps) =0
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for o = o — @xr. By Lemma 4.34(f) and (4.5.29), ¢ satisfies

1
/ Mup)(tD + (1 — ) Do, td + (1 — t) o, €) dt - D(¢ — ¢o) =0 at € = Pj.
0
By (4.4.23), (4.4.25), (4.4.29), and Lemma 4.34,

10ps M) (P, 2, Ps) — 0, ™" (Do (Ps), 90 (Ps), Ps)| < C\/1

for some C > 0 depending only on (v, 7, Bx). This inequality, combined with Lemma 3.37, implies
that, if 6, > 0 is chosen small, depending only on (Yoo, Y, Bx), then the boundary conditions:
My, 3)(D¢ gb &) =0 on Igpock and gbgz = 0 on I'yedge are functionally independent at Pg so that

D(¢ — ¢o)(Ps) = 0.
In proving assertions (i)—(iii), all the required properties of /\/'(u 3) and M, g) are provided by
Lemmas 4.25, 4.27, 4.30, and 4.32-4.34. g

COROLLARY 4.45. In Definition 4.19, choose parameters («, €, 41, d3, N1) as follows:

(i) For @, a1, and & from Lemmas 4.35, 4.43, and 4.44, respectively, choose

1
a=g min{&, ay, &};

(ii) Choose (g,d1, N1) to satisfy
(e,01, N1) € (0,°] x (0,6{™] x [N{*), 00)
for N\® ¢ [N{"), 50) from Corollary 4.40;
(iii) For (61,N1) € (O,é;w)] X [Nl(a), o), denote § :=
determined later. Choose d3 to satisfy
83 € (0, 83).

Under the choices of parameters («, £, d1, d3, N1) above, there exists a constant C' > 0 depending only
on (Veo, 7, B+) such that, for each (u, 8) € K<, denoting the unique solution of the boundary value
problem (4.3.16) associated with (u, 8) by ¢ € C2(Q(u, 8))NC*(Q(u, B)) and defining @ : Qiter — R
by (4.3.17), we have

(4.5.30) [l ||2 20, giter < C.

2N2 02, where do > 0 is a parameter to be

PROOF. By the choice of parameters a € (0, 6) and (g, 01,93, N1), estimate (4.5.30) follows
from Lemmas 4.43-4.44 by repeating the argument in the proof of Proposition 4.12. |

PROPOSITION 4.46. Under the choices of parameters (a, ¢, 51, d3, N1) as in Corollary 4.45, the
iteration set K defined in Definition 4.19 is relatively open in C> (roerr) (Qiter) x [0, Ba].

PROOF. We have shown in Lemma 4.41 that K is relatively open in C(Q;O‘al)(Qim) x [0, Bl
Therefore, it remains to check that property (vii) of Definition 4.19 defines a relatively open subset
of 3 (Qiter) x [0, B«] under the choice of d5 given by (iii) in the statement of Corollary 4.45.

(*,01
Suppose that this is not true. Then there exist (uf, 8%) € K and a sequence {(uy, 8,)}5; C K
such that

; _ ﬁ(*‘ll _ g — N (*,01)
Jim flup = ully 7 gieer + [Bn = 5% = 0, [t = tnlly ;5 gier = 03 forallm €N,
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where each @, for n € N is given by (4.3.18) for (u, 3) = (un, Bn)-
Let 4 be given by (4.3.17) with (u, 3) = (uf, 3%), and denote

63 - ”’u’ri - uﬁ||2*a0;12 Qiter
10 '
By (4.3.18), it holds that 6% > 0. Therefore, we can choose nf € N sufficiently large such that

[lwn — uﬁngOfQ)_Qiter + |Bn — B < 8% for all n > nf. Then we have

5t =

*Otl)

e, — Aﬁ||2 /2,00 2 95* for all n > nf.

By Corollary 4.45, {4y, } is bounded in 02 2 (Q‘mr) It is noted in Definition 4.18 that 02 2o (Q‘mr)

is compactly embedded into C** (Q‘ter) Therefore, {#in} has a subsequence {i,, } that converges

(*,001
in 0(2*0; (Qiter) to a function a* 6 Céo‘m)(@ter) so that
N ENe
(4.5.31) i — #1505 queer > 90,
Define

O =0T gy —oN P I 5 () = O(uf, B7).
By Lemma 4.36, ¢* solves the nonlinear boundary value problem (4.3.16) associated with (uf, 8).
Then the uniqueness of solutions of (4.3.16) stated in Lemma 4.35 implies that @* = u#, which is
in contradiction to (4.5.31). Therefore, we conclude that property (vii) of Definition 4.19 defines a
relatively open subset of C(Qfal) (Qiter) x [0, B4] under the choice of d3 given by (iii) in the statement
of Corollary 4.45. O

REMARK 4.47. In Proposition 4.46, the choice of (a, &, 01, N1) depends only on (veo,, B+), and
the choice of d3 depends only on (v, v, Bx, 01, 02, N1), where parameter J is to be determined later.






CHAPTER 5

Existence of Admissible Solutions up to Bé”‘”)
— Proof of Theorem 2.31

Fix v > 1, v > 0, and B, € (0, ((iv‘”)). For the iteration set K defined in Definition 4.19,

define
K(B) = {u e CL5, (@) : (u,8) €K} for each B € [0, B.].

2,«

In this chapter, we define an iteration mapping 7 : K — C(* ) (Qi*er) with the following properties:

(i) For each 8 € [0, B.], there exists u € K(S) such that Z(u, 8) = u;

(ii) If Z(u, 8) = u, then ¢ given by (4.1.50) yields an admissible solution corresponding to
(Voo B)-

5.1. Definition of the Iteration Mapping

Let parameters (a, €, 1,93, N1) in Definition 4.19 be fixed as in Proposition 4.46.
In order to define an iteration map satisfying (i)—(ii) stated above, and to employ the Leray-
Schauder degree argument for proving the existence of a fixed point of Z(-,8) in K(8) for all

B € (0, é”“’)), we require the compactness of Z.

For each (u,3) € K, let (ggﬁ’ﬁ),l"shock(u, B), Qu, B), p(*A)) be defined by Definition 4.15, and
denote them as (gsh, I'shock, 2, ¢). For such a function gy, we define (gf, G2,4.,) by (4.1.31) and
(4.1.49), respectively. Let ¢ € C2(Q2)NC*(Q) be the unique solution of the boundary value problem
(4.3.16) associated with (u,8). Then function @ : Qi — R is given by (4.3.17), and function

¢ = pwh) is given by
(5.1.1) PP = gr +ioF

for ¢ given by (4.1.42).
Next, we define functions w, we,, and w by

w(s, ') = (p = ¢5) o (G7) (5,1,
(5.1.2) Woo (5,1) 1= (pos — @5) © (G1) " (5,1'),
w(s,t') = (¢ —¢p) o (G
LEMMA 5.1. For each 8 € [O,Bév"’")], there exists a unique function gg : [—1,1] — Ry such that
(a) woo(s,98(s)) =0 forall s € [-1,1];

(b) {(s,95(s)) : s € (=1,1)} C G (QP) for QF defined in Definition 4.1(iii);
(c) ||gﬁ||cs([_171]) < C for C > 0 depending only on (7, vs0)-

167
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PROOF. By property (iii) stated right after Definition 4.8, the set:
{(5,t) : weo(s,t') =0}

is contained in gf (QP). Then the existence and uniqueness of gg satisfying statements (a)—(b)
follow from Lemma 4.9, combined with the implicit function theorem. Statement (c) is obtained
from Lemma 4.9 and the smoothness of pos — ¢}, owing to (4.1.42). O

For each (u,) € K, gen : [~1,1] — R, is in C%1([~1,1]) and satisfies gg, > 0 on (—1,1).
Define
Ry, ={(s,)eR? : —1<s<1,0<t <gan(s)}
Ygo = {(s,0n(s)) : =1 <s <1}

Note that w and @ are defined in Ry, , and we is defined in R := (—1,1) x R4,

In order to define an iteration mapping Z, the first step is to introduce an extension of w onto

R(141)g., for some k € (0, 3].

(5.1.3)

LEMMA 5.2 (Regularized distance). Let Ro, = (—1,1) x R*. For each g € C%'([-1,1])
satisfying

(5.1.4) g>0 on (—1,1),
define
(5.1.5) R, :={(s,t)eR? : ~1<s<1,0<t' <g(s)}, X,:={(s,9(s)): -1 <s<1}.
Then there exists a function §, € C* (R \ Ry), the regularized distance, such that
(i) For all x = (s,t') € Reo \ 2y,
1 3
§dist(x, Y, <dg(x) < §dist(x, ).
(ii) For allx = (s,t') € Roo \ &y,
|D™6,4(x)| < C(m)(dist(x, Eg))l_m form=1,2,3 -,

where C(m) depends only on m.

(iii) There ezists Cy > 0 depending only on Liplg] such that
dg(x) > Ci(t' — g(s)) for allx € R \ Ry.
(iv) Suppose that g; € C%1([-1,1]) and g € C**([-1,1]) satisfy (5.1.4) and
lgillcor(-11) <L forallieN

for some constant L > 0. If {gi(s)}ien converges to g(s) uniformly on [—1,1], then
{64:(x) }ien converges to 64(x) in C™(K) for any m = 0,1,2,---, and any compact set
K C R\ Ry.

(v) For C, from (iii), define

(5.1.6) Ir(x) = 0159(11).
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Then there exists k € (0, 3] depending only on Liplg] such that, for each x = (s,t') €
R+nyg \ Ry,

(s, t' — A5 (x)) € {s} x [@,g(s) — ("' —g(s))] € Ry for all X € [1,2].

(vi) There exist constants C, > 0 and k € (0, 5] depending only on (v,vec, B+) such that, for

each (u,B) € K=, the regularized distance 55:;6) can be given so that properties (i)—(iii)

and (v) stated above are satisfied.
(vil) If {(uj, B;)} =y C K=t converges to (u, 3) in C(i)o‘(Qiter) x [0, Bi], then 657:;’&) converges
to 55:};@ in C™(K) for any m =0,1,2,---, and any compact K C Rog \ Rg:k’)ﬁ).
PROOF. Statements (i)—(iv) of this lemma follow directly from [11, Lemma 13.9.1]. Statement
v) can be verified by using statement (iii). We refer to [11, Lemma 13.9.4] for a proof of statement
(v). Finally, statements (i)—(v), combined with (d) and (g)—(h) of Lemma 4.16 and (i) of Remark

4.21, lead to statements (vi) and (vii). O
By [11, Lemma 13.9.2], there exists a function ¥ € C2°(R) satisfying that
supp¥ C [1,2],
(5.1.7) o0 o0
/ U(y)dr =1, / ATT(A)dA =0 form=1,2.

For a function g € C%'([-1,1]) satisfying (5.1.4), let Ry and &7 be given by (5.1.5) and (5.1.6),
respectively. Let k € (0, %] be fixed depending on Lip[g] to satisfy Lemma 5.2(v). For a function
v e C°(Ry) NC*(Ry UYy), we define its extension £;(v) onto R4x)4 by

v(x for x = (s,t') € Ry,
6g<v><x>={ " )

5.1.8 R,
(5.1.8) JZov (5,8 = A83(%)) W) A for X € Ry pmyg \ Fy-

DEFINITION 5.3 (Extension mapping). For each (u, 5) € K¢, let g denote giﬁ’ﬁ), and let d, be

the regularized distance given in Lemma 5.2. For constant C > 0 from Lemma 5.2(vi), let J; be

given by (5.1.6). Let x € (0, 3] be from Lemma 5.2(vi). Then, for each v € C°(Ry) N C*(Ry U %,),
define its extension £(v) onto R(14,)4 by (5.1.8) for ¥ given by (5.1.7).

PROPOSITION 5.4 (Properties of extension operator £). For each (u, 8) € Kt the extension
operator &, given by Definition 5.3 maps C?(R,UX,) into C*(R (1)) With the following properties:
Fix a € (0,1). Then

(a) Fix b1, bo with —1 < by < by < 1.
(a-1) There exists C' > 0 depending only on (vso, v, Bx, &) such that
1€ (V)]

More precisely,

2,0, R(141)gN{b1<s<b1} < OHU||2,a,Rgﬂ{b1 <s<bi}-

Hgg(v)||m701R(1+~)gm{bl<S<b2} < CHU||m,0,Rgﬁ{b1<s<b2} for m = 07 17 27
[D2gg(”)]a,R(l+K)gm{b1<s<b2} < C[DQU]a,Rgm{b1<s<b2}-

(a-2) & : C**(RyN{b1 < s < ba}) — C?*(R(144)g N{b1 < s < ba}) is linear and con-
tinuous.
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(a-3) Suppose that {(u;, 5;)} C Kt converges to (u, 8) in C(idal)(Qiter) x [0, B«] for some
& € (0,1). If {v;} satisfies

) 2,0 p(uj,B5) ) .
v € C (Rgsh n {bl <s < bg}), HUJ||2,a,R;Zﬁ’Bj)ﬁ{b1<s<b2} < M for all VRS N

for some constant M > 0 and converges uniformly to v on compact subsets of Rg(u,g)
sh

for some v € CQ’O‘(RSZ};[}) N{b1 < s < ba}), then Eg<uj,5j) (vj) converges to & (v) in
sh sh
o2’ (R145)g N {b1 < s <ba}) for all o’ € (0,a), where Eg<u].,5j)(vj) is well defined
sh
on R

(145)glm 1 {by < s < by} for large j.
(b) Fix 0 > 0 and ¢ € (0, %]

(b-1) There exists Cpar > 0 depending only on (veo, 7, B+, @, o) such that

(o). (par) (o) (par)
186 (020 Ry g r-1<sc-14ey = Coarllvllaa ryag-1<oc—1tep

(o),(par) (0),(par)
1€ (V)] 2,0, R(1 1 nygM{1—e<s<1} < Opar||U||2,a,Rgm{1—a<s<1}'

(b-2) The mapping

2, 2,a
&g 0(0)7(par)(Rg N{-l<s<-1+¢})— C(O_))(par)(R(Hn)g N{-1<s<—-1+¢})

is linear and continuous. The same is true when we replace {—1 < s < =1 + ¢} by
{1-e<s<1}.

(b-3) If {(uj, B;)} C Kt converges to (u, ) in C(Q;dal)(Qim) x [0, Bs] for some & € (0,1),
and if

e uj,B;
{0} C 85 any(Be ™) N {=1 <5 < —1+2}),

ve 0(2;;‘7(1[)&)(]{57:}1@ N {—1 <s< -1+ 5})7

and v; converges uniformly to v on compact subsets of Rg%,g), then Eg(uj,5j>(vj)
s sh

converges to 59£E’ﬁ)(v) in C(Qj‘):(par)(R(H%)g N{-1<s<—-1+e¢}) forall & € (0,)
and all ¢’ € (0,0). The same is true when we replace {-1 < s < —1 4 ¢} by
{l-e<s<1}.
(¢) Consider the case that s € (—1,3).
(c-1) There exists Csyp, > 0 depending only on (ve, 7, B«, @) such that

—1—a),{s=-1 —1—a),{s=—1
g (w)|$ 1o o=t < Cop o)) 200271

LR (1) gN{—1<s<— 1} 2,0, RgN{—1<s<—3}

Furthermore, if (v, Dv) = (0,0) on R, N {s = —1}, then

(E4(v), DEg(v)) = (0,0)  on Riipn, N{s=—1}.

(-2) & CF oy ey By N {1 <5 < —3})

— C(Q’_Oi_a)7{sz_1}(R(1+,i)g N{-1<s < —3}) is linear and continuous.
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(c-3) If {(uj, Bj)} C Kt converges to (u, () in C(Q*O‘al)(Qiter) x [0, B«] for some & € (0,1),
and if

1
{vj} C C J1—a), {5_71}(R (u 85 M {—1 < s < —5}),

1
v E C 1-a), {S_—l}(Rgiﬁ’ﬁ) N {—1 <s < —5}),
and v; converges uniformly to v on compact subsets of R_w.s, then Eg(uj,5j>(vj)
sh sh
. 2,a’ 1
converges to gﬂiﬁ’ﬁ)(v) in C(_Oi_a/)7{5:_1}(R(1+g)g N{-1<s < —3}) forall o €
(0, ).
PRrROOF. We divide the proof into three steps.

1. By Remark 4.21, Lip[gsn] is uniformly bounded by a constant C > 0 depending only on
(Voo, 7, Bx) for all (u,B) € Kext. Then statements (a-1)—(a-2) follow from [11, Lemma 13.9.6(i)—
(ii)]. By Lemma 4.16(d), if {(u;, 3;)} C K= converges to (u, 8) in C>% (Qiter) x [0, B,] for some

(x,a1)
a € (0,1), then g(u] B3) converges to ggﬁ’ﬁ) in C1([—1,1]). Thus, we apply [11, Lemma 13.9.6 (iii)]
to obtain statement (a-3).

2. Statements (b-1)—(b-2) can be proved by following Steps 2-3 in the proof of [11, Theorem
13.9.5]. Since Lip[gsn] is uniformly bounded by a constant C' > 0 depending only on (v, v, B«) for
all (u,3) € K, the estimate constant Cpar in (b-1) can be given uniformly, depending only on
(Voo, 7, Bes i, o), for all (u, ) € Ket. Moreover, statement (b-3) can be proved by following Step
4 in the proof of [11, Theorem 13.9.5] and using the uniform convergence of ggﬁj’ﬁj) to ggﬁ’ﬁ) on
[—1,1] when {(u;, 3;)} C K&t converges to (u, 3) in Ciaal)(@ter) x [0, B«] for some & € (0,1).

3. Finally, we follow the proof of [11, Theorem 13.9.8] to obtain statements (c-1)—(c-3). Sim-
ilarly to Steps 1-2, the uniform boundedness of Lip[gs,] for all (u,S) € Kt implies that the
estimate constant Cyy, depends only on (veo,?, Bx, @) for all (u,3) € Kt. To prove (c-3), we use
the uniform convergence of g( B3 o giﬁ”@) on [—1,1] when {(uj, 8;)} C K converges to (u, )
in 02 ,(Q*er) x [0, 8.] for some @ € (0,1). O

(*,001)

LEMMA 5.5. Let parameters («, €, 91,03, N1) in Definition 4.19 be fized as in Proposition 4.46.
5§imp)

Then there exists a constant > 0 depending only on (Veo, 7, Bx,02) (where parameter 02 in

Definition 4.19 is determined later) such that, if 03 further satisfies 0 < 63 < 5§imp), for each
(u, B) € K, there exists a unique function ggn : [—1,1] — Ry such that

(5.1.9) (Woo — Egup (0)) (5, Bsn(s)) =0 for all s € [-1,1].
Furthermore, there exists a constant C > 0 depending only on (veo,?, Bx) such that §sn satisfies
2 r 1—2« 1
.00 s — 851159 1y + 18sn = 8sllS 50 (00, < €.
m(gbh_gﬁ)(_l)zo fOrkZO,l,
(5.1.11) sn — gsnll1, 2 (~1,1) < Cds,
(5.1.12) (8sh — gsn) (£1) = (§sn — Gon)'(£1) = 0,

where gg is from Lemma 5.1.
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PRrROOF. We divide the proof into three steps.
1. By Definition 4.15(i), w given by (5.1.2) satisfies

(5.1.13) Woo —w =0 on Xy, .

By (4.3.11) in Definition 4.19(iv), Lemma 4.5(a), and (5.1.2), there exists a constant C' > 0
depending on (ve,7y) such that

(5.1.14) |D(woo —w)| > C'puy >0 on X, .

Therefore, we have

_ _ !
Dlwee =w) ___(-ghol)

[D(wee —w)] /T (g[,)? -
Since Lip[gsn] is uniformly bounded by a constant C' > 0 depending only on (ve,7, S«) for all
(u, B) € K, there exists a constant ji > 0 depending only on (v, 7, Bs) to satisfy

D(we —
P — 0l s
T+ (g0,)2

(5.1.15) Op (Weo — W) =
(u7ﬂ)

For each (u,3) € K, the corresponding function gs, = g’ satisfies that gsn(—1) > 0.
Therefore, Definition 4.19(iii) implies that

(5.1.16) Nisu +8) < gon(s) < gen(—1) + Na(148)  for -1 <5< —1 +&
for &g = %, where N3 > 1 is the constant from Definition 4.19(iii). The lower bound of g, (s) in
(5.1.16) is obtained from Definition 4.19(iii), and gsn(—1) > 0 which follows from (4.2.6).

Let x € (0,3] be fixed as in Definition 5.3. In other words, let s be from Lemma 5.2(vi).
By Definition 4.19(i), Remark 4.21, (5.1.15), and Proposition 5.4, there exists a small constant
o € (0, min{1, x}] depending only on (v, 7, Bx) such that, for each (u, 8) € K, gen satisfies

0<gsn(s) — 0 <gsn(s) +0 < (14 K)gsn(s) for =1+ %0 <s<1,

and the corresponding function w given by (5.1.2) satisfies

/

~

Oy (Woo — Ega (W) (s, 1) for -1<s<—-1+4+é& and 1 -0 < <1+o,

IN

gsh(s)

(5.1.17) .
for —1 + %0 <s<1land|t'— gm(s)] <o.

ISR~ NI

O (Woo — Egy, (w))(s,1")

IN

2. By (5.1.13) and the linearity of the extension operator &, , we have
(Woo = gy, (0)) (5, (1 + 0)gsn(s)) = A1 + Ay,
where
Ar = (Woo = g, (w)) (s, (1 4 0)85n(8)) = (woo = Egup, () (5, Gsn(5));
Az = &g, (w — @)(s, (1 + 0)gsn(s))-
By (5.1.16)~(5.1.17), we have

(5.1.18) Ar<—L2 (1 s))  for —1<s<—1+4.
9N,
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By (4.3.18), (5.1.2), and properties (b-1) and (c-1) of Proposition 5.4, there exists a constant C' > 0
depending only on (v, v, B«) such that
(5.1.19) [A2| < Cé3(1 —|s|) for -1 <s<1,
where d3 > 0 is the constant in (4.3.18). From (5.1.18)—(5.1.19), we obtain
(e = Equy (@) (5, (1 + 0)gan(s)) < (1 |s|) (s - %) for —1 <5 < —1+£.

(imp)

Therefore, a constant ds € (0, 63] can be chosen depending only on (v, 7, B+) such that, when-

ever 03 € (0, 5§imp)], the inequality above implies that, for any (u, 3) € K,

(5.1.20) (Woo — Egu (W) (5, (1 + 0)gsn(s)) <0 for =1 < s < =14 £.
Under the same choice of 3, we also have
(5.1.21) (Woo — g (W) (5, (1 — 0)gsn(s)) >0 for -1 < s < —1+4¢ép.

Adjusting the argument above, we can further reduce 5( mp)

so that, whenever 03 € (0, 5{™],

> 0 depending only on (v, 7, Bx)

(5.1.22) (woo — Ego (0)) (5, 9sn(s) +0) <0 < (Woo — &gy, (W))(5, gsn(s) —o) for —1 + %0 <s<1.

3. Finally, by (4.3.18), (5.1.17), and Proposition 5.4, we can reduce 5 )50 depending only
on (Vso, 7, Bx) so that, whenever d3 € (0, (531mp)], W satisfies

i (Woo — gy, (W) (s, 1)

!/

IA
-~

for -1<s<-1+éand1l—-0c<

<1+o,
gsn(s)

(5.1.23) :
for —1+ 2 < s < Land |¢' — gan(s)| < o

= »Jkltw

O (oo — &g, (1)) (s, 1) < —

Then (5.1.9) follows from the implicit function theorem. By (5.1.16) and (5.1.20)—(5.1.22), there
exists a constant C' > 0 depending only on (veo, 7, 8+) such that

lgsh — gsnllco(—1,17) < Co.
By Lemmas 4.5 and 4.43, and definition (5.1.2), for any ¢ € (0, 1), we have

(2),(par)
H ||2 2a,Rg , N{s>—1+¢} <,

where constant C. > 0 depends only on (vs,7, 8+) and . Furthermore, by Lemmas 4.5 and 4.44,
we obtain

o e me S gy € B(=1#) = Dib(=1,¢) =0 for 0.< ¢/ < gn(~1)

for a constant C' > 0 depending only on (vso,?,Sx). Combining these two estimates of @w with
(5.1.9), (5.1.23), and Proposition 5.4, we obtain (5.1.10).

Next, we use (5.1.1)—(5.1.2), Lemma 4.5, Definition 4.15(ii), Lemma 4.16(d), and estimate
(4.3.18) given in Definition 4.19(vii) to obtain

5000 = 1@ =) 0855 0 (G) My 0y g < C

for a constant C' > 0 depending only on (ves,7, 5x). Using this estimate and (5.1.17), we obtain

(5.1.11). Finally, (5.1.12) follows directly from (5.1.10) and the fact that d +(gsh —98)(£1) = 0 for
k=0,1. O
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Let parameters (o, ¢, d1, d3, N1) in Definition 4.19 be chosen as in Lemma 5.5. For each (u, 8) €
K, let gen : [-1,1] — Ry be given by (5.1.9). From (5.1.11)—(5.1.12), further reducing J3, we
obtain that §g, satisfies estimate (4.3.2) in Definition 4.19(iii) with N5 replaced by 2N3. We define
a function 4 : Qiter — R by

(5124) U= ggbh( ) (G2 gsh)

for Gy 5., defined by (4.1.49). By Corollary 4.45, Proposition 5.4, and Lemma 5.5, there exists a
constant C' > 0 depending only on (v, 7, f«) such that @ satisfies

(5.1.25) ||u||2 2c Qlter < C'

Now we define the iteration mapping Z : K — C2*O‘a1 (Qiter),

DEFINITION 5.6. Let parameters (o, &,d1,d3, N1) in Definition 4.19 be fixed as in Proposition
4.46. Then we adjust d3 € (0,05"] for 5P from Lemma 5.5 so that Lemma 5.5 holds for all
(u,B) € K. For each (u,8) € K, let @ be given by (5.1.24). Then define an iteration mapping
T:K—Cl%, (Q1r) by

Z(u, B) = .
LEMMA 5.7. The iteration mapping I defined in Definition 5.6 satisfies the following properties:
(a) For any p € [0, Bs], define
K(8) i= fue €25, (Q") : () € K},

For each (u, ) € K, define
() =

u7
where U is given by (4.3.17). Then u € K(B) satisfies Z(u, 3) = u if and only ifIgB)(u) =
u.
(b) For & = §, there exists a constant C' > 0 depending only on (vs,7,B«) such that, for
each (u,8) € K,

12, B2 . g < C-

PROOF. For a fixed 3 € [0, 8., suppose that Z(u, 3) = u for some u € K(3); that is, % = u for
@ given by (5.1.24). Then, by Definition 4.15 and (5.1.24), we see that, for all s € [—1,1],

Woo (8, Gsn (s)) = u(s, 1) = g, (0)(s, Bsn(5)) = woo (s, Gsn(s))-

This, combined with Lemma 4.9 and (5 1.2), implies that gsp = gsh on [—1,1]. Then it follows from
(5.1.24) that @ = &g, (W) o (Ga,q,,) "' = @, which implies that u =@ = I£ﬁ)(u) in Qiter,

Next, suppose that If )( ) = u for some u € K(B). Then gsn = gsn on [—1,1]. This, combined
with (5.1.24), implies that @ = Z(u, 8) = &, () 0 (Ga,4.,) "' = 4. Therefore, we obtain that @ = u
in Qitcr.

Finally, statement (b) directly follows from (5.1.25). O
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5.2. Fixed Points of Z(-, ) and Admissible Solutions

For the iteration map Z defined in Definition 5.6, we show that, if u € K(3) is a fixed point of
Z(-,B) for some 3 € (0,8.], then ¢ defined by (4.2.4) in Definition 4.15 is an admissible solution
corresponding to (veo, ) € Ryeak in the sense of Definition 2.24.

PROPOSITION 5.8. Let parameters (a, e, d1, 03, N1) in Definition 4.19 be fixed as in Definition
5.6. Then parameters (g,d1) can be further reduced depending only on (ve, 7, 8«) so that, for each
B € (0,B.], u € K(B) is a fixed point of Z(-,8) : K(B) — 0(2*0; )(Qiter) if and only if ¢, defined
by (4.2.4) in Definition 4.15, yields an admissible solution corresponding to (veo, ) € Rweak IN

the sense of Definition 2.24 by extending ¢ into Ag via (2.5.8) if 8 < B"*), and via (2.5.12) if
B> gl

PRrOOF. By Corollary 4.40, it suffices to prove that, if u € K(53) is a fixed point of Z(-, ) :
K(B) — CQ*O; )(Qitcr), then ¢, defined by (4.2.4) in Definition 4.15, yields an admissible solution
corresponding to (Veo, ) € Ryeak In the sense of Definition 2.24. We divide the proof into six steps.

1. For (u,B) € K, let (£, Lshock, ) = (€2 (u, B), Tshock (1, B), (A be defined by Definition
4.15, and denote ¢ := ¢ — ppr. Let ¢ € C2(Q) N C1(Q) be the unique solution of the boundary
value problem (4.3.16) determined by (u, 3).

Suppose that

Z(u,B) = u for some u € K(3).

By Lemma 5.7, we have
(5.2.1) b=¢ Q.

Let ¢ be extended onto Ag by (2.5.8) for g < B(v‘” and by (2.5.12) for 5 > Bs(v‘”). Moreover, let
ro v €S0, €Sy, Poos PO, and g be defined by Definition 2.23.

sonic’ sonic’
2. Verification of properties (i-2)—(i-4) and (ii-1)—(ii-3) of Definition 2.24.
Properties (i-2)—(i-3) follows from Remark 4.21(i). By using Lemma 4.16(b), it can be directly
checked that property (i-4) holds.
By Definition 4.19(i) (or Corollary 4.45) and the extension of ¢ onto Ag described in Step 1, ¢
satisfies properties (ii-1) and (ii-3).
We define
for Ai;(D¢, €) given by (4.4.22). By Definition 4.19(i) (or Corollary 4.45), coefficients A;;(&),i,j =
2, of equation ./\/(u”@)(gb) =0 in (4.3.16) are in C1*(Q\ ('Y .. U Fg\gmc)) Furthermore, Lemma
4.30(a) implies that N, g (¢) = 0 is strictly elliptic in ©. Then the standard interior Schauder
estimates for linear elliptic equations imply that ¢ € C®%(Q). This, combined with Definition
4.19(i) (or Corollary 4.45), implies that ¢ satisfies property (ii-2).

3. Verification of property (iv) of Definition 2.24.
For A;;(§) defined in Step 2, we define a linear operator L, gy by

Lu,p) (v Z AijOg,e;v

1,7=1
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Since Yoo — @ is a linear function of &, and ¢ — Yoo = ¢E — (¢Yoo — @), we have

(5.2.2) L) (¢ = Po0) = L) (@) =0 inQ.

By Lemma 4.30(a), the equation stated above is strictly elliptic in €2 so that the maximum principle
applies to p—poo in Q. From (5.1.13) and (5.2.1), we obtain that ¢—¢s, = 0 on I'gpock. By Definition
4.8(ii), it follows directly from the boundary condition ¢ = max{pe,prn} —@a on 9 . UTY

sonic bOI]lC

given in (4.3.16) that ¢ — oo = Y0 — oo < 0 0n T9 v and ¢ — Yoo = ON — Poo < 0 on TN
Furthermore, the boundary condition for ¢¢, = 0 on I'yedge given in (4.3.16) implies that

(5.2.3) Oc, (P00 — ) = =V < 0 on I'yedge-

Therefore, by the maximum principle and Hopf’s lemma, we obtain

(5.2.4) ¢ < oo in Q.

When 8 < ?\%, we have shown in Step 2 in the proof of Lemma 4.42 that
1

(5.2.5) max{po, on} < @ in Q.

When g > ?v‘sé , (4.3.3) in Definition 4.19(iv) implies that max{vo, vx} < ¢ holds in Q\(DE/10
Da/m)' Note that parameter € in Definition 4.19 has been chosen so that € < %‘9 for CTO from (4.1.45)
in Definition 4.8. Therefore, ¢} = max{po, pr} in QN (DP UDY) for ¢} given by (4.1.42). Then
we obtain from (4.5.2) in Lemma 4.43 that max{pe, pa} < ¢ holds in 2N (D?/lo u Dglo).

Therefore, we conclude that inequality (5.2.5) holds for any 8 € (0, 8«]. Combining this in-
equality with (5.2.4), we conclude that ¢ satisfies property (iv) of Definition 2.24.

4. Verification of property (v) of Definition 2.24. In order to show that ¢ satisfies property (v)
of Definition 2.24, it suffices to verify the following claim:

Claim. There exist small constants eg, > 0 and dg, > 0 depending only on (7, Voo, Bi) so that,
if parameters (g,91) in Definition 4.19 satisfy € € (0,er] and 61 € (0,0pp), then ¢ satisfies

(5.2.6) s, (oo =) S0, e, (Po0 —¢) <0 in Q.

Similarly to the previous step, we consider two cases: 8 € [ N B«] and B € (0, NQ) separately.
4-1. Suppose that § € [N—lz,ﬂ*]. Define
1
W= pss — ¢ in Q.

Let (X,Y) be the rectangular coordinates such that (egs,,eg,) = (ex,ey). By (5.2.2), W
satisfies that L, (W) = 0 in Q. Since the (X,Y)-coordinates are obtained from rotating the
(§1,&2)-plane by (3 counter-clockwise, equation L, (W) = 0 can be rewritten in the (X,Y)-
coordinates as follows:

(5.2.7) A Wxx +2415Wxy + AgsWyy =0 in Q,
with Aij € Ca(ﬁ) ch a(Q \ ( sonic Y Fi\({mc))v i,j =12
Define

w:=Wx = 8630 (Po0 — ).
y (4.3.4) in Definition 4.19(iv), w satisfies
(5.2.8) w<0  inQ\DY,,.



5.2. FIXED POINTS OF Z(-,8) AND ADMISSIBLE SOLUTIONS 177

Next, we prove that w <0 in QN ’Df/lo.

Differentiating (5.2.7) with respect to X, we have
Anwxx + 2A100xy + Aspwyy + Ox Anjwx + 20x Ajpwy + 0x ApsWyy =0 in Q.
Using the strict ellipticity of operator L, g) following from Lemma 4.30(a), we obtain that Agy >0

in Q such that Wyy can be expressed as

Apwy + 24wy
Ago

Substituting this expression into the equation immediately above, we obtain a strictly elliptic equa-

tion for w in the following form:

Wyy = — in Q.

(5.2.9) flllwxx + 2/112wa + Aggwyy + Al’wx + Ag’wy =0 in Q.
Since A;; € C*(Q)NCH*(Q\(TQ,, UTN . )),i,j = 1,2, we see that A; € C*(Q\(TQ, UTN . )),i =
1,2.

By a direct computation, applying Lemma 4.44 and the definitions of (es,, Yoo, po) given in
Definition 2.23, we have

(5.2.10) W = Deg,, (Poo — p0) =0 on T

sonic*
On I'yedge, w satisfies the homogeneous oblique boundary condition:
(5.2.11) by -Vw =0 with by, - ny > 0 on I'yedge

for the inward unit normal vector ny, to I'yedge. This can be verified as follows: Differentiating the
boundary condition (5.2.3) along I'ywedge C {2 = 0}, we find that We,¢,—0 on I'yedge. Equation
(5.2.2), combined with Og,¢, W = 0 on I'yedge, leads to

A1 Weie, + A2oWeye, =0 on Iyedge-

Note that Ay > 0 and Ags > 0 hold on I'yeqge by Lemma 4.30(a). Then a direct computation by
using the definition of eg,, shows that

A A
ﬁw& ﬁw& =0  with 22 >0 on Iyedge
This implies the strict obliqueness of the boundary condition for w on I'yedge-
In order to obtain a boundary condition for w on T'shock, we apply [11, Lemma 13.4.5]. For
this purpose, we need to check that all the conditions to apply [11, Lemma 13.4.5] are satisfied.
Let Mo and co be given by (2.4.6), and let Sp and Op be given by Definition 2.23. Then
co — dist(So,0p) > 0 if and only if Mp < 1. By Lemma 2.13, Mo < 1 for § = 0. Then (2.4.43)
given in the proof of Lemma 2.22 implies that Mo < 1 for 8 € (0, 8.]. Therefore, there exists a
constant 1o > 0 depending only on (veo,7) such that

(5.2.12) co — dist(So, 00) > wo for all g € (0, B4].

By Lemma 4.34(h) and (5.2.1), ¢ satisfies the Rankine-Hugoniot condition (2.5.37) on I'shock-

Let v be the unit normal vector to I'shock towards the interior of €2, and let T be obtained from
rotating v by 5 counter-clockwise (7 is a unit tangent vector to I'shock). By Definition 4.19(i) (or
by Corollary 4.45), we have

(52.13) o= volloy@mpe) + IT —exlloomrmmpe) T IV = (—ev)ll oo ompe) < O
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for a constant C' > 0 depending only on (veo,7, 8x), where point Pj is defined in Definition 2.23.

Note that point P; lies on Pg)nic' At P, T =es, =ex and v = —ey.
By the definition of A;; given in (4.4.22), Corollary 4.45, and (5.2.1), we have
(5.2.14) Aij = A (D(go — en), (po — en)(P1), P1)  at Py

for AP i, j = 1,2, defined by (4.4.3). By (2.5.1), this yields
A = ¢ = (05,00)%, Arr = Aot = =05, 000,00 =0, Asy = ¢ — (e, 00)°  at Pr.

Then we have

2

(5.2.15) > Ajjuivy = c — (Qup0)? = ¢ — (dist(So, 00))* = cp(1— M3) > Ay at Py
ij=1

for some constant A\g > 0. By (5.2.12), constant Ag > 0 in (5.2.15) can be fixed, depending only

on (Vso,7). By (5.2.13) and (5.2.15), there exists a small constant {-:EIl)) > 0 depending only on
(Uooa’)/u B*) such that

2
A .
(5.2.16) Z Aijvivy > ?O in T'shock N ng-
ij=1 °

By Lemma 4.30(a), there exists a constant A\; > 0 depending only on (7, v, 8«) such that

2
(5.2.17) > Aijuivi =M in (Fenoek 1D, /10) \ ng/z
i,j=1 v
for ¢» defined in Definition 4.1.
Since ¢ satisfies the Rankine-Hugoniot condition (2.5.37) on I'gpock, it follows from (5.2.13) and
(5.2.16)—(5.2.17) that ¢ satisfies all the conditions required to apply [11, Lemma 13.4.5]. Then, by
[11, Lemma 13.4.5], we obtain a boundary condition for w in the form:

(5.2.18) bg, - Vw =0  on Tgoe N Dgz)

(2)

for some small constant gy >0 depending on (7, vso, B« ), where by, satisfies

(@]
bg, v >0 on I'shock N Ds§2)'
P

In conclusion, w satisfies the strictly elliptic equation (5.2.9) in QNDY for ¢ > 0 to be specified
later, the boundary condition w = 0 on I'? and the oblique boundary conditions (5.2.11) on

sonic?

Iyedge and (5.2.18) on I'shock N DS@). Therefore, if parameter £ > 0 in Definition 4.19 satisfies
fp

(5.2.19) 0<e<e?

fp ?
then it follows from the maximum principle, Hopf’s lemma, and (5.2.8) that

w<0 inQﬁDSz).
fp
Finally, we combine this result with (5.2.8) to conclude that
. ]
Deso (poo =) 0 in Qfor § € [155,8.],
i

provided that e satisfies condition (5.2.19).
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4-2. Suppose that 8 € (0, %) Note that w satisfies (5.2.9)—(5.2.11). By the definitions of
1

(€50, Poos par) given in Definition 2.23 and Corollary 4.45, w satisfies
W= Oeg, (Poo — PN) = —Vsosinf <0 on | A

By (2.4.3) and (2.5.1), 90 — N = Vo (&1 tan B — {éﬁ) +&). Note that &Y = §£ﬁ)|3:0. Then,
by (2.4.14) and the continuous differentiability of M., with respect to 5 € [0, év“’)], there exists a
constant C' > 0 depending only on (7, v ) such that
(5.2.20) leo — enllerag < CB  forall B € [0, 8],

By Definition 4.19(i) and (5.2.20), we see that, for any 8 € (0, %),
1
(5.2.21) le = pollgram < v = enllera@ + llvo = enllore@ < Co
for some constant C' > 0 depending only on (7, vs, Bx) so that
[Aijla.2 + WaTuea + [TlaDuea < C61

for C' > 0 depending only on (7, Vs, Bx). By (5.2.15) and the estimate immediately above, there
exists a small constant dp, > 0 depending only on (vso,7, 8x) so that, if
(5.2.22) 51 € (0,05,
then
2 A

Z Aijvivy > 70 on I'shock

i,j=1
for Ao > 0 from (5.2.15). Then [11, Lemma 13.4.5] implies that w satisfies a boundary condition
in the form:

(5223) bsh -Vw =20 on Fshocku

with bgy satisfying bg, - v > 0 on Tgpock-

Since w satisfies the strictly elliptic equation (5.2.9) in Q, w < 0 on T'9 . UTY . and the

strictly oblique boundary conditions (5.2.11) on I'yedge and (5.2.23) on Ighock, it follows from the
maximum principle and Hopf’s lemma that
w <0 in Q,

provided that parameter 1 > 0 in Definition 4.19 satisfies (5.2.22).
4-3. By repeating the argument in Steps 4-1 and 4-2 with w = 6esc, (poo — ) replaced by
W = ey, (¢oc — ), We can also show that

8eSN(<pOO—90)§O in ©,

provided that constants (sg),éfp) from (5.2.19) and (5.2.22) are adjusted, depending only on

(’Uoov Y ﬂ*)
For the rest of the proof, parameters (g,071) in Definition 4.19 satisfy

0<d1 <dp, 0<e<min{el) eV},

5. Verification of property (ii-4) of Definition 2.24. Since Eq. (2.1.19) is equivalent to (3.1.2),
it suffices to check that equation N, gy(¢) = 0 coincides with Eq. (3.1.2).
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5-1. Equation N, p)(¢) = 0 away from o . UTY . . Inorder to show that ¢ satisfies property
(ii-4), it suffices to show that equation N, g)(¢) = 0 from (4.3.16) coincides with Eq. (3.1.2) in
Q. By Lemma 4.30(i), equation N, 3)(¢) = 0 coincides with Eq. (3.1.2) in Q\ (’Df/10 u ’Dé\;lo) for
parameter € > 0 in Definition 4.19 fixed as in Definition 5.6.

5-2. Equation N, z)(¢) = 0 near TN o In QY == QN DY, let the (x,y) coordinates be
defined by (3.4.18). Define 1 := ¢ — pnr = ¢ — opr in QY. By Lemma 4.24(g), if it can be shown
that

92 _ Ko

(5.2.24) Ve (2, )| < 1 +”5y x in QN ’D/%v
for pio € (0,1) from Definition 4.19(iv-1), then equation N, g)(¢) = 0 coincides with Eq. (3.1.2) in
N
Q5/10'
Define
2
5 = Az — 2\ Ly for A = .

v(z,y) = Ar — ¢y (2, y) r Ty
Then v satisfies
(5.2.25) v=0 on TV .. ={z=0}, vy =0 on Iyedge N oV,

because O¢, ¢ = Oc, o = 0 on I'yedge-
By (5.2.1) and properties (a), (f), and (g-3) of Lemma 4.34, the boundary condition on I'sphock
in (4.3.16) can be written as

blwm + b21/)y + bm/) =0 on I'spock N Dﬁf
for (bg, b1, ba) satisfying that
—5 ! < bj < -4 on I'spock N Dé\/

for a constant § € (0,1) depending only on (vso,7, 8). Then [tb,] < C(|1by| + |1]) on Tgnoa N DY
for C' > 0 depending only on (v, ¥, Bx). By combining this inequality with estimate (4.5.15) given
in Lemma 4.43, we have

|7v/}z| S O$3/2 on 1—‘lshock N Dé\/

(3

for C' > 0 depending only on (vs, 7, 5«). Then we can fix a small constant ¢’ depending only on

fp
(Voo, ¥, Bx) so that, if
(5.2.26) 0<e<el,
we have
(5.2.27) v>0  on Ty NODY.
By (4.3.6) in Definition 4.19(iv), we obtain
4dppe

By Lemma 4.43, Egg) can be further reduced, depending only on (vee, ", Bx), so that, if (5.2.26)
holds, then
Yo\ Y Yy _ Yy
Cl(x3/4) a3/ Cl((”y + 1)N4:17) (Y + D Ngz

in O,
€ty
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for ¢; given by (4.4.4). This implies that
O;nOd(djzawyu €, y) = Oj(%ﬂby, Y, , y) in Qﬁé) forall j=1,---,5,

for 0 and O; defined by (4.4.11) and (3.2.29), respectively.
By (4.4.22) and (5.2.1), equation N, g)(¢) = 0 in Qﬁ?z becomes /\/&ng(w) = 0 in the (z,y)-
coordinates given by (3.4.18) for /\/'(p°1ar defined by (4.4.12). We differentiate NP (¢)) = 0 with

u,B) (u,B)
respect to x in Qﬁ?z and then rewrite the resulting equation as an equation for v(z, y) in the following

form:
(5.2.29) A11Vgz + G120y + A22Vyy + Q105 + aov = —A((7 +1)A-— 1) + E(z,y) in st\?zv
where

aij = Q5 (D(m)y)w,x,y) for a;; (D(m)y)w,x,y) given by (4.4.12),

a=1-(+1) (GA-2)+dA-D)E - +4)),

B Ay, v v, v
w0=(+D2(GU-D - [ G- as)
E(Ia Z/) = U)mmamOAl + 1Z)myazOA2 + 1/}yyazOAB - 1/11104 - wmamOAél + 1Z)myOA5 + wyamOA&

OJ(Ia y) = OJ (1/}I(Ia y)v 1/)y(337 y)a 1/}(‘I7 y)a €z, y) for .] = 15 Y o.
By Lemma 4.24(a), Eq. (5.2.29) is strictly elliptic in st\fz' Estimate (4.5.15) given in Lemma

4.43 implies that a;;,a1,a0 € C(Q\ {x = 0}). Since ¢/ < 0 by (4.4.6), apv > 0 in Qé\?? By (3.2.29)

and (4.5.15), there exists a constant C' > 0 depending on (veo, v, Bx) such that |E(z,y)| < Cz in
(4)

Qé\?? Therefore, we can fix a small constant €ty

depending only on (vs,7, Bx) so that, if

(5.2.30) 0<e<el,

then —A((y+1)A—1) + E(z,y) <0in Q?;z. Thus, for such ¢, we have
(5.2.31) 11Uz + Q12Vzy + A22Vyy + a10; + agv < 0 in st\?z'

By properties (5.2.25), (5.2.27)—(5.2.28), and (5.2.31), we can apply the maximum principle
and Hopf’s lemma to conclude that, if

(5.2.32) 0 < e < min{ef), 2},

then v > 0 in Qé\;z’ which is equivalent to stating that

_ Ko

Next, we show that ¢, > —21_+:T0x in Qé\?? Since Oeg,, (oo — ¢a7) = 0, we obtain from (5.2.6)
that
(5.2.33) Des ¥ = 0Oes, (¢ — Poc) =0 in €.

By (3.4.25), Oe .1 is represented as

sin .
(5.2.34) Des, ¥ =Yz cosy + " _yx¢y in Q5.
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(5)
fp

Qﬁé) C{(z,y) 1z € (0,5(5)), 0 <y < 5 — oo} for some constant og > 0 that is chosen depending
fp

By Remark 4.21(i)—(ii), we can fix a small constant e;°’ > 0 depending only on (vee, v, 8+) such that

fp

only on (vso,7). Then it follows from estimate (4.5.15) given in Lemma 4.43 and (5.2.33)—(5.2.34)
that there exists a constant C' > 0 depending only on (veo,?, Bx) such that

Py > —tan(g — 00)tpy > —Ca®/? in Qﬁ(/g,).

fp

(5)

Therefore, .’ can be further reduced, depending only on (v, 7, B8x), so that the inequality above

fp
implies
wm2_1+3$ ian(s).
fp

We finally conclude that ¢ satisfies (5.2.24), provided that parameter £ in Definition 4.19
satisfies

(5.2.35) 0<e< min{ag), sgs), sgg)}.

Therefore, equation N, g)(¢) = 0 coincides with Eq. (3.1.2) in Qé\;lo, provided that condition
(5.2.35) holds.

5-3. Equation Ny g)(¢) = 0 near TS ..
defined by (3.5.2).

By (3.5.54)—(3.5.56), there exists a small constant sgj) > 0 depending only on (vso,7y) so that, if

©) . .

Tpy < 5{—‘6, then 8 < ﬁg”“’) + 4 min{os, 6} for & > 0 from Lemma 4.44(ii) and o3 from Proposition
3.39.

Assume that parameter ¢ in Definition 4.19 satisfies

In Q9 := QN DY, let the (z,y)—coordinates be

(5.2.36) 0<e<el,

and suppose that rp, < 75. By (4.4.20) and (4.4.22), if we can show that
2t _

(5.2.37) yww(x,y)’ <7 +”5y x in 2N D?/Q,

then it follows from Lemma 4.25(c-1) that equation N, g)(¢) = 0 coincides with Eq. (3.1.2) in
Q?/w' To prove (5.2.37), we can mostly repeat the argument in Step 5-2 by using Lemma 4.44(1)—(ii)

and the positivity of Jeg,, (p — poo) in Q given in (5.2.6), instead of Lemma 4.43 and the positivity

of Deg (¢ — Yoo) in Q. Then there exists a small constant EES) > 0 depending only on (vee,y) such

that, if ¢ satisfies condition (5.2.36), then equation N, g)(¢) = 0 coincides with Eq. (3.1.2) in

0o, .
e/10
If parameter ¢ in Definition 4.19 satisfies condition (5.2.36), and if zp, > 3,

from Lemma 4.30(i) that equation N, gy(¢) = 0 coincides with Eq. (3.1.2) in Q?/w'

then it follows

For the rest of the proof, parameters (¢, d1) in Definition 4.19 satisfy
(5.2.38) 0<81 <dp, 0<e<min{ef) :j=1,---,6},
where dg, is from (5.2.22).

6. It remains to check that properties (i-1) and (iii) of Definition 2.24 hold.

Verification of property (iii) of Definition 2.24. In Step 5, we have shown that Eq. (3.1.2)
coincides with equation N, g)(¢) = 0 in Q. Therefore, it directly follows from Lemma 4.30(a)
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and Lemmas 4.43-4.44 that Eq. (3.1.2) is strictly elliptic in @\ (T9, .. UTN . ). This proves that

sonic
property (iii) of Definition 2.24 holds, because Eq. (2.1.19) is equivalent to (3.1.2) in Q.
Verification of property (i-1) of Definition 2.24. The strict ellipticity of Eq. (3.1.2) in Q\
To . urd

sonic sonic

) implies

Oe®F Vel
([Ve(&)?,0(€),6) — A(IVe(8)[?, ¢(£).8)
for a unit normal vector v to I'spock- We have shown in Step 4-1 that ¢ satisfies the Rankine-
Hugoniot condition (2.5.37) on Igpock. Define M := % and My = |0ppoo(£)]. We
substitute Mo = M into the left-hand side of (2.4.9) in the proof of Lemma 2.17. Then, by
repeating the argument right after (2.4.9) in the proof of Lemma 2.17, we obtain that M., > 1 on
T'shock, which yields that

(5.2.39) [Dpo(€)] > 1 on ghock.
By the definition of ¢, given in (2.5.1), (5.2.39) implies that & ¢ B;(Os) for all & € Typock-

Furthermore, { Py, P} ¢ B1(Ox), because Py and P, lie on So and Sy, respectively.

Now it remains to show that 5{31 <& < 5{32 for all € = (£1,&2) € Tahock- Since we have shown
that ¢ satisfies properties (i-2), (i-4), and (ii)—(v) of Definition 2.24 in the previous steps, we can
repeat the proof of Lemma 3.2 to show that ¢ satisfies the directional monotonicity properties
(3.1.6)—(3.1.7). Then, by repeating the proof of Proposition 3.4, we obtain a function fy, satisfying

Tshook = {€ = (&1,&) : &= fan(&1), &' < & < &)

Therefore, property (i-1) holds.
With these, we complete the proof. O

<1 onDyhoe \ (T9,; , UTN ).

sonic

5.3. Existence of Admissible Solutions for All (vs, ) € Rweak

In order to prove the existence of admissible solutions for all (vso, ) € Ryeak, We employ the
Leray-Schauder fixed point index and its generalized homotopy invariance property.

5.3.1. Leray-Schauder degree theorem.
DEFINITION 5.9 (Compact mapping). Let X and Y be two Banach spaces. For an open subset
G in X, a mapping f : G — Y is called compact if
(i) f is continuous;
(i) f(U) is precompact in Y for any bounded subset U of G.
DEFINITION 5.10. Let G be an open bounded set in a Banach space X. Denote by V(G, X) the
set of all mappings f: G — X satisfying the following:
(i) f is compact in the sense of Definition 5.9;

(ii) f has no fixed points on the boundary 0G.

DEFINITION 5.11. Two mappings f, g € V (G, X) are called compactly homotopic on 9G if there
exists a mapping H with the following properties:
(i) H: G x [0,1] — X is compact in the sense of Definition 5.9;
(ii) H(x,7) # x for all (x,7) € 0G x [0, 1];
(iii) H(x,0) = f(x) and H(x,1) = g(x) in G.
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We write 0G : f 2 g if f and g are compactly homotopic on G, and call H a compact homotopy.

THEOREM 5.12 (Leray-Schauder degree theorem). Let G be an open bounded set in a Banach
space X. Then, to each mapping £ € V(G, X), a unique integer Ind (£, G) can be assigned with the
following properties:

(1) If f(x) = %o for all x € G and some fized xo € G, then Ind(f, G) = 1;
(ii) If Ind(f,G) # 0, then there exists x € G such that £(x) = x;
(ili) Ind(f,G) = >"7_, Ind(f, G;), whenever f € V(G, X)N (N}, V (G}, X)), where G;NG; =
0 fori#j and G = Uj_,Gj;
(iv) If 0G : £ 2 g, then Ind(f, G) = Ind(g, G).
Such a number Ind(f, G) is called the fixed point index of £ over G.

A generalized homotopy invariance of the fixed point index is given in the following theorem:

THEOREM 5.13 ([47], §13.6, A4*). Let X be a Banach space, and let ta > t1. Let U C X x[t1, t2],
and let Uy = {x : (x,t) € U}. Then

Ind(h(-,t),U;) = const. for all t € [t1,ta],

provided that U is bounded and open in X x [t1,t2], and mapping h : U — X is compact in the sense
of Definition 5.9 with h(x,t) # x on OU.

5.3.2. Proof of Theorem 2.31. In this subsection, we complete the proof of Theorem 2.31.

Parameters (o,¢e,01,03, N1) in Definition 4.19: Let parameters («, ¢, 01,93, N1) in Defini-
tion 4.19 be fixed as in Definition 5.6. We further reduce (e, 1) depending only on (vee,?y, Bx) SO
that Proposition 5.8 implies that, for each 8 € (0, 3.], u € K(B) is a fixed point of Z(-, 8) : K(3) —
Cffal)(giter) if and only if ¢, defined by (4.2.4) in Definition 4.15, yields an admissible solution
corresponding to (veo, ) € Ryeak in the sense of Definition 2.24.

In the proof of Theorem 2.31, we adjust Ny and choose d3 so that Z(-, 8) has a fixed point in ()
for each 8 € (0, B4]. Then the existence of an admissible solution for each (voo, 5) € RuweakM{ S < SBi}

follows from Proposition 5.8. This proves Theorem 2.31, since 8, is arbitrarily chosen in (0, év"’")).

Further adjustment of 03 in Definition 4.19: Note that, if parameter N7 in Definition 4.19
is adjusted such that the new choice of V7 is greater than the previous one, all the properties stated
previously hold. Then we choose N; greater than the previous choice in the proof of Theorem
2.31. Also, once parameters (N1,d2) are fixed, d5 can be adjusted to satisfy the conditions of 03
in Lemmas 4.42—4.43. As long as the new choice of 03 is less than the previous choice, all the
properties stated previously hold. Since N7 is adjusted to be greater than the previous one, the
new choice of 3 is less than the previous one. Since the previous choice of (¢, d1, 02, N1) was
independent of d3, we can reduce d3 as described above.

PRrROOF OF THEOREM 2.31. The proof is divided into three steps.
1. Claim 1: The iteration mapping T : K — C(Q;O‘al)(Qiter) defined by Definition 5.6 is continu-

ous. Moreover, T : KK — C?;aal) is compact in the sense of Definition 5.9.
1-1. Continuity of T : K — C?f‘al). Suppose that {(u;,3;)}52; C K converges to (u,3) in

C(Q’a (Qiter) x [0, 3,]. For each j € N, define (Qj,ggl)) = (Q(uj,ﬂj),giﬁj”@j)) for Q(uj, 8;) and

*,Q1)
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géﬁj’ﬁj) given by Definition 4.15. By Lemma 4.35, the nonlinear boundary value problem (4.3.16)

associated with (u;, 3;) has a unique solution ¢ € C2(,;) N CH(Q; \ (P92 UTN )N COQy),

sonic sonic

where ', is IO corresponding to (v, 8;). For such $), define

(5:3.1) @9 = (@) +on — 95, 0 (G
for G/ and ¢, defined by (4.1.31) and (4.1.42), respectively.

Let @; be given by (4.3.17) associated with (u;, 8;, ). Then Definition 4.15(ii) implies that
(5.3.2) ) = i 0 Gy o
for G, e defined by (4.1.49).
Osh . . ~
For each @), let ﬁg}) be given from (5.1.9) with & = W) . We also define Q, gen, &, 0, @, and
s, similarly associated with (u, 8) € K.
By Lemma 4.16(d), we have

(5.3.3) o) g in CVO([-1,1)).

Fix a compact set K C gf(Q) ={(s,t") : =1 < s < 1,0 <t < gsn(s)}. Then there exists a
constant ox € (0,1) depending only on K such that K C {s > —1 4 og}. Thus, by Lemma
4.16(g), there exists a constant Cx > 1 depending only on (vs,7,Sx) and K such that, for any
(uf, B%) € K,

(5.3.4) Cx' <gh(s) <Cx  forall (s,t') € K.
By (4.1.49) and (5.3.3)-(5.3.4), we have
(5.3.5) G27g£{)) — Gag., in Olva(K).

This implies that there exists a compact set Qg C Q" such that G2 o) (K) C Qg for all j, and
'¥sh

G2,4.. (K) C Q. By Corollary 4.37(b), 4; converges to 4 in C?(Qk). Therefore, it follows from
(5.3.2) and (5.3.5) that

(5.3.6) wV) =@ in CYY(K).

Since K is an arbitrary compact subset of gf (), we conclude that w; converges to w in C1* for
any compact subset of gf Q).

By (5.3.1), (5.3.6), and Lemmas 4.5 and 4.43-4.44, we can apply Proposition 5.4(a-3) to obtain
the convergence of sequence {ggiﬂ) (W)} to &, (W) in C**(R(145)g, N {b1 < 5 < ba}) for

any by and be with —1 < b3 < by < 1, where xk € (0, %] is from Definition 5.3. Note that, for
any o € (0,1), {(s,@iﬁ) (8)) + =1+0 <s <1-0} C Ri1s)g, holds for all j sufficiently large
depending on o. Therefore, by using the C?—estimate of gg, given in Lemma 5.5 and (5.1.17), it

can be directly checked that {ﬁg})} converges to g in C?([—1+ 0,1 — o]) for any o € (0,1). Then
we obtain from (5.1.10) that

(5.3.7) 65 = g i OO, (-1 D).

By (5.1.24), (5.3.7), and properties (a-3), (b-3), and (c-3) of Proposition 5.4, we conclude that
aj := Z(uj,B;) converges to i = Z(u, ) in C(Qfm)(@ter). This implies that Z : K — C(Qfal) is
continuous.
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1-2. Compactness of T : K — C2* . Let U be a subset of K € C>*  (Q'r) x [0, 8,]. Then U

is bounded in C(Qfm)(giter) x [0, ﬁ*]( éiil)ce C(Q;?S(Qiter) is compactly e(znglblédded into C(Qfm)(@ter),
Lemma 5.7(b) implies that Z(U) is pre-compact in 0(2 ;?‘al)(Qim). From this property, combined
with the continuity of Z proved in the previous step, we conclude that Z : K — C(Qfal)(Qim) is
compact in the sense of Definition 5.9. This verifies Claim 1.

2. Claim 2: In Definition 4.19, N1 can be increased, and d2 > 0 can be fized such that, for any
B € (0,8.], no fized point of Z(-,B) lies on boundary OK(8) of K(B), where OK(B) is considered
relative to space C(Qfm)(Qimr). Furthermore, the choices of (N1, 02) depend only on (veo, Y, Bx)-

2-1. Let Z(u, ) = u for some (u, 8) € K, and let ¢ = p(*#) be given by (4.2.4). We extend ¢
onto Ag by (2.5.8) if 8 < B§”°°>, and by (2.5.12) if g > B§”°°>. By Proposition 5.8, ¢ is an admissible
solution corresponding to (Veo, ) € Ryeak In the sense of Definition 2.24.

In order to verify Claim 2, we need to show the following:

- u satisfies the strict inequality given in condition (i) of Definition 4.19;

- ¢ satisfies all the strict inequalities given in conditions (iii)—(vi) given in Definition 4.19.

2-2. The strict inequalities in condition (1) of Definition 4.19: Note that N satisfies that

Ny > Nl(a) for N 1a) from Corollary 4.40. Therefore, u satisfies the strict inequality given in condition
(i) of Definition 4.19.

2-3. The strict inequalities in conditions (iii) and (v)—~(vi) of Definition 4.19. In conditions (iii)
and (v)—(vi) of Definition 4.19, constants (N2, ¢, fi, a., C) are fixed so that any admissible solution

satisfies the strict inequalities in conditions (iii) and (v)—(vi) of Definition 4.19 by Propositions 3.7
and 4.6, Remark 3.16, and Lemma 3.5.
61

2-4. The strict inequalities in condition (iv) of Definition 4.19. Suppose that 0 < 8 < <.
1

Then #5(3) defined by (4.3.12) satisfies that J#(8) < 0 for any d2 > 0. Moreover, ¢ satisfies
(4.3.3) in the whole domain Q by Definition 2.24(iv), the strong maximum principle, and Hopf’s
lemma. The strict inequalities in (4.3.4)—(4.3.5) are satisfied by Lemma 3.2.

Next, suppose that g > 11\5[_112' Then it follows directly from (2.5.1) that par — v is a nontrivial

linear function. By Definition 2.24(iv), ¥ = ¢ — max{po, o} > 0 in . Since p = pp on 'Y . .
(A On Fé\gnic, and o — @ is a nonzero function, the strong maximum principle and Hopf’s lemma
apply to ¢, so that ¢ — pn > 0 and ¢ — @ > 0 in 2 hold, which yields that

(5.3.8) ¥ =@ —max{po,px} >0  nQ\ (D, UDY,,)

for fixed € > 0 in Definition 4.19. By (5.3.8), Lemmas 3.2 and 3.43, and the continuous dependence
of (T'Q ..., ¢0) on B, there exists a constant ¢ > 0 depending only on (7, Vs, Bx) such that

sonic?
Y= —max{po, px} >0 in Q\ (D?/IOUDZH)).
By Lemma 3.2, we also have
Des,, (P00 — ) <0 in 2\ DY), —0¢, (poo — ) <0 in Q\ DY,

By Corollary 3.19, and Propositions 3.26, 3.30, 3.32, 3.39, and 3.42, the set of admissible solutions
corresponding to (vao, 8) € Rweak N{B < By} is uniformly bounded in C1<. Therefore, there exists
a constant 6 > 0 depending only on (7, Vs, 8«) such that

Oes, (0o — ) < —6 M Q\DGyy, 0 (oo — ) < —6 in Q\ DY,
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Since 41 > 0 is fixed, depending on (vso, 7, Bx), we can choose N; sufficiently large and d; > 0
sufficiently small, depending only on (veo, ¥, B, 01, IN1), such that

Ha(B) < 5;[—622 < min{o, 5} for all 5 € [0, B4].

i
With the choices of (N1, d2), ¢ satisfies (4.3.3)—(4.3.5) in Definition 4.19(iv).

In inequalities (4.3.6)—(4.3.11), parameters pg, K3(8), N4, N5, and py are fixed so that any
admissible solution corresponding to (veo, 3) € Rweax N {8 < Ps} satisfies all the strict inequalities.

2-5. With the choices of (N1, d2) determined in Step 2-4, we conclude that any fixed point of
Z(-,pB) for B € (0, B, lies in K(B). In the next step, we also show that no fixed point of Z(-,0) lies
on 0K(0).

3. Let parameters (a, €, 01,03, N1) in Definition 4.19 be fixed as described at the beginning of
§5.3.2. Let N; be further adjusted, and let J» be fixed as in Step 2 so that Claim 2 holds. Finally,
let 93 be further adjusted to satisfy the conditions in Lemmas 4.42 and 4.43 as described at the
beginning of §5.3.2. In particular, let d5 be adjusted to satisfy (4.5.4) given in the proof of Lemma
4.42. With these choices of parameters («, €, 01, 02,03, N1), the definition for the iteration set K
given in Definition 4.19 is now complete.

3-1. Claim 3: The iteration map Z(-,0) has a unique fized point 0 with
Ind(Z(-,0),K(0)) = 1.

At 8 = 0, it follows from (2.5.1) that oo — o = 0, so that the boundary condition on
9 .. UTN . of the boundary value problem (4.3.16) associated with any u € K(0) becomes

homogeneous. Then it follows from Lemmas 4.34(f) and 4.35 that, for any u € K(0), the associated
boundary value problem (4.3.16) has a unique solution ¢ = 0 in Q(u,0). From this, we have

Z(u,0) =0 for all u € K(0).
It can be directly checked from Definition 4.19 that the fixed point u = 0 of Z(-,0) lies in K(0).
Also, we have shown in Step 1 that Z : K — C’io‘al) is compact in the sense of Definition 5.9.
Therefore, the fixed point index Ind(Z(-, 8), K(53)) satisfying properties (i)—(iv) stated in Theorem
5.12 is well defined. Then Theorem 5.12(i) implies that
(5.3.9) Ind(Z(-,0),K(0)) = 1.

3-2. Combining Claim 2 in Step 2 with Claim 3 in Step 3-1, we see that no fixed point of
Z(-, ) lies on the boundary 9K(8) of K(B) for all 8 € [0, B.]. Then, using (5.3.9) and properties
(a) and (d) of Theorem 5.13, we have

(5.3.10) Ind(Z(-, 8),K(8)) = Ind(Z(-,0),K(0)) for all 8 € [0, 8]
By Theorem 5.12(ii), (5.3.10) implies that Z(-, 5) has a fixed point in K(8) for all § € [0, 8«]. Then
Proposition 5.8 implies that, for each (veo, ) € Rweak N {0 < B < B}, an admissible solution

corresponding to (v, 3) exists. Since vo, > 0 is arbitrary, and S, is also arbitrary in (0, ﬁé”“’)), we
finally conclude that there exists an admissible solution for any (v, 8) € Rweak- This completes
the proof of Theorem 2.31. O






CHAPTER 6

Optimal Regularity of Admissible Solutions
— Proof of Theorem 2.33

This chapter is devoted to the complete proof of Theorem 2.33.

Let ¢ be an admissible solution corresponding to (veo, ) € PRyweak in the sense of Definition
2.24. We now prove statements (a)—(e) of Theorem 2.33, respectively.

1. Proof of statement (a) of Theorem 2.33. It follows from Lemmas 3.9 and 3.18 that I'ypoek is
C™ in its relative interior, and ¢ € C*(Q\ ro ury ). By Definition 2.23, 9 s a closed

sonic sonic sonic

portion of a circle when 8 < [3(%") and becomes a point P3 when 3 > ﬂs(v“’) Near TV._. | we combine

sonic?

Proposition 3.26 with the smoothness of ¢ away from TS . UT¥ . to obtain ¢ € CH1(Q\T

sonic sonic bOI]lC)

Near 'Y ., we consider two cases separately: (i) f < ﬂ(v“’ and (ii) g > ﬂs(v“’). Ifg < BSU""’), i

follows from Proposmons 3.30 and 3.32 that p is C*! up to T'Q . . If B > ﬁé”“’), then Propositions
3.39 and 3.42 imply that ¢ is C* up to I'9 .. = {Ps} for some a € (0,1). This completes the
proof of statement (a).

2. Proof of statements (b)—(c) of Theorem 2.33. Let the (z,y)—coordinates be defined by
(3.4.18) and (3.5.2) near TV . and T'Q_. . respectively. Define

sonic sonic?

Y = ¢ — max{pnx, o}

for po and pur given by (2.5.1). Note that ¢ = ¢ — @ near TN . and 1 = ¢ — po near T9 _ .
By (3.2.29), (3.4.21), (3.4.26), Lemma 3.21, and Proposition 3.26, we can apply the following

theorem to ¢ near I'y ., :

THEOREM 6.1 (Theorem 3.1 in [1]). For constants r, R > 0, define QIR b
rr=1(@y) s 2€(0,r), |yl <R}
For positive constants a,b, M,N, and € (0, 1), suppose that ¢ € O(ﬂ) NC2(Q; r) satisfies
(22 — ahy + O1)Vaz + O2vbuy + (b4 O3)ay — (14 O4)z + Os5¢p, = 0 n QT R

P >0 mQer
=0 onaQTRﬂ{xzo},

2—K

—MISUJxS x ZnQTR’
where terms O;(x,y), i =1,--- |5, are continuously differentiable and
5
O1(z,y)| | [DO1(z,y)| Ok (2, y)| N
(6.1) S SR (P 4 DOk )| ) SN in Qe

k=2

189
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Then
P € CB( T/2R/2) for any «a € (0,1),
with
1 R
7/111(079) = Ea 7/117;(079) = 1/)yy(0ay) =0 for all |y| < 5

For g € [ ﬁév"’")), it can be directly checked from the results in §3.5.1 that Theorem 6.1 applies
to ¢ near TY . . Then the admissible solution ¢ satisfies statements (b)—(c) of Theorem 2.33.

3. Proof of statement (d) in Theorem 2.33. By Lemma 3.21(d), Tshock N Dé\[ is represented as
the graph of y = fN sh(z) for 0 < x < ¢, Where DN is defined by (4.1.2).

Let, {yfﬁ)} be a sequence satisfying 0 < ym < fN sh(0) for each m € N, and lim y(l) = fN sh(0).
By (2.5.30), (2.5.32), and Theorem 2.33(c), we can choose a sequence {xm)} such that {(xm ,ym )} C
(1) 1
Q, xm’ € (0,5-), and

|t (2 Oyl - } < i for each m € N.

v+1
By Lemma 3.21(d), 0 < %) < Fnan(0) < far Sh(a:,(n)) for each m € N. Therefore, we have
A 1
i (1) o,y = (1) -
(62) nmlgnoo(xm »Ym ) - (vaN,Sh(O))v hm 1/}131( Lo, 7ym ) v+ 1

By properties (a) and (c) of Lemma 3.23, and Proposition 3.26, there exists £ € (0, ] such that,
on Ishock N D?/ , the boundary condition (3.4.23) can be rewritten as

(63) "/Jac + bl"/]u + bo¢ =0 on 1—‘shock N ,Dév
for (bo,b1) = (bo, b1)(Wu, ¥y, 1, &, farsn(x)). Let w > 0 be from Lemma 3.21(d). Then

{(z, fasn(@) — l%:v) 0<z<e}C.

Denote F(z) := g (z, fN sn(z) — $52). By (6.3), we have
Flw) = u(w, fxron(@)) - _55/ Yy (@, farsn(z) — tlo(; ) dt

—(b1%y + botp)( fN sh(z)) — —33/ Yay(T f/\/ sh(x) — )dt for 0 <z <e.

From the last equality and Proposition 3.26, we obtain that F(0) = 0, F € C([0,¢]) N C*((0,¢)),
and limg 04 @ = 0. Then, by the mean value theorem, there exists a sequence {3:5,%)} C (0,¢)
such that

(6.4) lim z® =0,  F(z?)=0.

m—r o0

For each m € N, define y{? := Iarsn(z (2)) 16T 22 so that {(:vm S )} C Q. By the definition of
F and (6.4), we have

lim 1/}131( a (2)) = lim ‘F/( 573))_ hm (f,/\fsh( ) )1/}1.7!( m 5y7(73))

m—0oQ m—0oQ
(6.5) : 1 @) w (2) <2>
= _Al_r)noo(f./\f,sh(‘rm ) 10)2/1 (xm yYm )
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Since hm (22, y2) = (0, far.sn(0)), we combine (6.5) with Proposition 3.26 to obtain
(6.6) lim 1. (z(2,y2) = 0.

m—r oo

n (6.2) and (6.6), we have shown that there are two sequences, {(xm ,ym )} and {(a:m ,ym )} in
Q such that the limits of both sequences are (0, forsn(0)). On the other hand,

lim oa(ey),yid) # lim doo (2, y2).

m—r oo

For 8 € (0 ﬁb”“’)) we can repeat the argument above by using Lemma 3. 28(d) and Propositions

3.30 and 3.32 to show that there are two sequences, {(xnll), gj,é))} and {(:vm s )} in © such that

the limits of both sequences are (0, fo.sn(0)), but it can similarly be shown that
1
gy = - 1 7(2) 5(2)

where fo ¢ is from Lemma 3.28. This proves statement (d) of Theorem 2.33.

3. Proof of statement (e) of Theorem 2.33. By Lemma 3.20(e), Sxr is represented as the graph
of y = far0(z) near point P, in the (x,y)—coordinates given by (3.4.18). We extend the definition
of farsh into (—&,&) by
(6.7) Insn(@) = faro(x) for z € (—£,0].

By Proposition 3.26, fN,sh satisfies
(6.8) (farsh = fa0)(0) = (farsn = fav0)'(0) = 0,

so that curve Ignock U Sn7seg 18 C11, including at point Ps.
Define

O = pos — o
Since ¢ (x, fa.0(x)) = 0 and (9oe — @)(x, fan(x)) = 0, ¥ satisfies

(6.9) N (@, fao(x) — O (2, faron(@) = (2, fan(z))  for 0<z <&
A direct computation yields that
(6.10)
2 N ¢ R ) 2 ) R
Lol Iol)) _ (@00, (. farol@) + 3 anFaeow)) 027405 (. o))
k=0
d2 N ) f s R : £l — r
Celtn o)) _ g ()0, o Frcan(w) + 3k (Fhen ()02 050 o @),
k=0

with (ao, ai, ag) = (1, 2, 1)
We differentiate (6.9) with respect to x twice and use (6.10) to obtain the following expression:
Al (ac) + Ag(l‘) + Ag(,@)

(6.11) (frsh = faro)’ () = Dy (z, farsn(z))
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where

Axa) = 3 an ((Fueo@)) 02 05N (. Fno(@) — (Fhran (@) 02 0F 6N (1, fav.n(2)))

k=0

Aa(w) = (0,6% (@, fro(@) = 0,65 @, Frran(@))) firo (@),

Ag(@) = = (i @y (@, fvn (@) + D ax(Fi an(2) 02050 (@, frran(@)) ).
k=0

By (6.8), we have
(6.12) A1(0) = A5(0) = 0.

We differentiate the boundary condition (3.4.23) in the tangential direction along I'ypock, and apply
Lemma 3.23(a)—(c) and Proposition 3.26 to obtain that there exists a constant C' > 0 such that

e (z, frrsn(2))]
< C(I(@, fxsn(@))] + Dy (@, fasn(@))] + Dty (2, frsn(@)])  on Tenoe N DY

From this estimate and Proposition 3.26, we see that lirglJr Yaa (T, f,\/,sh(:v)) = 0, which implies that
>

(6.13) zlg& As(z) = 0.

By Lemma 3.20(c), 8¢ (, firsn(2)) # 0 on Tepoa N DY, Then we conclude from (6.11)-(6.13)
that R R
(fash = far0)"(0) = 0.

This implies that the extension of fyr, given by (6.7) is in C2([—¢,&]). Furthermore, we conclude
from (6.11) and Proposition 3.26 that the extension of farg given by (6.7) is in C2%((—&,¢)) for
any o € (0,1). This implies that Tgnock U Sy seg is C2© for any a € (0,1), including at point
Py = (0, far.sn(0)). For 8 € (0, S(U“’)), it can similarly be checked that So seg U Ishock is C*
for any a € (0,1), including at point P, = (0, fo,sh(O)) for fo,sh from Lemma 3.28. Therefore,
statement (e) of Theorem 2.33 is proved.



APPENDIX A

The Shock Polar for Steady Potential Flow

According to [22], for any given uniform supersonic state, a shock polar curve for the two-
dimensional steady full Euler system should exist and be convex. In this appendix, we show the
same for the potential flow. The convexity of the shock polar curve leads to Lemma A.4, which
is the key ingredient for proving the existence of admissible solutions in the sense of Definition
2.14 for (uno, o) € Pweak With ug < ugpw’“w), and the non-existence of admissible solutions for
(Uoo, o) € Pstrong. The existence of convex shock polar curves for potential flow is proved by
combining the results from [24, 33].

The two-dimensional steady potential flow for an ideal polytropic gas is governed by the equa-
tions:

(p)z; + (pv)zy =0,

Uz, — Vgzy = 0,
2(u?* +v?) +i(p) = Bo (Bernoulli’s law)
for a constant By > 0, where i(p) is given by

Pt
i(p) = =1 for v>1,
Inp for v =1.

LEMMA A.l. Fiz~ > 1 and the incoming constant state (poo,Uso) = (oo, (oo, 0)), With us >
(v=1)/2

Poo > 0. Denote My, = =57z > 1 as the Mach number of the incoming supersonic flow.
2
For each 8 € [O,COS’l(ﬁ)), there exists a unique u = (up,v0) € (R1)?\ {us} such that
(A1) POU N = Pl - I,
(A.2) (Ueo —u) -t =0,
1 ) 1 .
(A.3) 5(‘1 -n)? +i(po) = 5(1100 “0)% +i(poo)
for n = (cos B, —sin B) and t = (sin 3, cos B), where po is given by
1, 1
(A.4) po =i Hi(poo) + 5 (uds — [ul?)).

2
In other words, u becomes the downstream velocity behind a straight oblique shock So of angle 3 — 3
from the horizontal axis. Moreover, the collection of such u = (up,vo) for B € [O,Cosfl(ﬁ))
forms a concave curve on the (u,v)-plane.

PROOF. The existence of the curve for (up, vp) is verified by following the proof of [33, Propo-
sition 2.1], and the convexity of this curve can be checked by adjusting the proof of [24, Theorem
1]. We prove the lemma for the case that v > 1. The case that v = 1 can be treated in the same
way. The proof is divided into two steps.

193
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1. FEzistence of shock polar. Fix constants v > 1, poo > 0, and wuy with v > pgfl)ﬂ.
Let So be a straight oblique shock with angle § — § from the horizontal ground, and let po and
u = (up,vo) be the density and the velocity behind shock Sp. By (A.2), the angle between vector

U — Uy and the horizontal axis in Fig. A.1 is 8. By the expression of {n,t}, we have

\ (1o, v0)
\
qo A\
A\
ﬁ /\\
U
Uco

F1GURE A.1. The shock polar for potential flow

Ugo - N = Ugo €OS B, Uy - t = g sin 3,
(A.5) - - . _ :
u-n=upcosf —vesin g, u-t=upsinf + vp cos B.

Denote Mo = —5%575. For each 8 € [0,%), Moy is fixed and My, > 0 holds. It has been
shown in the proofagf Lemma 2.17 that there exists a unique M,, with M,, # My, ,, as a solution of
the equation:

(A.6) 9(My) = g(Moo,n)

20y—1) -1
for g(M) = (M? + %)M_vaﬂl , unless My, ,, = 1. Substitute u-n = M,p,’ into (A.3) and

solve the resultant equation for pp to obtain
it = (oo - 1)% + 2i(poo) + %
o = 2 :

By the entropy condition, shock Se is admissible only if po, < po, which is equivalent to saying that
0< M, <1< Mgy Since My, = M cos 8 for Mo, = -85, we restrict our consideration
P

only to the case that 8 € [0, cos_l(MLm)). Then (A.2) and (Aog) yield that

. y—1
<uo> B ( cos 3 smﬁ) Mo
VO —sinf cosB) \uysinf)
Therefore, curve (up,v0)(B) is given for 8 € [0, cos_l(ﬁ)) in the (u,v)-plane; see Fig. A.l.
=) M,=1= limﬁﬁcosfl(ﬁ) Moo 1, the shock polar curve is extended up
to B = cos_l(MLoo) by (u0,v0) = (Uso,0).
1

This curve (u,v) = (up,ve)(B) for 5 € |0, cos’l(m)] is called a shock polar for potential flow.

Since hmﬁﬂcos* 1(
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2. Convezity of shock polar. Let u = (u,v) denote each point on the shock polar curve. By
(A.1)—(A.2), each point u on the shock polar satisfies the equation:

(A7) g(w) = (p(juf)u - pacue) - 22

> _9
[use — u

for use = (oo, 0), where p(|uf?) is given by (A.4) so that Dyp = —%p for ¢(|ul?) = p?~(|ul?).
Combining this with (A.7) gives that

u-n,2 pu-n P — Poo
A8 w D= (1—— ) wt = —(uw -t .
(8 gen=p(1-(27), gart— ey (S50 L0
By the entropy condition, we have
(A.9) gu -1 > 0.
Define
e Yu
q T 9
Gu-1n

and express q as q = n + ;‘:—fflt.

Claim: q X g—g <0 forall g€ (O,cos_l(ﬁ)).

Denote A := —;‘J‘—ffl. Then (di—g =—(1+ %)t — An, which implies that

dq dA
A10 — =—(1+A%+ ).
( ) q X 13 (1+ A%+ dﬂ)
By (A1), (A5), and (A.8), we can rewrite A as A = Y=l (Me 4+ L) for M, := %2,
Differentiate (A.6) with respect to 8 to obtain
dM,, 0 (Moo ) oo sin 3

1
= f “(—)).
dB g'(My) D72 >0 for € (0,cos (MOO))

a+1
From pWT+1 M, = pod Moo,n = Poclics cos  and dé‘g” > 0, we see that g—g < 0 so that % > 0 holds

for all 8 € (O,cos_l(MLoo)). Combining this with (A.10), we have

d
q X £ <-1 for g € (O,cos_l(MLm)).
The claim is verified.

The inequality above gives the useful property:

dag
(A11) gxi(g):qx_dﬁg_id
lal -~ dA gl Cli lal?
at each point on the shock polar curve.
Fix a point ug = (ug, vo) on the shock polar {u = (u,v) : g(u) = 0}, and define ny = ‘38:3:‘.
We introduce a new coordinate system (s, t) so that the following properties hold in the new (s,¢)—-
coordinates:

(1) Uy = (050)7 ng = (Oa 1)7
(ii) If 79 is the unit vector perpendicular to ng and oriented to satisfy us - 79 > 0, then
T0 — (1, 0)
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Define a function G(s,t) by

G(sW (W) = g(u),
where (s(W,+() is the (s,t)-coordinates of u on the shock polar. Since the value of g, - n for
n= ‘3: :EI is invariant under the rotation, G;(0,0) = —(gu - n)(ug) < 0. By the implicit function
theorem, there exists a function fy, : (—€p,€0) — R for some small constant €9 > 0 so that the
shock polar curve is represented by ¢ = fyu,($) near ug in the (s,¢)—coordinates. Such a function
fu, satisfies the relation:

1 0 d 1
uo—():&x_(g) <_ <o,
1+ (flllo (0))2 |q| dﬁ |q| u=ugp |q(U.0)|
Therefore, we conclude that the shock polar for potential flow is concave. 0

REMARK A.2. Fix v > 1 and (poo, thoo) With uee > pgfl)ﬂ > 0. Let T(P>-t<) be the shock
polar curve lying in the first quadrant in the (u,v)-plane for the steady potential flow with the
incoming supersonic state (poo,Uss). Owing to the concavity of the shock polar, there exists a

unique 9((1’) sostioe) (0, %) such that the following properties hold:

(i) o <6, < Gépm’u"’"), then line £ = tan 6, intersects with Y (Poortioo) gt two distinct points;

(ii) Line © = tan@ép“”u‘”) and Y(P=-u=) have a unique intersection point so that o=

tan 93’)‘”’““’) is tangential to Y (Pe:%=) at the intersection point;

(iii) If Hé’)“”u“’) <0y < 3, then line Z = tan 6, never intersects with Y (Poo o),

LEMMA A.3. Fiz vy > 1. For each (poo, Uoo) With ts > pg_l)ﬂ > 0, there exist a unique con-
stant ﬂgp""”u"") =:1p € (0,ux0) and a unique smooth function fporar € C°([lo, tso]) N C®((Gg, Uso))
such that

(A.12) YPeetoe) = {(u, fotar(u)) : u € [flo, o] }-
Furthermore, the following properties hold:
(a) Let 0{*>=""=) be from Lemma 2.4(c). Then there exist unique uq, us € (lig, Uso) Such that

fpolar(us) _ tanH(f’“”"“’) fpolar(ud>

(A.13) o o

= tan H(gp""”u"’").

Moreover, uq < us holds, and (uq,us) vary continuously on (pPoo,Ueo)-
(b) Denote by fpolar(:, Poo, Uso) the shock polar function fpolar(-) for the incoming flow (poo, too)-
Then fpolar as a function of (u, P, Uso) is C™° on the domain:

{(uapooauoo) D Poo >0, g > pg_l)/Qa u € (a(pomuoo)auoo)}'

PROOF. The proof is divided into four steps.

1. For each 3 € [0, cos ™ (7)), let (po, uo,vo) be from Lemma A.1, and let go = /u2, + v3.
Since (po,uo,v0) is uniquely determined for 3 € [0, cos™(5=)], go is considered as a function of
B. Substituting (A.5) into (A.1)—(A.2), we obtain

(10, v0) = us(1 — (1 = 22) cos? B, (1~ 22) cos fsin ),
Po PO



A. THE SHOCK POLAR FOR STEADY POTENTIAL FLOW 197

so that
_ q_o)2
2 _ Uoo —.
(A14) COS ﬁ = m = h(qo)
po
It follows from (A.4) and (A.14) that
2q0

h'(qo) = I(q0)

(1- p°°) POCHUZ

for I(qo) satisfying I (us) = 0 and I'(qo0) = (v + 1)qo(p% — p2,). Inequality po > pso holds, owing
to the entropy condition for the admissible shock so that I'(go) > 0 and I(qo) < I(uw) = 0 for
0 < go < e, which implies that h’'(¢p) < 0 for 0 < go < us. Then (A.14) yields that

dgo ~ 2cosfsinf3
ds h'(qo)

2. Let g(u),n, and t be given by (A.7). Then (A.8) implies
dvg(n) = —(gu - m)sin f + (gu - t) cos f <0

for any interior point u = (u,v) in Y(¥e~t=) By the implicit function theorem, there exists a
unique function fpolar @ [to, Uso] — [0,00) so that (A.12) holds, where 4y = go(8)|s=0 for go
defined through (A.14). The smoothness of mapping (u, poo, Uco) > fpolar(U; Poo, Uoo) follows from
the implicit function theorem and the smooth dependence of g(u) on (peo, Uso)-

1
>0 for all B € (0,cos™* ——).

(A.15) -

3. The existence and uniqueness of ug € (fg, uso) result directly from the concavity of the
shock polar curve Y(Ps-u)  Since point (119, 0) on the shock polar Y (pocsuoo) corresponds to a
normal shock, (g, 0) is subsonic; that is, p?g_l —q% > 0holds at 3 = 0. At 3 = cos_l(ML)7
PGt — g3 < 0, because (P0:40)|p=cos1(i—) = (Poo;Uso). From (A.15) and Bernoulli’s law that
2a% + poo(po) = By, we have

d(pp ~ —a3) 1 L
— <0 for all 8 € (0, cos (M—OO))

Therefore, there exists a unique us € (f, o) such that 70‘"”;17(“*) = tan 9£p°°’u°°) holds. Further-
more, Lemma 2.4(c) and the concavity of Y (e-%©) imply that ug < us.

4. By Bernoulli’s law and the concavity of Y(P>:%<) (A.13) is equivalent to

2(7—1)(1u2 &?1),

2 2
s + olar\Us; Poo; Uoo) = 00 +
(A.16) s F potar(ts: P, o) = =237 3 y—1
fpolar(udvpoo; uoo) - udféolar(udypmnuoo) =0
for each (poo, Uoo) With use > pgo_ )25 0.

For each k € N, let a sequence {(pOo ulk )} satisty u) > (pgf)))('yfl)/2 > 0. Also, suppose
that {(poo ,uoo )} converges to (pk,,uk) with u’, > (p5)0"/2 > 0. Let (u'(jk),ugk)) and (u},ul)

o0
be the values of (uq,us) corresponding to (p((,]é),u((,g)) and (p%,,ul,), respectively. Note that

( (r )apg;)a (oo)) ( (k) p(oo)a ) € {(U; Pocy Uso) * Poo > 0, Use > pgil)ﬂa u € (ﬂ(pm,um),um)}
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for each k£ € N and that 4 varies continuously on (peo, tso) so that {(u((ik),us )} is bounded in

(RT)2. Therefore, there exist a convergent subsequence {(uékj ), ugkj))} and states (ug, uf) such that
111r1]_>(,o(u((]1 ) C )) (ud, £). Then assertion (b) (proved in Step 2) and (A.16) yield
2v—1) (1 (P2 )"
2 2 * * o * \2 =)
(u)? + forar (Ul P, ule) = EESE (5(%0) + -1 )
Footar (s P2 150) = 0 Fhotar (1, Pl 15c) = 0.

This implies that (ud, uf) = (uj,ul), since it has been shown in Step 3 that (ugq,us) satisfying
(A.13) for (p%,,u’ ) uniquely exists. Therefore, we conclude that (uq,us) varies continuously on
(Pocs too)- O

In Lemma 2.19, the one-to-one correspondence between parameter sets 3 and R is established.
For each (uso,ug) € B, there exists a unique 6y, € (0, F) such that vy, is given by (2.4.23), where
(Voo B) € R corresponds to (ueo,ug). The convexity of the shock polar obtained in Lemma A.3
yields the following property:

LEMMA A4. Fizy > 1 and vy > 0. For each 3 € (0,F), let voo, 0o, po, and Pg be defined by
(2.4.1), (2.4.4), (2.4.5), (2.5.3), respectively. Denote G(p, z,&) = g**(p, 2, &) for ¢"(p, z,€) defined
by (3.4.13). Then there exists ﬂév“’) € (0, %) depending only on (ve,) such that G(p, z,&) satisfies

<0 for 5 € (0, é”“’)),
(A17) Gpl(D900790007P,3) =0 forﬁ:ﬁ(vm)
>0 for B e ( (v"o),Q)

PRrROOF. The following facts are useful to compute G, (Do, ¢so, Ps):

(i) The unit normal vector np to So towards the downstream is np = % =
oo

(sin 8, — cos B) so that (poDyo — Dps) - (1,0) = (po — 1)(ue — &1) cos? 3, where Do
and Dy, are evaluated at € = (£1, &) € R2.

(ii) It is shown from a direct computation that, if G(p, z, &) = 0, then

1 Dy — P Dy — P PP — Do
(A.18) Gp(p,2,§) = — (C2 - (p ) 7)13 T )
’ P12\ [Dooe — pl |Dpoe — p [Dipoc — P
for p = p(p, 2).
It follows from (i)—(ii) that
P
Slnﬁ (po —1)(uo —§,") cos®
(A19)  Gp(Dyo,pm Py) = (¢ — (o — 7)) = L
Uo + VUso
for co = pg D72 Denote go = Dpo(P3)-no. Then up —5? = go csc 8, where Pg is denoted as
Pg = (§PB 0). Also, &5* in the proof of Lemma 2.22 can be written as £J" = qo cos 5. Substituting
these two expressions into (A.19) and using the relations that up = —ve tan § and % =1

obtained from (2.4.1), (2.4.3), and (2.4.29), we have

: (&5)? cos 3
Gp, (Dpo, ¥, Ps) = po(1 — M) sin 3 — pz_2 csc B — —ck
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. . o . . dGy, (Deo,¢oc,Pg)
where Mo is defined by (2.4.6) with ¢ = ¢o. Then it can be directly checked that a7 >

0forall 0 << 3.
It follows from ﬂlir€+(po,§?) = (pn, &) that limg 04 Gp, (D90, Yoo, Pg) = —00
—

Relations (2.4.11) and (2.4.35) yield £ = go cos 3, which gives that
cosf3

Gp, (Do, oo, Ps) = po((l — M(%) sin 3 — M(% 00562 cgcﬁ) — —h

It is shown in the proof of Lemma 2.22 that limg,z_ co = oo and % <0Oforall0 < 8 <

This implies that limg_,z _ Gp, (Do, ¢, Ps) = 0o. Therefore, there exists a unique B((iv“’) € (0,
O

satisfying (A.17).

[SIE RS

~—






APPENDIX B

Non-Existence of Self-Similar Strong Shock Solutions

For the completeness of this monograph, we include the proof of the non-existence of admissible
solutions corresponding to (vVoo, 8) € Rstrong i the sense of Definition 2.24, or equivalently, the non-
existence of admissible solutions corresponding to (tso, o) € PBstrong in the sense of Definition 2.14.
The non-existence of self-similar strong shock solutions was first studied in Elling [25]. In this
appendix, we combine the convexity of the shock polar shown in Lemma A.1 for steady potential
flow with the result from [25] to show the non-existence of admissible solutions corresponding to

(Uom ﬁ) € mstrong'

PROPOSITION (Non-existence of admissible solutions with a strong shock). For each v > 1,
there is no admissible solution corresponding to (veo, 3) € Rstrong it the sense of Definition 2.24.
Equivalently, there is no admissible solution corresponding to (o, %0) € Bstrong-

PROOF. The proof is divided into six steps.

1. On the contrary, suppose that there is an admissible solution ¢ for some (voo, 8) € Rstrong

in the sense of Definition 2.24. Then 1 := ¢ — po € C3(Q\ (19,  UTN . )N C(Q) satisfies
(Bl) (C - (pfl)wflfgl - 2905190521/}5152 + (C - 4/752)1/}5252 =0 in (),

(B2) 1/) = Yoo — PO, E(D1/U/)7€) =0 on 1—‘lshockv

(B?’) |D¢| =0 on Fson1c7 w = PN — PO on Fson1c7

(B4) afzw =0 on 1—‘Wedge

for ¢2 = c(|Dy|?, p) and TQ .. = {Ps} by (2.5.6), where

sonic

0(q,2,§) == G(Dpo(§) +a,p0(§) + 2,§),

Gla.56) = (pla2)a - Dewl€) - o= =T
(B.5) 12 _Ligl2— 2))7 T for ,
plq,z) = ( = 2(2 |q| )) T
exp(——§| |2 —2) for v =1,

(la*,2) = p""H(lal*, 2),
for q € R%,z € R, and € € Q.
2. Claim: 1 attains its minimum at Pg.

Since (B.3), combined with Remark 2.35, implies that 1 is not a constant in €2, then the
minimum of 1 over € is attained on 99 by the strong maximum principle. Also, 1) cannot attain
its minimum over ) on I'wedge by Hopf’s lemma. The proof of Proposition 3.4 applies to ¢ such that
Tshock lies strictly below So, and 1) > 0 on I'gyock. Therefore, we conclude that ming ) = 9(Pg) = 0.
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3. Divide equation (B.1) by c¢?(|D¢|?, ) to rewrite (B.1) as

D P3)|? .
L1 = (1 - |SD(272(BH + 011(5))w5151 + 2012(5)%@ + (1 + 022(5))"/}5252 =0 in Q2
o
for & = (&1,&2) € Q, where each O;; = Oy5(De, @) satisfies that limg_, p, [0;;(€)] = 0 for 4,5 = 1,2.
Define k := L and &, = k(¢ — fﬁ). Let (r,0) be the polar coordinates of (£;, &)

 V1-IDeo (P2 /e N .
centered at Pg. Then Q C {r > 0,0 < 8 < g} for tan g = %
Next, define
(B.6) U(r,0) := ercos(wpb)

for constants €,wp > 0 to be determined later. As in [25], choose € > 0 small and wy € (0,1) close
to 1. A direct computation by using the definition of (r, ) shows that

3

(B.7) LU = 2(1 - (cos(w()@) + OOt (. 9)) in O

with lim, o [OF* (r,0)] = 0.
A direct computation by using (A.18) and Lemma A.4 gives that

0q(0,0, Pg) - (cos B,sin B) < 0 < gq(0,0, Pg) - (1,0).

Therefore, there exists 6y € (—7, —75 + 3) satisfying that % = (cos B, sinbp). Then it can
qlV,U,
be directly checked that

(B.8) 94(0,0, Pg) - DeW(r,0) = e(k cos by cos((1 — wo)f) + ng()lar)(ﬂ)),

where |(9§p01ar) (0)] < CH|1 — wp| for all # € [0, 3] with a constant C* > 0 chosen independently of &
and 7.

4. Claim: There exist w, € (0,1) and R > 0 such that, whenever wy € [ws, 1) in (B.6)
and R < Ry, the minimum of ¢ — ¥ over QN Br(P3) cannot be attained on T'shock N Br(Ps).
Furthermore, w, and Rs can be chosen independently of .

Suppose that (¢ —U)(P,) = min (¢ —¥) for P, € Tghock N INr(P3) for some R > 0.
QNOBR(Pg)

Since ) — ¥ =0 at Pg, v — ¥ < 0 at P,. Let vy, be the unit normal vector to I'shock at Py oriented
towards the interior of §2, and let 74, be a unit tangent vector to I'spock at Pe. Then ¢ — U satisfies

(B.9) Or (6 = W)(P) =0, By, (4~ W)(P.) 2 0.

Let P3P} be the projection of PgP, onto Sp. Since (¢oo — o )(Py) = 0, it follows from (2.4.1) and
(2.4.3)~(2.4.4) that

e|P. — Pyl = W(P.) ~ W(Pp) 2 (P.) = (9o — 90)(€)IL=p; > vao seC B|P. — P,

which yields that
€

(B.10) |P. — Pl| < m|P*—PB|.
From (B.9), we have
(B.11) Dy(P,) = DY(P)) + (DY(P,) — DY(P.)) + |D(¢) — U)(P.)|Ven.

Since |D(poo — @) * Ush| > 0 on Dghock, there exist constants £, > 0 such that ¢ satisfies
|D(poc — )| > & on the open é-neighborhood Nz(Tshock) Of Tshock: Since ¥ = voo — 0o on Lghock,
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Q(Diﬁa%baﬁ) = 9(D¢7<Poo - 90(975) on l—‘shock- Define gﬁ(qu 5) = g(q7 ((poo - @O)(S)ag) Choose
constants oo, R1 > 0 small so that

() gs(q, &) is well defined in Us, r, = {(q,§) : |a| < 200,|§ — Ps| <2R1};
(ii) There is a constant Cy > 0 such that

||9u||01(m) <Gy,
B.12 N _—q
( : 9q94(q, €) - % =
Such a constant Cy can be chosen independently of (&, wp).

Owing to |Di(Pg)| = 0, there exists Ry > 0 small, depending on oy, such that (Dy(&),€) €
Roo. R, for all £ € QN Bp, (Pﬁ)

If P, € QN Bp, j2(P3) and ;—5 < g, then (B.10) implies that P, € Bsg, /4(Pg). Choose
g1 € (0, 2= chﬁ] so that, Whenever e € (0, ] (VE(P)), P.) € Uyy.r,- Note that &1 can be chosen
depending only on og. Then

0= g3 (DY (P.), P.) — g4(0, P;)
= (0:(DY(P), Pi) — gy (DY(P.), PL)) + (9:(Dv(P.), PL) — (0, P;))
=:J1 + Jo.

By (B.10) and (B.12), J; is estimated as

C_ fOI’ (q7£)7 (q/7£/) S Ua'o,R1-

Cyue
B.13 Ji| < —%& |P, — Pgl.
(B.13) Bl <€ =P~ By

oo

Ja is estimated more carefully by using (B.8) and (B.10)—(B.12) as follows:
1
Ja = (DY(PL) + (DU(P.) = DUPD) + D~ W)(P)lvas) - [ Bags(tDu(P.), Pl e
0

> (DU(P!) + (DY(P.) — DU(P / Dqgs (tDY(P.), PL) dt.
Let C* be from Step 3. By (B.8) and (B.12),

P [ onastepue at
> s(kcost% cos((1 — wo)B) — C*|1 — wo| — C| P, — Ps|*)
for some C' > 0 depending on Cg and [|¢[|c1.0(m)- By (B.6), (B.10), and (B.12),

(DU(P,) — DU(P. /aqgu tDi(P,), P)dt > Ce?|P, — Pg|

for some C > 0 depending on Cy. Therefore, J; is estimated as
Ja > e(kcos g cos((1 — wo)3) — C*1 — wo| — Ch(|P — Pgl))

for a non-increasing continuous function A (r) that tends to 0 as r tends to 0, where C* and C are
chosen, independent of P, and wy. Combine this estimate with (B.13) to obtain

(B.14) € (kcos@o cos((1 —wp)B) — C’ﬁ|1 —wo| — C(h(|Px — P3|) + |Px — Pﬁ|)) <0
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Choose w, € (0,1) close to 1 and Ry € (0, R;] small, so that
k cos By cos((1 — w,)B) — C*1 — w,| — C(h(R2) + Ry) > %k cos f.

Under such choices of (ws, R2), we arrive at a contradiction whenever wy € [ws,1) and P, €
TCshock NBr, (Pg). Thus, 1) — ¥ cannot attain its minimum on I'shock N Br(Ps) whenever wg € [ws, 1)
and R < Rs.

5. Claim: Let w. and Ra be from Step 4. There exist € > 0, wg € [w«, 1), and R € (0, Ra] such
that, for U defined by (B.6), ¥ — U attains its minimum over Qr(Pg) := QN Br(Pg) at Ps.
By (B.7), there exists a small constant Rs € (0, Rz] so that £ is uniformly elliptic in Qg, (Ps)

and

Lp—T) < —=—(1—wl)cos(woB)  in Qp,(Pp).
2R3

By the strong maximum principle and Hopf’s lemma, the minimum of ¢ — ¥ over Qg (Ps) must
be attained on 0Qg, (Ps) \ I'wedge- It is shown in Step 4 that ¢ — ¥ cannot attain its minimum on
TCshock N Br, (P3).

Denote m := ianﬂaBRS(pﬂ)w. The claim in Step 2 implies that m > 0. Choose ¢ > 0
small, depending only on R, so that ¢ — ¥ > 0 on Q N OBg,(Ps). For such a choice of ¢, since
(1 — W) (Pg) = 0, we conclude that

Qﬁgﬁ)(@b V) = (¢ - ¥)(Pg) =0.

6. In Steps 4-5, it is shown that we can choose (¢,wp) in (B.6) so that, if R > 0 is sufficiently
small, the minimum of ) — ¥ over Qr(Ps) must be attained at Pg, provided that there is an
admissible solution ¢ corresponding to some (voo, ) € Rstrong, and that ¢ is given by ¢ = ¢ — po.

By the definition of ¥ with wg € (0,1) and (B.3), and by the C'-regularity of ¢ up to Ps, there
exists a small constant 0 > 0 so that 0,(¢ — V) < —5 in Q5(Ps). However, this contradicts the fact
that

(6~ W)(Ps) = min (1~ ).

r(Pg)
Therefore, we conclude that there exists no admissible solution corresponding to (vso, 8) € Rstrong
in the sense of Definition 2.24. g



APPENDIX C

Quasilinear Elliptic Equations in Two Variables

For the completeness of this work, this appendix includes several properties of quasilinear
elliptic equations, which are used to prove Theorem 2.31. We refer the reader to [11] for the proofs
of these properties as stated below.

C.1. Ellipticity Principle for Self-Similar Potential Flow

The following lemma is an extension of the ellipticity principle of Elling-Liu [26]:

LEMMA C.1 (Theorem 5.2.1, [11]). Fiz v > 1 and ve > 0. In a bounded domain Q C R?, let
© € C3(Q) satisfy the equation:
(C.1.1) div (p(|Dg|*, ) D) + 20(|D¢l?, ) = 0
for p(|D¢l|?, o) given by (2.4.2). Denote the pseudo-Mach number as M := % forc(|Dpl|?, ) =
pﬁ;l) (|1D|?, ). Let ¢ satisfy that p >0 and M < 1 in Q. Then the following properties hold:

(a) Either M =0 holds in Q or M does not attain its mazimum in §;

(b) Suppose that diam(2) < d for some constant d > 0. Then there exists a constant Cy > 0
depending only on (veo,7y,d) such that, for any given § > 0, ¢ > 1, and b € C?*(Q) with
|Db| + ¢|D2%b| < & in Q, if ¢(|Dy|?, @) < & holds in Q, then either M? < Cy6 holds in

- C

or M? + b does not attain its mazimum in Q.

LEMMA C.2 (Theorem 5.3.1, [11]). In a bounded domain Q@ C R? with a relatively open flat
segment T' C 0Q, let ¢ € C3(QUT) satisfy (C.1.1) in Q and

O =0 onT

for the unit normal vector v to I' towards the interior of . Assume that p > 0 and M < 1 in
QUT. Then the following properties hold:

(a) Fither M =0 holds in QUT or M does not attain its mazimum in QUT;
(b) Let diam(Q2) < d for some constant d > 0. Then there exists a constant Cy > 0 depending

only on (veo,7, d) such that, for any given d > 0, ¢ > 1, and b € C*(Q) with | Db|+¢|D?b| <
S in Q and 9yb =0 on T, if c(|Dy|?, @) < & holds in QUT, then either M* < Cod holds
in QUT or M? +b does not attain its mazimum in QUT.
C.2. Uniformly Elliptic Equations Away From the Corners
Consider a quasilinear elliptic equation of the form:
(C.2.1) N(u) = f(x) in Q,
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with
2

N(u) = Z A;j(Du,u,x)D;ju + A(Du, u, x),
ij=1
where

(C.2.2) Aij(p,z,x) = Aji(p, z,%x), A(0,0,x) =0 forall (p,z,x)€ RZxRxQandi,j=1,2.
Suppose that there exist A > 0 and « € (0, 1) such that

2
(C2.3) Mpl? < Z Aij (Du(x), u(x), x)pip; < A7 pl> for all x € Q and p = (u1, o) € R?,
i,j=1
(C24) (A, A)D.2, Npam SA* for all (p,2) € B2 x R,
(C.2.5) ”D(p,z)(AijaA)||07R2><R><§ <A
For r > 0, let B, denote a ball of radius r in R2.

THEOREM C.3 (Theorem 4.2.1, [11]). For Q = Bs, if u € C*%(By) is a solution of (C.2.1)
with
lullo,B, + [Ifllo,a.5, < M,
then there exists a constant C' > 0 depending only on (A, M, «) such that

lull2,0,8, < C(llullo,B, + [ fllo,0.B,)-

Applying Theorem C.3 to v(z) = 2u(rz), we have the following corollary:
COROLLARY C.4. If u € C*%(By,) is a solution of (C.2.1) for r € (0,1] with

[ullo,Bs,. + |fllo,e0. B, < M,
then there exists a constant C' > 0 depending only on (A, M, «) such that

c
lull2,a.5, <~z (lullo, g + 721 fllo,0,52.)-

THEOREM C.5 (Theorem 4.2.3, [11]). For X € (0,1), let ® € C1(R) satisfy
[@]ie <A, @(0)=0.
For R > 0, denote
Qg = BR(O) n {LL‘Q > E(I)(Jil)}, T'r:= BR(O) N {,TQ = 5@(:101)}
In addition to assumptions (C.2.2)~(C.2.5) with Q = Qa,, let W(pa, z,x) satisfy
W(0,0,x) =0 on Ty,
|0p, W (p2, 2,%x)| < € for all (p2,z,x) € R X R x Ty,
D s,y W (D2, 2, )1, < AT for all (p2,2) € R x R,

Then there exist constants €, 3 € (0,1) and C > 0 depending only on \ such that, for u € C?(Qg,)N
C1B(Qq, UTy,) satisfying (C.2.1) with f =0 in Qo and

(C.2.6) Ugy = W (Ugp,y,u,X) on Iy,
we have

C
||u||11ﬁ799r/5 < 1—||u||0,ﬂ2r'
rl+8
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THEOREM C.6 (Theorem 4.2.8, [11]). In addition to the assumptions of Theorem C.5, for
a € (0,1), assume that

[ @108 <A1,
IDps.yW (P2, 2, 1,075 AT for all (p2,2z) € R x R,
HD(QPz,Z)W”l,O,RxRxFQT < AL

Then there exist ¢ € (0,1) and C > 0 depending only on (A «,||ullo.q,,) such that, for u €
C?%(Qg, UTy,.) satisfying (C.2.1) with f =0 in Qg and (C.2.6) on Ty,

c
||u||270¢199T/5 < 24 a ”u”O,(br'
7" +

THEOREM C.7 (Theorem 4.2.10, [11]). For A € (0,1) and a € (0,1), let ® € C**(R) satisfy
[[®]l2,0.8 < AT, 2(0) = '(0) =0,
and denote
Qr = Br(0)N{ze > ®(x1)}, Tr:=00rN{z2=d(x1)} for R € (0,2).
Let u € C**(Qpr UTR) satisfy (C.2.1) in Qp and
w-Du+bou=~h on I'g.
Assume that w = (w1,w2)(x) and by = bo(x) satisfy the following conditions:
w-v>X onlpg, [(w,b0)|[1,0rr <AL,
where v represents the unit normal vector to I'r towards the interior of Qgr. If u satisfies
l[ullo.on + [ fllo.a.0n + [[Pl1ers <M,
then there exists a constant C' > 0 depending only on (A, o) such that

C
st < Tore (Iulogn + B2 loaon + BllAlar, ).

[l

In addition, there exist B € (0,1) and C>0 depending only on A such that

C
el .9/ < 5 (Ielon + B2 Flo.agn + Rliklosrs ).
Note that B is independent of .
THEOREM C.8 (Theorem 4.3.2, [11]). Let R > 0, A € (0,1), v € (0,1), and K > 0. Let
® € CH(R) satisfy
[@lloar <A, ®(0) = 0.
Let Qr and I'r be as in Theorem C.7 for R > 0. Define
d(x) := dist(x,T'r) forx € Qp.

Assume that u € C3(Qr) N CH(Qr) is a solution of (C.2.1) with f = 0 in Qr and the boundary
condition:
B(Du,u,x) =0 on T'g.
Assume that A;j(p,z,%),1,7 = 1,2, and A(p, z,x) satisfy (C.2.3)~(C.2.5) and the additional prop-
erty:
d(x)7|Dx(Aij, A)(p, z,x)| < A7! for allx € Qr and |p| + |z] < 2K,
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and that B(p, z,x) satisfies
(C.2.7) |DpB(Du(x),u(x),x)| > X for all x € Qp, 1Bz {1p|+ |21 <2k xcamy < AL
Assume that u satisfies

lu| + |Du| < K on Qr UTkg.

Then there exist both 8 € (0, 1] depending only on (A, K,~) and C > 0 depending only on (R, \, K, )
such that

(_1_6)7F 3
HUHL,@,QR/z < Cv HUHQ,@QR/Z iz <C.
THEOREM C.9 (Theorem 4.3.4, [11]). Let the assumptions of Theorem C.8 be satisfied with
v =0. In addition, for a,o € (0,1), assume that
[®flcrom <A™, @(0) =0,
1 .
(A5, Dll oo qpp+iz1<2r. ety + 1Bl ez i+ 212k, xetmy) < A forj=1,2.
Then
||U||2,U,QR/4 <,
where C depends only on (\, K, «, 0, R).
COROLLARY C.10 (Corollary 4.3.5, [11]). Let the assumptions of Theorem C.8 be satisfied with
~v = 0. In addition, for « € (0,1) and k € N, assume that

[@]lkar <A™, @(0) =0,
145, A)llroa (g1 21<2k, xeamy) + 1Bllowssaippiizi<or, xeamy AT forj=1,2.
Then

HU‘H/H-LO(,QRM <C,
where C' depends only on (A, K, k, o, R).

C.3. Quasilinear Degenerate Elliptic Equations

Consider a domain U C R? of the form:
U={x=(x1,22) : 1 > 0,22 € (0, f(x1))},
where f € C'(R;) and f > 0 on Ry. For a constant r > 0, denote
U-=Un{z1 <r},
I, =0UNn{(z1,0) : 0 < a1 <71},
Lir=0UN{(z1, f(z2)) : 0 <z <7}
Consider a boundary value problem of the form:
2 2
Z Aij(Du, 1, X)Og 1+ Z Ai(Du,u,x)0z,u =0 in U,
i,j=1 i=1
(C.3.1) B(Du,u,x) =0 onTy,,
Oz, u =10 on Ty,
u=0 on I’y = 90U N {z, = 0}.
THEOREM C.11 (Theorem 4.7.4, [11]). Given constantsr >0, M > 1, and I, X € (0,1), assume
that the following conditions are satisfied:
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(i) Conditions for 'y, f is in C*A([0,7]) for some B € (0,1) and satisfies
IS son™ <M, f>1 onRy,

(ii) Conditions for (4;;, A;): For any (p,z,x) € R* x R x U, and k = (k1,k2) € R?,

/\|H|2 Z Aij(p, 2 7¢+J < 71|"‘7|2'

1,7=1
In addition, (A;j, A;) satisfy the following estimates:
[(A11, A12) 0,1 r2xrxU, < M,
|05, A11 (P, 2,%)| < Mx1/2 in R x R x Uy,
|(A22, A1, Ad)llor2xrxv, + | Dp,2) (A2, A1, A2)llo.r2 xRxv, < M,

sup |($13117$1/25m2)(1422, Ar, A2)(p,z,x)| < M.
(p,z)ER?2XR,x€U,

(iii) Conditions for B: For any (p,2,x) € R* x R x 'y,
(C.3.2) Op, B(p,2,%x) < =M%,
In addition, B satisfies the following estimates:
| Bll3,r2xrxr;, < M, B(0,0,x) =0 on Ty,.
Let u € C(U,) N C?(U, \Tp) be a solution of the boundary value problem (C.3.1) satisfying that
lu(x)| < Mz} inU,.

Then, for any « € (0,1), there exist constants ro € (0,1] and C' > 0 depending only on (M, \, @)
such that, for e := min{, ro, I*},

(par)
pe <

lull$Z

C.4. Estimates at a Corner for the Oblique Derivative Boundary Value Problems

ProprosITION C.12 (Proposition 4.3.7, [11]). Let R > 0, 8 € (0,1), v € [0,1), A > 0, and
K,M > 1. Let Q C R? be a domain with x¢ € 92 and 9Q N Br(x¢) = ' UT'?, where I'*, k = 1,2,
are two Lipschitz curves intersecting only at xo and contained within xo + {x = (z1,22) € R? :
x9 > T|x1|} for some 7 > 0. Denote

Qr =N BR(X()).

Assume that T2 is C™ up to the endpoints for some o € (0,1) with [|[T2||c1.- < M in the sense
that there exist ¢(® > 0 and £ € C9(]0,¢?)]) such that, in an appropriate basis in R,

Qrc{x:a>fP@),0<z <P}, T2={z3=F @) :0<z <P}
Let u € CY(Qgr) N C2(Qr UT?) N C3(Qr) satisfy
(0.4.1) HUHCO’I(E) S K.
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Assume that wu is a solution of
2

(C4.2) Z a;j(Du,u,x)D;ju + a(Du,u,x) =0 in Qp,
ij=1

(C.4.3) b (Du,u,x) = h(x)  onT?,

(C.4.4) b2 (Du,u,x) =0 on I'2,

where (a;;,a,b®) are defined in V = {(p,2,x) € RZ2 xR x Q : |p| + |2| < 2K}. Assume that
(aij,a) € C(V)NCHV \ {x = x0}), bV € C?(V), b? € C*(V), and h € C(T'?) with
(C.4.5) [(aiz, @)llcoiry + 1D p,2) (@i, a)l oy < M,
(C.4.6) |Di(aij )(p, 2,%)| < Mlx —xo| 7 for all (p,2,x) € V,
(C.4.7) 16wy + 18Pl ey < M,
(C.4.8) |h(x) — h(xo)| < AR—;|X —x0/®  forallx el
In addition to the conditions stated above, assume that the following properties hold:

(i) For any x € Qg and k = (K1, k2) € R,

Nl? < 22: aij (Du(x), u(x), x)rik; < A k[%;
i,j=1
(ii) For any x € T, |Dpb™ (Du(x), u(x),x)|

(iii) For any x € I'2, Db (Du(x), u(x), x)
to I'?;

(iv) b™ and b® are independent for u on I'? in the sense that, for any x € I'?,

e (Dt (Dulo .3

Then there exist « € (0, 8] and C depending only on (A, K, M), and R’ € (0, R] depending only on
(N, K, M, a) so that, for any x € Qpg/,

|b(1)(Du(x),u(x),x) — b(l)(Du(xo),u(xo),xoﬂ < Cx — xol*.

ProposITION C.13 (Proposition 4.3.9, [11]). In addition to the assumptions of Proposition
C.12, assume that

(049) |b(k)(p7Z7X) - b(k)(f)72,i)| < M|(p,Z,X) - (f’vgai” for k = 15 25

for all (p,z,x), (p,2,%) € V. Moreover, denoting h*) (p) = b* (p,u(xo),%0), k = 1,2, and
noting that functions h(*) are defined in By (Du(xo)), assume that h(¥) € C1*(Bg(Du(xo))) with

> A

A, where v is the inner unit normal vector

> A for any x € T2

Hh(k)Hcm(m) < M for some « € (0,1), and
Dph™M (Du(xp))
. . > *
(C.4.10) ‘det (Dph<2> (Du(xo)) )| =

Let W C Qp satisfy
(C.4.11) x9 € W, 0 #W NOoB,(xg) C WNB,(xp) forallre(0,R).
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For each £k = 1,2, let
(C.4.12) [6®) (Du(x), u(x),x) — b (Du(x0), u(x0), %0)| < M|x — x0|* for all x € W.
Then there exists a constant C' > 0 depending only on (K, M, R, «) such that, for all x € W,
|Du(x) — Du(xo)| < Clx — xo[“.
ProposITION C.14 (Proposition 4.3.11, [11]). Let R,A >0, a € (0,1], v € [0,1), and M > 1.
(a) Let Qg be as in Proposition C.12. Assume that I'" and I'? satisfy that, for each k = 1,2,
(i) Tk € C* with ||[T*||con < M,
(i) B%(x) NONRk = BLN,;) NT* for all x € TF N B¥(xo), for d(x) := |x — xg|-

Let u € C(Qr)NC3(Qr) be a solution of (C.4.2)—(C.4.4) with h = 0, where (a;;, a)(p, z, X) satisfy
all the conditions stated in Proposition C.12. In addition, assume that, for each k = 1,2,

19 g, < M,

|Dpb* (Du(x),u(x),x)| > A for all x € Qp.
Moreover, assume that u satisfies
(C.4.13) |Du(x) — Du(x0)| < M|x — x0[ for all Qg.

Then there exist 5 € (0, ] depending only on (A, K, M, ) and C' > 0 depending on (A, K, M, R, &)
such that u € C*#(Qp/2) with

T pp—e
(b) In addition to the previous assumptions, if [|[I*||c1.. < M, k = 1,2, for some o € (0,1), if
(aij,a) satisfy
@iz, @)(0,0,), D (s, )P, 2, )5 < M
for any (p, z) satisfying |p| + |2| < 2K and for m = 1,2, and if each b(*) satisfies
16 2oy <M for k=1,2,

for some ¢ € (0, 1), then there exists a constant C' > 0 depending only on (A, K, M, R, a, 7, ) such
that u satisfies

1
[ raies

C.5. Well-Posedness of a Nonlinear Boundary Value Problem
For a constant h > 0 and a function fuq : [0, h] — Ry, Denote a bounded domain Q C R? as
(C.5.1) Q= {x=(z1,22) €R? : 1 € (0,h), z2 € (0, foa(x1))},
where f,q satisfies that, for constants ¢y > 0, t; > 0, t2 > 0, t, > 0, « € (0,1), and M > 0,
foa € CH([0,R]),  foa(0) = to, foa(h) = tn,
(C.5.2) foa(z1) > min{tyzy + to, 2},
I foally oy " < M
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We denote the boundary vertices and segments as follows:
P, =(0,t9), Py=(h,ty), P;=(h,0), Py=(0,0),
(C.5.3) Ih=00n{z; =0}, TI,=900n{z1 =h},
Ty =00N{x2 = foa(r1)}, Tp=00n{xs =0}

and I', Ty, Ty, and I'y, are the relative interiors of the segments defined above.
Let ¢o(x) be a piecewise smooth function defined in R? such that

o o€ C({z1 < P NC>({x1 > 2} with [[goll @iz < oo
e ¢o=0in {2 <2},
e ¢ is linear in {z; > 2},
z2¢)0 =0 on Fb.
Consider a nonlinear boundary value problem:
2 2
Z A;j(Du,x)D;;u + Z Ai(Du,x)Dju =0 in €,
i,j=1 i=1
(C.5.4) u=¢y onl1UIL,,

B(Du,u,x) =0 on I'y,
Oz, =0 on I'.

Assume that (C.5.4) satisfies that, for constants A € (0,1), M < oo, « € (0,1), B € [3,1),

€(0,1), and € € (0,4%), the following properties holds:

(i) For any x € Q, and p, k = (K1, k2) € R,

Adist(x, T UT,)|k|% < Z Aij(p, X)kik; < A k|2
7,j=1
(i) For any x € Q\ {§ <21 <h— 5} and p,k = (k1,K2) € R?,

2
Ai‘(pvx)ﬁiﬁ’ _
A2 < Y —— 20 L <Ak
(min{z1,h —21,0})% 2

ij=1
(ili) (Aij, 4;)(p,x) are independent of p on QN {e < x1 < h — e} with
[Aijll o (@nfe<ar <n—et) + 1(Aijs Al cro @rgezazimey) < M-
(iv) For any p € R?,
[(Aij, A)(Ps )l oo vz, <himaey) T (Do Aij, DpAi) (P, )l @\ (26 <21 <h—2e}) < M.
(v) (Aij, A;) € CL(R2 x (Q\ T UTY,)) and

h\ M h
[[(Asj, Al oo rex @nis <oy <h—s})) < M(g) for all s € (0, Z)

(vi) For each (p,x) € R x Q\ {4 <2y < 3}, define
p=p — Ddo(x), (aij,a:)(P, x) = (Aij, Ai)(p, %)
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For each (p, (z1,0)) € R? x (T, \ {e <21 < h —¢}),
(a11, @22, a1)((P1, —p2), (71,0)) = (a11, as2, a1)((p1,P2), (z1,0)),
and, for all (p,x) € RZ x (Q\{e <z1 <h-—¢}),i=1,2,
lasi (P, (z1,22)) — asi (Do (0, z2), (0, 22))] < M|z, |? when z; < ¢,
laii (P, (z1,22)) — asi(Doo(h, z2), (0, 22))| < M|z, — h|? when z; > h —e.
In Q\ {e <x1 < h—e}, ¢ satisfies

2

2
Z Aij (Du, X)Dij¢0 + Z A;(Du,x)D;¢o = 0,

i,j=1 i=1
so that the equation for u in (C.5.4) is written as an equation for & = u — ¢g in the form:

2

2
Z a;;(D4,x)D Z (Di,x)D;0 = 0.

ij=1
(vii) For any p € R? and x € T, UT,, (A12, A21)(p,x) = 0.
(vili) For any p € R* and x € Q\ {5 <21 <h— £}, A1(p,x) < —A.

(ix) For any (p,z,x) € R? x R x I'y, Dp,B(p, 2,x) - v (x) > A, where v(!) is the inner unit
normal vector to I'y towards the interior of {2;

(x) For any (p,2) € R? x R,
I(B(D¢o, %0, M caionras <y + DGy Py 2 Nllsgy <M for k=1,2,3,
| DpB(p, 2, ')HcO(ﬁ) <A h
D.B(p,z,x) < =X\ for all x € T,
D,, B(p,z,x) < =\ for all Ty \ {e < a1 < h—¢}.
(xi) There exist v € C3(Ty) and a nonhomogeneous linear operator:
L(p,z,x) =bM(x)-p+ bél)(x)z + g1(x),
defined for x € Ty and (p, z) € R? x R, satisfying
lellcsy + 100,567, g1)ll sy < M
such that, for all (p,z,x) € R? x R x 'y,
|B(p, 2,%) — L(p, 2,%)| < o(|p — Dv(x)| + |Z —v(x)]),
|DpB(p, 2,%) = bW (x)| + |D.B(p, z,%) — by (x)| < 0.
From [11, Propositions 4.7.2 and 4.8.7], the following two propositions are obtained:

PRrOPOSITION C.15. For fixed constants A > 0, M < oo, a € (0,1), B € [4,1), and € € (0, 1),
there exist constants ay € (0,%), o € (0,1), and § > 0 with a; depending only on , and (o, do)
depending only on (A, M, Cy,,a, 3,¢) such that the following statement holds: let domain 2 be
defined by (C.5.1), and let the nonlinear boundary value problem (C.5.4) satisfy all the conditions
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stated above with h, ty,, t1, ta, to > 0, € (0, &), and 6 € [0,dy). Then the boundary value problem

» 10
(C.5.4) has a unique solution u € C(Q2) NCH(Q\ (T1UT;)) N C%(Q). Moreover, u satisfies
(C.5.5) [ull comy < C, |u(x) — ¢o(x)] < Cmin{x;,h — 21} in

with a constant C' > 0 depending only on (A, M, Cy, , €). Furthermore, u is in C(Q)NC%*1 (Q\TUT;)
and satisfies

(C.5.6) [ell 2.0 @Rszarenmsy) < Cs

for each s € (0 with a constant Cs > 0 depending only on (A, M, Cy,,, 5, ¢, s).

s 10)
PrOPOSITION C.16. For fixed constants A > 0, § > 0, M < oo, a € (0,1), B € [%,1), and

27
e € (0,15), there exist constants a; € (0, 1), o € (0,1) with a; depending only on (A,4), and o > 0

depending only on (A, 4§, M, Cy,, @, B, €) such that the following statement holds: let domain € be
of the structure of (C.5.1)—(C.5.3) with h > 0, ¢, > 0, t1 > 0, t3 > 0, and to = 0, that is,
P1:P4:(070)7 E:{(0,0)},
and let the nonlinear boundary value problem (C.5.4) satisfy conditions (iii), (v), and (ix)—(xi)
above, and the following modified conditions:
(i*) For any x € Q and p, k = (k1, k2) € R?,

2
min{ A dist(x, I1) + &, A dist(x, To) Hel* < D Aij(p, x)rir; < A7 k[,
i,j=1

m a),{P1
1(Asj, Ai) (Do, ), D (Aij, AN (P I o) ooy <M form =12

(ii*) Condition (ii) holds for any x € Q N {dist(x,I;) < £} and p,k € R2.
(iv*) For any p € R?,
(A, A) (P, )l oo @rgashzey) T I1(PpAis, DpAi) (P, ) L= @nfzi>h—2e1) < M.
(vi*) For each (p, (71,0)) € R? x (I'y N {z1 > h —¢€}),
(a11, @22, a1)((P1, —P2), (#1,0)) = (a1, asz, a1)((p1, P2), (z1,0)),
and, for all (p,x) € R? x (AN {z1 > h —¢}),
|aii(p, (z1,72)) — aii(Do(h, 22), (0,22))] < My — h|?,  i=1,2.

(vii*) Condition (vii) holds for all p € R? and x € T}.

(viii*) Condition (viii) holds for all p € R? and x € QN {z; > h — 5}
Then the boundary value problem (C.5.4) has a unique solution u € C(Q)NC*(Q\ (T;UT,.))NC? ().
Moreover, solution u is in C(Q2)NC?%1(Q\ (T,UT,)) and satisfies (C.5.5)—(C.5.6) for C > 0 in (C.5.5)

depending only on (A, 8, M, Cy,,€), and Cs > 0 depending on (A, d, M, Cy,, ¢, s). Furthermore, u

satisfies Py
l—a;y (il A
g, < ¢

for constant C' > 0 depending only on (6, \, M, a, ¢).
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