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Abstract

We are concerned with the Prandtl-Meyer reflection configurations of unsteady global solutions
for supersonic flow impinging upon a symmetric solid wedge. Prandtl (1936) first employed the
shock polar analysis to show that there are two possible steady configurations: the steady weak
shock solution and the strong shock solution, when a steady supersonic flow impinges upon the solid
wedge – the half-angle of which is less than a critical angle (i.e., the detachment angle), and then
conjectured that the steady weak shock solution is physically admissible since it is the one observed
experimentally. The fundamental issue of whether one or both of the steady weak and strong shocks
are physically admissible has been vigorously debated over the past eight decades and has not yet
been settled in a definitive manner. On the other hand, the Prandtl-Meyer reflection configura-
tions are core configurations in the structure of global entropy solutions of the two-dimensional
Riemann problem, while the Riemann solutions themselves are local building blocks and determine
local structures, global attractors, and large-time asymptotic states of general entropy solutions of
multidimensional hyperbolic systems of conservation laws. In this sense, we have to understand the
reflection configurations in order to understand fully the global entropy solutions of two-dimensional
hyperbolic systems of conservation laws, including the admissibility issue for the entropy solutions.
In this monograph, we address this longstanding open issue and present our analysis to establish the
stability theorem for the steady weak shock solutions as the long-time asymptotics of the Prandtl-
Meyer reflection configurations for unsteady potential flow for all the physical parameters up to
the detachment angle. To achieve these, we first reformulate the problem as a free boundary prob-
lem involving transonic shocks and then obtain appropriate monotonicity properties and uniform
a priori estimates for admissible solutions, which allow us to employ the Leray-Schauder degree
argument to complete the theory for all the physical parameters up to the detachment angle.
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CHAPTER 1

Introduction

We are concerned with unsteady global solutions for supersonic flow impinging upon a solid
ramp, which can equivalently be regarded as portraying the symmetric gas flow impinging upon a
solid wedge (by symmetry). When a steady supersonic flow impinges upon the solid wedge – the
half-angle θw of which is less than a critical angle (i.e., the detachment angle θd), Prandtl first
employed the shock polar analysis to show that there are two possible steady configurations: the
steady weak shock reflection with supersonic or subsonic downstream flow (determined by the wedge
angle that is less or larger than the sonic angle θs < θd) and the steady strong shock reflection with
subsonic downstream flow, both of which satisfy the entropy conditions, provided that no additional
conditions are assigned downstream; see Courant-Friedrichs [22], von Neumann [41], and Prandtl
[42].

A fundamental issue is whether one or both of the steady weak and strong shocks are physically
admissible. This has been debated vigorously over the past eight decades and has not yet been
settled in a definitive manner (cf. [22, 23, 39, 41, 44]). On the basis of experimental and numerical
evidence, there are strong indications to show, as Prandtl conjectured (see [3, 40, 42]), that it is
the steady weak shock solution that is physically admissible as the long-time asymptotics of the
Prandtl-Meyer reflection configurations.

Furthermore, the Prandtl-Meyer reflection configurations are solutions of the lateral Riemann
problem (Problem 2.6 below), and are core configurations in the structure of global entropy solutions
of the two-dimensional Riemann problem for hyperbolic conservation laws. On the other hand,
the Riemann solutions are building blocks and determine local structures, global attractors, and
large-time asymptotic states of general entropy solutions of multidimensional hyperbolic systems
of conservation laws (see [4, 5, 6, 11, 32, 35, 36, 37, 43, 49] and the references cited therein).
Consequently, we have to understand the reflection configurations in order to fully understand
global entropy solutions of the two-dimensional hyperbolic systems of conservation laws, including
the admissibility issue for the entropy solutions.

A natural mathematical approach is to single out steady shock reflections by the stability
analysis – the stable ones are physically admissible. It has been shown in the steady regime that
the steady (supersonic or transonic) weak reflection is always structurally stable in Chen-Chen-
Feldman [8] and Chen-Zhang-Zhu [17] with respect to the steady perturbation of both the wedge
slope and the incoming steady upstream flow (even L1–stable for the supersonic weak reflection with
respect to the BV –perturbation of both the wedge slope and the incoming steady upstream flow
as shown in Chen-Li [15]), while the strong reflection is also structurally stable under conditional
perturbations (cf. Chen-Chen-Feldman [8, 9] and Chen-Fang [19]). The first rigorous unsteady
analysis of the steady supersonic weak shock solution as the long-time behavior of an unsteady
potential flow was due to Elling-Liu [27], who dealt with a class of physical parameters determined
by an assumption for angle θw less than the sonic angle θs ∈ (0, θd) (see Chapter 3).
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2 1. INTRODUCTION

The purpose of this monograph is to establish the stability theorem for the steady (supersonic
or transonic) weak shock solutions as the long-time asymptotics of the global Prandtl-Meyer re-
flection configurations for unsteady potential flow for all the admissible physical parameters, even
beyond the sonic angle θs, up to the detachment angle θd > θs. As a corollary, the assumption in
Elling-Liu’s theorem [27] for the case that θw ∈ (0, θs) is no longer required. The global Prandtl-
Meyer reflection configurations involve two types of transonic flow boundaries: discontinuous and
continuous hyperbolic-elliptic phase transition boundaries for the fluid fields (transonic shocks and
sonic arcs). To establish this theorem, we first reformulate the problem as a free boundary prob-
lem involving transonic shocks and then carefully establish the required appropriate monotonicity
properties and uniform a priori estimates for admissible solutions so that the approach developed
in Chen-Feldman [11] can be employed. This involves several core difficulties in the theory of the
underlying nonlinear PDEs: optimal estimates of solutions of nonlinear degenerate PDEs and cor-
ner singularities (at the corners between the transonic shock as a free boundary and the sonic arcs,
and between the transonic shock and the wedge when the wedge angle θw across the sonic angle
θs), in addition to the involved nonlinear PDEs of mixed elliptic-hyperbolic type and free boundary
problems. Some parts of the results have been announced in Bae-Chen-Feldman [2].

More precisely, in Chapter 2, we first formulate the physical problem of supersonic flow im-
pinging upon the solid wedge as an initial-boundary value problem. By using the invariance under
a self-similar scaling and the physical structure of the problem (see Fig. 1.1), the initial-boundary
value problem is reformulated as a boundary value problem in an unbounded domain (Problem
2.9), and further as a free boundary problem (Problem 2.34) for a pseudo-steady potential flow in
a bounded domain in the self-similar coordinates ξ = (ξ1, ξ2) = x

t for t > 0. Next, we introduce
the notion of admissible solutions that we seek in this monograph for all the admissible physical
parameters (u∞, u0) ∈ Pweak, where u∞ represents the speed of the incoming supersonic flow,
and u0 represents the horizontal speed of downstream flow behind a steady weak shock which is
uniquely determined by u∞ and angle θw. For simplicity, the density of incoming supersonic flow
is normalized to be 1 without loss of generality. In §2.3, the existence of admissible solutions for all
(u∞, u0) ∈ Pweak is stated as one of the main theorems.

β
θw

O

(0,−v∞)

ξ1

ξ2

Γshock : free boundary

SO

SN

ΓN
sonic

ΓO
sonic

β
θw

O

(0,−v∞)

ξ1

ξ2

Γshock : free boundary

SO

SN

ΓN
sonic

Figure 1.1. Admissible solutions in the (v∞, β)–parameters in the rotated co-

ordinates (ξ1, ξ2) by angle θw counterclockwise (Left: 0 < β < β
(v∞)
s ; Right:

β
(v∞)
s ≤ β < β

(v∞)
d ).

In order to prove the existence of admissible solutions for all (u∞, u0) ∈ Pweak by employing
the Leray-Schauder degree argument, the first essential step is to introduce a new parameter set
Rweak in §2.4. Given (u∞, u0) ∈ Pweak, the half-angle θw of the symmetric solid wedge is uniquely
determined. Define v∞ := u∞ sin θw. As we will discuss later, u0 > 0 represents the horizontal
speed of the downstream flow behind the weak oblique shock SO. Then we define β ∈ (0, π2 ) as the
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angle between the wedge boundary and SO. Parameters (v∞, β) were first introduced in [27]. In
Lemma 2.19, we show that there exists a homeomorphism T : Pweak → T (Pweak) =: Rweak. More
importantly, we show that Rweak is in the form of

Rweak =
⋃

v∞>0

{v∞} × (0, β
(v∞)
d ).

This structure ofRweak enables us to prove the existence of admissible solutions for all β ∈ (0, β
(v∞)
d )

for any fixed v∞ > 0 via the Leray-Schauder degree theorem. In particular, for each v∞ > 0, there
exists an admissible solution for β = 0 and, in §5.3, we prove that the Leray-Schauder fixed
point index of this solution is 1. We also show that, for each v∞ > 0, there exists a unique

β
(v∞)
s ∈ (0, β

(v∞)
d ), called the sonic angle, so that the structure of admissible solutions becomes

different as β increases across β = β
(v∞)
s (see Fig. 1.1). Finally, we restate both the definition and

existence of admissible solutions for (v∞, β) ∈ Rweak in §2.5.

In Chapter 3, we establish all the a priori estimates which are essential for solving the free
boundary problem introduced in Chapter 2. Furthermore, the a priori estimates are achieved
uniformly on parameters (v∞, β). In particular, this chapter contains the following estimates:

(i) Strict directional monotonicity properties of ϕ∞ − ϕ;
(ii) Strict directional monotonicity properties of ϕ− ϕN and ϕ− ϕO;
(iii) Uniform positive lower bound of the distance between Γshock and Γwedge away from the

wedge vertex;
(iv) Uniform positive lower bound of dist(Γshock, ∂B1(0,−v∞));
(v) Uniform estimates of the ellipticity of equation N(ϕ) = 0 in Ω, given in (1.1) below;
(vi) Uniform weighted C2,α estimates of admissible solutions in Ω.

In the above, ϕ∞, ϕO, and ϕN represent the pseudo-velocity potential functions for the state of
incoming supersonic flow, the state behind the oblique shock SO, and the state behind the normal
shock SN , respectively. Moreover, ∂B1(0,−v∞) is the sonic circle of the incoming supersonic flow:

∂B1(0,−v∞) := {ξ ∈ R
2 : |Dϕ∞(ξ)| = 1}.

For fixed v∞ > 0 and 0 < β < β
(v∞)
s , let Ω be the bounded region enclosed by ΓO

sonic, Γshock,
ΓN
sonic, and ξ2 = 0 in Fig. 1.1. In order to find an admissible solution in the sense of Definition

2.24, we need to solve the following free boundary problem for (ϕ,Γshock):

N(ϕ) := div
(
ρ(|Dϕ|2, ϕ)Dϕ

)
+ 2ρ(|Dϕ|2, ϕ) = 0 in Ω,

ϕ = ϕ∞, ρ(|Dϕ|2, ϕ)Dϕ · ν = Dϕ∞ · ν on Γshock,

ϕ = ϕO on ΓO
sonic,

ϕ = ϕN on ΓN
sonic,

∂ξ2ϕ = 0 on ∂Ω ∩ {ξ2 = 0},

(1.1)

where ρ = ρ(|q|2, z) is smooth with respect to (q, z) ∈ R
2 × R for |q| ≤ R0 and |z| ≤ R1 for some

positive constants R0 and R1. Moreover, ν is the inward unit normal vector to Γshock. In particular,
we seek a solution so that equation N(ϕ) = 0 is strictly elliptic in Ω, but its ellipticity degenerates

on ΓO
sonic ∪ ΓN

sonic. As β ∈ (0, β
(v∞)
s ) tends to β

(v∞)
s , ΓO

sonic shrinks to the wedge vertex Pβ , and the

ellipticity of N(ϕ) = 0 degenerates at Pβ for β = β
(v∞)
s . For β > β

(v∞)
s , N(ϕ) = 0 is strictly elliptic

at Pβ . For β ≥ β
(v∞)
s , the boundary condition ϕ = ϕO on ΓO

sonic given in (1.1) becomes a one-point
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Dirichlet boundary condition. Therefore, it is crucial to achieve estimate (v) and then employ the
result to establish uniform a priori estimates of admissible solutions in Ω by estimate (vi).

Once estimates (i)–(ii) are established, we adjust the argument in [11] to achieve estimates
(iii)–(vi), although there are several technical differences, due to the structural differences of the
solutions constructed in this monograph compared to those in [11]. We also point out that estimate
(iv) is the key to achieving estimates (v)–(vi). Using the argument in [11], for any fixed v∞ > 0,
we are able to establish a uniform estimate of positive lower bound of dist(Γshock, ∂B1(0,−v∞))

for all admissible solutions corresponding to β ∈ (0, β∗] whenever β∗ ∈ (0, β
(v∞)
d ). Owing to this

property, we prove the existence of admissible solutions for all the admissible physical parameters

(v∞, β) ∈ Rweak, even beyond the sonic angle β
(v∞)
s .

eN

eO

ξ2

Ω

cone(eN , eO)

Figure 1.2. The cone of monotonicity

Even though the overall argument follows [11], there are several significant differences from
[11]. One of them is the choice of directions for the monotonicity properties of ϕ∞ − ϕ, ϕ − ϕO,
and ϕ− ϕN . For fixed (v∞, β) ∈ Rweak, define eN := (0,−1) and eO := (cosβ, sinβ). Then eN is
the unit tangent vector to the normal shock SN , and eO is the unit tangent vector to the oblique
shock SO. Moreover, we define the cone of monotonicity as shown in Fig. 1.2 by

Cone0(eSO , eSN ) := {α1eSO + α2eSN : α1, α2 > 0}.
In §3.1, we show that any admissible solution ϕ satisfies

(1.2) ∂e(ϕ∞ − ϕ) < 0 in Ω for all e ∈ Cone0(eSO , eSN ),

from which many essential estimates of admissible solutions can be further obtained. For example,
(1.2), combined with the Rankine-Hugoniot conditions on Γshock, implies that Γshock is represented
as a graph of a function ξ2 = fsh(ξ1) with f ′

sh(ξ1) > 0. This property is a key ingredient in the
proof of the separation of Γshock from the sonic circle ∂B1(0,−v∞) of the incoming supersonic flow.
Notice that this separation property is crucial for establishing the uniform estimate of the ellipticity
of equation N(ϕ) = 0 in Ω. In addition, further monotonicity properties of ϕ− ϕO and ϕ− ϕN in
Cone0(eSO , eSN ) are achieved, which play important roles in the a priori estimates of admissible
solutions near ΓO

sonic ∪ ΓN
sonic.

In Chapter 4, we define the iteration set K consisting of approximate admissible solutions.
Note that the pseudo-subsonic region Ω of each admissible solution is different. Furthermore,

as β increases across β
(v∞)
s , the shape of Ω changes from a rectangular domain to a triangular

domain. This is because the sonic arc ΓO
sonic corresponding to the oblique shock SO shrinks to the

wedge vertex Pβ as β ∈ (0, β
(v∞)
s ) tends to β

(v∞)
s , and ΓO

sonic = {Pβ} for β ≥ β
(v∞)
s . For this

reason, it is necessary to introduce a diffeomorphism F so that F−1(Ω) is the fixed domain Qiter :=
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(−1, 1) × (0, 1). Moreover, F should be defined so that F depends continuously on β ∈ [0, β
(v∞)
d )

and on admissible solutions in an appropriately chosen norm. In §4.1, we define a mapping F for
each admissible solution such that

F(Qiter) = Ω, F(Γshock) = {(s, 1) : −1 < s < 1},
F(ΓO

sonic) = {(−1, t) : 0 < t < 1}, F(ΓN
sonic) = {(1, t) : 0 < t < 1}.

Since the sonic arc ΓN
sonic corresponding to the normal shock SN is fixed so as to be the same for

all β ∈ [0, β
(v∞)
d ) (see Fig. 1.1), the definition of F in this monograph can be given more explicitly

than the one given in [11]; see Definition 4.15. In §4.2, the definition of F is extended to a class of
approximate admissible solutions. Then we set up the iteration set K and analyze its properties in
§4.3–§4.5. The iteration set K is given in the form

K :=
⋃

β∈[0,β∗]

{β} × K(β) for fixed v∞ > 0 and β∗ ∈ (0, β
(v∞)
d ),

where each K(β) is a subset of C1,α(Qiter) for some α ∈ (0, 1).
In Chapter 5, for fixed v∞ > 0, we define an iteration map

I(·, β) : K(β) → C2,α
(∗,α1)

(Qiter) for Qiter := (−1, 1)× (0, 1) ⊂ R
2,

where C2,α
(∗,α1)

(Qiter) is a weighted C2,α space. The iteration mapping I is defined so that, if

I(u∗, β) = u∗ for u∗ ∈ K(β), then (ϕ,Γshock), given by

ϕ = u∗ ◦ F−1
(u∗,β)

+ ϕ∗
β in Ω = F(u∗,β)(Qiter), Γshock = F(u∗,β)({(s, 1) : −1 < s < 1}),

solves the free boundary problem (1.1). In the above, ϕ∗
β is a smooth interpolation of ϕO and ϕN .

The precise definition of ϕ∗
β is given by (4.1.42). Finally, the existence of a fixed point of I(·, β)

in K(β) for all β ∈ (0, β∗] is proved by employing the Leray-Schauder degree argument in §5.3. In
this way, we establish the existence of admissible solutions for all (v∞, β) ∈ Rweak (Theorem 2.31),
hence the existence of admissible solutions for all (u∞, u0) ∈ Pweak (Theorem 2.31).

Theorem 2.16, or equivalently, Theorem 2.33, which pertains to the optimal regularity of ad-
missible solutions, is established in Chapter 6.

To make the monograph self-contained, we also include Appendices A–C, which include some
results required for establishing the main theorems and a proof of the non-existence of self-similar
strong shock solutions.

A closely related problem to the one we have solved here is the shock reflection-diffraction
problem which was addressed in Chen-Feldman [11]. Even though the two problems are two
different lateral Riemann problems and have different issues and features, the approach developed
in Chen-Feldman [11] for the shock reflection-diffraction problem has been adopted for solving
our Prandtl-Meyer reflection problem in this monograph. As discussed earlier, one of the main
contributions of this monograph is to identify appropriate monotonicity properties and establish
suitable uniform a priori estimates for admissible solutions, based on the new and careful choice of
the directions for the monotonicity properties; as a result, the Chen-Feldman approach in [11] can
be employed.

In this monograph, we have solved the Prandtl-Meyer reflection problem up to the detachment
angle in the framework of the potential flow equation, which has been widely used for discontinuous
flows in applications in aerodynamics, especially when the amount of vorticity is relatively small
in the region of interest. When the flow regions of interest have large amounts of vorticity, the



6 1. INTRODUCTION

full compressible Euler equations are usually required. Nevertheless, for the solutions containing a
shock of small strength, the potential flow equation and the full Euler equations match each other
well, right up to the third-order of the shock strength. Furthermore, for the problem analyzed in
this monograph, the Euler equations for potential flow is actually exact in two important regions of
the solutions near the two sonic arcs in the subsonic domain Ω. Even in the other part of domain
Ω, under the Helmholtz-Hodge decomposition for the velocity field, the full Euler equations in the
self-similar coordinates can be decomposed as the potential flow type equation, coupled with the
incompressible Euler type equations plus a transport equation for the entropy function. These can
be shown by directly following the arguments in §18.7 in Chen-Feldman [11]. In this sense, the
analysis and related methods/techniques developed in this monograph could also play an essential
role in finding a solution of the problem in the framework of the full Euler equations. In particular,
our results for the potential flow equation have provided useful insights on what will happen for
the case of the full Euler equations.

Finally, we remark in passing that, for the uniqueness/stability problems, it is necessary to
consider solutions in a restricted class. Recent results [20, 21, 29, 34] show the non-uniqueness
of solutions with flat shocks in the class of entropy solutions of the Cauchy problem (initial value
problem) for the multidimensional compressible Euler equations (isentropic and full). The Prandtl-
Meyer reflection problem under consideration in this monograph is different – the problem for
solutions with non-flat shocks for potential flow on the domain with boundaries, so these non-
uniqueness results do not apply directly. However, these results indicate that it is natural to study
the uniqueness and stability problems in a more restricted class of solutions. Since the completion
of this monograph, some progress on the uniqueness in the class of self-similar solutions of regular
shock reflection-diffraction configurations with convex transonic shocks (which are called admissible
solutions) has been made, as announced recently in [13]. A similar uniqueness result can also be
obtained by combining the approach in [13, 14] with the estimate techniques developed in this
monograph. Technically, restricting the uniqueness to the class of admissible solutions allows us to
reduce the problem to a corresponding uniqueness problem for solutions of a free boundary problem
for a nonlinear elliptic equation, which is degenerate for the supersonic case.



CHAPTER 2

Mathematical Problems and Main Theorems

In this chapter, we first formulate the physical problem of a supersonic flow impinging upon
the solid wedge into an initial-boundary value problem. Then, based on the invariance of both
the problem and the governing equations under the self-similar scaling, we reformulate the initial-
boundary value problem as a boundary value problem in an unbounded domain (Problem 2.9), and
further as a free boundary problem in a bounded domain (Problem 2.34) for the existence of Prandtl-
Meyer reflection configurations involving two types of transonic flow boundaries: discontinuous and
continuous hyperbolic-elliptic phase transition boundaries for the fluid fields (transonic shocks and
sonic arcs). The main theorems of this monograph are presented in §2.3 and §2.5.

2.1. Mathematical Problems

The compressible potential flow is governed by the conservation law of mass and the Bernoulli
law:

∂tρ+∇x · (ρ∇xΦ) = 0,(2.1.1)

∂tΦ +
1

2
|∇xΦ|2 + h(ρ) = B,(2.1.2)

where ρ is the density, Φ is the velocity potential, B is the Bernoulli constant determined by the
incoming flow and/or boundary conditions, and h(ρ) is given by

h(ρ) =

∫ ρ

1

p′(̺)
̺

d̺ =

∫ ρ

1

c2(̺)

̺
d̺

for the sound speed c(ρ) and pressure p. For an ideal polytropic gas, the sound speed c and pressure
p are given by

(2.1.3) c2(ρ) = κγργ−1, p(ρ) = κργ

for constants γ > 1 and κ > 0. If (ρ,Φ)(t,x) solves (2.1.1)–(2.1.2) with (2.1.3), then (ρ̃, Φ̃)(t,x) =
(ρ,Φ)(α2t, αx) with α := 1√

κγ solves

∂tρ̃+∇x · (ρ̃∇xΦ̃) = 0,

∂tΦ̃ +
1

2
|∇xΦ̃|2 +

ρ̃γ−1 − 1

γ − 1
= α2B.

Therefore, we choose κ = 1
γ without loss of generality so that

(2.1.4) h(ρ) =

∫ ρ

1

h′(̺)d̺ =
ργ−1 − 1

γ − 1
, c2(ρ) = ργ−1.

7



8 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

The case of the isothermal flow can be included as the isothermal limit γ → 1+ in (2.1.4). Therefore,
we define (h, c2)(ρ) by

(2.1.5) (h, c2)(ρ) =

{
(ρ

γ−1−1
γ−1 , ργ−1) for γ > 1,

(ln ρ, 1) for γ = 1.

By (2.1.2), ρ can be expressed as

(2.1.6) ρ(∂tΦ,∇xΦ) = h−1(B − ∂tΦ− 1

2
|∇xΦ|2).

Then system (2.1.1)–(2.1.2) can be rewritten as

(2.1.7) ∂tρ(∂tΦ,∇xΦ) +∇x ·
(
ρ(∂tΦ,∇xΦ)∇xΦ

)
= 0,

with ρ(∂tΦ,∇xΦ) determined by (2.1.6).

A steady state solution Φ̄(x) to (2.1.1)–(2.1.2) yields the steady potential flow equations

∇x · (ρ̄∇xΦ̄) = 0,

1

2
|∇xΦ̄|2 + h(ρ̄) = B.

(2.1.8)

A symmetric wedge W of half-angle θw ∈ (0, π2 ) in R
2 (Fig. 2.1) is defined by

(2.1.9) W := {x = (x1, x2) ∈ R
2 : |x2| < x1 tan θw, x1 > 0}.

On the wedge boundary ∂W , Φ̄ must satisfy the slip boundary condition ∂nw Φ̄ = 0 on ∂W , where

������������

ρ∞ > 0, u∞ > ρ
(γ−1)/2
∞

Figure 2.1. Supersonic flow impinging upon a solid wedge

nw indicates the outward unit normal vector to ∂W . Denote D := R
2 \ W , and consider the

boundary value problem for (2.1.8) in D with

(2.1.10) ∂nwΦ̄ = 0 on ∂D = ∂W.

If a supersonic flow with a constant density ρ∞ > 0 and a velocity u∞ = (u∞, 0), u∞ > ρ
(γ−1)/2
∞ ,

moves towards wedge W , and if θw is less than a critical angle called the detachment angle, then
the well-known shock polar analysis shows that there are two different steady weak solutions to
the boundary value problem (2.1.8)–(2.1.10): the steady weak shock solution and the steady strong

shock solution. For more precise arguments, we first define a class of weak solutions of the boundary
value problem (2.1.8)–(2.1.10).

Definition 2.1. Let Γsh be a C1–curve that lies in D and divides D into two open subsets D−

and D+. We say that Φ̄ ∈ W 1,∞(D) is a steady entropy solution with a shock Γsh of the boundary
value problem (2.1.8)–(2.1.10) if Φ̄ satisfies the following properties:
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(i) B − 1
2 |∇xΦ̄|2 > h(0+) a.e. in D;

(ii) For each ζ ∈ C∞
0 (R2),

∫

D

ρ̄(|∇xΦ̄|2)∇xΦ̄ · ∇xζ dx = 0;

(iii) Φ̄ ∈ C1(D±) ∩C2(D±);

(iv) Entropy condition: for Φ̄± := Φ̄|D±∪Γsh
,

∂nsh
Φ̄− > ∂nsh

Φ̄+ > 0 on Γsh,

or equivalently, ρ̄(∇xΦ̄
−) < ρ̄(∇xΦ̄

+) along the flow direction, where nsh represents the
unit normal vector to Γsh pointing from D− towards D+.

Remark 2.2. By performing integration by parts, condition (ii) of Definition 2.1 implies that
any entropy solution with a shock Γshock of problem (2.1.8)–(2.1.10) in the sense of Definition 2.1
satisfies the conormal boundary condition:

ρ̄(|∇xΦ̄|2)∇xΦ̄ · nw = 0 on ∂W.

Furthermore, combining conditions (i) and (iii) of Definition 2.1 with the conormal boundary con-
dition stated immediately above yields that the entropy solution Φ̄ indeed satisfies the boundary
condition (2.1.10) if ρ̄(|∇xΦ̄|2) > 0 holds on ∂W .

In particular, Definition 2.1, via integration by parts, leads to the following Rankine-Hugoniot
jump conditions for the steady potential flow equations (2.1.8):

(2.1.11) [Φ̄]Γsh
= [ρ̄(|∇xΦ̄|2)∇Φ̄ · nsh]Γsh

= 0,

where [F (x)]Γsh
:= F+(x) − F−(x) for x ∈ Γsh.

Definition 2.3 (The steady Prandtl-Meyer reflection solution). The steady Prandtl-Meyer

reflection solution for potential flow is an entropy solution Φ̄ with a shock Γsh of the boundary
value problem (2.1.8)–(2.1.10) in the sense of Definition 2.1 with the following additional features:

(i) Γsh = {x = (x1, x2) ∈ R
2 \W : |x2| = x1 tan θsh, x1 ≥ 0} for some θsh ∈ (θw,

π
2 );

(ii) For some constants u0, v0 > 0,

Φ̄(x) =

{
u∞x1 in D− = {x ∈ D : x1 < |x2| cot θsh},
u0x1 + v0x2 in D+ := D \D−;

(iii) tan θsh = u∞−u0

v0
;

(iv) Entropy condition: for the unit normal vector nsh to Γsh pointing from D− towards D+,

∇Φ̄− · nsh > ∇xΦ̄
+ · nsh > 0 on Γsh,

or equivalently, ρ̄(|∇xΦ̄
−|2) < ρ̄(|∇xΦ̄

+|2).

Lemma 2.4. Given any γ ≥ 1 and (ρ∞, u∞) with u∞ > c∞ = ρ
(γ−1)/2
∞ > 0, there exist unique

u(ρ∞,u∞) ∈ (0, u∞) and θ
(ρ∞,u∞)
d ∈ (0, π2 ) such that the following properties hold:



10 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

(a) For each θw ∈ (0, θ
(ρ∞,u∞)
d ), there are exactly two constants ust and uwk with u(ρ∞,u∞) <

ust < uwk < u∞ yielding two steady Prandtl-Meyer reflection configurations in the sense

that, if (u0, v0) = ust(1, tan θw) or uwk(1, tan θw) in Definition 2.3, then the corresponding

Φ̄ is an entropy solution of the boundary value problem (2.1.8)–(2.1.10) with shock Γsh

given by Definition 2.3(i) with θsh being determined by Definition 2.3(iii);

(b) ust and uwk depend continuously on (ρ∞, u∞, γ) and θw ∈ (0, θ
(ρ∞,u∞)
d ), and ust = uwk at

θw = θ
(ρ∞,u∞)
d ;

(c) For each θw ∈ (0, θ
(ρ∞,u∞)
d ), let u

(θw)
wk denote the value of uwk corresponding to θw. Then

there exists a unique θ
(ρ∞,u∞)
s ∈ (0, θ

(ρ∞,u∞)
d ) such that

|u(θ
(ρ∞,u∞)
s )

wk ||(1, tan θ(ρ∞,u∞)
s )| =

(
ρ̄(|u(θ

(ρ∞,u∞)
s )

wk |2|(1, tan θ(ρ∞,u∞)
s )|2)

)(γ−1)/2
.

In other words, the flow behind the weak shock corresponding to θ
(ρ∞,u∞)
s is sonic.

0

v
u = tan θ

(ρ∞,u∞)
s

v
u = tan θw

v
u = tan θ

(ρ∞,u∞)
d

u

v

u∞ud

Figure 2.2. Shock polars in the (u, v)–plane

Proof. (a) and (b) can be checked directly from Lemmas A.1 and A.3.

Define q(θw) := |u(θw)
wk ||(1, tan θw)|. We first observe that |q(θw)|2 =

(
ρ̄(|q(θw)|2)

)γ−1
if and

only if |q(θw)|2 = 2
γ+1

(
1 + (γ − 1)B

)
=: K0. To prove (c), it suffices to show that there exists a

unique θ∗ ∈ (0, θ
(ρ∞,u∞)
d ) satisfying |q(θ∗)|2 = K0.

Condition u2∞ > ργ−1
∞ implies that |q(0)|2 > K0. This can also be checked from the Bernoulli

law (i.e., 1
2 |∇xΦ̄|2 + h(ρ̄) = B) and the conservation law of mass (i.e., ρ̄(u

(0)
st )u

(0)
st = ρ∞u∞ so that

|u(0)st |2 < K0). Then there exists a unique point P∗ = u∗(1, tan θ∗) on the shock polar Υ(ρ∞,u∞)

satisfying |P∗|2 = K0 (see Lemma A.3). It remains to verify that u∗ = u
(θ∗)
wk ; that is, P∗ is the weak

shock point corresponding to θ∗ ∈ (0, θ
(ρ∞,u∞)
d ).

In Lemmas A.1 and A.3, it is shown that the shock polar curve Υ(ρ∞,u∞), as shown in Fig. 2.2,
is given as the zero-level curve of g(u) in the first quadrant of the (u, v)–plane and that Υ(ρ∞,u∞)

is convex. Furthermore, gu(u) is a normal vector to Υ(ρ∞,u∞) at u ∈ Υ(ρ∞,u∞) towards the u–axis.
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From this observation, we see that

gu(P∗) · P∗ > 0 if and only if u∗ = u
(θ∗)
st ,

gu(P∗) · P∗ = 0 if and only if θ∗ = θ
(ρ∞,u∞)
d ,

gu(P∗) · P∗ < 0 if and only if u∗ = u
(θ∗)
wk .

Now we compute gu(P∗) · P∗. A direct computation by using (A.7) gives that

gu(u) =
1

ρ̄γ−2

(
c̄2

u∞ − u

|u∞ − u| −
(
u · u∞ − u

|u∞ − u|
)
u

)
− ρ̄u− ρ∞u∞

|u∞ − u| ,

where ρ̄ = ρ̄(|u|2), c̄2 = ρ̄γ−1, and u∞ = (u∞, 0). Combining (2.1.11) with |P∗|2 = K0 yields

gu(P∗) · P∗ = −
(
ρ̄(|P∗|2)− ρ∞

)
(P∗ · τs)2,

where τs represents a unit tangent vector to shock S0 corresponding to state P∗. Since P∗ · τs 6= 0,
we obtain from the entropy condition ρ̄(P∗)− ρ∞ > 0 that gu(P∗) ·P∗ < 0. From this, we conclude

that u∗ = u
(θ∗)
wk . Choosing θ

(ρ∞,u∞)
s = θ∗, we complete the proof. �

Definition 2.5. Fix parameters (ρ∞, u∞, γ, θw). In Lemma 2.4, Φ̄ with (u0, v0) = ust(1, tan θw)
is called a steady Prandtl-Meyer strong reflection solution, and Φ̄ with (u0, v0) = uwk(1, tan θw) is
called a steady Prandtl-Meyer weak reflection solution in the sense that

|(u∞, 0)− ust(1, tan θw)| > |(u∞, 0)− uwk(1, tan θw)| for 0 < θw < θ
(ρ∞,u∞)
d ;

that is, the shock strength of a steady Prandtl-Meyer weak reflection solution is weaker than the
steady strong one.

The goal of this work is to prove the existence of global unsteady Prandtl-Meyer reflection
configurations for unsteady potential flow, determined by Eq. (2.1.7), which converge to the steady
Prandtl-Meyer weak reflection solution as t tends to infinity for all possible physical parameters

γ ≥ 1, u∞ > c∞, and θw ∈ (0, θ
(ρ∞,u∞)
d ). Therefore, we consider the following initial-boundary

value problem for (2.1.7):

Problem 2.6 (Initial-boundary value problem). Given γ ≥ 1, fix (ρ∞, u∞) with u∞ > c∞.

For a fixed θw ∈ (0, θ
(ρ∞,u∞)
d ), let W be given by (2.1.9). Find a global weak solution Φ ∈

W 1,∞
loc (R+ × (R2 \W )) of Eq. (2.1.7) with ρ determined by (2.1.6) and

(2.1.12) B =
u2∞
2

+ h(ρ∞)

so that Φ satisfies both the initial condition at t = 0:

(2.1.13) (ρ,Φ)|t=0 = (ρ∞, u∞x1) for (x1, x2) ∈ R
2 \W,

and the slip boundary condition along the wedge boundary ∂W :

(2.1.14) ∇xΦ · nw|∂W = 0 for t > 0,

where nw is the exterior unit normal vector to ∂W .

Remark 2.7. In particular, we seek a solution Φ ∈ W 1,∞
loc (R+ × (R2 \W )) that converges to

the steady Prandtl-Meyer weak reflection solution Φ̄ when t tends to infinity in the following sense:
if Φ̄ is the steady Prandtl-Meyer weak reflection solution corresponding to the fixed parameters



12 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

(ρ∞, u∞, γ, θw) in the sense of Definition 2.5 with ρ̄ = h−1(B − 1
2 |∇Φ̄|2), then, for any R > 0, Φ

satisfies

(2.1.15) lim
t→∞

(
‖∇xΦ(t, ·)−∇xΦ̄‖L1(BR(0)\W ) + ‖ρ(t, ·)− ρ̄‖L1(BR(0)\W )

)
= 0

for ρ(t,x) given by (2.1.6).

The definition of a weak solution of Problem 2.6 is given as follows:

Definition 2.8. A function Φ ∈ W 1,∞
loc (R+ × (R2 \W )) is called a weak solution of Problem

2.6 if Φ satisfies the following properties:

(i) B − ∂tΦ− 1
2 |∇xΦ|2 > h(0+) a.e. in R+ × (R2 \W );

(ii) (ρ(∂tΦ,∇xΦ), ρ(∂tΦ,∇xΦ)|∇xΦ|) ∈
(
L1
loc(R+ × (R2 \W ))

)2
;

(iii) For every ζ ∈ C∞
c (R+ × R

2),
∫ ∞

0

∫

R2\W

(
ρ(∂tΦ,∇xΦ)∂tζ + ρ(∂tΦ,∇xΦ)∇xΦ · ∇xζ

)
dxdt+

∫

R2\W
ρ∞ζ(0,x) dx = 0.

Since the initial data (2.1.13) does not satisfy the boundary condition (2.1.14), a boundary layer
is generated along the wedge boundary starting at t = 0, which is proved to form the Prandtl-Meyer
reflection configuration in this monograph.

Notice that the initial-boundary value problem, Problem 2.6, is invariant under the scaling

(t,x) → (αt, αx), (ρ,Φ) → (ρ,
Φ

α
) for α 6= 0,

in the sense that, if (ρ,Φ)(t,x) is a solution, then so is (ρ̃, Φ̃)(t,x) = (ρ, Φα )(αt, αx). Based on this
observation, we look for self-similar solutions of Problem 2.6 in the form

(2.1.16) ρ(t,x) = ρ(ξ), Φ(t,x) = tφ(ξ) with ξ = (ξ1, ξ2) =
x

t
for t > 0.

For such φ, introduce the pseudo-potential function ϕ given by

ϕ = φ− 1

2
|ξ|2.

If Φ solves (2.1.7) with (2.1.6), then ϕ satisfies the following Euler equations for the self-similar

solutions :

div(ρDϕ) + 2ρ = 0,(2.1.17)

1

2
|Dϕ|2 + ϕ+ h(ρ) = B,(2.1.18)

where the divergence div and gradient D are with respect to the self-similar variables ξ ∈ R
2. Solve

(2.1.18) first for ρ and then substitute the result into (2.1.17) to obtain

(2.1.19) N(ϕ) := div
(
ρ(|Dϕ|2, ϕ)Dϕ

)
+ 2ρ(|Dϕ|2, ϕ) = 0

for

(2.1.20) ρ(|Dϕ|2, ϕ) =
{(

1 + (γ − 1)(B − 1
2 |Dϕ|2 − ϕ)

) 1
γ−1 if γ > 1,

exp(B − 1
2 |∇ϕ|2 − ϕ) if γ = 1.

Note that the Bernoulli constant B is given by (2.1.12).
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The local sound speed c = c(|Dϕ|2, ϕ) > 0 for the pseudo-steady potential flow equation (2.1.19)
is given by

(2.1.21) c2(|Dϕ|2, ϕ) = 1 + (γ − 1)
(
B − 1

2
|Dϕ|2 − ϕ

)
.

Eq. (2.1.19) is a second-order nonlinear equation of mixed elliptic-hyperbolic type. It is elliptic if
and only if

(2.1.22) |Dϕ| < c(|Dϕ|2, ϕ) ⇐⇒ |Dϕ| <
√

2

γ + 1

(
1 + (γ − 1)(B − ϕ)

)
(pseudo-subsonic),

and (2.1.19) is hyperbolic if and only if

|Dϕ| > c(|Dϕ|2, ϕ) ⇐⇒ |Dϕ| >
√

2

γ + 1

(
1 + (γ − 1)(B − ϕ)

)
(pseudo-supersonic).

In order to find a function ϕ(ξ) such that Φ(t,x) with ρ(t,x) given by (2.1.16) is a solution of
Problem 2.6 satisfying (2.1.15), we make the following additional observations:

(i) Symmetric domain: Since the solid wedgeW is symmetric with respect to the axis x2 = 0,
it suffices to consider Problem 2.6 in the upper half-plane {(x1, x2) ∈ R

2 : x2 > 0}. In
the self-similar plane, define

(2.1.23) Dθw := {ξ ∈ R
2 : ξ2 > 0} \ {ξ : ξ2 ≤ ξ1 tan θw, ξ1 ≥ 0}.

Then Problem 2.6 is reformulated as a boundary value problem in Dθw .

(ii) Initial condition: For each x ∈ R
2 \(W ∪{0}), |ξ| = |xt | → ∞ as t→ 0+. This means that

the initial condition (2.1.13) in Problem 2.6 becomes an asymptotic boundary condition
in the self-similar variables.

(iii) Time-asymptotic limit : For each x ∈ R
2 \W , |ξ| = |xt | → 0 as t → ∞. To find a global

weak solution of Problem 2.6 satisfying (2.1.15), we seek a self-similar weak solution ϕ(ξ)
satisfying

lim
R→0+

1

|BR(0) ∩Dθw |

∫

BR(0)∩Dθw

|∇ξϕ−∇xΦ̄| dξ = 0,

where Φ̄ is the steady Prandtl-Meyer weak reflection solution of problem (2.1.8)–(2.1.10),
and |BR(0) ∩Dθw | is the area of BR(0) ∩Dθw .

(iv) Constant density state: If ρ > 0 is a constant in (2.1.17)–(2.1.18), then the corresponding
pseudo-potential ϕ is given in the form

(2.1.24) ϕ(ξ) = −1

2
|ξ|2 + (u, v) · ξ + k

for some constant state (u, v) and a constant k. In Problem 2.6, the initial state has
a constant density ρ∞ > 0 and a constant velocity (u∞, 0). Then the corresponding
pseudo-potential ϕ∞ in the self-similar variables is given by

(2.1.25) ϕ∞ = −1

2
|ξ|2 + (u∞, 0) · ξ + k∞

for a constant k∞. It follows from (2.1.12) that k∞ = 0.



14 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

Hereafter, we assume without loss of generality that ρ∞ = 1, so that c∞ = 1. This can be
achieved by the scaling

ξ 7→ c∞ξ, (ρ, ϕ, u∞) → (
ρ

ρ∞
,
ϕ

c2∞
,
u∞
c∞

)

for any γ ≥ 1.

Given γ ≥ 1, ρ∞ = 1, and u∞ > 1, we now reformulate Problem 2.6 in the self-similar variables.

Hereafter, we denote (θ
(ρ∞,u∞)
d , θ

(ρ∞,u∞)
s ) by (θ

(u∞)
d , θ

(u∞)
s ), since ρ∞ is fixed as 1.

Taking into account the additional observations stated above, we reformulate Problem 2.6 as a
boundary value problem in the self-similar variables.

Problem 2.9 (Boundary value problem in the self-similar variables ξ). Given γ ≥ 1, u∞ > 1,

and θw ∈ (0, θ
(u∞)
d ), find a weak solution ϕ ∈ W 1,∞(Dθw) of Eq. (2.1.19) in Dθw satisfying the

following conditions:

(i) Slip boundary condition on Γwedge:

(2.1.26) Dϕ · nw = 0 on Γwedge = {ξ : ξ2 = ξ1 tan θw, ξ1 > 0},
where nw represents the exterior unit normal vector to the wedge boundary Γwedge;

(ii) Time-asymptotic limit condition in the self-similar variables :

(2.1.27) lim
R→0+

1

|BR(0) ∩Dθw |

∫

BR(0)∩Dθw

|∇ξϕ−∇xΦ̄| dξ = 0,

where Φ̄ is the steady Prandtl-Meyer weak reflection solution corresponding to θw;

(iii) Asymptotic boundary condition at infinity: For each θ ∈ (θw, π],

(2.1.28) lim
r→∞

‖ϕ− ϕ∞‖C(Rθ\Br(0)) = 0

for each ray Rθ := {ξ1 = ξ2 cot θ, ξ2 > 0}; see Fig. 2.3.

θw

∇ϕ · nw = 0

Rθ = {(ξ1, ξ2) : ξ1 = ξ2 cot θ, ξ2 > 0}

θ

Figure 2.3. Asymptotic boundary condition at infinity

Definition 2.10. A function ϕ ∈ W 1,1
loc (Dθw) is called a weak solution of Problem 2.9 if ϕ

satisfies conditions (i)–(iii) of Problem 2.9 and the following additional properties:

(i) ρ(|Dϕ|2, ϕ) > 0 a.e. in Dθw ;

(ii) (ρ(|Dϕ|2, ϕ), ρ(|Dϕ|2, ϕ)|Dϕ|) ∈ L1
loc(Dθw);
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(iii) For every ζ ∈ C∞
c (R2),

(2.1.29)

∫

Dθw

(
ρ(|Dϕ|2, ϕ)Dϕ ·Dζ − 2ρ(|Dϕ|2, ϕ)ζ

)
dξ = 0.

For ρ > 0, note that (2.1.26) is equivalent to the conormal boundary condition:

(2.1.30) ρDϕ · nw = 0 on Γwedge.

Condition (ii) of Problem 2.9 indicates that a solution of Problem 2.9 converges to a steady
potential flow with a shock near the wedge vertex. To find such a solution, we define an entropy
solution of Problem 2.9 with a shock. The definition is given in a way similar to Definition 2.1.

Definition 2.11. Let Γsh be a C1–curve that lies in Dθw and divides Dθw into two subdomains:
D−
θw

and D+
θw
. A weak solution ϕ of Problem 2.9 is an entropy solution with a shock Γsh if ϕ satisfies

the following properties:

(i) ϕ ∈W 1,∞
loc (Dθw);

(ii) ϕ ∈ C1
loc(D

±
θw
) ∩C2(D±

θw
);

(iii) For ϕ+ := ϕ|D+
θw

∪Γsh
and ϕ− := ϕ|D−

θw
∪Γsh

,

∂nsh
ϕ− > ∂nsh

ϕ+ > 0 on Γsh,

where nsh represents a unit normal vector to Γsh pointing from D−
θw

towards D+
θw
;

(iv) ϕ satisfies the Rankine-Hugoniot jump conditions on Γsh:

(2.1.31) [ϕ]Γsh
= [ρ(|Dϕ|2, ϕ)Dϕ · nsh]Γsh

= 0,

which is similar to the steady case (2.1.8).

If nsh = Dϕ−−Dϕ+

|Dϕ−−Dϕ+| is oriented so that ∂nsh
ϕ± > 0, and if ∂nsh

ϕ− > ∂nsh
ϕ+ holds on Γsh,

the shock solution is said to satisfy the entropy condition. By (2.1.31), the entropy condition is
equivalent to ρ(|Dϕ−|2, ϕ−) < ρ(|Dϕ+|2, ϕ+) on Γsh.

2.2. Structure of Solutions of Problem 2.9

Given γ ≥ 1, ρ∞ = 1, and u∞ > 1, fix θw ∈ (0, θ
(u∞)
d ).

2.2.1. Near the origin. We seek a solution ϕ of Problem 2.9 so that the solution at the
origin coincides with the steady Prandtl-Meyer weak reflection solution corresponding to parameters
(1, u∞, γ, θw) in the sense of Definition 2.5. For ϕ∞ given by (2.1.25), define

ϕ0 = − 1
2 |ξ|2 + (u0, v0) · ξ, S0 = {ξ ∈ Dθw : ϕ0(ξ) = ϕ∞(ξ)}.(2.2.1)

Choose the constant vector (u0, v0) as

(2.2.2) (u0, v0) = u
(θw)
wk (1, tan θw),

and define
ϕ̄(ξ) := max{ϕ∞(ξ), ϕ0(ξ)}.

Then ϕ := ϕ̄ satisfies (2.1.26)–(2.1.27) and (2.1.31) with Γshock = S0.
For the nonlinear differential operator N defined by (2.1.19), equation N(ϕ0) = 0 introduces

the pseudo-sonic circle ∂Bc0(u0, v0) with c
2
0 = ργ−1

0 for ρ0 = ρ(|Dϕ0|2, ϕ0) in the following-sense:

• N(ϕ0) = 0 is elliptic in Bc0(u0, v0),
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• N(ϕ0) = 0 is hyperbolic in R
2 \Bc0(u0, v0).

Remark 2.12. Let θ
(u∞)
s be from Lemma 2.4(c). Then wedge vertex O = (0, 0) satisfies the

following:

• O ∈ R
2 \Bc0(u0, v0) for 0 < θw < θ

(u∞)
s ,

• O ∈ ∂Bc0(u0, v0) at θw = θ
(u∞)
s ,

• O ∈ Bc0(u0, v0) for θ
(u∞)
s < θw < θ

(u∞)
d .

2.2.2. Away from the origin. To determine a solution ϕ of Problem 2.9, we look for a
solution ϕ with a piecewise constant density ρ(|Dϕ|2, ϕ), defined by (2.1.20) in Dθw \ BR(O) for
some sufficiently large R > 0, so that such a solution ϕ satisfies the asymptotic boundary condition
(iii) of Problem 2.9. For this purpose, we introduce a straight shock solution in Dθw \ BR(O). In
fact, the only straight shock solution that satisfies (2.1.28) is a normal shock solution. This can
be seen more clearly in §2.4. We now compute the normal shock solution and discuss its useful
properties.

To compute the normal shock, denoted by S1, and the corresponding pseudo-potential ϕ1 below
S1, it is convenient to rotate the self-similar plane by angle θw clockwise. In the rotated self-similar

ξ2

ξ1
θw

(u∞ cos θw, 0)

u∞(cos θw,− sin θw)

(0,−u∞ sin θw)

ξ
(1)
2

S1

Γwedge

Figure 2.4. The normal shock

plane, ϕ∞ in (2.1.25) is written as

ϕ∞ = −1

2
|ξ|2 + u∞(cos θw,− sin θw) · ξ.

Then ϕ1 is in the form

ϕ1 = −1

2
|ξ|2 + u∞(cos θw,− sin θw) · (ξ1, ξ(1)2 ),

where ξ
(1)
2 is the distance of S1 from Γwedge. Denote

(2.2.3) v∞ := u∞ sin θw.

It follows from (2.1.20)–(2.1.31) that density ρ1 and distance ξ
(1)
2 satisfy

ξ
(1)
2 =

v∞
ρ1 − 1

,(2.2.4)

h(ρ1)− h(1) =
1

2
v2∞ + ξ

(1)
2 v∞,(2.2.5)
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where h(ρ) is defined by (2.1.5).
Consider

F (ρ) :=
(
h(ρ)− h(1)

)
(ρ− 1)− 1

2
(ρ− 1)v2∞ − v2∞.

A direct computation shows that F (1) = −v2∞ < 0, lim
ρ→∞

F (ρ) = ∞, F ′(1) = − 1
2v

2
∞ < 0, and

F ′′(ρ) > 0 whenever ρ ≥ 1. This implies that there exists a unique ρ1 ∈ (1,∞) such that F (ρ1) = 0.

Then (2.2.4) yields that ξ
(1)
2 > 0. Rotating the self-similar plane back by angle θw counterclockwise,

we find that ϕ1 is given by

(2.2.6) ϕ1 = −1

2
|ξ|2 + u∞ cos θw(cos θw, sin θw) · ξ − u∞ξ

(1)
2 sin θw,

and the normal shock S1 by

S1 = {ξ : ϕ∞(ξ) = ϕ1(ξ)} = {ξ : ξ2 = ξ1 tan θw + ξ
(1)
2 sec θw}.

Lemma 2.13. For any given u∞ > 1 and the wedge angle θw ∈ (0, θ
(u∞)
d ),

dist(S1,Γwedge) < c1 := ρ
(γ−1)/2
1 .

Proof. By the mean value theorem, there exists a constant ρ∗ ∈ (1, ρ1) satisfying

h(ρ1)− h(1) = µ(ρ1 − 1) for µ = ργ−2
∗ .

Then F (ρ1) = 0 implies that

µ(ρ1 − 1)2 − 1

2
v2∞(ρ1 − 1)− v2∞ = 0 =⇒ ρ1 − 1 =

1
2v

2
∞ +

√
v2∞(14v

2∞ + 4µ)

2µ
.

Since v∞ > 0, (2.2.4) yields that

ξ
(1)
2 =

4µ√
16µ+ v2∞ + v∞

≤ √
µ.

By the definition of µ above, it can directly be checked that

√
µ <





√
ργ−2
1 <

√
ργ−1
1 = c1 if γ ≥ 2,

1 <
√
ργ−1
1 = c1 if 1 < γ < 2,

1 = c1 if γ = 1,

which implies that ξ
(1)
2 < c1. �

2.2.3. Global configurations of the solutions of Problem 2.9. Following Remark 2.12,
our desired solution of Problem 2.9 has two different configurations depending on the two different

intervals of the wedge angle: θw ∈ (0, θ
(u∞)
s ) and θw ∈ [θ

(u∞)
s , θ

(u∞)
d ).

Case I. Fix θw ∈ (0, θ
(u∞)
s ). Let ϕ0 and ϕ1 be defined by (2.2.1) and (2.2.6), respectively.

Define Q0 := Dϕ0(O) and Q1 := Dϕ1(O). Consider two sonic circles ∂Bc0(Q0) and ∂Bc1(Q1).
The left sonic arc: The sonic circle ∂Bc0(Q0) and the straight oblique shock S0 := {ξ : ϕ0(ξ) =

ϕ∞(ξ)} intersect at two points in Dθw , which will be verified in detail in §2.4. Let P1 be the
intersection with the smaller ξ2–coordinate. Also, ∂Bc0(Q0) intersects with Γwedge at two points;
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S0

S1

Ω0

Ω1

Γ0
sonic

Γ1
sonic

θw
O

P4

P3

P1

P2

Γshock

Ω

Q0
Q1

ω0

ω1

Figure 2.5. Admissible solutions for 0 < θw < θ
(u∞)
s

let P4 be the intersection point with the smaller ξ2–coordinate. Denote ω0 := ∠P4Q0P1 ∈ (0, π).
We define

Γ0
sonic := {P ∈ ∂Bc0(Q0) : 0 ≤ ∠P4Q0P ≤ ω0},

which is a closed subset of ∂Bc0(Q0). We call Γ0
sonic the sonic arc corresponding to ϕ0.

The right sonic arc: By Lemma 2.13, the sonic circle ∂Bc1(Q1) and the normal shock S1 =
{ξ : ϕ1(ξ) = ϕ∞(ξ)} intersect at two distinct points; let P2 be the intersection point with the
larger ξ2–coordinate. Also, ∂Bc1(Q1) intersects with Γwedge at two distinct points; let P3 be the
intersection point with the larger ξ2–coordinate. Denote ω1 := ∠P3Q1P2 ∈ (0, π). We define

Γ1
sonic := {P ′ ∈ ∂Bc1(Q1) : 0 ≤ ∠P3Q1P

′ ≤ ω1},
which is a closed subset of ∂Bc1(Q1), similar to Γ0

sonic. We call Γ1
sonic the sonic arc corresponding

to ϕ1.

For each j = 1, · · · , 4, let ξPj = (ξ
Pj

1 , ξ
Pj

2 ) denote the ξ–coordinate of point Pj . Let S0,seg be

the line segment OP1, and let Ω0 ⊂ Dθw be the open set enclosed by S0,seg, Γ
0
sonic, and the line

segment OP4. Next, let S1,seg be the portion of S1 with the left endpoint P2, and let Ω1 ⊂ Dθw be

the unbounded open set enclosed by S1,seg, Γ
1
sonic, and Γwedge ∩ {ξ2 ≥ ξP3

2 }.
Our goal is to find a curved shock Γshock that connects P1 with P2 and a solution ϕ of Problem

2.9 to satisfy both (2.1.22) in the open region Ω (enclosed by Γshock, Γ
1
sonic, P4P3, and Γ0

sonic) and

ϕ =





ϕ0 in Ω0,

ϕ1 in Ω1,

ϕ∞ in Dθw \ Ω0 ∪ Ω ∪Ω1.

Problem 2.9 is now a free boundary problem given in a bounded region Ω with a free boundary
Γshock to be determined simultaneously with ϕ.

Case 2. Fix θw ∈ [θ
(u∞)
s , θ

(u∞)
d ). The right sonic arc Γ1

sonic is given in the same way as
Case 1. By Remark 2.12, since the triangular region Ω0 in Fig. 2.5 shrinks to the origin as

θw ∈ (0, θ
(u∞)
s ) increases up to θ

(u∞)
s , we look for a curved shock Γshock that connects origin O with

P2 for θw ≥ θ
(u∞)
s and a solution ϕ to satisfy both (2.1.22) in the triangular domain Ω (enclosed

by Γshock, Γ
1
sonic, and the line segment OP3) and

ϕ =

{
ϕ1 in Ω1,

ϕ∞ in Dθw \ Ω ∪ Ω1,
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Ω

Ω1

Γ1
sonic

P2

P3

Γshock

S1

O

Figure 2.6. Admissible solutions for θw ≥ θ
(u∞)
s

with

(2.2.7) lim
|P |→0

P∈Ω

ϕ(P ) = ϕ0(O), lim
|P |→0

P∈Ω

Dϕ(P ) = Dϕ0(O).

The condition that ϕ = ϕ0 in Ω0 for θw < θ
(u∞)
s is replaced by (2.2.7) so that our desired solution

still satisfies (2.1.27).

2.3. Main Theorems

Fix γ ≥ 1 and u∞ > 1. For each θw ∈ (0, θ
(u∞)
d ), let u0 be given by (2.2.2). By Lemmas A.1

and A.3, u0 decreases with respect to θw. Define

u
(u∞)
d := lim

θw→θ
(u∞)
d −

u0, u(u∞)
s := lim

θw→θ
(u∞)
s

u0.

For each u∞ > 1, define an open interval I(u∞) = (u
(u∞)
N , u∞), where u

(u∞)
N is from Lemma A.3.

Given γ ≥ 1, we introduce a set of parameters

P = ∪
u∞>1

{u∞} × I(u∞).

Then P consists of three disjoint sets Pweak, Pdetach, and Pstrong:

Pweak = ∪
u∞>1

{u∞} × (u
(u∞)
d , u∞),

Pdetach = {(u∞, u(u∞)
d ) : u∞ > 1},

Pstrong = ∪
u∞>1

{u∞} × (u
(u∞)
N , u

(u∞)
d ).

(2.3.1)

Our goal is to prove the existence of a global weak solution of Problem 2.9, satisfying the entropy

condition, for each (u∞, u0) ∈ Pweak so that, if θw < θ
(u∞)
s , the solution has the configuration of

Fig. 2.5 and, if θw ≥ θ
(u∞)
s , the solution has the configuration of Fig. 2.6. We first give a definition

of admissible solutions of Problem 2.9 for (u∞, u0) ∈ Pweak.

Definition 2.14 (Admissible solutions). Given γ ≥ 1, u∞ > 1, and (u∞, u0) ∈ Pweak, define
θw as

(2.3.2) tan θw =
fpolar(u0)

u0
,



20 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

where fpolar is determined in Lemma A.3. Let Dθw be the domain defined by (2.1.23), and let ϕ0

and ϕ1 be defined by (2.2.1) and (2.2.6), respectively. A weak solution ϕ ∈ C0,1(Dθw) of Problem
2.9 is called an admissible solution of Problem 2.9 if ϕ satisfies the following properties:

Case I. u0 > u
(u∞)
s , or equivalently, θw ∈ (0, θ

(u∞)
s ):

(i) There exists a shock curve Γshock with endpoints P1 = (ξP1
1 , ξP1

2 ) and P2 = (ξP2
1 , ξP2

2 ) such
that the following properties hold:

(i-1) Curve Γshock satisfies

(2.3.3) Γshock ⊂ Dθw \B1(u∞, 0),

where ∂B1(u∞, 0) is the sonic circle of the state in Ω∞ := Dθw \ Ω0 ∪ Ω1 ∪Ω;

(i-2) Curve Γshock is C2 in its relative interior. That is, for any P ∈ Γshock \ {P1, P2},
there exist r > 0, f ∈ C2, and an orthogonal coordinate system (S, T ) in R

2 such
that Γshock ∩Br(P ) = {S = f(T )} ∩Br(P );

(i-3) Curve S0,seg ∪ Γshock ∪ S1,seg is C1, including at points P1 and P2;

(i-4) Γshock,Γ
1
sonic,Γ

0
sonic, and Γwedge := {ξ2 = ξ1 tan θw, ξ2 ≥ 0}∩{ξ : ξP4

1 ≤ ξ1 ≤ ξP3
1 } do

not have common points except for P1, P2, P3, and P4. Thus, Γshock∪Γ1
sonic∪Γ0

sonic∪
Γwedge is a closed curve without self-intersection. Denote by Ω the bounded domain
enclosed by this closed curve.

(ii) ϕ satisfies the following properties:

(ii-1) ϕ ∈ C0,1
loc (Dθw) ∩ C1

loc

(
Dθw \ S0,seg ∪ Γshock ∪ S1,seg

)
;

(ii-2) ϕ ∈ C3(Ω) ∩ C2
(
Ω \ (Γ0

sonic ∪ Γ1
sonic)

)
∩ C1(Ω);

(ii-3)

(2.3.4) ϕ =





ϕ∞ in Dθw \ Ω0 ∪ Ω ∪ Ω1,

ϕ0 in Ω0,

ϕ1 in Ω1,

where Ω0 shrinks to {O} = {P1} = {P4} when θw = θ
(u∞)
s ;

(ii-4) ϕ satisfies

- Eq. (2.1.19) in Ω with ρ(|Dϕ|2, ϕ) defined by (2.1.20),

- the slip boundary condition: ∂ξ2ϕ = 0 on Γwedge ∩ ∂Ω,
- the Rankine-Hugoniot conditions: [ϕ]Γshock

= [ρ(|Dϕ|2, ϕ)Dϕ · nsh]Γshock
= 0

for the unit normal vector nsh to Γshock towards the interior of Ω.

(iii) Eq. (2.1.19) is strictly elliptic in Ω \ (Γ0
sonic ∪ Γ1

sonic); that is,

|Dϕ| < c(|Dϕ|2, ϕ) in Ω \ (Γ0
sonic ∪ Γ1

sonic).

(iv) max{ϕ0, ϕ1} ≤ ϕ ≤ ϕ∞ in Ω.

(v) Let τw = (cos θw, sin θw), which is tangential to the wedge boundary Γwedge. Let eS0 be
the unit vector parallel to S0 and oriented so that eS0 · τw > 0, and let eS1 be the unit
vector parallel to S1 and oriented so that eS1 · τw < 0:

eS0 =
OP1

|OP1|
=

(v0, u∞ − u0)√
(u0 − u∞)2 + v20

, eS1 = −(cos θw, sin θw).
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Then
∂eS0

(ϕ∞ − ϕ) ≤ 0, ∂eS1
(ϕ∞ − ϕ) ≤ 0 in Ω.

Case II. u0 ≤ u
(u∞)
s , or equivalently, θw ∈ [θ

(u∞)
s , θ

(u∞)
d ):

(i) There exists a shock curve Γshock with endpoints O = (0, 0) and P2 = (ξP2
1 , ξP2

2 ) such that
the following properties hold:

(i-1) Curve Γshock satisfies

(2.3.5) Γshock ⊂ (Dθw \B1(u∞, 0)),

where ∂B1(u∞, 0) is the sonic circle of the state in Ω∞ := Dθw \ Ω ∪ Ω1;

(i-2) Curve Γshock is C2 in its relative interior. That is, for any P ∈ Γshock \ {O,P2}, there
exist r > 0, f ∈ C2, and an orthogonal coordinate system (S, T ) in R

2 such that
Γshock ∩Br(P ) = {S = f(T )} ∩Br(P );

(i-3) Curve Γshock ∪ S1,seg is C1, including at point P2;

(i-4) Γshock,Γ
1
sonic, and Γwedge := {ξ2 = ξ1 tan θw, ξ2 ≥ 0}∩{ξ : 0 ≤ ξ1 ≤ ξP3

1 } do not have
common points except for O,P2, and P3. Thus, Γshock ∪ Γ1

sonic ∪ Γwedge is a closed
curve without self-intersection. Denote by Ω the bounded domain enclosed by this
closed curve.

(ii) ϕ satisfies the following properties:

(ii-1) ϕ ∈ C0,1
loc (Dθw) ∩ C1

loc

(
Dθw \ Γshock ∪ S1,seg

)
;

(ii-2) ϕ ∈ C3(Ω) ∩ C2
(
Ω \ ({O} ∪ Γ1

sonic)
)
∩ C1(Ω);

(ii-3) Dϕ(O) = Dϕ0(O) and

(2.3.6) ϕ =





ϕ∞ in Dθw \ Ω ∪ Ω1,

ϕ0 at O,

ϕ1 in Ω1;

(ii-4) ϕ satisfies

- Eq. (2.1.19) in Ω with ρ(|Dϕ|2, ϕ) defined by (2.1.20),

- the slip boundary condition: ∂ξ2ϕ = 0 on Γwedge ∩ ∂Ω,
- the Rankine-Hugoniot conditions: [ϕ]Γshock

= [ρ(|Dϕ|2, ϕ)Dϕ · nsh]Γshock
= 0

for the unit normal vector nsh to Γshock towards the interior of Ω.

(iii) Eq. (2.1.19) is strictly elliptic in Ω \ ({O} ∪ Γ1
sonic); that is,

|Dϕ| < c(|Dϕ|2, ϕ) in Ω \ ({O} ∪ Γ1
sonic).

(iv) max{ϕ0, ϕ1} ≤ ϕ ≤ ϕ∞ in Ω.

(v) Let τw = (cos θw, sin θw), which is tangential to the wedge boundary Γwedge. Let eS0 be
the unit vector parallel to S0 and oriented so that eS0 · τw > 0, and let eS1 be the unit
vector parallel to S1 and oriented so that eS1 · τw < 0. Then

∂eS1
(ϕ∞ − ϕ) ≤ 0, ∂eS0

(ϕ∞ − ϕ) ≤ 0 in Ω.

Our two main theorems are as follows:

Theorem 2.15. Fix γ ≥ 1 and u∞ > 1. For any (u∞, u0) ∈ Pweak, there exists an admissible

solution of Problem 2.9 in the sense of Definition 2.14.
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Theorem 2.16. Fix γ ≥ 1 and u∞ > 1. Given (u∞, u0) ∈ Pweak, let ϕ be an admissible

solution with the curved shock Γshock of Problem 2.9 in the sense of Definition 2.14. Then the

following properties hold:

Case I. u0 > u
(u∞)
s , or equivalently, θw ∈ (0, θ

(u∞)
s ):

(a) The curved shock Γshock is C∞ in its relative interior, and ϕ ∈ C∞(Ω \ (Γ0
sonic ∪Γ1

sonic))∩
C1,1(Ω).

(b) For a constant σ > 0 and a set D given by

D =
{
ξ : max{ϕ0(ξ), ϕ1(ξ)} < ϕ∞(ξ)

}
∩Dθw ,

define

D0
σ = D ∩ {ξ : dist{ξ,Γ0

sonic} < σ} ∩Bc0(Q0),

D1
σ = D ∩ {ξ : dist{ξ,Γ1

sonic} < σ} ∩Bc1(Q1),
(2.3.7)

where cj = ρ
(γ−1)/2
j and Qj = Dϕj(O), j = 0, 1. Then, for any α ∈ (0, 1) and any

ξ0 ∈ (Γ0
sonic∪Γ1

sonic)\{P1, P2}, there exist ε0 depending on (γ, u∞), and K <∞ depending

on (u∞, γ, θw, ε0, α), ‖ϕ‖C1,1(Ω∩(DO
ε0

∪DN
ε0

)), and d = dist{ξ0,Γshock} such that

(2.3.8) ‖ϕ‖
2,α,Ω∩Bd/2(ξ0)∩(D1

ε0/2
∪D0

ε0/2
)
≤ K.

(c) For any ξ0 ∈ Γ0
sonic ∪ Γ1

sonic \ {P1, P2},

(2.3.9) lim
ξ→ξ0
ξ∈Ω

(
Drrϕ−Drrmax{ϕ1, ϕ0}

)
(ξ) =

1

γ + 1
,

where r = |ξ −Q1| near Γ1
sonic and r = |ξ −Q0| near Γ0

sonic.

(d) Limits lim
ξ→P1
ξ∈Ω

D2ϕ and lim
ξ→P2
ξ∈Ω

D2ϕ do not exist.

(e) S0,seg ∪ Γshock ∪ S1,seg is a C2,α–curve for any α ∈ (0, 1), including at points P1 and P2.

Case II. u0 ≤ u
(u∞)
s , or equivalently, θw ∈ [θ

(u∞)
s , θ

(u∞)
d ):

(a) The curved shock Γshock is C∞ in its relative interior, and ϕ ∈ C∞(Ω \ ({O} ∪ Γ1
sonic)) ∩

C1,1(Ω \ {O}) ∩ C1,ᾱ(Ω) for some ᾱ ∈ (0, 1) that depends on u∞ and θw and is non-

increasing with respect to θw.

(b) For a constant σ > 0, define D1
σ by (2.3.7). Then, for any α ∈ (0, 1) and any ξ0 ∈ Γ1

sonic \
{P2}, there exist ε0 depending on (γ, u∞), and K < ∞ depending on (u∞, γ, θw, ε0, α),
‖ϕ‖C1,1(Ω∩D1

ε0
), and d = dist{ξ0,Γshock} such that

(2.3.10) ‖ϕ‖
2,α,Ω∩Bd/2(ξ0)∩D1

ε0/2

≤ K.

(c) For any ξ0 ∈ Γ1
sonic \ {P2},

(2.3.11) lim
ξ→ξ0
ξ∈Ω

(
Drrϕ−Drrϕ1

)
(ξ) =

1

γ + 1
,

where r = |ξ −Q1|.
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(d) Limit lim
ξ→P2
ξ∈Ω

D2ϕ does not exist.

(e) Γshock ∪ S1,seg is a C1,ᾱ–curve for the same ᾱ as in statement (a). Furthermore, curve

Γshock ∪ S1,seg \ {O} is C2,α for any α ∈ (0, 1), including at point P2.

2.4. Change of the Parameters and Basic Properties

2.4.1. Straight oblique shocks in the self-similar plane. Given a constant v∞ > 0,
denote

(2.4.1) ϕ∞ := −1

2
|ξ|2 − v∞ξ2.

Lemma 2.17. For any given β ∈ [0, π2 ), there exists a unique pseudo-potential function

ϕO = −1

2
|ξ|2 + (uO, vO) · ξ + kO

satisfying the following properties:

(O1) SO := {ξ ∈ R
2 : ϕ∞(ξ) = ϕO(ξ)} forms a line of angle β with the ξ1–axis, as shown in

Fig. 2.7;

β
uO

− v∞

ξ1

ξ2

O

ξ
(β)
2

SO

Figure 2.7. SO is a line of angle β with the ξ1–axis

(O2) ϕO satisfies the Rankine-Hugoniot conditions (2.1.31) on SO:

ϕO = ϕ∞, ρ(|DϕO|2, ϕO)DϕO · νsh = Dϕ∞ · νsh on SO

for

(2.4.2) ρ(|Dϕ|2, ϕ) =
{(

1 + (γ − 1)(B∞ − 1
2 |Dϕ|2 − ϕ)

) 1
γ−1 for γ > 1,

exp
(
B∞ − 1

2 |Dϕ|2 − ϕ
)

for γ = 1,

with

B∞ =
1

2
|Dϕ∞|2 + ϕ∞ =

v2∞
2
,

where νsh := D(ϕ∞−ϕ0)
|D(ϕ∞−ϕ0)| ;
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(O3) Entropy condition:

ρ(|DϕO|2, ϕO) > 1, 0 < DϕO · νsh < Dϕ∞ · νsh;

(O4) ϕO satisfies the slip boundary condition on the ξ1–axis:

∂ξ2ϕO = 0 on {ξ2 = 0}.
Proof. By choosing (uO, vO) as

(2.4.3) (uO, vO) = (−v∞ tanβ, 0),

ϕO satisfies conditions (O1) and (O4). If line SO has the ξ2–intercept at (0, ξ
(β)
2 ), then ϕO can be

written as

(2.4.4) ϕO = −1

2
|ξ|2 − ξ1v∞ tanβ − v∞ξ

(β)
2 .

It remains to find the ξ2–intercept ξ
(β)
2 of SO so that ϕO satisfies conditions (O2)–(O3). Define

ρO := ρ(|DϕO|2, ϕO).

Then ρO satisfies

(2.4.5) h(ρO) +
1

2
|DϕO|2 + ϕO = h(1) +

1

2
|Dϕ∞|2 + ϕ∞,

where h(ρ) is defined by (2.1.4).

In order to determine ξ
(β)
2 , we follow the idea from [27]. Define the pseudo-Mach numbers MO

and M∞ by

(2.4.6) MO :=
∂νsh

ϕO
cO

for cO = ρ
γ−1
2

O and M∞ := ∂νsh
ϕ∞.

Since ∂kτsh
(ϕ∞ − ϕO) = 0 on SO for k = 0, 1, for a unit tangent vector τsh of SO, it follows from

(2.4.5) that

(2.4.7) h(ρO) +
1

2
(∂νsh

ϕO)
2 = h(1)︸︷︷︸

(=0)

+
1

2
(∂νsh

ϕ∞)2 on SO.

By (2.4.6), ρ(|DϕO |2, ϕO)DϕO · νsh = Dϕ∞ · νsh can be rewritten as

(2.4.8) ρ
γ+1
2

O =
M∞
MO

.

We substitute this expression into (2.4.7) to obtain

(
1 +

γ − 1

2
M2

O
)
M

− 2(γ−1)
γ+1

O =
(
1 +

γ − 1

2
M2

∞
)
M

− 2(γ−1)
γ+1

∞ .(2.4.9)

Notice that f(M) := (1 + γ−1
2 M2)M− 2(γ−1)

γ+1 satisfies

lim
M→0+

f(M) = ∞, lim
M→∞

f(M) = ∞, f ′(M) =
2(γ − 1)

γ + 1
M− 2(γ−1)

γ+1 −1(M2 − 1).

Therefore, if M∞ = 1, then MO = 1 is the only solution of (2.4.9). If M∞ ∈ (0,∞) \ {1}, then
(2.4.9) has a unique nontrivial solution MO in (0,∞) \ {1} with MO 6=M∞. Furthermore, a direct
computation from (2.4.9) shows that

(2.4.10)
dMO
dM∞

< 0 for all M∞ ∈ (0,∞) \ {1}.
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It follows from (2.4.8) that conditions (O2)–(O3) are satisfied if there exists ξ
(β)
2 so thatM∞ > 1

holds.
Denote q∞ :=M∞ and qO := cOMO. Note that qO = dist(SO, (uO, 0)) and q∞ = dist(SO, (0,−v∞))

for uO given by (2.4.3). Then

(2.4.11) q∞ − qO = v∞ sec β.

We substitute the representations of q∞ = M∞ and qO = MOcO = MO
(
M∞

MO

) γ−1
γ+1 into (2.4.11) to

obtain

(2.4.12) M
γ−1
γ+1
∞

(
M

2γ
γ+1
∞ −M

2γ
γ+1

O
)
= v∞ secβ,

where MO ≤ 1 solves (2.4.9) for M∞ ≥ 1. As a function of M∞ ≥ 1, the left-hand side of (2.4.12)
is strictly increasing for M∞ > 1, and its value at M∞ = 1 is 0. Therefore, for given constants
v∞ > 0 and β ∈ [0, π2 ), there exists a unique

(2.4.13) M∞ > 1

satisfying equation (2.4.12). Once M∞ > 1 is decided, it follows from (2.4.3) and (2.4.11) that

(2.4.14) ξ
(β)
2 =M∞ secβ − v∞.

It can be seen from 0 < DϕO ·νsh < Dϕ∞ ·νsh that the ξ2–intercept ξ
(β)
2 given by (2.4.14) satisfies

ξ
(β)
2 > 0.

Case γ = 1 can be proved similarly. �

2.4.2. New parameters (v∞, β). We define ξ′ = (ξ′1, ξ
′
2) by

(2.4.15)

(
ξ′1
ξ′2

)
:=

(
cos θw sin θw
− sin θw cos θw

)(
ξ1
ξ2

)
−
(
u∞ cos θw

0

)
.

In the new coordinates (ξ′1, ξ
′
2), center Q1 of the sonic circle ∂Bc1(Q1) becomes the origin, and

Γwedge lies on the horizontal axis ξ′2 = 0.
Hereafter, for simplicity of notation, we denote ξ = (ξ1, ξ2) as the new coordinates (ξ′1, ξ

′
2) given

by (2.4.15). In the new coordinate system, ϕ∞, ϕ0, and ϕ1, defined by (2.1.25), (2.2.1), and (2.2.6),
are expressed respectively as

ϕop
∞(ξ) = −1

2
|ξ|2 − ξ2u∞ sin θw +

1

2
u2∞ cos2 θw,

ϕop
O (ξ) = −1

2
|ξ|2 + (ξ1 + u∞ cos θw)(u0 sec θw − u∞ cos θw) +

1

2
u2∞ cos2 θw,

ϕop
N (ξ) = −1

2
|ξ|2 − u∞ξ

(1)
2 sin θw +

1

2
u2∞ cos2 θw.

(2.4.16)

We define (ϕ∞, ϕO, ϕN ) in the new coordinates by

ϕ∞(ξ) = ϕop
∞(ξ)− 1

2
u2∞ cos2 θw,

ϕO(ξ) = ϕop
O (ξ)− 1

2
u2∞ cos2 θw,

ϕN (ξ) = ϕop
N (ξ)− 1

2
u2∞ cos2 θw.

(2.4.17)
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In the new coordinate system, S0, S1,Γ
0
sonic, and Γ1

sonic are denoted as SO, SN ,ΓO
sonic, and ΓN

sonic,
respectively.

Definition 2.18 (New parameters (v∞, β)). For each (u∞, u0) ∈ P, we introduce new param-
eters (v∞, β) ∈ (0,∞)× (0, π2 ) as follows:

(i) For θw ∈ (0, θ
(u∞)
d ) given by (2.3.2), define v∞ by

v∞ = u∞ sin θw;

(ii) Let S0 be the straight oblique shock corresponding to point u0(1, tan θw) on the shock
polar (Fig. 2.2) with the incoming state (u∞, 0). For such S0, let θS0 be the angle of
S0 from the horizontal ground (i.e., ξ2 = 0 in the coordinates ξ before (2.4.15)). Define
β ∈ (0, π2 ) by

β := θS0 − θw.(2.4.18)

Note that the definition of v∞ stated in (i) coincides with (2.2.3).

The weak shock configuration in the new self-similar plane is shown in Figs. 2.8–2.9 for
(v∞, β) ∈ (0,∞)× (0, π2 ).

β
θw

O

(0,−v∞)

ξ1

ξ2

Γshock

SO

SN

ΓN
sonic

ΓO
sonic

Figure 2.8. Weak shock solutions in the new self-similar plane when θw < θ
(u∞)
s

β
θw

O

(0,−v∞)

ξ1

ξ2

Γshock

SO

SN

ΓN
sonic

Figure 2.9. Weak shock solutions in the new self-similar plane when θ
(u∞)
s ≤ θw < θ

(u∞)
d

We define a parameter set R by

(2.4.19) R := {(v∞, β) : v∞ > 0, 0 < β <
π

2
},

and define a mapping T : P → R by

(2.4.20) T (u∞, u0) = (v∞, β) for (v∞, β) given by Definition 2.18.



2.4. CHANGE OF THE PARAMETERS AND BASIC PROPERTIES 27

Lemma 2.19. For any given γ ≥ 1, mapping T : P → R is a homeomorphism.

Proof. Fix (u∞, u0) ∈ P. By Definition 2.18(i), the corresponding half-wedge angle θw is
given by

(2.4.21) θw = arctan(
fpolar(u0)

u0
),

where fpolar is the function introduced in Lemma A.3.
By Definition 2.18(ii), a unit tangent vector τS0 of the straight oblique shock S0 corresponding to

(u∞, u0) is τS0 = (cos θS0 , sin θS0) in the coordinate system introduced right before transformation
(2.4.15). Substituting this expression of τS0 into one of the Rankine-Hugoniot conditions:

(u∞, 0) · τS0 = (u0, fpolar(u0)) · τS0 ,

we have

(2.4.22) tan θS0 =
u∞ − u0
fpolar(u0)

.

From (2.4.18) and (2.4.21)–(2.4.22), we obtain

tanβ =
tan θS0 − tan θw
1 + tan θS0 tan θw

=
u0(u∞ − u0)−

(
fpolar(u0)

)2

u0fpolar(u0)
> 0.

By Definition 2.18(i) and (2.4.21), we can express v∞ as

v∞ = u∞ sin(arctan(
fpolar(u0)

u0
)).

Therefore, mapping T : P → R is continuous.
In order to show that T : P → R is invertible and its inverse is continuous, for fixed (v∞, β) ∈ R,

we find a solution (u∞, u0) ∈ P of the following equations:

u∞ sin θw = v∞,(2.4.23)

u∞ cos θw = ξ
(β)
2 cotβ,(2.4.24)

u0 sec θw = ξ
(β)
2 cotβ − v∞ tanβ,(2.4.25)

so that the definitions of ϕO in (2.4.4) and (2.4.17) coincide. Combining (2.4.23) with (2.4.24), we
have

(2.4.26) u∞ =

√
v2∞ + (ξ

(β)
2 )2 cot2 β =: T1(v∞, β).

Using (2.4.1), we can rewrite (2.4.26) as

u∞ = |Dϕ∞(−ξ(β)2 cotβ, 0)|.
Then we obtain from (2.4.13) that u∞ ≥M∞ > 1.

Once u∞ is given by (2.4.26), we combine it with (2.4.24)–(2.4.25) to obtain u0 as

(2.4.27) u0 =

(
ξ
(β)
2 cotβ − v∞ tanβ

)
ξ
(β)
2 cotβ

T1(v∞, β)
=: T2(v∞, β).

Note that (−ξ(β)2 cotβ, 0) is the ξ1–intercept of line SO from Lemma 2.17. Therefore, it can be

seen from Fig. 2.7 that ξ
(β)
2 cotβ + uO = ξ

(β)
2 cotβ − v∞ tanβ > 0. This implies that u0 > 0.
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Since tan θw = v∞
ξ
(β)
2 cotβ

> 0 is obtained from (2.4.23)–(2.4.24), we conclude that (u∞, u0) given by

(2.4.26)–(2.4.27) is contained in P.
Finally, the continuity of T −1 follows directly from the definitions of (T1, T2). �

For any given (v∞, β) ∈ R, the ξ2–intercept ξ
(β)
2 > 0 of the oblique shock SO of angle β from

the ξ1–axis is uniquely defined. Moreover, ξ
(β)
2 varies continuously on β ∈ (0, π2 ), and lim

β→0+
ξ
(β)
2

exists, which is positive. Denote ξN2 := ξ
(β)
2 |β=0. Let ϕN denote ϕO corresponding to β = 0. Then

ϕN is given by

(2.4.28) ϕN (ξ) = −1

2
|ξ|2 − v∞ξ

N
2 .

Remark 2.20 (The normal shock: Case β = 0). For fixed γ ≥ 1 and v∞ > 0, the straight
shock of angle β = 0 from the horizontal ground (i.e., ξ2 = 0 in the new coordinates ξ given by
(2.4.15)) can be considered by taking the limit β → 0+ in the argument above. The state of β = 0
is that of a normal shock, which corresponds to the state of u0

u∞
= 1 with θw = 0. Even though

the case of β = 0 is not physical because u∞ = ∞, we still put this case under our consideration
as it is useful in applying the Leray-Schauder degree argument to prove the existence of admissible
solutions of Problem 2.9 for all (u∞, u0) ∈ Pweak.

Remark 2.21. According to Lemma A.4, for each v∞ > 0, there exists β
(v∞)
d ∈ (0, π2 ) such

that, if the parameter sets Rweak,Rdetach, and Rstrong are defined by

Rweak = ∪
v∞>0

{v∞} × (0, β
(v∞)
d ),

Rdetach = ∪
v∞>0

{v∞} × {β(v∞)
d },

Rstrong = ∪
v∞>0

{v∞} × (β
(v∞)
d ,

π

2
),

(2.4.29)

then

(2.4.30) T −1(Rweak) = Pweak, T −1(Rdetach) = Pdetach, T −1(Rstrong) = Pstrong,

for Pweak,Pdetach, and Pstrong defined by (2.3.1). In Lemma 2.22, we will also show that, for

any v∞ > 0, there exists a unique β
(v∞)
s ∈ (0, β

(v∞)
d ) such that T2(v∞, β) > u

(u∞)
s if and only if

β < β
(v∞)
s for u∞ = T1(v∞, β), where u

(u∞)
s denotes the value of u

(θw)
wk for θw = θ

(u∞)
s .

For fixed (v∞, β) ∈ Rweak, letMO be defined by (2.4.6). In the proof of Lemma 2.17, it is shown
that 0 < MO < 1. This implies that the corresponding straight oblique shock SO intersects with
the sonic circle ∂BcO (uO, 0) = {ξ : |DϕO(ξ)| = cO} at two distinct points. For each β ∈ [0, π2 ),

let ξO := (ξO1 , ξ
O
2 ) be the intersection point P1 with the smaller ξ1–coordinate (see Fig. 2.10).

Moreover, let (ξ
(β)
1 , 0) be the ξ1–intercept of SO. If ξO2 > 0, then |DϕO| > cO at (ξ

(β)
1 , 0), which

means that an admissible solution in the sense of Definition 2.14 for (u∞, u0) = T −1(v∞, β) has
the structure shown in Fig. 2.8. On the other hand, if ξO2 ≤ 0, then an admissible solution for
(u∞, u0) = T −1(v∞, β) has the structure shown in Fig. 2.9.

Lemma 2.22. Fix γ ≥ 1 and v∞ > 0. The ξ2–coordinate ξ
O
2 of point P1 satisfies

dξO2
dβ

< 0 for all β ∈ (0,
π

2
) and lim

β→π
2 −
ξO2 = −∞.
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P1
qO cO

(uO, 0)

SO

ξm

Figure 2.10. Two intersection points of SO with the sonic circle ∂BcO(uO, 0)

Therefore, there exists β
(v∞)
s ∈ (0, π2 ) such that

(2.4.31)





ξO2 > 0 ⇐⇒ |DϕO(ξ
(β)
1 ,0)|

cO
> 1 for β ∈ [0, β

(v∞)
s ),

ξO2 = 0 ⇐⇒ |DϕO(ξ
(β)
1 ,0)|

cO
= 1 for β = β

(v∞)
s ,

ξO2 < 0 ⇐⇒ |DϕO(ξ
(β)
1 ,0)|

cO
< 1 for β ∈ (β

(v∞)
s , π2 ).

In addition, β
(v∞)
s satisfies the inequality:

(2.4.32) β(v∞)
s < β

(v∞)
d .

Proof. For M∞ and MO given by (2.4.6), define

(2.4.33) (q∞, qO) = (M∞,MOcO).

For each β ∈ (0, π2 ), let ξ
m = (ξm1 , ξ

m
2 ) be the midpoint of two intersections of SO with ∂BcO(uO, 0).

By (2.4.6), we have

(2.4.34) ξO2 = ξm2 − cO
√
1−M2

O sinβ.

Since (ξm1 − uO, ξm2 ) is perpendicular to SO,

∂τsh
ϕO(ξ

m) = 0 = ∂τsh
ϕ∞(ξm) = (−ξm1 ,−ξm2 − v∞) · τsh

for a unit tangent vector τsh = (cosβ, sinβ) to SO. Then we have

ξm = (0,−v∞)− q∞νsh = (0,−v∞)− q∞(sinβ,− cosβ)

for the unit normal vector νsh to SO pointing towards the ξ1–axis. This yields that

(2.4.35) ξm2 = −v∞ + q∞ cosβ.

We differentiate (2.4.11) and (2.4.35) with respect to β to obtain

(2.4.36)
dξm2
dβ

= −q∞ sinβ +
dq∞
dβ

cosβ,
dq∞
dβ

=
q∞ − qO
1− dqO

dq∞

tanβ,

and combine the results to obtain

dξm2
dβ

= −
1− q∞

qO

dqO
dq∞

1− dqO
dq∞

ξm2 tanβ.(2.4.37)
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If dqO
dq∞

≤ 0, then

1− q∞
qO

dqO
dq∞

1− dqO
dq∞

> 1 ≥ 2

γ + 1
.

A direct computation by using (2.4.6)–(2.4.9) shows that

dqO
dq∞

=
(MO
M∞

) 2
γ+1
(γ − 1

γ + 1
+

2

γ + 1

M∞
MO

dMO
dM∞

)

=
( q∞
ρOqO

) 1
γ+1 qO

q∞

(γ − 1

γ + 1
+

2M∞
(γ + 1)MO

dMO
dM∞

)

≤ γ − 1

γ + 1

qO
q∞

.

(2.4.38)

If dqO
dq∞

> 0, it follows from 0 < 1− dqO
dq∞

< 1 that

1− q∞
qO

dqO
dq∞

1− dqO
dq∞

> 1− q∞
qO

dqO
dq∞

≥ 2

γ + 1
.

We apply inequality
1− q∞

qO

dqO
dq∞

1− dqO
dq∞

>
2

γ + 1
to derive from (2.4.37) that

(2.4.39)
dξm2
dβ

≤ − 2

γ + 1
ξm2 tanβ for all β ∈ (0,

π

2
).

Next, we differentiate c2O = 1 + γ−1
2 (q2∞ − q2) with respect to β and use (2.4.11) to obtain

dc2O
dβ

= (γ − 1)q∞
(
1− qO

q∞

dqO
dq∞

)dq∞
dβ

≥ 2(γ − 1)

γ + 1
v∞ sec β tanβ for all β ∈ (0,

π

2
).

(2.4.40)

From this, we have

(2.4.41) lim
β→π

2 −
ξm2 = 0, lim

β→π
2 −
cO = ∞, lim

β→π
2 −
ξO2 = −∞.

Notice that

(2.4.42)
dq∞
dβ

> 0,

which can be obtained from differentiating (2.4.12) with respect to β, where 0 < MO < 1 < M∞ is
used. From (2.4.10), we obtain

(2.4.43)
dMO
dβ

=
dMO
dM∞

dM∞
dβ

=
dMO
dM∞

dq∞
dβ

< 0.

Therefore, we conclude from (2.4.34) and the monotonicity properties of (ξm2 , c
2
O,MO) with

respect to β that
∂ξO2
∂β < 0 for all β ∈ (0, π2 ). �
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2.5. Main Theorems in the (v∞, β)–Parameters

With Lemma 2.19 and Remark 2.21, we can restate Theorems 2.15–2.16 by using parameters
(v∞, β) ∈ Rweak.

For fixed γ ≥ 1 and (v∞, β) ∈ R, we recall the definitions of (ϕ∞, ϕO, ϕN ) given by (2.4.1),
(2.4.4), and (2.4.28) as follows:

(2.5.1) ϕ∞ = −1

2
|ξ|2 − v∞ξ2, ϕO = −1

2
|ξ|2 + uOξ1 − v∞ξ

(β)
2 , ϕN = −1

2
|ξ|2 − v∞ξ

N
2 ,

for ξ
(β)
2 given by (2.4.14).
Let

ρO = ρ(|DϕO|2, ϕO), ρN = ρ(|DϕN |2, ϕN )

for ρ(|Dϕ|2, ϕ) defined by (2.4.2). Note that ξN2 satisfies that ξN2 < cN for cN = ρ
γ−1
2

N . Define

OO := (uO, 0), ON = (0, 0).

Since ξN2 < cN , ∂BcN (ON ) intersects with SN = {ξ2 = ξN2 } at two distinct points. For each
β ∈ [0, π2 ), ξ2 = fO(ξ1), obtained by solving the equation ϕ∞(ξ1, ξ2)−ϕO(ξ1, ξ2) = 0 for ξ2, is given
by

(2.5.2) fO(ξ1) := ξ1 tanβ + ξ
(β)
2 .

Note that SO = {ξ2 = fO(ξ1)} intersects with ∂BcO (OO) at two distinct points. The ξ1–intercept
of SO is

(2.5.3) Pβ = (−ξ(β)2 cotβ, 0) =: (ξ
(β)
1 , 0).

The line passing through Pβ and O∞ = (0,−v∞) is given by

(2.5.4) Lw := {ξ : ξ2 = fw(ξ1) := tan θ∞(ξ1 − ξ
(β)
1 )}

for
tan θ∞ =

v∞

ξ
(β)
1

with θ∞ ∈ (
π

2
, π).

Then Lw represents the horizontal ground in the self-similar plane before the linear transformation
(2.4.15) of the self-similar variables (ξ1, ξ2). Moreover, tan θ∞ and Lw depend continuously on
(v∞, β).

Definition 2.23. For each v∞ > 0 and β ∈ [0, π2 ), define

O∞ := (0,−v∞), OO := (uO, 0) = (−v∞ tanβ, 0), ON := (0, 0),

Λβ := R
2
+ \ {ξ ∈ R

2 : ξ2 ≤ fw(ξ1)},
ΓN
sonic := ∂BcN (ON ) ∩ {ξ1 > 0, 0 ≤ ξ2 ≤ ξN2 },

eSO = (cos β, sinβ).

(2.5.5)

For ϕ∞, ϕO, and ϕN given by (2.5.1), define

SN = {ξ : ϕ∞(ξ) = ϕN (ξ)}, SO = {ξ : ϕ∞(ξ) = ϕO(ξ)}.
Let ΩN be the unbounded open region enclosed by SN , ΓN

sonic, and line {(ξ1, 0) : ξ1 ≥ ξP3
1 } so that

ΩN is a fixed domain for all β ∈ [0, β
(v∞)
d ) for fixed v∞ > 0. Denote the two points P2 and P3 by:

• P2 – the intersection point of line ξ2 = ξN2 and ΓN
sonic,

• P3 – the intersection point of the ξ1–axis and ΓN
sonic.
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Figure 2.11. Admissible solutions for β < β
(v∞)
s
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Figure 2.12. Admissible solutions for β
(v∞)
s ≤ β < β

(v∞)
d

For each v∞ > 0 and β ∈ [0, β
(v∞)
s ), define

ΓO
sonic := ∂BcO (OO) ∩ {ξ1 < 0, 0 ≤ ξ2 ≤ fO(ξ1)}.

Set the two points P1 and P4 as

• {P1} = ΓO
sonic ∩ {ξ2 = fO(ξ1)},

• {P4} = ΓO
sonic ∩ {ξ2 = 0}.

Let ΩO be the bounded open region enclosed by SO, ΓO
sonic, and the line segment PβP4.

By Lemma 2.22, we have

lim
β→β

(v∞)
s −

|P1 − Pβ | = lim
β→β

(v∞)
s −

|P1 − P4| = 0.

This implies that, as β tends to β
(v∞)
s from the left, ΓO

sonic and ΩO shrink to a single point Pβ =

P1 = P4. Therefore, the definitions of ΓO
sonic, P1, and P4 for β ∈ [β

(v∞)
s , π2 ) are given by

(2.5.6) ΓO
sonic = {P1} = {P4} := {Pβ}.
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Definition 2.24 (Admissible solutions with parameters (v∞, β) ∈ Rweak). Fix γ ≥ 1 and
(v∞, β) ∈ Rweak, and let (ϕ∞, ϕO, ϕN ) be defined by (2.5.1). For SO and SN given in Definition
2.23, define

SO,seg := SO ∩ {−ξ(β)2 cotβ ≤ ξ1 ≤ ξP1
1 }, SN ,seg := SN ∩ {ξ1 ≥ ξP2

1 }.
A function ϕ ∈ C0,1

loc (Λβ) is called an admissible solution corresponding to (v∞, β) if ϕ satisfies
the following properties:

Case I. β ∈ (0, β
(v∞)
s ):

(i) There exists a shock curve Γshock with endpoints P1 = (ξO1 , ξ
O
2 ) and P2 = (ξN1 , ξ

N
2 ) such

that

(i-1) Curve Γshock satisfies

(2.5.7) Γshock ⊂ Λβ \B1(O∞),

where ∂B1(0,−v∞) is the sonic circle of the state in Ω∞ := Λβ \ ΩO ∪ Ω ∪ ΩN ;
(i-2) Curve Γshock is C2 in its relative interior. That is, for any P ∈ Γshock \ {P1, P2},

there exist a constant r > 0, a function f ∈ C2, and an orthogonal coordinate system
(S, T ) in R

2 such that Γshock ∩Br(P ) = {S = f(T )} ∩Br(P );
(i-3) Curve SO,seg ∪ Γshock ∪ SN ,seg is C1, including at points P1 and P2;

(i-4) Γshock,Γ
N
sonic,Γ

O
sonic, and Γwedge := {ξ2 = 0, uO−cO ≤ ξ1 ≤ cN } do not have common

points except for P1, P2, P3, and P4. Thus, Γshock ∪ΓN
sonic ∪ΓO

sonic ∪Γwedge is a closed
curve without self-intersection. Denote by Ω the bounded domain enclosed by this
closed curve.

(ii) ϕ satisfies the following properties:

(ii-1) ϕ ∈ C0,1
loc (Λβ) ∩ C1

loc

(
Λβ \ SO,seg ∪ Γshock ∪ SN ,seg

)
;

(ii-2) ϕ ∈ C3(Ω) ∩ C2(Ω \ (ΓO
sonic ∪ ΓN

sonic)) ∩ C1(Ω);

(ii-3) For ΩO defined in Definition 2.23,

(2.5.8) ϕ =





ϕ∞ in Λβ \ ΩO ∪ Ω ∪ ΩN ,

ϕO in ΩO,

ϕN in ΩN ,

where ΩO shrinks to {Pβ} = {P1} = {P4} when β = β
(v∞)
s ;

(ii-4) ϕ satisfies

- Eq. (2.1.19) in Ω with ρ(|Dϕ|2, ϕ) defined by (2.4.2),

- the slip boundary condition ϕξ2 = 0 on Γwedge,

- the Rankine-Hugoniot conditions: [ϕ]Γshock
= [ρ(|Dϕ|2, ϕ)Dϕ · nsh]Γshock

= 0
for the unit normal vector nsh to Γshock towards the interior of Ω.

(iii) Eq. (2.1.19) is strictly elliptic in Ω \ (ΓO
sonic ∪ ΓN

sonic).

(iv) max{ϕO, ϕN } ≤ ϕ ≤ ϕ∞ in Ω.

(v) Let eSO be the unit vector parallel to SO and oriented so that eSO · e1 > 0, and let eSN

be the unit vector parallel to SN and oriented so that eSN · e1 < 0, where e1 is the unit
vector in the ξ1–direction, i.e., e1 = (1, 0). That is,

(2.5.9) eSO = (cosβ, sinβ), eSN = (−1, 0).
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Then

(2.5.10) ∂eSO
(ϕ∞ − ϕ) ≤ 0, ∂eSN

(ϕ∞ − ϕ) ≤ 0 in Ω.

Case II. β ∈ [β
(v∞)
s , β

(v∞)
d ):

(i) There exists a shock curve Γshock with endpoints Pβ = (−ξ(β)2 cotβ, 0) and P2 = (ξN1 , ξ
N
2 )

such that

(i-1) Curve Γshock satisfies

(2.5.11) Γshock ⊂ (Λβ \B1(O∞)),

where ∂B1(0,−v∞) is the sonic circle of the state in Ω∞ := Λβ \ Ω ∪ ΩN ;
(i-2) Curve Γshock is C2 in its relative interior: for any P ∈ Γshock \ {Pβ , P2}, there

exist r > 0, f ∈ C2, and an orthogonal coordinate system (S, T ) in R
2 so that

Γshock ∩Br(P ) = {S = f(T )} ∩Br(P );
(i-3) Curve Γshock ∪ SN is C1, including at point P2;

(i-4) Γshock,Γ
N
sonic, and Γwedge := {ξ2 = 0,−ξ(β)2 cotβ ≤ ξ1 ≤ cN } do not have common

points except for Pβ , P2, and P3. Thus, Γshock ∪ ΓN
sonic ∪ Γwedge is a closed curve

without self-intersection. Denote by Ω the bounded domain enclosed by this closed
curve.

(ii) ϕ satisfies the following properties:

(ii-1) ϕ ∈ C0,1
loc (Λβ) ∩ C1

loc(Λβ \ Γshock ∪ SN ,seg);

(ii-2) ϕ ∈ C3(Ω) ∩ C2(Ω \ ({Pβ} ∪ ΓN
sonic)) ∩ C1(Ω);

(ii-3) Dϕ(Pβ) = DϕO(Pβ) and

(2.5.12) ϕ =





ϕ∞ in Λβ \ Ω ∪ ΩN ,

ϕO at Pβ ,

ϕN in ΩN ;

(ii-4) ϕ satisfies

- Eq. (2.1.19) in Ω with ρ(|Dϕ|2, ϕ) defined by (2.4.2),

- the slip boundary condition ϕξ2 = 0 on Γwedge,

- the Rankine-Hugoniot conditions: [ϕ]Γshock
= [ρ(|Dϕ|2, ϕ)Dϕ · nsh]Γshock

= 0
for the unit normal vector nsh to Γshock towards the interior of Ω.

(iii) Eq. (2.1.19) is strictly elliptic in Ω \ ({Pβ} ∪ ΓN
sonic).

(iv) max{ϕO, ϕN } ≤ ϕ ≤ ϕ∞ in Ω.

(v) ϕ satisfies (2.5.10).

Remark 2.25. The inequalities in (2.5.10) for two directions eSO and eSN imply that

(2.5.13) ∂e(ϕ∞ − ϕ) ≤ 0 in Ω for all e ∈ Cone(eSO , eSN ),

where

(2.5.14) Cone(eSO , eSN ) := {a1eSO + a2eSN : a1 ≥ 0, a2 ≥ 0}.
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Lemma 2.26 (Entropy condition of admissible solutions). Let ϕ be an admissible solution cor-

responding to (v∞, β) ∈ Rweak in the sense of Definition 2.24, and let Γshock be the curved shock

satisfying condition (i) of Definition 2.24. Let ν be the unit normal vector to Γshock towards the

interior of Ω. Then the following properties hold:

(a) ∂νϕ∞ > ∂νϕ > 0 on Γshock;

(b) Let

M∞,ν :=
∂νϕ∞

c(|Dϕ∞|2, ϕ∞)
= ∂νϕ∞, Mν :=

∂νϕ

c(|Dϕ|2, ϕ)
for

(2.5.15) c(|q|2, z) = ρ
γ−1
2 (|q|2, z),

where ρ(|q|2, z) is defined by (2.4.2). Then

0 < Mν < 1 < M∞,ν on Γshock.

Proof. Denote w := ϕ∞ − ϕ. From (2.1.19), (2.4.2), and (2.4.5), it can directly be checked
that

(c2 − ϕ2
ξ1)wξ1ξ1 − 2ϕξ1ϕξ2wξ1ξ2 + (c2 − ϕ2

ξ2)wξ2ξ2 = 0 in Ω

for c2 = ργ−1(|Dϕ|2, ϕ), where ρ(|Dϕ|2, ϕ) is given by (2.4.2). By condition (iii) of Definition
2.24, the minimum principle applies to w so that w cannot attain its minimum in Ω, unless it is a
constant in Ω. By conditions (ii) and (iv) of Definition 2.24, we see that w ≥ 0 in Ω, and w = 0
on Γshock. Furthermore, w is not a constant in Ω, because ∂ξ2w = −v∞ on Γwedge by (2.4.1) and
the slip boundary condition ∂ξ2ϕ = 0 on Γwedge, stated in (ii-4) of Definition 2.24. Then it follows
from Hopf’s lemma that ∂νw > 0 on Γshock. This implies that

(2.5.16) ∂νϕ∞ > ∂νϕ on Γshock.

If ∂νϕ(P ) = 0 for some P ∈ Γshock, then it follows from the condition: ρ(|Dϕ|2, ϕ)∂νϕ(P ) =
∂νϕ∞(P ) stated in (ii-4) of Definition 2.24 that ∂νϕ∞(P ) = 0, which is impossible, due to (2.5.16).
Therefore, we have

(2.5.17) |∂νϕ| > 0 on Γshock.

By conditions (ii-2)–(ii-3) of Definition 2.24, we have

Dϕ(P2) = DϕN (P2).

Then it follows from the definitions of (ϕ∞, ϕN ) given in (2.5.1) and conditions (ii-4) and (iv) of
Definition 2.24 that

ν(P2) =
Dϕ∞ −DϕN
|Dϕ∞ −DϕN | = (0,−1),(2.5.18)

∂ν(ϕ∞ − ϕ)(P2) = |Dϕ∞ −DϕN | = v∞ > 0, ∂νϕ(P2) = ∂νϕN (P2) = ξP2
2 > 0.(2.5.19)

Similarly, at P1, we have

Dϕ(P1) = DϕO(P1),
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so that (2.4.3), (2.4.35), (2.4.39), and (2.4.41) yield that

ν(P1) =
Dϕ∞ −DϕO
|Dϕ∞ −DϕO|

= (sinβ,− cosβ),

∂ν(ϕ∞ − ϕ)(P1) = |Dϕ∞ −DϕO| = v∞ secβ > 0,(2.5.20)

∂νϕ(P1) = ∂νϕO(P1) = ∂νϕ∞(P1)− v∞ secβ = ξm2 > 0.(2.5.21)

Then statement (a) follows directly from (2.5.16)–(2.5.21) and the continuity of ∂νϕ along Γshock

up to its endpoints P1 and P2.
Note that the calculations given in (2.4.8)–(2.4.9) are still valid when (ρO,MO,M∞) are re-

placed by (ρ,Mν ,M∞,ν) on Γshock. Then we see that, on Γshock,

ρ
γ+1
2 =

M∞,ν

Mν

,(2.5.22)

(
1 +

γ − 1

2
M2

ν

)
|Mν |

−2(γ−1)
γ+1 =

(
1 +

γ − 1

2
M2

∞,ν

)
|M∞,ν |

−2(γ−1)
γ+1 .(2.5.23)

This is because (2.4.8)–(2.4.9) are all derived from the Rankine-Hugoniot conditions stated in
Definition 2.24(ii-4). By the result obtained in statement (a) and the Rankine-Hugoniot condition

ρ∂νϕ = ∂νϕ∞ on Γshock, (2.5.22) implies that
M∞,ν

Mν
> 1 on Γshock. Since (Mν ,M∞,ν) satisfy

(2.5.23) and M∞,ν 6=Mν on Γshock, it follows from the observation right after (2.4.9) that

0 < Mν < 1 < M∞,ν on Γshock.

This completes the proof of statement (b). �

In (2.5.2)–(2.5.4) and Definition 2.24, the values of ξ
(β)
1 , ξ

(β)
2 , θ∞, cO, and uO depend continu-

ously on β ∈ (0, π2 ) with

lim
β→0+

(ξ
(β)
1 , ξ

(β)
2 , θ∞, cO, uO) = (−∞, ξN2 , π, cN , 0).

As a result, we obtain

lim
β→0+

|P1 − (−ξP2
1 , ξN2 )| = 0 = lim

β→0+
|P4 − (−cN , 0)|,

lim
β→0+

‖ϕO − ϕN ‖C3(BR(0)) = 0 for any R > 0.

For β = 0, we define P1, P4, Λβ|β=0, and SO,seg|β=0 by

P1 = (−ξP2
1 , ξN2 ), P4 = (−cN , 0),

Λβ |β=0 := R× R+, SO,seg|β=0 = {(ξ1, ξN2 ) : ξ1 ≤ −ξP2
1 }.

(2.5.24)

Then two points P1 and P4 depend continuously on β ∈ [0, π2 ), so that Λβ and SO,seg depend
continuously on β ∈ [0, π2 ). Using this, we extend Definition 2.24 up to β = 0.

Definition 2.27 (Admissible solutions when β = 0). Given γ ≥ 1 and v∞ > 0, a function
ϕ ∈ C0,1(R×R+) is called an admissible solution corresponding to (v∞, 0) if ϕ satisfies the following
properties:

(i) There exists a shock Γshock with endpoints P1 = (−ξN1 , ξN2 ) and P2 = (ξN1 , ξ
N
2 ) such that
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(i-1) Curve Γshock satisfies

(2.5.25) Γshock ⊂ (R× R+) \B1(O∞),

where ∂B1(O∞) is the sonic circle of state O∞ = (0,−v∞) in Ω∞ := (R × R+) \
ΩO ∪ Ω ∪ ΩN ;

(i-2) Curve Γshock is C2 in its relative interior; that is, for any P ∈ Γshock \ {P1, P2},
there exist r > 0, f ∈ C2, and an orthogonal coordinate system (S, T ) in R

2 so that
Γshock ∩Br(P ) = {S = f(T )} ∩Br(P );

(i-3) Curve SO,seg ∪ Γshock ∪ SN ,seg is C1, including at points P1 and P2;

(i-4) Γshock,Γ
N
sonic,Γ

O
sonic, and Γwedge := {(ξ1, 0) : −cN < ξ1 < cN } do not have common

points, and Γshock ∪ΓN
sonic ∪ΓO

sonic ∪Γwedge is a closed curve without self-intersection.
Denote by Ω the bounded domain enclosed by this closed curve.

(ii) ϕ satisfies the following properties:

(ii-1) ϕ ∈ C0,1(R× R+) ∩ C1
(
(R× R+) \ SO,seg ∪ Γshock ∪ SN ,seg

)
;

(ii-2) ϕ ∈ C3(Ω) ∩ C2(Ω \ (ΓO
sonic ∪ ΓN

sonic)) ∩ C1(Ω);

(ii-3)

ϕ =

{
ϕ∞ in (R× R+) \ ΩO ∪ Ω ∪ ΩN ,

ϕN in ΩO ∪ ΩN ;

(ii-4) ϕ satisfies

- Eq. (2.1.19) in Ω with ρ(|Dϕ|2, ϕ) defined by (2.4.2),

- the slip boundary condition ϕξ2 = 0 on Γwedge,

- the Rankine-Hugoniot conditions: [ϕ]Γshock
= [ρ(|Dϕ|2, ϕ)Dϕ · nsh]Γshock

= 0
for the unit normal vector nsh to Γshock towards the interior of Ω.

(iii) Eq. (2.1.19) is strictly elliptic in Ω \ (ΓO
sonic ∪ ΓN

sonic).

(iv) ϕN ≤ ϕ ≤ ϕ∞ in Ω.

(v) ∂e(ϕ∞ − ϕ) ≤ 0 in Ω for all e ∈ R× R
+.

Remark 2.28. Condition (v) of Definition 2.27 is a continuous extension of condition (v) of
Definition 2.24 in the sense that

(i) Cone(eSO , eSN ) for β > 0 defined by (2.5.14) monotonically increases as β > 0 decreases
in the sense that, if 0 < β1 < β2 <

π
2 , then

Cone(eSO , eSN )|β2 ⊂ Cone(eSO , eSN )|β1 ;

(ii) ∪0<β<π
2
Cone(eSO , eSN )|β = R× R

+.

Remark 2.29. Similarly to Definition 2.10, it can directly be checked that any admissible
solution corresponding to (v∞, β) ∈ Rweak ∪ {(v∞, 0) : v∞ > 0} in the sense of Definitions 2.24 or
2.27 satisfies the following properties:

(i) ϕ ∈W 1,1
loc (Λβ);

(ii) ρ(|Dϕ|2, ϕ) > 0 in Λβ for ρ(|Dϕ|2, ϕ) defined by (2.4.2);

(iii) ρ(|Dϕ|2, ϕ), ρ(|Dϕ|2, ϕ)|Dϕ| ∈ L1
loc(Λβ);
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(iv) For every ζ ∈ C∞
0 (R2),
∫

Λβ

(
ρ(|Dϕ|2, ϕ)Dϕ ·Dζ − 2ρ(|Dϕ|2, ϕ)ζ

)
dξ = 0.

Specifically, property (iv) here is obtained by condition (ii) of Definitions 2.24 and 2.27, and
via integration by parts. Property (iv) indicates that any admissible solution ϕ is a weak solution

of the boundary value problem rewritten from Problem 2.9 with respect to parameters (v∞, β).

Lemma 2.30. For any given γ ≥ 1 and v∞ > 0, there exists at least one admissible solution

corresponding to (v∞, 0) in the sense of Definition 2.27.

Proof. The conditions stated in (ii-4) and (v) of Definition 2.27 imply that

Γshock = {(ξ1, ξN2 ) : −ξN1 < ξ1 < ξN1 };
that is, SO,seg ∪ Γshock ∪ SN ,seg is a normal shock. Therefore, the pseudo-subsonic region Ω is
enclosed by ΓO

sonic,Γ
N
sonic,Γwedge, and the line segment (−ξN1 , ξN1 )×{ξN2 }. It can directly be checked

that a function ϕnorm ∈ C0,1(Λβ|β=0) defined by

ϕnorm =

{
ϕ∞ in (R× R+) \ ΩO ∪ Ω ∪ ΩN ,

ϕN in ΩO ∪Ω ∪ ΩN

is an admissible solution corresponding to (v∞, 0) in the sense of Definition 2.27. �

For a fixed (v∞, β) ∈ Rweak, let ϕ be an admissible solution corresponding to (v∞, β) in the
sense of Definition 2.24. Let (u∞, u0) be given by (u∞, u0) = T −1(v∞, β) ∈ Pweak for mapping T
from Lemma 2.19. Let θw be given by (2.4.21). For each ξ′ = (ξ′1, ξ

′
2) ∈ Λβ, let ξ = (ξ1, ξ2) be given

by

ξ⊤ =

(
cos θw sin θw

− sin θw cos θw

)−1(
(ξ′)⊤ +

(
u∞ cos θw

0

))
.

This is the inverse transformation of (2.4.15). Finally, let a function ϕ̃ be given by

(2.5.26) ϕ̃(ξ) = ϕ(ξ′) +
1

2
(u∞ cos θw)

2 for ξ′ ∈ Λβ.

Then ϕ̃ is an admissible solution corresponding to (u∞, u0) ∈ Pweak in the sense of Definition 2.14.
From this perspective, Theorem 2.15 is equivalent to the following theorem:

Theorem 2.31 (Existence of admissible solutions). For any given γ ≥ 1 and (v∞, β) ∈ Rweak,

there exists an admissible solution in the sense of Definition 2.24.

Remark 2.32 (Non-existence of self-similar strong shock solutions). Fix γ ≥ 1. For (v∞, β) ∈
Rdetach ∪Rstrong, let (Λβ , ϕ∞, ϕO, ϕN ) be defined as in Definition 2.23. We call ϕ ∈ C0,1(Λβ) an
admissible solution corresponding to (v∞, β) ∈ Rdetach ∪ Rstrong if it satisfies conditions (i)–(v)
stated in Definition 2.24 for Case II. By the convexity of the shock polar for steady potential
flow, which is shown in Appendix A, and condition (iv) of Definition 2.24, it follows from the non-
existence result as proved in Appendix B (see also [25]) that there exists no admissible solution
corresponding to (v∞, β) ∈ Rstrong in the sense of Definition 2.24.

The existence of admissible solutions corresponding to (v∞, β
(v∞)
d ) is still an open question.
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Theorem 2.33 (Regularity of admissible solutions). Given γ ≥ 1 and (v∞, β) ∈ Rweak, let ϕ
be a corresponding admissible solution with the curved shock Γshock in the sense of Definition 2.24.
Then the following properties hold:

Case I. β ∈ (0, β
(v∞)
s ):

(a) Γshock is C∞ in its relative interior, and ϕ ∈ C∞(Ω \ (ΓO
sonic ∪ ΓN

sonic)) ∩ C1,1(Ω);

(b) Define a set D by

(2.5.27) D = Λβ ∩ {ξ : max{ϕO(ξ), ϕN (ξ)} < ϕ∞(ξ)}.
For a constant σ > 0, define DO

σ and DN
σ by

DO
σ = D ∩ {ξ : dist{ξ,ΓO

sonic} < σ} ∩BcO(OO),

DN
σ = D ∩ {ξ : dist{ξ,ΓN

sonic} < σ} ∩BcN (ON )
(2.5.28)

for cN = ρ
(γ−1)/2
N , cO = ρ

(γ−1)/2
O , OO = (uO, 0), and ON := (0, 0). Fix any point

ξ0 ∈ (ΓO
sonic∪ΓN

sonic)\{P1, P2}, and denote d := dist{ξ0,Γshock}. Then, for any α ∈ (0, 1),
there exists a constant K < ∞ depending on (v∞, γ, ε0, α, d) and ‖ϕ‖C1,1(Ω∩(DO

ε0
∪DN

ε0
))

such that

(2.5.29) ‖ϕ‖
2,α,Ω∩Bd/2(ξ0)∩(DO

ε0/2
∪DN

ε0/2
)
≤ K;

(c) For any ξ0 ∈ (ΓO
sonic ∪ ΓN

sonic) \ {P1, P2},

(2.5.30) lim
ξ→ξ0
ξ∈Ω

(
Drrϕ−Drrmax{ϕO, ϕN }

)
(ξ) =

1

γ + 1
,

where r = |ξ| near ΓN
sonic and r = |ξ − (uO, 0)| near ΓO

sonic;

(d) lim
ξ→P1
ξ∈Ω

D2ϕ and lim
ξ→P2
ξ∈Ω

D2ϕ do not exist;

(e) SO,seg ∪ Γshock ∪ SN ,seg is a C2,α–curve for any α ∈ (0, 1), including at points P1 and P2.

Case II. β ∈ [β
(v∞)
s , β

(v∞)
d ):

(a) Γshock is C∞ in its relative interior, and ϕ ∈ C∞(Ω \ ({Pβ} ∪ ΓN
sonic)) ∩C1,1(Ω \ {Pβ}) ∩

C1,ᾱ(Ω) for some ᾱ ∈ (0, 1);

(b) For a constant σ > 0, let DN
σ be defined by (2.5.28). Fix any point ξ0 ∈ ΓN

sonic \ {P2},
and denote d := dist{ξ0,Γshock}. Then, for any α ∈ (0, 1), there exists a constant K <∞
depending on (v∞, γ, ε0, α, d) and ‖ϕ‖C1,1(Ω∩DN

ε0
) such that

(2.5.31) ‖ϕ‖
2,α,Ω∩Bd/2(ξ0)∩DN

ε0/2

≤ K;

(c) For any ξ0 ∈ ΓN
sonic \ {P2},

(2.5.32) lim
ξ→ξ0
ξ∈Ω

(
Drrϕ−DrrϕN

)
(ξ) =

1

γ + 1
,

where r = |ξ|;
(d) lim

ξ→P2
ξ∈Ω

D2ϕ does not exist;
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(e) Γshock ∪ SN ,seg is a C1,ᾱ–curve for the same ᾱ as in statement (a). Furthermore, curve

Γshock ∪ SN ,seg \ {Pβ} is C2,α for any α ∈ (0, 1), including at point P2.

Since Theorems 2.15–2.16 follow directly from Theorems 2.31 and 2.33 through (2.5.26), the
rest of the monograph is devoted to establishing Theorems 2.31 and 2.33.

We will prove Theorem 2.31 by solving the following free boundary problem:

Problem 2.34 (Free boundary problem). Given γ ≥ 1 and (v∞, β) ∈ Rweak, define ϕβ and
Γsonic by

(2.5.33) ϕβ := max{ϕO, ϕN }, Γsonic := ΓO
sonic ∪ ΓN

sonic.

Find a curved shock Γshock and a function ϕ ∈ C3(Ω) ∩C2(Ω \ (ΓO
sonic ∪ ΓN

sonic)) ∩C1(Ω) satisfying
the following:

Eq. (2.1.19) in Ω,(2.5.34)

ϕ = ϕβ , Dϕ = Dϕβ on Γsonic,(2.5.35)

∂ξ2ϕ = 0 on Γwedge,(2.5.36)

ϕ = ϕ∞, ρDϕ · νsh = Dϕ∞ · νsh on Γshock,(2.5.37)

where νsh is the unit normal vector to Γshock towards the interior of Ω, and ρ is defined by (2.4.2).

Note that ΓO
sonic is a closed portion of a circle, which becomes one point for β ≥ β

(v∞)
s . Therefore,

the boundary condition (2.5.35) on ΓO
sonic becomes a one-point boundary condition for β ≥ β

(v∞)
s .

Remark 2.35. It can be checked from the definitions of (ϕO, ϕN ) given in (2.5.1) that, for
each β ∈ (0, π2 ), there exists a unique ξ∗1 such that

ϕβ(ξ1, ξ2) =





ϕO for ξ1 < ξ∗1 ,

ϕO = ϕN at ξ1 = ξ∗1 ,

ϕN for ξ1 > ξ∗1 .

Moreover, ξ∗1 satisfies that fO(ξ∗1 ) = ξN2 and ξ
Pβ

1 < ξ∗1 < 0. In particular, ϕβ = ϕO on ΓO
sonic and

ϕβ = ϕN on ΓN
sonic.

2.6. Further Features of Problem 2.34

Fix γ ≥ 1. For (v∞, β) ∈ Rweak with β < β
(v∞)
s , let P1 and P2 be the points as defined in

Definition 2.23. Let LO be the line segment connecting P1 with P2. For 0 < v∞ < 1, there exists a
unique line L∞ that passes through P2 and is tangential to ∂B1(O∞) so that the intersection point
of L∞ with ∂B1(O∞) has a negative ξ1–coordinate; see Fig. 2.13. Let tan θO and tan θ∞ be the
slopes of LO and L∞, respectively. Then

dist(LO, O∞))

{
> 1 iff θO < θ∞,

< 1 iff θO > θ∞.

Note that tan θ∞ is independent of β ∈ (0, β
(v∞)
s ), and O∞ = (0,−v∞).
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2 )

SN
SO
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d = 1

Figure 2.13. Top: θO < θ∞; Bottom: θO > θ∞

Proposition 2.36. For any given γ ≥ 1, there exists a constant v∗ ∈ (0, 1) so that, if 0 <

v∞ < v∗, then there is β̂(v∞) ∈ (0, β
(v∞)
s ) such that

dist(LO, O∞) > 1 for β ∈ (0, β̂(v∞)),(2.6.1)

dist(LO, O∞) < 1 for β ∈ (β̂(v∞), β(v∞)
s ).(2.6.2)

Proof. In this proof, we consider only case γ > 1. Case γ = 1 can be handled similarly. The
proof is divided into seven steps.

1. Claim: For each γ > 1, P2 = (ξN1 , ξ
N
2 ) and ρN depend continuously on v∞ > 0 and

(2.6.3) lim
v∞→0+

ξN1 = 0, lim
v∞→0+

ρN = lim
v∞→0+

ξN2 = 1.

Substituting ρO = ρN into (2.4.5), we have

(2.6.4) F1(ρN , v∞) :=
ργ−1
N − 1

γ − 1
(ρN − 1)− 1

2
v2∞(ρN − 1)− v2∞ = 0.

We differentiate F1 with respect to ρN to obtain

(2.6.5) ∂ρNF1 = ργ−2
N (ρN − 1) +

ργ−1
N − 1

γ − 1
− 1

2
v2∞.

Using (2.6.4) to obtain that
ργ−1
N − 1

γ − 1
=

1

2
v2∞ +

v2∞
ρN − 1

, substituting this expression into (2.6.5),

and then applying ρN > 1, we have

∂ρNF1 = ργ−2
N (ρN − 1) +

v2∞
ρN − 1

> 0.

Then the implicit function theorem implies that ρN is of the C1–dependence on v∞ > 0.

The C1–dependence of P2 on v∞ follows directly from (2.2.4) and ξN1 =
√
c2N − (ξN2 )2.
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By the C1–dependence of ρN on v∞, we have

0 =
dF1(ρN (v∞), v∞)

dv∞
= ∂ρNF1

dρN
dv∞

− (ρN − 1)v∞.

Since ∂ρNF1 > 0 is shown above, then dρN
dv∞

> 0. This implies that ρN (v∞) is bounded above by a

finite constant for v∞ > 0 sufficiently small so that it follows directly from (2.6.4) that

(2.6.6) lim
v∞→0+

ρN = 1.

By (2.4.8) and (2.6.6), we find that lim
v∞→0+

M∞(P2) = 1. We combine this limit with (2.4.14)

to obtain

(2.6.7) lim
v∞→0+

ξN2 = 1.

Finally, lim
v∞→0+

ξN1 = 0 is obtained from ξN1 =
√
c2N − (ξN2 )2, and the limit of ξN2 is given in (2.6.7).

The claim is verified.

2. For each γ > 1, there exists a small constant σ > 0 so that ξN1 < 1 whenever 0 < v∞ ≤ σ.

Fix γ > 1. For 0 < v∞ ≤ σ, define a function F : (0, β
(v∞)
s ) → R by

(2.6.8) F (β) := tan θO − tan θ∞.

Claim: For any given γ > 1, there exists a constant v∗ ∈ (0, σ] so that, if 0 < v∞ < v∗, there

is β̂(v∞) ∈ (0, β
(v∞)
s ) such that

F (β) < 0 for all β ∈ (0, β̂(v∞)),

F (β) > 0 for all β ∈ (β̂(v∞), β(v∞)
s ).

(2.6.9)

Once the claim is verified, then (2.6.1) directly follows.

3. We first show that, for each v∞ ∈ (0, σ], F ′(β) ≥ 0 holds for all β ∈ (0, β
(v∞)
s ). Fix

v∞ ∈ (0, σ].
We use the equation of line L∞:

(ξ1 − ξN1 ) tan θ∞ − (ξ2 − ξN2 ) = 0

to see

dist(L∞, (0,−v∞)) =
|(tan θ∞,−1,−ξN1 tan θ∞ + ξN2 ) · (0,−v∞, 1)|√

1 + tan2 θ∞
= 1,

and then solve it for tan θ∞ to obtain

tan θ∞ =

√
((v∞ + ξN2 )2 − 1) + (ξN1 )2 − (v∞ + ξN2 )ξN1

1− (ξN1 )2
.

Let (q∞, qO) be given by (2.4.33). By (2.4.34)–(2.4.35) in the proof of Lemma 2.22, we have
shown that ξO2 = −v∞ + q∞ cosβ − sinβ

√
△ with △:= c2O − q2O. Substituting this expression into

ξO1 = uO −
√
c2O − (ξO2 )2 and then using (2.4.11) and (2.5.5), we have

ξO1 = −v∞ tanβ −
(
cosβ

√
c2O − q2O + qO sinβ

)
,
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so that

tan θO =
ξN2 − ξO2
ξN1 − ξO1

=
v∞ − q∞ cosβ + sinβ

√
△+ ξN2

cosβ
√
△+ q∞ sinβ + ξN1

.

Since tan θ∞ is independent of β, we have

F ′(β) =
G(β)

(ξN1 + q∞ sinβ + cosβ
√
△)2

,

where

G(β) =
(
q∞ +

1

2
√
△

d △

dβ

)(
q∞ + ξN1 sinβ − (v∞ + ξN2 ) cosβ

)

+
(√

△− dq∞
dβ

)(√
△+ ξN1 cosβ + (v∞ + ξN2 ) sinβ

)
.

By (2.4.33), (2.4.40), and (2.4.43), we obtain

d △

dβ
=

dc2O(1−M2
O)

dβ
> 0 for all β ∈ (0,

π

2
).

A direct computation yields that

q∞ + ξN1 sinβ − (v∞ + ξN2 ) cosβ = (P2 − P1) · nSO > 0

for the unit normal vector nSO to SO pointing towards O∞ = (0,−v∞) for all β ∈ (0, β
(v∞)
s ).

Combining the two previous inequalities, we have

G(β) >
(√

△− dq∞
dβ

)(√
△+ ξN1 cosβ + (v∞ + ξN2 ) sinβ

)
.

Therefore, we can conclude that F ′(β) > 0, provided that
√
△− dq∞

dβ > 0 for 0 < β < β
(v∞)
s can be

proved.
A straightforward computation by using (2.4.9), (2.4.36), and (2.4.38) yields that

dq∞
dβ

=
(qγ−1

∞ − qγ+1
O ) tanβ

qγ−2
∞ + qγO

.

Using (2.4.8) and (2.4.33), we obtain that c2O =
(q∞
qO

)γ−1
. Then

△ −(
dq∞
dβ

)2 =
qγ−1
∞ − qγ+1

O
qγ−1
O

(
1− qγ−1

O (qγ−1
∞ − qγ+1

O ) tan2 β

(qγ−2
∞ + qγO)

2

︸ ︷︷ ︸
(=:σ)

)
.

It can be checked directly that
dq∞
dβ

> 0, by differentiating (2.4.12) with respect to β and applying

(2.4.10). Then we have

(2.6.10) qγ−1
∞ − qγ+1

O =
qγ−2
∞ + qγO
tanβ

dq∞
dβ

> 0.

Since ξO2 = −v∞ + q∞ cosβ − sinβ
√
△ > 0 for β < β

(v∞)
s , (2.4.11) implies that q2O > c2O sin2 β.

Substituting c2O = ργ−1
O =

(
q∞
qO

)γ−1
into this inequality, we find that qγ−1

∞ <
qγ+1
O

sin2 β
, which implies
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that

σ =
( 1
K − 1) tan2 β

( qO
Kq∞

+ 1)2
< 1 for all β ∈ (0, β(v∞)

s ),

where K =
qγ+1
O

qγ−1
∞

. This implies that
√
△− dq∞

dβ > 0 for 0 < β < β
(v∞)
s .

Therefore, F ′(β) > 0 for all β ∈ (0, β
(v∞)
s ).

4. At β = 0, ξO2 = ξN2 . This directly yields that F (0) = − tan θ∞ < 0.

5. Fix v∞ ∈ (0, σ]. At β = β
(v∞)
s , ξO2 = 0. Let ξO1

∗
denote the ξ1–coordinate of point P1 at

β = β
(v∞)
s . Then we have

F (β(v∞)
s ) =

a− b

(1− (ξN1 )2)(ξN1 − ξO1
∗
)
,

where

a :=
(
ξN1 − ξO1

∗)(
v∞ + ξN2

)
ξN1 − ξN2

(
(ξN1 )2 − 1

)
,

b :=
(
ξN1 − ξO1

∗)√
(v∞ + ξN2 )2 + ((ξN1 )2 − 1).

(2.6.11)

Claim: ξO1
∗
depends continuously on v∞ ∈ (0, σ].

This can be seen as follows: fix β = β
(v∞)
s , then

(5-1) Since ξO2 = 0 at β = β
(v∞)
s , we derive from (2.4.34)–(2.4.35) that

cO
√
1−M2

O sinβ(v∞)
s = −v∞ + q∞ cosβ(v∞)

s .

We combine this equation with (2.4.11) to yield that MO = sinβ
(v∞)
s and substitute this

into (2.4.8) to obtain

(2.6.12)
qγ+1
O
qγ−1
∞

= sin2 β(v∞)
s .

(5-2) By (2.4.7) and the Rankine-Hugoniot jump condition: ρOqO = q∞, we have

F2(ρO, q∞) :=
ργ−1
O − 1

γ − 1
+

1

2

(
q∞
ρO

)2

− 1

2
q2∞ = 0.

The fact that ∂ρF2(ρO, q∞) = 1
ρO

(c2O − q2O) > 0 implies that ρO is of the C1–dependence

on q∞, so that qO = q∞
ρO

is of the C1–dependence on q∞.

(5-3) It can be derived directly from (2.4.11) and (2.6.12) that

(2.6.13) F3(q∞, v∞) := (q∞ − qO)
2
(
1− qγ+1

O
qγ−1
∞

)
− v2∞ = 0,

where qO is regarded as a C1–function of q∞ by (5-2). A direct computation by using

(2.4.11), (2.4.38), and (2.6.12) shows that ∂q∞F2(q∞, v∞) ≥ 4v∞ cosβ(v∞)
s

γ+1 > 0. This implies

that q∞ is of the C1–dependence on v∞.

(5-4) ξO1
∗
is the ξ1–intercept of SO so that ξO1

∗
= −v∞ tanβ

(v∞)
s − qO cscβ

(v∞)
s . By the C1–

dependence of β
(v∞)
s and qO on v∞, we conclude that ξO1

∗
is of the C1–dependence on v∞.

The claim is verified.
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6. Claim: For a and b defined in (2.6.11), lim
v∞→0+

(a2 − b2) = 1.

It suffices to show that supv∞∈(0,σ] |ξO1
∗| is bounded, due to (2.6.3). From (2.6.13), we have two

cases: lim
v∞→0+

qO
q∞

= 1 and lim
v∞→0+

qγ+1
O
qγ−1
∞

= 1.

For the case that lim
v∞→0+

qO
q∞

= 1, (2.6.12) implies that sup
(0,σ]

q∞ is finite. Then it follows from

q∞ = Dϕ∞(P1) · nSO = −ξO1
∗
sinβ

(v∞)
s + v∞ cosβ

(v∞)
s that supv∞∈(0,σ] |ξO1

∗
sinβ

(v∞)
s | is finite. We

multiply (2.6.12) by (ξO1
∗
)2 to obtain

sup
v∞∈(0,σ]

(
ξO1

∗)2 ≤ sup
v∞∈(0,σ]

(
ξO1

∗
sinβ(v∞)

s

)2 qγ+1
∞
qγ+1
O

<∞,

where we have used the fact that q∞ > 1 for each v∞ > 0.

For the case that lim
v∞→0+

qγ+1
O
qγ−1
∞

= 1, we substitute ρO = q∞
qO

into F2(ρO, q∞) = 0 to obtain

1

2

(
q∞
qO

)2

=
1

γ − 1

(
qγ−1
∞
qγ+1
O

− 1

q2O

)
+

1

2
≤ 1

γ − 1

qγ−1
∞
qγ+1
O

+
1

2
.

From this, it follows that supv∞∈(0,σ] | q∞qO | is finite. Then we use (2.6.12) to see that supv∞∈(0,σ] q∞

is finite. Finally, we repeat the argument for the case that lim
v∞→0+

qO
q∞

= 1 to conclude that

sup
v∞∈(0,σ]

(
ξO1

∗)2
is finite, which implies the claim.

7. By the result obtained from Step 6, there exists a constant v∗ ∈ (0, σ] such that F (0) <

0 < F (β
(v∞)
s ) for all v∞ ∈ (0, v∗]. Finally, the monotonicity of F (β), proved in Step 3, yields

Proposition 2.36. �

When (2.6.1) holds, the existence of a solution of Problem 2.34 has been proved in [26]. This
implies the global existence of a weak solution of Problem 2.9 with the structure of Fig. 2.5,
provided that (2.6.1) holds. In this monograph, we establish the global existence of admissible
solutions for all (v∞, β) ∈ Rweak (i.e., the global existence of weak solutions to Problem 2.9 for all

(u∞, u0) ∈ Pweak), which includes the case that(2.6.2) holds, or the case that β ≥ β
(v∞)
s .





CHAPTER 3

Uniform Estimates of Admissible Solutions

As in [11], we employ the Leray-Schauder degree to prove Theorem 2.31. In order to construct
an iteration set (as a subset of a properly defined Banach space) and an iteration mapping, we
first establish uniform estimates of admissible solutions corresponding to (v∞, β) with respect to

β ∈ [0, β
(v∞)
d − ε] in the sense of Definitions 2.24 and 2.27 for each v∞ > 0 and small ε > 0. In

particular, it is crucial to establish the uniform estimates of the size of the pseudo-subsonic region
Ω, and the pseudo-potential function ϕ restricted to Ω in properly chosen norms. Following the
approach of [11], we establish various uniform estimates of admissible solutions in the following
order:

• Strict directional monotonicity properties of ϕ∞ − ϕ,

• Strict directional monotonicity properties of ϕ− ϕN and ϕ− ϕO,

• Uniform positive lower bound of the distance between Γshock and Γwedge away from Pβ ,

• Uniform positive lower bound of dist(Γshock, ∂B1(O∞)),

• Uniform estimates of the ellipticity of Eq. (2.1.19) in Ω,

• Uniform weighted C2,α estimates of admissible solutions in Ω.

Fix γ ≥ 1 and v∞ > 0. For each β ∈ [0, π2 ), let (ϕ∞, ϕN , ϕO) and (O∞, OO, ON ) be de-

fined by Definition 2.23. We also follow Definition 2.23 for the notations of (ΓN
sonic,Γ

O
sonic) and

(P1, P2, P3, P4).

Note that the definitions of (ΓO
sonic, P1, P4) are different for the respective cases β ∈ [0, β

(v∞)
s )

and β ∈ [β
(v∞)
s , π2 ), but they depend continuously on β ∈ (0, π2 ).

3.1. Directional Monotonicity Properties of Admissible Solutions

In this section, we establish directional monotonicity properties of ϕ∞−ϕ, ϕ−ϕN , and ϕ−ϕO
for admissible solutions ϕ in the sense of Definition 2.24.

3.1.1. Strict directional monotonicity of ϕ∞ − ϕ. For an admissible solution ϕ in the
sense of Definition 2.24 for (v∞, β) ∈ Rweak, define

(3.1.1) φ := ϕ− ϕN in Ω.

Then φ satisfies the equation:

(3.1.2) (c2 − ϕ2
ξ1)φξ1ξ1 − 2ϕξ1ϕξ2φξ1ξ2 + (c2 − ϕ2

ξ2)φξ2ξ2 = 0

in the pseudo-subsonic region Ω for c2 = c2(|Dϕ|2, ϕ, ξ) given by

(3.1.3) c2(|p|2, z, ξ) := ργ−1(|p|2, z, ξ),
where ρ(|p|2, z, ξ) is defined by (2.4.2).

47
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Lemma 3.1. Fix γ ≥ 1 and v∞ > 0. Let ϕ be an admissible solution in the sense of Definition

2.24 for (v∞, β) ∈ Rweak with β > 0, and let φ be given by (3.1.1). Then, for any given unit vector

e ∈ R
2, ∂eφ is not a constant in Ω.

Proof. By condition (ii) of Definition 2.24, φ satisfies

∂eφ = 0 on ΓN
sonic,(3.1.4)

∂eφ = ∂e(ϕO − ϕN ) = e · (uO, 0) on ΓO
sonic(3.1.5)

for each unit vector e in R
2.

Suppose that ∂eφ is a constant in Ω. Then (3.1.4)–(3.1.5) imply that e must be parallel
to e2 = (0, 1), because uO 6= 0, by Definition 2.23. Then ∂ξ2φ ≡ 0 in Ω, which implies that
∂ξ1ξ2φ = ∂ξ2ξ2φ ≡ 0 in Ω. Since Eq. (3.1.2) is strictly elliptic in Ω, it follows that ∂ξ1ξ1φ ≡ 0 in
Ω. Thus, there exist constants (u, v, k) such that φ(ξ1, ξ2) = uξ1 + vξ2 + k in Ω. Since the length
of ΓN

sonic is nonzero, we obtain from the boundary condition φ ≡ 0 on ΓN
sonic that Dφ ≡ 0 in Ω,

so that φ ≡ 0 in Ω. However, this contradicts the boundary condition (2.5.35) on ΓO
sonic, because

φ = ϕO − ϕN = uOξ1 − v∞ξ
(β)
2 + v∞ξN2 on ΓO

sonic, by Remark 2.35. �

Lemma 3.2. Fix γ ≥ 1 and v∞ > 0. Let ϕ be an admissible solution in the sense of Definition

2.24 for (v∞, β) ∈ Rweak with β > 0. For vectors eSO and eSN given by Definition 2.23, ϕ satisfies

∂eSO
(ϕ∞ − ϕ) < 0 in Ω \ ΓO

sonic,(3.1.6)

∂eSN
(ϕ∞ − ϕ) < 0 in Ω \ ΓN

sonic.(3.1.7)

Proof. By Definition 2.24(v), any admissible solution ϕ satisfies that ∂eSN
(ϕ∞ − ϕ) ≤ 0 and

∂eSO
(ϕ∞ − ϕ) ≤ 0 in Ω. Therefore, it suffices to prove the strict inequalities.

For e = eSO or eSN , we introduce a coordinate system (S, T ) so that e = (1, 0) and e⊥ = (0, 1)
in the (S, T )–coordinates. We note that Eq. (2.1.19) is invariant under a coordinate rotation. Also,
D2(ϕ∞ − ϕ) = −D2φ for φ given by (3.1.1). Then ϕ∞ − ϕ satisfies

(3.1.8) (c2 − ϕ2
S)(ϕ∞ − ϕ)SS − 2ϕSϕT (ϕ∞ − ϕ)ST + (c2 − ϕ2

T )(ϕ∞ − ϕ)TT = 0 in Ω.

Denote v := ∂S(ϕ∞ − ϕ). Then v satisfies the following properties:

(i) v < 0 in Ω. We differentiate (3.1.8) with respect to S and use the expression:

(ϕ∞ − ϕ)TT = − (c2 − ϕ2
S)(ϕ∞ − ϕ)SS − 2ϕSϕT (ϕ∞ − ϕ)ST

c2 − ϕ2
T

to obtain a second-order equation for v. Since Eq. (3.1.8) is strictly elliptic in Ω\(ΓO
sonic∪ΓN

sonic) by

Definition 2.24(iii), the equation for v is strictly elliptic in Ω\(ΓO
sonic∪ΓN

sonic), because the coefficients
of the principal part of the equation for v are the same as those in Eq. (3.1.8). Moreover, v is
not a constant in Ω by Lemma 3.1, so v cannot attain its maximum in Ω by the strong maximum
principle. Thus, v < 0 holds in Ω.

(ii) v < 0 on Γwedge. On Γwedge, the slip boundary condition (2.5.36) for ϕ implies that
∂ξ2(ϕ∞ − ϕ) = −v∞, so that ∂ξ1ξ2(ϕ∞ − ϕ) = 0. In Eq. (3.1.8), we replace (S, T ) by (ξ1, ξ2) to
obtain

(3.1.9) (c2 − ϕ2
ξ1)∂ξ1ξ1(ϕ∞ − ϕ) + (c2 − ϕ2

ξ2)∂ξ2ξ2(ϕ∞ − ϕ) = 0 on Γwedge.
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Let {eξ1 , eξ2} form an orthonormal basis for coordinates ξ = (ξ1, ξ2). By setting a1 := e · eξ1 and
a2 := e · eξ2 , v is expressed as v = a1∂ξ1(ϕ∞ − ϕ) + a2∂ξ2(ϕ∞ − ϕ) so that vξ1 = a1∂ξ1ξ1(ϕ∞ − ϕ)
and vξ2 = a2∂ξ2ξ2(ϕ∞ − ϕ) on Γwedge.

Substituting these expressions into (3.1.9), we obtain the following boundary condition for v:

(3.1.10) ∂ξ2v +
a2(c

2 − ϕ2
ξ1
)

a1(c2 − ϕ2
ξ2
)
∂ξ1v = 0 on Γwedge.

Since e · eξ1 6= 0, i.e., a1 6= 0, (3.1.10) is an oblique boundary condition for v on Γwedge. Thus,
Hopf’s lemma applies. Therefore, v cannot attain its maximum on Γwedge, which implies that v < 0
on Γwedge.

(iii) v < 0 on Γshock. Suppose that v(P̂ ) = 0 for some P̂ ∈ Γshock. Let nsh be the unit normal
vector to Γshock towards the interior of Ω, and let τsh be the unit tangent vector to Γshock with
τsh ·eSN < 0. Differentiating the Rankine-Hugoniot jump condition:

[
ρ(|Dϕ|2, ϕ)Dϕ·nsh

]
Γshock

= 0

in the direction of τsh, we have

(3.1.11) D2(ϕ∞ − ϕ)[τsh,h] := τsh ·D2(ϕ∞ − ϕ)h = 0 on Γshock,

where h = hnnsh + htτsh with

(3.1.12) hn = −ρϕnsh
(c2 − ϕ2

nsh
), ht = (c2 + ρϕ2

nsh
)ϕτsh

.

We refer to §5.1.3 of [11] for the verification of (3.1.11).

It follows from Lemma 2.26(a) and the ellipticity of (2.1.19) in Ω \ (ΓO
sonic ∪ ΓN

sonic) that

(3.1.13) hn < 0 on Γshock.

Since it is assumed that v = ∂e(ϕ∞ − ϕ) has a local extremum at P̂ ∈ Γshock, we have

(3.1.14) D2(ϕ∞ − ϕ)[τsh, e] = 0 at P̂ .

We express e = b1nsh + b2τsh. Then we rewrite (3.1.11) restricted at P̂ and (3.1.14) as a linear

system for (ϕ∞ − ϕ)τshnsh
(P̂ ) and (ϕ∞ − ϕ)τshτsh

(P̂ ). By this linear system and (3.1.8), we find

that D2(ϕ∞ − ϕ)(P̂ ) = 0, unless

(3.1.15) det

(
hn ht
b1 b2

)
= 0 at P̂ .

On the other hand, v is not a constant in Ω by Lemma 3.1, so that D2(ϕ∞ − ϕ)(P̂ ) = 0 is, by

Hopf’s lemma, impossible. Therefore, (3.1.15) must hold, so that e = kh at P̂ for some constant
k 6= 0. This yields that

|v(P̂ )| = |khn(P̂ )D(ϕ∞ − ϕ)(P̂ )| > 0.

This contradicts the fact that v(P̂ ) = 0. Therefore, we conclude that v < 0 on Γshock.

(iv) v < 0 on the sonic arcs. If e = eSO , then v = ∂eSO
(ϕ∞ − ϕN ) = (v∞,−uO)·(0,−v∞)√

u2
O+v2∞

< 0 on

ΓN
sonic. This proves (3.1.6).

If e = eSN , then v = ∂eSN
(ϕ∞ − ϕO) = −(uO, v∞) · (−1, 0) < 0 on ΓO

sonic. This proves (3.1.7).

This computation holds even for the case that ΓO
sonic = {Pβ}, i.e., β ≥ β

(v∞)
s by the condition

stated in (ii-3) for Case II. �
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Define the following set:

(3.1.16) Cone(eSO , eSN ) := {α1eSO + α2eSN : α1, α2 ≥ 0},
and let Cone0(eSO , eSN ) be the interior of Cone(eSO , eSN ). By Lemma 3.2, if ϕ is an admissible
solution corresponding to (v∞, β), then ϕ satisfies

(3.1.17) ∂e(ϕ∞ − ϕ) < 0 in Ω for all e ∈ Cone0(eSO , eSN ).

Remark 3.3. By (2.5.9), Cone0(eSO , eSN ) can be represented as

Cone0(eSO , eSN ) = {reiθ : r > 0, β < θ < π}.

Note that the unit normal vector nsh to Γshock is expressed as nsh =
D(ϕ∞ − ϕ)

|D(ϕ∞ − ϕ)| . It follows from
(3.1.6) that −nsh(P ) ∈ {eiθ : β − π

2 < θ < β + π
2 } for all P ∈ Γshock. Moreover, it follows from

(3.1.7) that −nsh(P ) ∈ {eiθ : π
2 < θ < 3π

2 } for all P ∈ Γshock. Therefore, we have

(3.1.18) −nsh(P ) ∈ {eiθ :
π

2
< θ < β +

π

2
} ⊂ Cone0(eSO , eSN ) for all P ∈ Γshock,

since β ∈ (0, β
(v∞)
d ) ⊂ (0, π2 ).

Proposition 3.4. Given γ ≥ 1 and v∞ > 0, let ϕ be an admissible solution in the sense of
Definition 2.24 for (v∞, β) ∈ Rweak. Then there exists a function ξ2 = fsh(ξ1) such that

(i) Γshock = {ξ : ξ2 = fsh(ξ1), ξP1
1 < ξ1 < ξP2

1 }, where ξPj

1 is the ξ1–coordinate of point Pj
for j = 1, 2;

(ii) fsh satisfies

(3.1.19) 0 = f ′
sh(ξ

P2
1 ) < f ′

sh(ξ1) < f ′
sh(ξ

P1
1 ) = tanβ for ξP1

1 < ξ1 < ξP2
1 .

Proof. Note that eξ2 ∈ Cone0(eSO , eSN ). By (3.1.17), we have

(3.1.20) ∂ξ2(ϕ∞ − ϕ) < 0 on Γshock.

This, combined with Definition 2.24(i), implies that there exists a unique C1–function fsh satisfying
statement (i) above.

Since ϕ∞−ϕ = 0 holds on Γshock, fsh satisfies that (ϕ∞−ϕ)(ξ1, fsh(ξ1)) = 0 for ξP1
1 < ξ1 < ξP2

1 .
We differentiate this expression with respect to ξ1 to obtain

f ′
sh(ξ1) = −∂ξ1(ϕ∞ − ϕ)(ξ1, fsh(ξ1))

∂ξ2(ϕ∞ − ϕ)(ξ1, fsh(ξ1))
.

By condition (i-3) of Definition 2.24, we have

(3.1.21) f ′
sh(ξ

P1

1 ) = tanβ, f ′
sh(ξ

P2

1 ) = 0.

By conditions (ii-3) and (iv) of Definition 2.24, the unit normal vector nsh to Γshock towards the
interior of Ω can be expressed as

nsh(P ) =
D(ϕ∞ − ϕ)(P )

|D(ϕ∞ − ϕ)(P )| =
(f ′

sh(ξ1),−1)√
1 + (f ′

sh(ξ1))
2

at P = (ξ1, fsh(ξ1)).



3.1. DIRECTIONAL MONOTONICITY PROPERTIES OF ADMISSIBLE SOLUTIONS 51

By Lemma 3.2 and the definition of (eSO , eSN ) given in Definition 2.23, we have

a1 cosβ(−f ′
sh(ξ1) + tanβ)− a2f

′
sh(ξ1)

=
√
1 + (f ′

sh(ξ1))
2nsh(P ) · (a1eSO + a2eSN )

=
√
1 + (f ′

sh(ξ1))
2
D(ϕ∞ − ϕ)(P ) · (a1eSO + a2eSN )

|D(ϕ∞ − ϕ)(P )| < 0 for ξP1
1 < ξ1 < ξP2

1

(3.1.22)

for any constants a1 ≥ 0 and a2 ≥ 0.
If we choose (a1, a2) = (1, 0), then (3.1.22) yields

f ′
sh(ξ1) < tanβ for ξP1

1 < ξ1 < ξP2
1 .

Choosing (a1, a2) = (0, 1), then we have

f ′
sh(ξ1) > 0 for ξP1

1 < ξ1 < ξP2
1 .

Finally, (3.1.19) is obtained by combining the previous two inequalities with (3.1.21). �

Given γ ≥ 1 and v∞ > 0, if β∗ ∈
(
0, β

(v∞)
s

)
is fixed, then Proposition 3.4 directly implies that

(3.1.23) inf
β∈(0,β∗]

dist{Γshock,Γwedge} ≥ inf
(0,β∗]

ξP1

2 > 0.

Lemma 3.5. Fix γ ≥ 1 and v∞ > 0. Let ϕ be an admissible solution corresponding to (v∞, β) ∈
Rweak in the sense of Definition 2.24, and let Ω be its pseudo-subsonic region. Then there exists a

constant C > 0 depending only on (v∞, γ) such that the following properties hold:

Ω ⊂ BC(0),(3.1.24)

max
Ω

|ϕ| ≤ C, ‖ϕ‖C0,1(Ω) ≤ C,(3.1.25)

ρ∗(γ) ≤ ρ ≤ C in Ω, 1 < ρ ≤ C on Γshock,(3.1.26)

where

ρ∗(γ) =





(
2

γ+1

) 1
γ−1 for γ > 1,

e−
1
2 = limγ→1+

(
2

γ+1

) 1
γ−1 for γ = 1.

Proof. To prove this lemma, we follow the ideas in the proofs for [11, Proposition 9.1.2,
Corollary 9.1.3, Lemma 9.1.4].

1. Proof of (3.1.24). For an admissible solution ϕ, let fsh be as in Proposition 3.4. From

(3.1.19), it follows that 0 ≤ ξP1
2 ≤ fsh(ξ1) ≤ ξP2

2 on ξP1
1 , ξP2

1 ]. Then

Ω ⊂ {ξ = (ξ1, ξ2) : uO − cO < ξ1 < cN , 0 < ξ2 < ξP2
2 }.

For any given v∞ > 0, cO and uO depend continuously on β ∈ [0, π2 ), and β
(v∞)
d depends con-

tinuously on v∞ > 0. Therefore, there exists a constant C1 > 0 depending only on (v∞, γ) such
that

sup
β∈[0,β

(v∞)
d ]

(
|uO|+ |cO|

)
≤ C1.

This proves (3.1.24).

2. Proof of (3.1.25). By Definition 2.24(iv), we have

inf
Ω

max{ϕO, ϕN } ≤ ϕ ≤ sup
Ω
ϕ∞.
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By (3.1.24) and the definition of (ϕ∞, ϕO, ϕN ) given in Definition 2.23, there exists a constant C2 >
0 depending only on (v∞, γ) such that −C2 ≤ min

Ω
max{ϕO, ϕN } < max

Ω
ϕ∞ ≤ C2. Then condition

(iv) of Definition 2.24 implies that

(3.1.27) max
Ω

|ϕ| ≤ C2.

By conditions (ii)–(iii) of Definition 2.24, (2.1.22), and (3.1.27), we can choose a constant

Ĉ2 > 0 depending only on (v∞, γ) such that max
Ω

|Dϕ| ≤ Ĉ2 holds for each admissible solution

corresponding to (v∞, β) ∈ Rweak. This, combined with (3.1.27), yields (3.1.25).

3. Proof of (3.1.26). A uniform upper bound of ρ in (3.1.26) is obtained directly from (3.1.25)
and (2.4.2).

By condition (iii) of Definition 2.24, any admissible solution ϕ satisfies

h(ρ) +
c2

2
≥ h(ρ) +

1

2
|Dϕ|2 in Ω.

Moreover, by (2.1.18) and condition (iv) of Definition 2.24,

h(ρ) +
1

2
|Dϕ|2 ≥ h(1)︸︷︷︸

(=0)

+
1

2
|Dϕ∞|2 ≥ 0 in Ω.

Then we have

h(ρ) +
c2

2
≥ 0 in Ω,

so that the first inequality in (3.1.26) is proved.
By Definition 2.11 and condition (iv) of Definition 2.24, any admissible solution satisfies that

∂νϕ∞ > ∂νϕ on Γshock for the unit normal vector ν to Γshock towards the interior of Ω. Then the
Rankine-Hugoniot jump condition stated in Definition 2.24(ii-4) implies that ρ > 1 holds on Γshock,
because ρ∞ = 1 is the density of the incoming state corresponding to ϕ∞. This verifies the second
inequality in (3.1.26). �

3.1.2. Directional monotonicity of ϕ−ϕN and ϕ−ϕO. Let ϕ be an admissible solution,
and let ν be the unit normal vector to Γshock towards the interior of Ω. For each point P ∈ Γshock,
define

d(P ) := ∂νϕ∞(P ), ω(P ) := ∂ν(ϕ∞ − ϕ)(P )

so that
∂νϕ(P ) = d(P )− ω(P ).

By Lemma 2.26, d(P ) > 1 and ω(P ) < d(P ) on Γshock. By the Rankine-Hugoniot conditions stated
in Definition 2.24(ii-4), ρ(|Dϕ|2, ϕ) = d

d−ω on Γshock. Then it can be derived from (2.4.2) and
ϕ∞ − ϕ = 0 on Γshock that

G(ω, d) := h(
d

d− ω
) +

1

2

(
(d− ω)2 − d2

)
= 0 on Γshock,

where h(ρ) is defined by (2.1.5). For a fixed constant d > 0, it is direct to see that

G(0, d) = 0, lim
ω→d−

G(ω, d) = ∞,

Gω(ω, d) =
dγ−1

(d− ω)γ
− (d− ω)

{
≤ 0 for 0 ≤ ω ≤ d(1 − d−

2
γ+1 ),

> 0 for ω > d(1 − d−
2

γ+1 ).
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Therefore, for each d > 0, there exists a unique ωd ∈ (0, d) satisfying that G(ωd, d) = 0. Define a
function H : (1,∞) → R

+ by

(3.1.28) H(d) := ωd.

By continuation, H can be defined up to d = 1 with H(1) = lim
d→1+

H(d) = 0. It is shown in [11,

Lemma 6.1.3] that

(3.1.29) H ∈ C([1,∞)) ∩ C∞((1,∞)), H ′(d) > 0 for all d ∈ (1,∞).

Therefore, we have

(3.1.30) H(1) = 0, H(d) > 0 if and only if d > 1.

For each P ∈ Γshock, we have

(3.1.31) ∂ν(ϕ∞ − ϕ)(P ) = H(∂νϕ∞(P )).

The function, H , is useful in proving several properties of admissible solutions, which include the
lemma stated below. The lemma is essential to obtain uniform a priori estimates of admissible
solutions near ΓO

sonic ∪ ΓN
sonic.

Lemma 3.6. Fix γ ≥ 1 and v∞ > 0. For vectors (eSO , eSN ) given by Definition 2.23, any

admissible solution ϕ corresponding to (v∞, β) ∈ Rweak with β > 0 satisfies

∂eSN
(ϕ− ϕN ), ∂eSO

(ϕ− ϕO) ≥ 0 in Ω,(3.1.32)

− ∂ξ2(ϕ− ϕN ), −∂ξ2(ϕ− ϕO) ≥ 0 in Ω.(3.1.33)

Proof. Since ϕ∞−ϕN is a linear function that vanishes on SN , ∂eSN
(ϕ−ϕN ) = ∂eSN

(ϕ−ϕ∞)

in Ω. Then (2.5.10) yields that ∂eSN
(ϕ − ϕN ) ≥ 0 in Ω. Similarly, (2.5.10) also implies that

∂eSO
(ϕ− ϕO) ≥ 0 in Ω. This proves (3.1.32).
Define

w := ∂ξ2(ϕ− ϕN ).

We first differentiate Eq. (3.1.2) for φ = ϕ− ϕN with respect to ξ2 to obtain

(c2 − ϕ2
ξ1)wξ1ξ1 − 2ϕξ1ϕξ2wξ1ξ2 + (c2 − ϕ2

ξ2)wξ2ξ2

+ (c2 − ϕ2
ξ1)ξ2φξ1ξ1 − 2(ϕξ1ϕξ2)ξ2wξ1 + (c2 − ϕ2

ξ2)ξ2wξ2 = 0 in Ω.
(3.1.34)

Since c2 − ϕ2
ξ1
> 0 from condition (iii) of Definition 2.24, we use Eq. (3.1.2) to express φξ1ξ1 as

φξ1ξ1 =
2ϕξ1ϕξ2wξ1 − (c2 − ϕ2

ξ2
)wξ2

c2 − ϕ2
ξ1

.

A direct computation by using (2.4.2) yields that c2ξ2 = −(γ − 1)(ϕξ1wξ1 + ϕξ2wξ2). Finally, (ϕξiϕξj )ξ2 ,
i, j = 1, 2, can be expressed in terms of (ϕξ1 , ϕξ2 , w, wξ1 , wξ2). Therefore, Eq. (3.1.34) can be rewrit-
ten as

(c2 − ϕ2
ξ1)wξ1ξ1 − 2ϕξ1ϕξ2wξ1ξ2 + (c2 − ϕ2

ξ2)wξ2ξ2 +

2∑

j=1

aj(ϕξ1 , ϕξ2 , w, wξ1 , wξ2)wξj = 0 in Ω.

This equation is strictly elliptic in Ω, and w is not a constant whenever β > 0, due to Lemma 3.1.
Then the maximum principle implies that max

Ω
w = max

∂Ω
w.
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On ΓO
sonic ∪ ΓN

sonic, it follows from the definition of (ϕO, ϕN ) given in Definition 2.23 and con-
ditions (ii-1) and (ii-3) of Definition 2.24 that

(3.1.35) w =

{
∂ξ2(ϕO − ϕN ) = 0 on ΓO

sonic,

∂ξ2(ϕN − ϕN ) = 0 on ΓN
sonic.

Using the slip boundary condition: ∂ξ2ϕ = 0 on Γwedge, stated in Definition 2.24(ii-4), we have

w = 0 on Γwedge,

since ∂ξ2ϕN = 0 holds on Γwedge.

Suppose that there exists a point P̂ ∈ Γshock such that

w(P̂ ) = max
Ω

w, w(P̂ ) > 0.

Let ν be the unit normal vector to Γshock towards the interior of Ω, and let τ be a tangent vector
to Γshock. Since D

2ϕ∞ = D2ϕN = −I2, we can rewrite (3.1.11) as

(3.1.36) D2(ϕ− ϕN )[τ ,h] = 0 on Γshock,

with h = hνν + hττ for (hν , hτ ) given by (3.1.12).

From the assumption that w(P̂ ) = max
Ω

w, it follows that ∂τw(P̂ ) = D2(ϕ − ϕN )[τ , eξ2 ] = 0

at P̂ . Also, by Hopf’s lemma, w satisfies

(3.1.37) ∂νw(P̂ ) = D2(ϕ− ϕN )[ν, eξ2 ] < 0 at P̂ .

Then we can use similar arguments as to those for the proof of Lemma 3.2 to obtain

(3.1.38) eξ2 = kh(P̂ )

with some constant k 6= 0. By Remark 2.20, eξ2 ∈ Cone0(eSO , eSN ), so that (3.1.17) implies that

eξ2 · ν < 0 on Γshock. Then, at point P̂ , it follows from (3.1.12) and (3.1.38) that

khν(P̂ ) = kh(P̂ ) · ν(P̂ ) = eξ2 · ν(P̂ ) < 0.

Then we obtain from (3.1.13) that k > 0.
By the invariance of Eq. (3.1.2) under a coordinate rotation and condition (ii) of Definition

2.24, φ = ϕ− ϕN satisfies

(3.1.39) (c2 − ϕ2
ν)φνν − 2ϕτϕνφντ + (c2 − ϕ2

τ )φττ = 0 at P̂ .

Here and hereafter, we denote ϕν = ∂νϕ = Dϕ · ν and ϕτ = ∂τϕ = Dϕ · τ for any function ϕ,
Using (3.1.36), (3.1.39), and Definition 2.24(iii), we have

(3.1.40) (φντ , φνν) = −(
hτ
hν
,
2ϕνϕτ

hτ

hν
+ (c2 − ϕ2

τ )

c2 − ϕ2
ν

)φττ at P̂ .

Substituting eξ2 = kh(P̂ ) into (3.1.37), we obtain

(3.1.41) D2φ[ν,h] < 0 at P̂ .

Using (3.1.40), we rewrite (3.1.41) as

Aφττ (P̂ ) < 0 for A =
c4ϕ2

τ + ρ2c2ϕ2
ν(c

2 − |Dϕ|2)
ρϕν

at P̂ .
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Then it follows from Definition 2.24(iii) and Lemma 2.26 that A > 0. Thus, we conclude that

φττ (P̂ ) < 0. This implies that

(ϕ− ϕ∞)ττ (P̂ ) < 0.

Let f := fsh be from Proposition 3.4. Then, using (ϕ− ϕ∞)ττ (P̂ ) < 0 and (3.1.17), we have

(3.1.42) f ′′(ξP̂1 ) =
(ϕ− ϕ∞)ττ

(
1 + (f ′)2

)

∂ξ2(ϕ∞ − ϕ)
> 0 at P̂ ,

since eξ2 ∈ Cone0(eSO , eSN ) implies that ∂ξ2(ϕ∞ − ϕ) < 0 at P̂ ∈ Γshock, due to (3.1.17).

Let ξ2 = L(ξ1) be the equation of the tangent line to Γshock at P̂ . Denote F (ξ1) := f(ξ1)−L(ξ1).
Then there exists a point P∗ 6= P̂ on int Γshock such that F (ξP∗

1 ) = max
[ξ

P1
1 ,ξ

P2
1 ]

F (ξ1), due to

(3.1.42).

Note that P∗ 6∈ {P1, P2}, due to (3.1.19) in Proposition 3.4. If P∗ = P1, then F
′(ξP1

1 ) ≤ 0 must

hold, but this is impossible because f ′(ξP∗
1 ) = tanβ > f ′(ξP̂1 ) = L′(ξP∗

1 ). Similarly, if P∗ = P2,

then F ′(ξP2
1 ) ≥ 0 must hold, but this is also impossible because f ′(ξP∗

1 ) = 0 < f ′(ξP̂1 ) = L′(ξP∗
1 ).

Therefore, we conclude that f ′(ξP∗
1 ) = L′(ξP∗

1 ) = f ′(ξP̂1 ). This implies that ν(P∗) = ν(P̂ ). Denoting

ν := ν(P∗) = ν(P̂ ) by ν, we use the definition of ϕ∞ given in Definition 2.23 to obtain

(3.1.43) ∂νϕ∞(P∗) = ∂νϕ∞(P̂ )−
(
∂νϕ∞(P̂ )− ∂νϕ∞(P∗)

)
= ∂νϕ∞(P̂ )− (P∗ − P̂ ) · ν.

For each point P ∈ Γshock, we represent P as (ξ1, fsh(ξ1)) and rewrite the expression as

P = (ξ1, fsh(ξ1)) = (ξ1, F (ξ1) + L(ξ1)) = (ξ1, L(ξ1)) + (0, F (ξ1)).

By using this expression, P∗ − P̂ is represented as

P∗ − P̂ = (ξP∗
1 − ξP̂1 )(1, L

′(ξP̂1 )) +
(
F (TP∗)− F (TP̂ )

)
eξ2 .

Since L′(ξP̂1 ) = f ′(ξP̂1 ), (1, L′(ξP̂1 )) · ν = (1, f ′(ξP̂1 )) · ν(P̂ ) = 0. This yields that

(P∗ − P̂ ) · ν =
(
F (TP∗)− F (TP̂ )

)
eξ2 · ν.

By substituting this expression into (3.1.43), ∂νϕ∞(P∗) is represented as

∂νϕ∞(P∗) = ∂νϕ∞(P̂ )−
(
F (TP∗)− F (TP̂ )

)
eξ2 · ν(P∗).

By (3.1.17) and the definition of P∗,
(
F (TP∗)− F (TP̂ )

)
eξ2 · ν(P∗) < 0, which implies that

∂νϕ∞(P∗) > ∂νϕ∞(P̂ ).

This, combined with (3.1.29) and (3.1.31), leads to

(3.1.44) ∂ν(ϕ∞ − ϕ)(P∗) > ∂ν(ϕ∞ − ϕ)(P̂ ).

We rewrite w(P∗) as

w(P∗) = ∂ξ2(ϕ− ϕ∞)(P∗) + ∂ξ2(ϕ∞ − ϕN )(P∗)︸ ︷︷ ︸
(≡−v∞)

,

and further express ∂ξ2(ϕ − ϕ∞)(P∗) = (ν(P∗) · eξ2)∂ν(ϕ − ϕ∞)(P∗), where we have used that

∂τ (ϕ−ϕ∞) = 0 holds on Γshock. Note that ν(P∗) ·eξ2 = ν(P̂ ) ·eξ2 < 0, by (3.1.17). Then it follows
from (3.1.44) that

w(P∗) =
(
ν(P∗) · eξ2

)
∂ν(ϕ− ϕ∞)(P∗) + ∂ξ2(ϕ∞ − ϕN )(P∗)

>
(
ν(P̂ ) · eξ2

)
∂ν(ϕ− ϕ∞)(P̂ ) + ∂ξ2(ϕ∞ − ϕN )(P̂ ) = w(P̂ ).
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However, this contradicts the assumption that w(P̂ ) = max
Ω

w.

Therefore, we conclude that

∂ξ2(ϕ− ϕN ) ≤ 0 in Ω.

Since ∂ξ2(ϕN − ϕO) ≡ 0, we also obtain that ∂ξ2(ϕ− ϕO) ≤ 0 in Ω. This proves (3.1.33). �

3.2. Uniform Positive Lower Bound of dist(Γshock, ∂B1(O∞))

In order to obtain a uniform estimate of the ellipticity of Eq. (2.1.19) in the pseudo-subsonic
regions of admissible solutions, it is essential to make a uniform estimate of positive lower bound
of dist(Γshock, ∂B1(O∞)) for admissible solutions. Once the estimate of dist(Γshock, ∂B1(O∞)) is
achieved, the ellipticity of Eq. (2.1.19) at each point ξ ∈ Ω is uniformly controlled by dist(ξ,ΓO

sonic∪
ΓN
sonic).

Proposition 3.7. Fix γ ≥ 1 and v∞ > 0. Then there exists a constant C > 0 depending only
on (v∞, γ) such that any admissible solution corresponding to (v∞, β) satisfies

dist(Γshock, ∂B1(O∞)) ≥ 1

C
.(3.2.1)

To prove Proposition 3.7, some preliminary properties are first required, as shown in Lemmas
3.8–3.13 below.

We rewrite Eq. (2.1.19) as

(3.2.2) divA(Dϕ,ϕ) + B(Dϕ,ϕ) = 0,

with p = (p1, p2) ∈ R
2 and z ∈ R, where

A(p, z) := ρ(|p|2, z)p, B(p, z) := 2ρ(|p|2, z)(3.2.3)

for ρ(|p|2, z), given by

(3.2.4) ρ(|p|2, z) =
(
1 + (γ − 1)(

v2∞
2

− 1

2
|p|2 − z)

) 1
γ−1

.

We also need the definition of c(|p|2, z):

(3.2.5) c(|p|2, z) := ρ
γ−1
2 (|p|2, z).

For a constant R > 1, define

(3.2.6) KR =

{
(p, z) ∈ R

2 × R : |p|+ |z| ≤ R, ρ(|p|2, z) ≥ R−1,
|p|2

c2(|p|2, z) ≤ 1−R−1

}
.

For each R > 1, there exists a constant λR > 0 depending only on (v∞, γ, R) such that

2∑

i,j=1

∂pjAi(p, z)κiκj ≥ λR|κ|2 for any (p, z) ∈ KR and κ = (κ1, κ2) ∈ R
2.

Lemma 3.8 ([11, Lemma 9.2.1]). For R > 2, let KR be given by (3.2.6). Then there exist

functions (Ã, B̃)(p, z) in R
2 × R satisfying the following properties:

(i) If |(p, z)− (p̃, z̃)| < ε for some (p̃, z̃) ∈ KR, then
(3.2.7) (Ã, B̃)(p, z) = (A,B)(p, z);
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(ii) For any (p, z) ∈ R
2 × R and κ = (κ1, κ2) ∈ R

2,

(3.2.8)

2∑

i,j=1

∂pj Ãi(p, z)κiκj ≥ λ|κ|2;

(iii) For each k = 1, 2, · · · ,
(3.2.9) |B̃(p, z)| ≤ C0, |Dk

(p,z)(Ã, B̃)(p, z)| ≤ Ck in R
2 × R,

where the positive constants ε, λ, and Ck with k = 0, 1, 2, · · · , depend only on (v∞, γ, R).

For α ∈ (0, 1) and m ∈ Z
+, we now define the standard Hölder norms by

(3.2.10) ‖u‖m,0,U :=
∑

0≤|β|≤m
sup
x∈U

|Dβu(x)|, [u]m,α,U :=
∑

|β|=m
sup

x,y∈U,x 6=y

|Dβu(x)−Dβu(y)|
|x− y|α ,

where β = (β1, β2) with βj ≥ 0 for j = 1, 2, Dβ = ∂β1
x1
∂β2
x2
, and |β| = β1 + β2.

Lemma 3.9. Fix γ ≥ 1 and v∞ > 0. For any given constants α ∈ (0, 1), k ∈ N, and r > 0, there
exist constants C,Ck > 0 depending only on (v∞, γ, α, r) with Ck depending additionally on k such

that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak satisfies the following estimates:

(i) For any B4r(P ) ⊂ Ω,

‖ϕ‖2,α,B2r(P ) ≤ C,(3.2.11)

‖ϕ‖k,Br(P ) ≤ Ck.(3.2.12)

(ii) If P ∈ Γwedge, and B4r(P ) ∩Ω is the half-ball B+
4r(P ) = B4r(P ) ∩ {ξ2 > 0}, then

‖ϕ‖2,α,B2r(P )∩Ω ≤ C,(3.2.13)

‖ϕ‖k,Br(P )∩Ω ≤ Ck.(3.2.14)

Proof. Fix β ∈ (0, β
(v∞)
d ), and let ϕ be an admissible solution corresponding to (v∞, β) with

the pseudo-subsonic region Ω. Using Definition 2.24(iii) and Lemma 3.5, we can apply Lemmas
C.1–C.2 to estimate the ellipticity of Eq. (2.1.19).

Suppose that B4r(P ) ⊂ Ω for some constant r ∈ (0, 1). By (3.1.26), there exists a constant ĉ > 0
depending only on (v∞, γ) such that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak

in the sense of Definition 2.24 satisfies

0 < sup
Ω
c(|Dϕ|2, ϕ) ≤ ĉ.

One can choose a smooth function b̃(ξ) satisfying the following properties:

b̃ = 1 in B3r(P ), b̃ = 0 on ∂B4r(P ), |Dk b̃| ≤ Ck
rk

in B4r(P ),

for constants Ck > 0 depending only on k for each k = 1, 2, · · · . For a constant δr > 0 to be
determined later, we define b(ξ) := δrb̃(ξ). Then b satisfies

(3.2.15) |Db|+ ĉ|D2b| ≤ C∗
r2
δr in B4r(P )

for some constant C∗.
Since diam(Ω) ≤ d̄ for some constant d̄ > 0 depending only on (v∞, γ) due to Lemma 3.5, it

follows from Lemma C.1(b) that there exists a constant C0 > 0 depending on (v∞, γ) such that,
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for any given δ ∈ (0, 1), if |Db| + ĉ|D2b| ≤ δ
ĉ in B4r(P ), then either the pseudo-Mach number

M = |Dϕ|
c(|Dϕ|2,ϕ) satisfies that M2 ≤ C0δ in B4r(P ) or M2 + b does not attain its maximum in

B4r(P ).

Now we fix δr in the definition of b as δr =
r2

8(C0+1)(C∗+1)ĉ . Then (3.2.15) leads to

|Db|+ ĉ|D2b| ≤ 1

8(C0 + 1)ĉ
,

which implies that M = |Dϕ|
c(|Dϕ|2,ϕ) satisfies

either M2 ≤ 1

8
in B4r(P ) or max

B4r(P )
M2 + b = max

∂B4r(P )
M2 < 1.

Therefore, there exists a constant σr ∈ (0, 1) depending on (v∞, γ, r) such that ϕ satisfies

(3.2.16)
|Dϕ|2

c2(|Dϕ|2, ϕ) ≤ 1− σr in B3r(P ).

For a C1–function φ defined in U ⊂ R
2, denote E(φ, U) as

(3.2.17) E(φ, U) := {(p, z) : z = φ(ξ),p = Dφ(ξ), ξ ∈ U}.
By (3.2.16) and Lemma 3.5, there exists a constant Rr > 2 depending only on (v∞, γ, r) so

that E(ϕ,B3r(P )) ⊂ KRr . Let (Ã, B̃)(p, z) be the extensions given by Lemma 3.8 for R = Rr.
In order to prove (3.2.11) by applying Theorem C.3, we rewrite Eq. (2.1.19) as

2∑

i,j=1

∂pj Ãi(Dϕ,ϕ)︸ ︷︷ ︸(
=:Aij(Dϕ,ϕ)

)
∂ijϕ+

2∑

i=1

∂zÃi(Dϕ,ϕ)∂iϕ+ 2
(
B̃(Dϕ,ϕ) − B̃(0, 0)

)

︸ ︷︷ ︸(
=:A(Dϕ,ϕ)

)

= −2B̃(0, 0).

By Lemma 3.8 , (Aij , A)(Dϕ,ϕ) satisfy (C.2.2)–(C.2.5). Then (3.2.11) is obtained from Lemma 3.5
and Corollary C.4.

Also, (3.2.13) is similarly obtained from Lemma C.2 and Theorem C.7.

Once we have (3.2.11) and (3.2.13), estimates (3.2.12) and (3.2.14) can be obtained by a boot-
strap argument and [30, Theorem 6.2, Lemma 6.29]. �

For an admissible solution ϕ corresponding to (v∞, β) ∈ Rweak, we define an extension ϕext

into R
2
+ by

(3.2.18) ϕext(ξ) :=

{
ϕ(ξ) if ξ ∈ Λβ,

ϕ∞(ξ) otherwise.

For SO,seg and SN ,seg defined by Definition 2.24, denote Γext
shock as

Γext
shock =

{
SO,seg ∪ Γshock ∪ SN ,seg if β < β

(v∞)
s ,

Γshock ∪ SN ,seg otherwise.

By (2.5.12) and the Rankine-Hugoniot condition: ϕ = ϕ∞ on Γext
shock, the extension function ϕext

satisfies the following:

(i) ϕext ∈ C0,1
loc (R

2
+) ∩ C1

loc(R
2
+ \ Γext

shock);
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(ii) φext(ξ) = ϕext(ξ)+ 1
2 |ξ|2 satisfies ‖Dφext‖L∞(R2

+) = ‖Dφ‖L∞(Λβ) for φ(ξ) := ϕ(ξ)+ 1
2 |ξ|2.

In the following corollary, we regard each admissible solution ϕ as its extension ϕext given by
(3.2.18):

Corollary 3.10. Let {ϕ(k)} be a sequence of admissible solutions corresponding to (v∞, β(k)) ∈
Rweak in the sense of Definition 2.24 with

lim
k→∞

β(k) = β∗ for some β∗ ∈ [0, β
(v∞)
d ].

Then there exists a subsequence {ϕ(kj)} converging to a function ϕ∗ ∈ C0,1
loc (Λβ∗) uniformly in any

compact subset of Λβ∗ , where Λβ∗ is defined by Definition 2.23 for β∗ > 0 and by (2.5.24) for
β∗ = 0. Moreover, ϕ∗ is a weak solution of (2.1.19) in Λβ∗ in the sense of Remark 2.29(iv). For

the rest of the statement, let superscripts (k) and ∗ indicate that each object is related to β(k) and
β∗, respectively. Then we have the following properties:

(a) For Pl, l = 1, 2, 3, 4, defined by Definition 2.23,

lim
j→∞

P
(kj)
l = P ∗

l for l = 1, 4.

Note that P2 and P3 are fixed to be the same for all β ∈ [0, β
(v∞)
d ].

(b) Let f
(kj)
sh be the functions from Proposition 3.4. Extend f

(kj)
sh by

f
(kj)
sh (ξ1) =

{
f
(kj)
O (ξ1) for ξ1 ≤ ξ

P
(kj )

1
1 ,

ξN2 for ξ1 ≥ ξP2
1 ,

where f
(kj)
O (ξ1) is given by (2.5.2) with β = β(kj). Then sequence {f (kj)

sh } is uniformly

bounded in C0,1([ξ
Pβ∗

1 , ξP2
1 ]) and converges uniformly on [ξ

Pβ∗

1 , ξP2
1 ], where Pβ denotes the

ξ1–intercept of the straight oblique shock SO of angle β with the ξ1–axis. Denoting the

limit function by f∗
sh, we see that f∗

sh ∈ C0,1([ξ
Pβ∗

1 , ξP2
1 ]).

(c) For each kj , the sonic arcs Γ
O,(kj)
sonic and ΓN

sonic, defined by Definition 2.23 corresponding to

(v∞, β(kj)) ∈ Rweak, can be represented as

ΓN
sonic = {(ξ1, gN ,so(ξ1)) : ξP2

1 ≤ ξ1 ≤ ξP3
1 },

Γ
O,(kj)
sonic = {(ξ1, g(kj)O,so(ξ1)) : ξ

P
(kj )

4
1 ≤ ξ1 ≤ ξ

P
(kj )

1
1 },

for smooth functions gN ,so and g
(kj)
O,so. Note that gN ,so is fixed to be the same for all

β ∈ [0, β
(v∞)
d ] and that g

(kj)
O,so depends continuously on β ∈ [0, β

(v∞)
d ]. Therefore, g

(kj)
O,so

converges to g∗O,so on (ξ
P∗

4
1 , ξ

P∗
1

1 ) as kj → ∞. If β∗ ≥ β
(v∞)
s , then it follows from (2.5.6)

that ΓO,∗
sonic is a point set.

Define

Ω̂∗ := {(ξ1, ξ2) ∈ [ξ
P∗

4
1 , ξP3

1 ]× R
+ : 0 ≤ ξ2 ≤ f∗

bd(ξ1)}
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for a function f∗
bd given by

f∗
bd(ξ1) =





g∗O,so(ξ1) for ξ
P∗

4
1 ≤ ξ1 ≤ ξ

P∗
1

1 ,

f∗
sh(ξ1) for ξ

P∗
1

1 < ξ1 ≤ ξP2
1 ,

gN ,so(ξ1) for ξP2

1 < ξ1 ≤ ξP3

1 .

Denote by Ω∗ the interior of Ω̂∗. Define Γ∗
shock := {ξ2 = f∗

sh(ξ1) : ξ1 ∈ (ξ
P∗

1
1 , ξP2

1 )} and

Γ∗
wedge := {(ξ1, 0) : ξ1 ∈ (ξ

P∗
4

1 , ξP3
1 )}. Denote by Γ∗,0

wedge the relative interior of Γ∗
wedge \

Γ∗
shock. Then ϕ

∗ satisfies the following properties:

(c-1) ϕ∗ = ϕ∞ on Γ∗
shock,

(c-2) ϕ∗ ∈ C∞(Ω∗ ∪ Γ∗,0
wedge),

(c-3) ϕ(kj) → ϕ∗ in C2 on any compact subset of Ω∗ ∪ Γ∗,0
wedge,

(c-4) ∂e(ϕ∞ − ϕ∗) ≤ 0 in Ω∗ for all e ∈ Cone0(eS∗
O
, eSN ),

(c-5) Eq. (2.1.19) is strictly elliptic in Ω∗ ∪ Γ∗,0
wedge,

where we have followed Definition 2.23 for (O∞,ΓO
sonic, eSO ). If β

∗ = 0, Cone0(eS∗
O
, eSN )

is understood in the sense of Remark 2.28.

(d) In Λβ∗ \Ω∗, ϕ∗ is equal to the constant density states ϕ∗
O, ϕN , and ϕ∞ in their respective

domains as in (2.5.8), where ϕ∗
O is defined by (2.4.4) corresponding to β∗.

(e) f∗
sh(ξ1) > 0 for all ξ1 ∈ (ξ

P∗
1

1 , ξP2
1 ).

Proof. We divide the proof into four steps.

1. Statement (a) directly follows from Definition 2.23 and the continuous dependence of
(OO, cO) on (v∞, β). Statement (b) directly follows from Proposition 3.4.

2. Statement (c-1) directly follows from Definition 2.24(ii-4), Corollary 3.10(a), and the uniform

convergence of (ϕ(kj), f
(kj)
sh ) to (ϕ∗, f∗

sh). For a point P ∈ Ω∗, there are constants rP > 0 and N ∈ N

such that B3r(P ) ⊂ Ω(kj) for all kj ≥ N . Then it follows from Lemma 3.9(i) and the Arzelà-Ascoli
theorem that ϕ∗ ∈ C∞(B3r(P )), which implies that ϕ∗ ∈ C∞(Ω∗). We can similarly check from

Lemma 3.9(ii) that ϕ∗ ∈ C∞(Ω∗ ∪ Γ∗,0
wedge), which proves (c-2).

For a fixed compact set K ⊂ Ω∗∪Γ∗,0
wedge, there exists a constant NK ∈ N so that K is contained

in Ω(kj) ∩ Γ
(kj)
wedge for any kj ≥ NK . By Lemma 3.9 and the compactness of K, {ϕ(kj)}kj≥NK is

sequentially compact in C2(K). Then the uniform convergence of {ϕ(kj)} to ϕ∗ in K implies that
the subsequence converges to ϕ∗ in C2(K). This proves (c-3).

For any e ∈ Cone0(eS∗
O
, eSN ), there exists Ne ∈ N such that e ∈ Cone0(e

S
(kj )

O

, eSN ) for any

kj ≥ Ne. Then (c-4) follows from Lemma 3.2 and (c-3).
For a point P ∈ Ω∗, we choose rP > 0 small so that BrP (P ) ⊂ Ω∗. Then we fix NP ∈ N

sufficiently large so that BrP (P ) ⊂ Ω(kj) for all kj ≥ NP . Since σr ∈ (0, 1) in (3.2.16) is a given

constant independent of admissible solutions corresponding to β ∈ (0, β
(v∞)
d ), we can fix a constant

σP ∈ (0, 1) such that

|Dϕ(kj)|2
c2(|Dϕ(kj)|2, ϕ(kj))

≤ 1− σP in BrP (P ) for all kj ≥ NP .
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This estimate, combined with statement (c-3), implies that Eq. (2.1.19) for ϕ = ϕ∗ is strictly
elliptic in Ω∗. We can use similar arguments by using Lemma C.2 to conclude that Eq. (2.1.19) for

ϕ = ϕ∗ is strictly elliptic on Γ∗,0
wedge, which implies (c-5).

Statement (d) follows directly from statements (a)–(c) and Definition 2.23.

3. Observe that

• fw given by (2.5.4), P1, P4, Γ
O
sonic, and SO,seg depend continuously on β ∈ [0, π2 );

• P2, P3, SN ,seg, and ΓN
sonic are fixed to be the same for all β ∈ [0, π2 ).

Combining this observation with statements (b), (c-3), and (d) implies that, for any compact set
K ⊂ R

2,

(i) K ∩ Λ
β(kj ) converges to K ∩ Λβ∗ in the Hausdorff metric;

(ii) Dϕ(kj) converges to Dϕ∗ almost everywhere in K ∩ Λβ∗ .

Then it follows from Definition 2.24 that∫

Λβ∗

(
ρ(|Dϕ∗|2, ϕ∗)Dϕ∗ ·Dζ − 2ρ(|Dϕ∗|2, ϕ∗)ζ

)
dξ = 0 for all ζ ∈ C∞

0 (R2).

In other words, ϕ∗ is a weak solution of (2.1.19) in Λβ∗ in the sense of Remark 2.29(iv).

4. To prove statement (e), we consider two cases separately: β < β
(v∞)
s and β ≥ β

(v∞)
s .

By Proposition 3.4 and statement (b), f∗
sh increases monotonically on [ξ

P∗
1

1 , ξP2
1 ].

If β∗ < β
(v∞)
s , then it follows from statement (a) and the monotonicity of f∗

sh that

f∗
sh(ξ1) ≥ f∗

sh(ξ
P∗

1
1 ) ≥ ξ

P∗
1

2 > 0 for all ξ1 ∈ [ξ
P∗

1
1 , ξP2

1 ].

If β∗ ≥ β
(v∞)
s , it follows from statement (a) and Definition 2.23 that f∗

sh(ξ
P∗

1
1 ) = 0. Suppose

that f∗
sh(ξ1) = 0 for some ξ1 ∈ (ξ

P∗
1

1 , ξP2
1 ), and define

ξ∗1 := sup{ξ1 ∈ (ξ
P∗

1
1 , ξP2

1 ) : f∗
sh(ξ1) = 0}.

Since f∗
sh(ξ

P2
1 ) = ξ2 > 0, then ξ∗1 ∈ (ξ

Pβ∗

1 , ξP2
1 ). Note that ξ

Pβ∗

1 = ξ
P∗

1
1 = ξ

P∗
4

1 for β∗ ≥ β
(v∞)
s . By the

monotonicity of f∗
sh with respect to ξ1, we have

(3.2.19) f∗
sh(ξ1) = 0 for all ξ1 ∈ [ξ

Pβ∗

1 , ξ∗1 ].

Let Q be the midpoint of Pβ∗ and (ξ∗1 , 0). Then Q lies on Γwedge. Denote d∗ :=
ξ
Pβ∗

1 +ξ∗1
4 . Then it

follows from (3.2.19) that

ϕ∗ = ϕ∞ in Bd∗(Q) ∩ Λβ∗ = Bd∗(Q) ∩ {ξ2 ≥ 0}.
However, this contradicts the fact that ϕ∗ is a weak solution of (2.1.19) in Λβ∗ in the sense of
Remark 2.29(iv), because a direct computation by using the definition of ϕ∞ given by Definition
2.23 shows that a test function ζ ∈ C∞

0 (Bd∗(Q)) can be chosen so that
∫

Bd∗ (Q)∩{ξ2≥0}

(
ρ(|Dϕ∞|2, ϕ∞)Dϕ∞ ·Dζ − 2ρ(|Dϕ∞|2, ϕ∞)ζ

)
dξ

= v∞

∫

Γ∗
wedge∩Bd∗(Q)

ζ dξ1 6= 0.
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Therefore, we conclude that f∗
sh(ξ1) > 0 holds for any ξ1 ∈ (ξ

P∗
1

1 , ξP2
1 ), which implies statement (e).

This completes the proof. �

Define

(3.2.20) r1 := min
β∈[0,β

(v∞)
d ]

|Pβ |.

For each β ∈ [0, β
(v∞)
s ], we know that |Pβ | ≥ cO ≥ cN , by (2.4.31). For β ∈ [β

(v∞)
s , β

(v∞)
d ], (2.4.3)

implies that |Pβ | > v∞ tanβ ≥ v∞ tanβ
(v∞)
s . Therefore, we have

r1 ≥ min{cN , v∞ tanβ(v∞)
s } > 0.

Proposition 3.11. For every r ∈ (0, r12 ), there exists a constant Cr > 0 depending only on
(v∞, γ, r) such that any admissible solution corresponding to (v∞, β) ∈ Rweak satisfies

(3.2.21) dist(Γshock \Br(Pβ),Γwedge) > C−1
r .

Proof. This proposition is proved for two cases separately: (i) P4 6∈ B r
2
(Pβ), and (ii) P4 ∈

B r
2
(Pβ) for P4 defined by Definition 2.23 depending on β ∈ [0, π2 ). Fix r ∈ (0, r12 ).

1. We first consider the case that P4 6∈ B r
2
(Pβ).

Define

Ir := {β ∈ (0, β
(v∞)
d ) : |P4 − Pβ | ≥

r

2
}.

Then Ir ⊂ (0, β
(v∞)
s ). Since Pβ and P4 depend continuously on β ∈ (0, β

(v∞)
s ), Ir is relatively closed

in (0, β
(v∞)
s ). Then there exists δ0 > 0 such that, for any β ∈ Ir, ϕO given by (2.4.4) satisfies

that
|DϕO(Pβ)|
cO(β) ≥ 1 + δ0. By Lemma 2.22, there exists a constant σr ∈ (0,

β(v∞)
s

2 ) satisfying that

Ir ⊂ [0, β
(v∞)
s − σr]. Then Proposition 3.4 implies that

(3.2.22) inf
β∈Ir

dist(Γshock,Γwedge) ≥ inf
β∈[0,β

(v∞)
s −σr ]

ξP1
2 > 0.

2. Now consider the case that P4 ∈ B r
2
(Pβ).

For an admissible solution ϕ, define

Jϕd := {P ∈ Γshock : |ξP1 − ξP4
1 | < d}.

Claim: For any r ∈ (0, r12 ), there exists a constant Cr > 0 such that any admissible solution

corresponding to (v∞, β) ∈ Rweak satisfies

(3.2.23) sup
P∈Jϕ

r/2

dist(P,Γwedge) > C−1
r .

This claim is proved by deriving a contradiction. On the contrary, the claim is false. Then

there exists a sequence {β(k)} ⊂ (0, β
(v∞)
d ) such that, for each k ∈ N, there exists an admissible

solution ϕ(k) corresponding to (v∞, β(k)) in the sense of Definition 2.24 with

(3.2.24) sup

P∈Jϕ(k)

r/2

dist(P,Γ
(k)
wedge) ≤

1

k
.

By Corollary 3.10, such a sequence {β(k)} can be chosen so that it converges to β∗ ∈ [0, β
(v∞)
d ]

and the corresponding solution sequence ϕ(k) uniformly converges in any compact subset of Λβ∗ to
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a function ϕ∗ ∈ C0,1
loc (Λβ∗) satisfying all the properties described in Corollary 3.10. Furthermore,

(3.2.24) implies that

max
P∈Jϕ∗

r/4

dist(P,Γ∗
wedge) = 0.

This contradicts Corollary 3.10(e). Thus, the claim is verified.
For each admissible solution ϕ, let fsh be given as an extension defined by Corollary 3.10(b).

Then

dist(Γshock \Br(Pβ),Γwedge) ≥ fsh(ξ
Pβ

1 + r) ≥ sup
P∈Jϕ

r/2

dist(P,Γwedge),

where we have used the assumption that |P4 − Pβ | < r
2 in the second inequality. Finally, (3.2.21)

is directly obtained from this inequality, combined with (3.2.23). �

For 0 < v∞ ≤ 1, define B+
1 (O∞) := B1(O∞) ∩ {ξ2 ≥ 0}. Following Definition 2.23, for each

β ∈ (0, β
(v∞)
d ), ρO > ρN > 1 by (2.4.40). Moreover, the entropy condition yields that |Dϕ∞(Pβ)| >

1. By combining these properties with condition (i-1) of Definition 2.24, any admissible solution
corresponding to (v∞, β) ∈ Rweak satisfies

(3.2.25) B+
1 (O∞) ⊂ Ω \ ΓO

sonic ∪ Γshock ∪ ΓN
sonic.

For v∞ > 1, (3.2.25) still holds, because B+
1 (O∞) = ∅. Therefore, any compact set K ⊂ B+

1 (O∞)
is contained in the pseudo-subsonic region Ω.

Lemma 3.12. Fix γ ≥ 1 and v∞ ∈ (0, 1). For every compact set K ⊂ B+
1 (O∞), there exists a

constant CK > 0 depending only on (v∞, γ,K) such that any admissible solution ϕ corresponding

to (v∞, β) ∈ Rweak satisfies

(3.2.26) inf
K
(ϕ∞ − ϕ) ≥ C−1

K .

Proof. Suppose that this lemma is false. By Definition 2.24(iv), there exist a compact set

K ⊂ B+
1 (O∞), a sequence {βj} ⊂ (0, β

(v∞)
d ), and a sequence of points {Qj} ⊂ K so that

(ϕ∞ − ϕ(j))(Qj) → 0 as j → ∞,

where ϕ(j) is an admissible solution for each βj in the sense of Definition 2.24. By passing to a

subsequence (without changing index notation), there exist β♭ ∈ [0, β
(v∞)
d ] and Q♭ ∈ K so that

βj → β♭, Qj → Q♭ as j → ∞.

By (2.5.8) and (3.1.25), for any compact set L ⊂ R
2
+ := {ξ ∈ R

2 : ξ2 ≥ 0}, each ϕ(j) satisfies that

‖ϕ(j)‖C0,1(L∩Λβj
) ≤ CL for a positive constant CL depending only on (v∞, γ, L). Therefore, passing

to a further subsequence, we conclude that ϕ(j) converges uniformly to a function ϕ♭ ∈ C0,1(L∩Λβ♭
)

in L ∩ Λβ♭
for a continuous function ϕ♭ defined in Λβ♭

, where Λβ♭
is given by Definition 2.23. This

yields that (ϕ∞ − ϕ♭)(Q♭) = 0.
Since K is compact, there exists a small constant ǫ ∈ (0, 1

10 ) such that K ⊂ B+
1−2ǫ(O∞). By

Corollary 3.10, sequence {ϕ(j)} of admissible solutions is uniformly bounded in C3(B+
1−ǫ/2(O∞)).

By the Arzelá-Ascoli theorem, there exists a subsequence (still denoted by) {ϕ(j)} that converges

to a function ϕ♭ ∈ C3(B+
1−ǫ/2(O∞)). Then ϕ♭ satisfies Eq. (2.1.19) in B+

1− ε
2
(O∞), where the

equation is strictly elliptic by Definition 2.24(iii). Moreover, ϕ♭ satisfies the boundary condition
∂ξ2(ϕ∞ − ϕ) = −v∞ < 0 on B+

1− ǫ
2
(O∞) ∩ {ξ2 = 0}. Note that condition (iv) of Definition 2.24
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implies that ϕ∞−ϕ♭ ≥ 0 in B+
1− ε

2
(O∞). By Hopf’s lemma, Q♭ cannot lie on B

+
1− ε

2
(O∞)∩{ξ2 = 0}.

Thus, Q♭ must lie in B+
1− ε

2
(O∞). However, by the strong maximum principle, this is impossible since

ϕ∞−ϕ♭ cannot be a constant in B+
1− ε

2
(O∞), owing to ∂ξ2(ϕ∞−ϕ♭) = −v∞ on B+

1− ε
2
(O∞)∩{ξ2 = 0}.

This completes the proof. �

Let (r, θ) be the polar coordinates centered at O∞:

(3.2.27) r(cos θ, sin θ) = (ξ1, ξ2)−O∞.

In R
2
+ \ {O∞}, define the (x, y)–coordinates by

(3.2.28) (x, y) = (c∞ − r, θ) with c∞ = 1.

Suppose that a C2–function ϕ satisfies Eq. (2.1.19), and define w := ϕ∞ − ϕ. Then Eq. (2.1.19)
can be written as an equation for w in the (x, y)–coordinates:

Np(w) :=
(
2x+ (γ + 1)wx +O−

1

)
wxx +O−

2 wxy +
( 1

c∞
+O−

3

)
wyy − (1 +O−

4 )wx +O−
5 wy = 0,

with O−
j (Dw,w, x) = Oj(−Dw,−w, x, c∞) for j = 1, · · · , 5, where Oj(p, z, x, c) for j = 1, · · · , 5,

with p = (p1, p2), are given by

O1(p, z, x, c) = −x
2

c
+
γ + 1

2c

(
2x− p1

)
p1 −

γ − 1

c

(
z +

p22
2(c− x)2

)
,

O2(p, z, x, c) = − 2

c(c− x)2
(
p1 + c− x

)
p2,

O3(p, z, x, c) =
1

c(c− x)2

(
x(2c− x) − (γ − 1)

(
z + (c− x)p1 +

1

2
p21
)
− (γ + 1)p22

2(c− x)2

)
,

O4(p, z, x, c) =
1

c− x

(
x− γ − 1

c

(
z + (c− x)p1 +

1

2
p21 +

(γ + 1)p22
2(γ − 1)(c− x)2

))
,

O5(p, z, x, c) = −2(p1 + c− 2x)p2
c(c− x)3

.

(3.2.29)

Lemma 3.13. For constants δ, ε ≥ 0, define

Dε
−δ := B+

1+δ(O∞) \B1−ε(O∞).

Suppose that v∞ ∈ (0, 1) so that Dε
−δ 6= ∅ for ε > 0. Then, for any α ∈ (12 , 1), there exist constants

A, ε0 > 0 depending only on (v∞, γ, α) such that, if ϕ is an admissible solution corresponding to

(v∞, β) ∈ Rweak with v∞ ∈ (0, 1), then w := ϕ∞ − ϕ satisfies

w(x, y) ≥ Ax1+α in Dε0
0 .

Proof. The proof is divided into three steps.

1. Define Ô−
1 (Dw, x) := O−

1 (Dw,w, x) − (γ − 1)w and

N1(v) :=
(
2x+ (γ + 1)vx + Ô−

1 + (γ − 1)w
)
vxx +O−

2 vxy + (1 +O−
3 )vyy

− (1 +O−
4 )vx +O−

5 vy,
(3.2.30)

with Ô−
1 = Ô−

1 (Dv, x) and O
−
j = O−

j (Dv, v, x) for j = 2, · · · , 5.
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Fix α ∈ (12 , 1), and define a function

U(x) := Ax1+α

for a constant A ∈ (0, 1) to be determined later. For each ε0 > 0, U satisfies

N1(U) ≥
(
2x+ (γ + 1)Ux + Ô−

1 (DU, x)
)
Uxx −

(
1 +O−

4 (DU,U, x)
)
Ux

≥ (1 + α)Axα
(
2α− 1 +

Ô−
1

x
−O−

4

)
in Dε0

0 ,

where we have applied the fact that w ≥ 0 in Ω by Definition 2.24(iv). Using the definitions of Ô1

and O4, we can choose ε0 > 0 sufficiently small depending only on (v∞, γ, α) such that

|Ô−
1 (DU, x)|

x
≤ 2α− 1

4
, |O−

4 (DU,U, x)| ≤
2α− 1

4
in Dε0

0 .

Under the choice of ε0 above,

(3.2.31) N1(U)−N1(w) > 0 in Dε0
0 .

2. Claim: There exists a constant A > 0 depending only on (v∞, γ, α) such that U − w cannot

attain its nonnegative maximum on ∂Dε0
0 .

On ∂Dε0
0 ∩{x = 0}, condition (iv) of Definition 2.24 implies that U −w = −w ≤ 0. By Lemma

3.12, there exists a constant Cε0 depending only on (v∞, γ, α) such that

U − w ≤ Aε1+α0 − Cε0 on ∂Dε0
0 ∩ {x = ε0}.

Thus, a constant A ∈ (0, 1) can be chosen sufficiently small to satisfy that Aε1+α0 ≤ 1
2Cε0 . Then

we have

U − w ≤ 0 on ∂Dε0
0 ∩ {x = ε0}.

Since ϕ satisfies the slip boundary condition on Γwedge, w satisfies that wξ2 = −v∞ on ∂Dε0
0 ∩Γwedge

so that

∂ξ2(U − w) = A(1 + α)xα
∂x

∂ξ2
+ v∞ on ∂Dε0

0 ∩ Γwedge.

Therefore, we can reduce A > 0 depending only on (v∞, γ, α) so that

∂ξ2(U − w) ≥ v∞
2

on ∂Dε0
0 ∩ Γwedge,

which implies the claim.

3. Suppose that max
Dε0

0

(U − w) > 0. Then there exists a point P0 ∈ intDε0
0 such that

(U − w)(P0) = max
Dε0

0

(U − w).

At P0, we have

(U − w)x(P0) = (U − w)y(P0) = 0,

(U − w)xx(P0) ≤ 0, (U − w)yy(P0) ≤ 0,

Uy(P0) = wy(P0) = 0, −wyy(P0) = (U − w)yy(P0) ≤ 0.

(3.2.32)
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A direct computation by using (3.2.29)–(3.2.30) and (3.2.32) gives that

N1(U)−N1(w)

=
(
2x+ (γ + 1)Ux + Ô−

1 (DU, x) + (γ − 1)w
)
(U − w)xx −

γ − 1

1− x
(U − w)Ux

−
(
1 +O−

3 (DU,w)
)
wyy at P0.(3.2.33)

Note that w(P0) > 0, by Definition 2.24(iv). Since |Ô−
1 (DU, x)| ≤ CO1Aε

2α
0 for some constant

CO1 > 0 depending only on γ, and constant A depends only on (γ, v∞, α), we can choose ε0 > 0

sufficiently small depending on (γ, v∞, α) such that 2x+ (γ + 1)Ux + Ô−
1 (DU, x) + (γ − 1)w > 0 at

P0. Moreover, (U − w)Ux > 0 at P0. Therefore, we obtain from (3.2.33) that

N1(U)−N1(w) ≤ −
(
1 +O−

3 (DU,w)
)
wyy at P0.

By Definition 2.24(iv) and (3.2.29), there exists a constant C∗ > 0 depending only on γ such that
1 + O−

3 (DU,w) ≥ 1 − C∗εα0 at P0. Reducing ε0 further, depending only on (γ, α), to satisfy that
1 − C∗εα0 ≥ 1

2 , we obtain that N1(U) − N1(w) ≤ 0 at P0. This contradicts (3.2.31). Therefore,

we conclude that there exist constants (A, ε0) depending on (γ, v∞, α) such that w ≥ Ax1+α in
Dε0

0 . �

Now we are ready to prove Proposition 3.7.

Proof of Proposition 3.7. Let ϕ be an admissible solution corresponding to (v∞, β) ∈
Rweak. Define

dϕ := dist{B1(O∞),Γshock}.
We consider two separate cases: v∞ ≥ 1 and 0 < v∞ < 1.

1. We first consider the case that v∞ ≥ 1. Then B1(O∞) ⊂ R× R
−. By (2.4.42) and Lemma

2.26, there exists a constant d0 > 0 depending only on (v∞, γ) such that, for any β ∈ (0, β
(v∞)
d ),

dist(Pβ , B1(O∞)) = |PβO∞| − 1 = |Dϕ∞(Pβ)| − 1 ≥M∞,ν(Pβ)− 1 ≥ d0.

Denote r̄ := 1
4 min{r1, d0} for r1 from (3.2.20). By Proposition 3.11, there exists a constant

Cr̄ > 0 depending only on (v∞, γ) such that any admissible solution corresponding to (v∞, β) ∈
Rweak satisfies

dist(Γshock \B r̄
2
(Pβ), B1(O∞)) ≥ dist(Γshock \B r̄

2
(Pβ),Γwedge) ≥ C−1

r̄ > 0.

By the definition of r̄ above, dist(Γshock ∩Br̄(Pβ), B1(O∞)) ≥ d0
4 > 0. Then

dϕ ≥ min{C−1
r̄ ,

d0
4
} > 0

for any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak with v∞ ≥ 1.

2. Now we consider the second case that 0 < v∞ < 1. Let P∗ ∈ Γshock be a point such that

dϕ = dist(P∗, B1(O∞)).

At point P∗, we have

(3.2.34) dϕ = ∂νϕ∞(P∗)− 1

for the unit normal vector ν to Γshock at P∗ towards the interior of Ω. Denote

(3.2.35) ωϕ := ∂ν(ϕ∞ − ϕ)(P∗).
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Claim: There exist two positive constants d0 and d1 depending only on (v∞, γ) such that, if

dϕ > d0 does not hold, then ωϕ ≥ d1 holds.

Fix an admissible solution ϕ corresponding to (v∞, β) ∈ Rweak. For the (x, y)–coordinates
defined by (3.2.28), let ε0 > 0 be the constant from Lemma 3.13 with α = 3

4 . In other words,
w := ϕ∞ − ϕ satisfies

w(x, y) ≥ Ax
7
4 in Dε0

0

for some constant A > 0 chosen depending only on (v∞, γ). For constants k and ε ∈ (0, ε0), to be
determined later, define a function V in Dε

−dϕ by

(3.2.36) V := (x+ dϕ)
2 + k(x+ dϕ).

For a constant d0 > 0 to be specified later, assume that dϕ ≤ d0. Then a direct computation by
using (3.2.28)–(3.2.29) and Definition 2.24(iv) shows that V satisfies

N1(V ) ≥ 3k − 4d0 − C(ε+ d0 + k)2 in Dε
−dϕ ,

V = 0 on ∂Dε
−dϕ ∩ {x = −dϕ},

V ≤ (ε+ d0)
2 + k(ε+ d0) on ∂Dε

−dϕ ∩ {x = ε},

Vξ2 ≥ −v∞
1− ε

(2(ε+ d0) + k) on ∂Dε
−dϕ ∩ Γwedge,

(3.2.37)

for a constant C > 0 chosen depending only on (γ, v∞). Choosing

k = 2ε, d0 = ε,

we obtain from (3.2.37), w ≥ 0 in Ω, and (2.4.1) that

N1(V )−N1(w) ≥ 2ε− 16Cε2 in Dε
−dϕ ,

V − w ≤ 0 on ∂Dε
−dϕ ∩ {x = −dϕ},

V − w ≤ 10ε2 −Aε
7
4 on ∂Dε

−dϕ ∩ {x = ε},

(V − w)ξ2 ≥ v∞ − 6v∞ε
1− ε

on ∂Dε
−dϕ ∩ Γwedge.

(3.2.38)

Then we can fix a small constant ε ∈ (0, ε0) depending only on (v∞, γ) such that, by (3.2.38),
N1(V ) − N1(w) ≥ 0 in Dε

−dϕ , V − w ≤ 0 on ∂Dε
−dϕ ∩ {x = −dϕ or ε}, and (V − w)ξ2 ≥ 0 on

∂Dε
−dϕ ∩ Γwedge. Thus, the maximum principle yields that

(3.2.39) V − w ≤ 0 in Dε
−dϕ.

Since P∗ ∈ ∂Dε
−dϕ ∩ {x = −dϕ}, (V − w)(P∗) = max

Dε
−dϕ

(V − w) = 0. Note that Γshock is tangential

to ∂Dε
−dϕ ∩ {x = −dϕ} at P∗ so that (V − w)x(P∗) = ∂ν(V − w)(P∗). Then (3.2.39) implies that

(V − w)x(P∗) = ∂ν(V − w)(P∗) ≤ 0. Combining this with (3.2.35)–(3.2.36) implies that

ωϕ ≥ Vx(P∗) = 2ε.

Therefore, the claim is verified by choosing (d0, d1) := (ε, 2ε).

According to the claim, either dϕ is bounded below by ε or ωϕ is bounded below by 2ε. By
(3.1.31) and (3.2.34), ωϕ = H(dϕ +1) for H defined by (3.1.28). Then it follows from (3.1.30) that
dϕ is uniformly bounded below by a positive constant if and only if ωϕ is uniformly bounded below
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by a positive constant. Therefore, the claim implies that there exists a constant δ > 0 depending
only on (v∞, γ) such that

dϕ ≥ min{ε, δ} > 0

for any admissible solution ϕ corresponding to (v∞, γ) ∈ Rweak with 0 < v∞ < 1.

The proof of Proposition 3.7 is now completed. �

3.3. Uniform Estimates for the Ellipticity of Eq. (2.1.19)

Given γ ≥ 1 and v∞ > 0, let ϕ be an admissible solution corresponding to (v∞, β) ∈ Rweak. A
direct computation by using (3.2.3) shows that Eq. (3.2.2) (the same as Eq. (2.1.19)) satisfies

(3.3.1) ρ(1− |Dϕ|2
c2

)|κ|2 ≤
2∑

i,j=1

∂piAj(Dϕ,ϕ)κiκj ≤ 2ρ|κ|2 in Ω for any κ = (κ1, κ2) ∈ R
2.

Fix a function h ∈ C∞(R+) such that

(3.3.2) h(s) =

{
s if s ∈ [0, 12 ],

1 if s ≥ 1,
and 0 ≤ h′ ≤ 2 on R+.

For each β ∈ (0, π2 ), let OO be defined by Definition 2.23, and denote

rβ := min{cO, |OOPβ |} =

{
cO if β < β

(v∞)
s ,

|OOPβ | if β ≥ β
(v∞)
s .

Let QO ∈ SO ∩ {ξ2 ≥ 0} be the midpoint of the two intersections of circle |ξ − OO| = rβ and
SO ∩ {ξ2 ≥ 0}, and let

r̂β := |OOQO| =
{
rβMO for β < β

(v∞)
s ,

rβ sinβ for β ≥ β
(v∞)
s ,

for MO defined by (2.4.6). Note that rβ and r̂β depend continuously on β ∈ (0, π2 ). It follows from
(2.4.43) and the definitions of (rβ , r̂β) stated above that rβ − r̂β > 0 for all β ∈ [0, π2 ). Therefore,

there exists a constant δ0 > 0 depending only on (v∞, γ) so that rβ − r̂β ≥ δ0 for all β ∈ [0, β
(v∞)
d ].

We define (gO, gN , QN ) by

gO(ξ) :=
1

2
(rβ − r̂β)h(

dist(ξ, ∂Brβ (OO))

rβ − r̂β
),

gN (ξ) := lim
β→0+

gO(ξ) =
1

2
(cN − ξN2 )h(

dist(ξ, ∂BcN (ON ))

cN − ξN2
),

QN := lim
β→0+

QO.

Let Q∗ = (ξ∗1 , ξ
N
2 ) be the midpoint of QN and P2 for point P2 given by Definition 2.23. Moreover,

we fix a function χ = χ(ξ1) ∈ C∞(R) such that

χ(ξ1) =

{
1 for ξ1 ≤ ξ∗1

10 ,

0 for ξ1 ≥ ξ∗1
2 ,

− 5

ξ∗1
≤ χ′(ξ1) ≤ 0 for all ξ1 ∈ R.

Finally, we define a function gβ : R2 → R+ by

(3.3.3) gβ(ξ) := χ(ξ1)
(
gO(ξ) + max

{
1− |DϕO(Pβ)|2

c2O
, 0
})

+
(
1− χ(ξ1)

)
gN (ξ).
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Remark 3.14. By Definition 2.24 and Lemma 3.5, there exist constants d > 0 and C > 1
depending only on (v∞, γ) such that, if ϕ is an admissible solution corresponding to (v∞, β) ∈ Rweak,
and if Ω is its pseudo-subsonic region, then gβ satisfies the following properties:

(i) For ξ ∈ Ω satisfying dist(ξ,ΓN
sonic) < d,

C−1dist(ξ,ΓN
sonic) ≤ gβ(ξ) ≤ Cdist(ξ,ΓN

sonic);

(ii) For ξ ∈ Ω satisfying dist(ξ,ΓO
sonic) < d,

C−1distβ(ξ,Γ
O
sonic) ≤ gβ(ξ) ≤ Cdistβ(ξ,Γ

O
sonic),

where distβ(ξ,Γ
O
sonic) is given by

(3.3.4) distβ(ξ,Γ
O
sonic) := dist(ξ,ΓO

sonic) + (cO − |DϕO(P1)|) ;
(iii) Furthermore, for each ε > 0, there exists a constant Cε > 1 depending only on (v∞, γ, ε)

such that, if a point ξ ∈ Ω satisfies dist(ξ,ΓO
sonic ∪ ΓN

sonic) > ε, then gβ satisfies

C−1
ε ≤ gβ(ξ) ≤ Cε.

In (i)–(iii), ΓN
sonic, Γ

O
sonic, and ϕO are defined by Definition 2.23.

For a constant ζ̂ > 0, let us define

(3.3.5) dist♭(ξ,ΓO
sonic ∪ ΓN

sonic) := min
{
ζ̂, dist(ξ,ΓN

sonic), distβ(ξ,Γ
O
sonic)

}
.

Using properties (i)–(iii) stated in Remark 3.14, we can find constants C > 1 and ζ̂ ∈ (0, 1)

depending only on (v∞, γ) such that each gβ for β ∈ (0, β
(v∞)
d ) satisfies

C−1dist♭(ξ,ΓO
sonic ∪ ΓN

sonic) ≤ gβ(ξ) ≤ Cdist♭(ξ,ΓO
sonic ∪ ΓN

sonic) for all ξ ∈ Ω,

where Ω is the pseudo-subsonic region of an admissible solution ϕ corresponding to (v∞, β).

Let A(p, z) be given by (3.2.3). The following proposition is essential to establish a priori

weighted C2,α estimates of admissible solutions:

Proposition 3.15. There exists a constant µ > 0 such that, if ϕ is an admissible solution
corresponding to (v∞, β) ∈ Rweak and Ω is its pseudo-subsonic region, then the pseudo-Mach
number given by

(3.3.6) M(ξ) :=
|Dϕ(ξ)|

c(|Dϕ|2(ξ), ϕ(ξ))
satisfies

(3.3.7) M2(ξ) ≤ 1− µgβ(ξ) in Ω,

and there exists a constant C > 1 such that

(3.3.8) C−1dist♭(ξ,ΓO
sonic ∪ ΓN

sonic)|κ|2 ≤
2∑

i,j=1

Ai
pj (Dϕ(ξ), ϕ(ξ))κiκj ≤ C|κ|2

for all ξ ∈ Ω and κ = (κ1, κ2) ∈ R
2, where constants µ and C are chosen depending only on (v∞, γ).

On the left-hand side of (3.3.8), dist♭(·, ·) is given by (3.3.5).
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Proof. Once (3.3.7) is proved, (3.3.8) is obtained directly from (3.3.7), Lemma 3.5, (3.3.1),
and Remark 3.14. Therefore, it now suffices to prove (3.3.7).

In this proof, ϕ represents any admissible solution corresponding to (v∞, β) ∈ Rweak with Ω
and Γshock being its pseudo-subsonic region and the curved transonic shock, respectively. Unless
otherwise specified, all the constants appearing in the proof are chosen depending only on (v∞, γ).
The proof is divided into four steps.

1. By Lemma 3.5, there exist constants R > 1 and ĉ > 1 such that

Ω ⊂ BR/2(0), ‖c(|Dϕ|2, ϕ)‖C0(Ω) ≤ ĉ, ‖gβ‖C2(Ω) ≤ ĉ

for gβ given by (3.3.3). Since OO ∈ {ξ2 = 0}, ∂ξ2gβ = 0 on {ξ2 = 0}. By Lemmas C.1–C.2, we
can choose constants C0 > 0, δ ∈ (0, 34C0), and µ1 ∈ (0, 1) so that, whenever µ ∈ (0, µ1], either

the inequality: M2 + µgβ ≤ C0δ < 1 holds in Ω, or the maximum of M2 + µgβ over Ω cannot be
attained in Ω ∪ Γwedge.

Since M2 + µgβ = 1 on ΓN
sonic, the maximum of M2 + µgβ must be attained on ∂Ω \ Γwedge.

2. Let ν be the unit normal vector to Γshock towards the interior of Ω, and let τ be a unit
tangent vector to Γshock.

Claim: There exist constants α ∈ (0, 12 ) and ζ ∈ (0, 1) such that M2(P ) ≤ 1− ζ when |ϕτ |2 ≤
α|ϕν |2 at P ∈ Γshock.

This claim is verified by adjusting the proof of [11, Lemma 9.6.2]. For a constant α ∈ (0, 12 )

to be specified later, assume that |ϕτ |2 ≤ α|ϕν |2 holds at P ∈ Γshock. Since ρϕν = ∂νϕ∞ and
ϕτ = ∂τϕ∞ hold along Γshock, we have

|Dϕ∞|2 − |∂νϕ∞|2 = |ϕτ |2 ≤ α|ϕν |2 ≤ α
(∂νϕ∞

ρ

)2
,

which yields that

|Dϕ∞|2 ≤
(
1 +

α

ρ2
)
|∂νϕ∞|2 at P ∈ Γshock.

We combine this inequality with Lemma 3.5 and Proposition 3.7 to obtain

|∂νϕ∞(P )|2 ≥ 1 + d0
1 + α/C

for some constants d0 > 0 and C > 1. Therefore, we can fix constants ᾱ ∈ (0, 12 ) and d1 > 0 small
so that |∂νϕ∞(P )| ≥ 1 + d1 when α ∈ [0, ᾱ].

Define M∞,ν := |∂νϕ∞(P )| and Mν := |ϕν(P )|
c(|Dϕ|2(P ),ϕ(P )) . Then it follows from (2.4.9) that

(
1 +

γ − 1

2
M2

ν

)
M

− 2(γ−1)
γ+1

ν =
(
1 +

γ − 1

2
(M∞,ν)

2
)
|M∞,ν |−

2(γ−1)
γ+1 .

Owing toM∞,ν = |∂νϕ∞(P )| ≥ 1+d1, there exists a constant ζ∗ ∈ (0, 1) satisfying thatM2
ν ≤ 1−ζ∗

at P ∈ Γshock. By the assumption that |ϕτ |2 ≤ α|ϕν |2 at P ∈ Γshock, we have

M2 ≤ (1 + α)M2
ν ≤ (1 + α)(1 − ζ∗) at P ∈ Γshock.

Therefore, we can further reduce α ∈ (0, ᾱ] so that the inequality right above implies that

M2 ≤ 1− ζ∗
2

=: 1− ζ at P ∈ Γshock.

The claim is verified.
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3. Let µ1 be the constant from Step 1. In this step, we follow the approach of [11, Steps 2–3
in the proof of Proposition 9.6.3] to find a constant µ ∈ (0, µ1] so that M2 + µgβ cannot attain its
maximum on Γshock. Here, we give an outline to see how such a constant µ is chosen. We refer to
[11, Proposition 9.6.3] for further details.

3-1. Suppose that the maximum of M2 + µgβ over Ω is attained at Pmax ∈ Γshock. Then
(M2 + µgβ)(Pmax) ≥ 1, which implies that

(3.3.9) M2(Pmax) ≥ 1− C∗µ

for some constant C∗ > 0. Moreover, we have

∂τ (M
2 + µgβ)(Pmax) = 0,(3.3.10)

∂ν(M
2 + µgβ)(Pmax) ≤ 0.(3.3.11)

For simplicity of notation, denote

(3.3.12) k(ξ) := µgβ(ξ) for ξ ∈ R
2.

By using (2.4.2) and (2.5.15), a direct computation yields that, for each unit vector w,

(3.3.13) (M2)w =

(
2 + (γ − 1)M2

)
D2ϕ[w, Dϕ] + (γ − 1)M2ϕw

c2
,

where we have defined

D2ϕ[q1,q2] := (D2ϕq1) · q2 for q1,q2 ∈ R
2.

By (3.3.13), we obtain from (3.3.10) that

(3.3.14) D2ϕ[τ , Dϕ] = − (γ − 1)M2ϕτ + c2kτ
2 + (γ − 1)M2

=: B1 at Pmax.

3-2. Next, we differentiate the Rankine-Hugoniot condition:

(3.3.15) (ρDϕ−Dϕ∞) ·D(ϕ∞ − ϕ) = 0 on Γshock

in the tangential direction τ of Γshock, and then use (2.4.1)–(2.4.2) and (ϕ∞ − ϕ)τ = 0 on Γshock

to obtain
(
ρD2ϕ τ − ρ

c2
(Dϕ · (D2ϕ τ ) + ϕτ )Dϕ

)
· (Dϕ∞ −Dϕ)

− (ρDϕ−Dϕ∞) · (D2ϕ τ + τ ) = 0 on Γshock.
(3.3.16)

Using the Rankine-Hugoniot conditions (3.3.15) and (ϕ∞ − ϕ)τ = 0 on Γshock, we see that
D(ϕ∞ − ϕ) = ∂ν(ϕ∞ − ϕ)ν = (ρ− 1)ϕνν. Then we obtain

Dϕ ·D(ϕ∞ − ϕ) = (ρ− 1)ϕ2
ν on Γshock.

Owing to the condition that (ϕ∞ − ϕ)τ = 0 on Γshock again, we have

(ρDϕ−Dϕ∞) · τ = (ρ− 1)ϕτ on Γshock.

We substitute the expressions of Dϕ ·D(ϕ∞ − ϕ) and (ρDϕ −Dϕ∞) · τ given above into (3.3.16)
to obtain

D2ϕ[τ , ρD(ϕ∞ − ϕ) +Dϕ∞]

= ρ(1 +
ρ− 1

c2
ϕ2
ν)D

2ϕ[τ , Dϕ] +
ρ

c2
(ρ− 1)ϕ2

νϕτ + (ρ− 1)ϕτ on Γshock.
(3.3.17)
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3-3. Define

M1 :=
|ϕν |

c(|Dϕ|2, ϕ) , M2 :=
|ϕτ |

c(|Dϕ|2, ϕ) .

We substitute the expression of D2ϕ[τ , Dϕ] given by (3.3.14) into the right-hand side of (3.3.17)
to obtain

D2ϕ[τ , ρD(ϕ∞ − ϕ) +Dϕ∞]

= ρ(1 + (ρ− 1)M2
1 )B1 + ρ(ρ− 1)M2

1ϕτ + (ρ− 1)ϕτ =: B2 at Pmax.
(3.3.18)

A direct computation shows that

(3.3.19) B2 =

(
2(ρ− 1)(1 + ρM2

1 )− (γ − 1)M2
)
ϕτ − c2ρ

(
1 + (ρ− 1)M2

1

)
kτ

2 + (γ − 1)M2
.

Apply α and ζ from Step 2, and assume that

(3.3.20) 0 < µ ≤ min
{
µ1,

ζ

2C∗

}
.

Then it follows from (3.3.9) and Step 2 that

(3.3.21) 0 < α|ϕν(Pmax)|2 < |ϕτ (Pmax)|2, or equivalently, 0 < αM2
1 (Pmax) < M2

2 (Pmax).

Using (3.3.9), (3.3.21), and α ∈ (0, 12 ), we have

(3.3.22) M2
2 (Pmax) >

α

2
(1− C∗µ).

We rewrite (3.3.14) and (3.3.18) as the following linear system for (ϕντ , ϕττ ):

A

(
ϕντ

ϕντ

)
=

(
B1

B2

)
at Pmax for A =

(
ϕν ϕτ

ρ2ϕν ϕτ

)
.

By (3.1.26) and (3.3.21), | detA| = |(ρ2 − 1)ϕνϕτ | > 0 at Pmax. Thus, (ϕντ , ϕντ ) can be written
as

(3.3.23) ϕντ =
B1 −B2

(1 − ρ2)ϕν

, ϕττ =
ρ2B1 −B2

(ρ2 − 1)ϕτ

at Pmax.

Note that Eq. (2.1.19) is invariant under a coordinate rotation. We rewrite Eq. (2.1.19) as

(3.3.24) (c2 − ϕ2
ν)ϕνν − 2ϕνϕτϕντ + (c2 − ϕ2

τ )ϕττ = |Dϕ|2 − 2c2 in Ω \ (ΓO
sonic ∪ ΓN

sonic),

and use this to express ϕνν in terms of (Mν ,Mτ ,M, ρ, ϕντ , ϕττ ). Then we use (3.3.23) to obtain

ϕνν =
M2 − 2

1−M2
1

− 1

1−M2
1

(
2M1M2

(ρ2 − 1)ϕν

+
ρ2(1−M2

2 )

(ρ2 − 1)ϕτ

)
B1

+
1

1−M2
1

(
1−M2

2

(ρ2 − 1)ϕτ

+
2M1M2

(ρ2 − 1)ϕν

)
B2 at Pmax.

(3.3.25)

Using (3.3.14), (3.3.19)–(3.3.23), and (3.3.25), we can also express (ϕντ , ϕνν) in terms of M,M1,
M2, ρ, ϕτ , ϕν , c, and kτ at Pmax ∈ Γshock.

3-4. Now we choose a constant µ ∈ (0, µ1] sufficiently small so that a contradiction is derived.
By (3.3.13), (3.3.11) can be written as

(
2 + (γ − 1)M2

)
(ϕτϕντ + ϕνϕνν) + (γ − 1)M2ϕν + c2kν ≤ 0 at Pmax.
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Using (3.3.12) and the expressions of (ϕντ , ϕνν) in terms of M,M1,M2, ρ, ϕτ , ϕν , c, and kτ , we
can further rewrite the inequality stated above as

(3.3.26) ∆ := 2M2
2 + 2(2ρ+ 1)M2

1 (M
2 − 1) + µ (l1∂νgβ − l2∂τ gβ) ≤ 0 at Pmax

for

l1 = c2ϕτ (ρ+ 1)(1−M2
1 ), l2 = c2

(1− ρ2)M2
1M

2
2 + ρ2M2

1 +M2
2

(ρ+ 1)ϕτ

.

By (3.3.9), Lemma 3.5, and the definition of gβ given in (3.3.3), there exists a constant C > 0
such that

2(2ρ+ 1)M2
1 (M

2 − 1) ≥ −Cµ at Pmax,

|l1| ≤ C on Γshock,

‖Dgβ‖C0(R2) ≤ C for all β ∈ [0, β
(v∞)
d ].

(3.3.27)

Moreover, by Lemma 3.5 and (3.3.22), we have

(3.3.28) |l2| ≤
1√

α(1 − C∗µ)
at Pmax.

From (3.3.22)–(3.3.28), we obtain

∆ ≥ α(1− C∗µ)− Cµ
(
1 +

1√
α(1− C∗µ)

)
at Pmax

for some constant C > 0, provided that µ satisfies (3.3.20). Therefore, there exists a constant

µ2 ∈ (0, µ∗
1] for µ

∗
1 = min{µ1,

ζ

2C∗
} such that, if 0 < µ ≤ µ2, then ∆ > α

8 > 0 holds at Pmax,

which contradicts (3.3.26). Therefore, we conclude that the maximum of M2
ϕ + µgβ over Ω must

be attained on ∂Ω \ (Γwedge ∪ Γshock), provided that µ > 0 is chosen sufficiently small, depending
only on (v∞, γ).

4. For constant µ2 given in Step 3, we fix a constant µ ∈ (0, µ2]. Then M
2
ϕ + µgβ satisfies

sup
Ω

(
M2
ϕ + µgβ

)
= sup

ΓO
sonic∪ΓN

sonic

(
M2
ϕ + µgβ

)
= 1.

This proves (3.3.7). �

Remark 3.16. By Remark 3.14 and (3.3.7) in Proposition 3.15, there exists a constant µel > 0
depending only on (v∞, γ) such that, if ϕ is an admissible solution corresponding to (v∞, β) ∈ Rweak,

(3.3.29) M2
ϕ(ξ) ≤ 1− µeldist

♭(ξ,ΓO
sonic ∪ ΓN

sonic) in Ω.

3.4. Uniform Weighted C2,α–Estimates Away From ΓO
sonic

According to Proposition 3.15, the ellipticity of Eq. (3.2.2) (or equivalently, Eq. (2.1.19))
depends on dist(ξ,ΓO

sonic ∪ ΓN
sonic). In particular, (3.3.5) indicates that the ellipticity of (3.2.2)

depends continuously on β ∈ (0, β
(v∞)
d ), even across β

(v∞)
s up to β

(v∞)
d . For this reason, we can

establish uniform weighted C2,α–estimates of admissible solutions.
We first estimate (weighted) C2,α–norms of admissible solutions away from ΓO

sonic. We will
discuss the uniform (weighted) C2,α–estimates of admissible solutions near ΓO

sonic in §3.5.
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3.4.1. C2,α–estimates away from ΓO
sonic ∪ ΓN

sonic. Fix γ ≥ 1 and v∞ > 0.
For a set U ⊂ R

2 and a constant ε > 0, define Nε(U) := {ξ ∈ R
2 : dist(ξ, U) < ε}.

Let C > 0 be the constant from Proposition 3.7. Then there exists a constant d0 > 0 depending
only on (v∞, γ) such that

(3.4.1) |Dϕ∞|2 ≥ 1 + d0 on N 1
2C

(Γshock).

(i) If γ = 1, then it follows directly from Definition 2.24 that any admissible solution ϕ satisfies
that |Dϕ| ≤ 1 in Ω. Thus, it follows from (3.4.1) that

(3.4.2) |Dϕ∞|2 − |Dϕ|2 ≥ d0 on N 1
2C

(Γshock) ∩Ω.

(ii) If γ > 1, then we can rewrite the Bernoulli law (2.4.2) as

(3.4.3) ργ−1 +
γ − 1

2

(
|Dϕ|2 + ϕ

)
= 1 +

γ − 1

2

(
|Dϕ∞|2 + ϕ∞

)
.

Let ϕ be an admissible solution corresponding to (v∞, β) ∈ Rweak. Since |Dϕ|2 ≤ ργ−1 and
ϕ∞ − ϕ ≥ 0 hold in Ω, we obtain from (3.4.1) and (3.4.3) that

γ + 1

2
ργ−1 ≥ ργ−1 +

γ − 1

2
|Dϕ|2 ≥ 1 +

γ − 1

2
(1 + d0) on N 1

2C
(Γshock) ∩ Ω.

This implies that ργ−1 − 1 ≥ δ0 for some constant δ0 > 0 depending only on (v∞, γ). Then

|Dϕ∞|2 − |Dϕ|2 =
2(ργ−1 − 1)

γ − 1
+ (ϕ∞ − ϕ) ≥ 2δ0

γ − 1
+ (ϕ∞ − ϕ) on N 1

2C
(Γshock) ∩ Ω.

Since ϕ∞ − ϕ = 0 on Γshock, it follows from (3.1.25) in Lemma 3.5 that there exist small constants
ε ∈ (0, 1

4C ) and δ
′
0 > 0 depending only on (γ, v∞) such that

(3.4.4) |Dϕ∞| − |Dϕ| ≥ δ′0 on Nε(Γshock) ∩Ω.

Let (r, θ) be the polar coordinates defined by (3.2.27). Note that |Dϕ∞| = −∂rϕ∞. Then
(3.4.2) and (3.4.4) imply that there exists a constant d1 > 0 depending only on (v∞, γ) such that

(3.4.5) ∂r(ϕ∞ − ϕ) ≤ −(|Dϕ∞| − |Dϕ|) ≤ −d1 on Nε(Γshock) ∩ Ω.

Therefore, by the implicit function theorem, there exists a unique function fO∞,sh(θ) such that

(3.4.6) Γshock = {r = fO∞,sh(θ), θP2 < θ < θP1},
where (fO∞,sh(θPj ), θPj ) represent the (r, θ)–coordinates of points Pj for j = 1, 2, given by Definition
2.23. By Lemma 3.5 and (3.4.5), there exists a constant C1 depending only on (v∞, γ) such that

(3.4.7) ‖fO∞,sh‖C0,1([θP2 ,θP1 ])
≤ C1.

Lemma 3.17. Fix γ ≥ 1 and v∞ > 0. There exists a constant δ1 > 0 depending only on (v∞, γ)
such that, if ϕ is an admissible solution corresponding to (v∞, β) ∈ Rweak, then

∂ν(ϕ∞ − ϕ) > δ1 on Γshock,(3.4.8)

∂νϕ∞ > ∂νϕ ≥ δ1 on Γshock(3.4.9)

for the unit normal vector ν = D(ϕ∞−ϕ)
|D(ϕ∞−ϕ)| to Γshock towards the interior of Ω.
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Proof. If ϕ is an admissible solution corresponding to (v∞, β), then it follows from (3.4.5)
and ϕ∞ − ϕ = 0 on Γshock that

(3.4.10) ∂ν(ϕ∞ − ϕ) = |D(ϕ∞ − ϕ)| ≥ |Dϕ∞| − |Dϕ| ≥ d1 on Γshock.

Since ∂νϕ = ∂νϕ∞

ρ(|Dϕ|2,ϕ) , ∂νϕ∞ > 1, and ρ(|Dϕ|2, ϕ) > 1 on Γshock, Lemma 3.5 yields that ∂νϕ∞ >

∂νϕ ≥ C−1 for a constant C > 0 depending only on (v∞, γ). The proof is completed by choosing
δ1 as

δ1 = min{d1, C−1}.
�

Lemma 3.18. Fix γ ≥ 1 and v∞ > 0. Let ϕ be an admissible solution corresponding to

(v∞, β) ∈ Rweak. Then, for each d > 0 and k = 2, 3, · · · , there exist constants s, Ck > 0 depending

only on (v∞, γ, d) such that, if P = (rP , θP ) ∈ Γshock in the (r, θ)–coordinates, defined by (3.2.27),
satisfies that dist(P,ΓO

sonic ∪ ΓN
sonic) ≥ d, then

(3.4.11) |DkfO∞,sh(θP )| ≤ Ck, |Dkϕ| ≤ Ck in Bs(P ) ∩ Ω.

Proof. The proof is divided into three steps.

1. Let ϕ be an admissible solution corresponding to (v∞, β) ∈ Rweak, and let Ω be its pseudo-
subsonic region. For a constant d > 0, define

Ωd := {ξ ∈ Ω : dist(ξ,ΓO
sonic ∪ ΓN

sonic) >
d

2
}.

Let E(ϕ,Ωd) be defined by (3.2.17). Moreover, for a constant R, let KR be given by (3.2.6).
By Lemma 3.5 and Proposition 3.15, there exists a constant Md > 0 depending only on (v∞, γ, d)
such that E(ϕ,Ωd) is contained in KMd

.

Let A(p, z) = (A1,A2)(p, z) and B(p, z) be defined by (3.2.3), and let (Ã, B̃)(p, z) be the
extensions of (A,B)(p, z) onto R

2 × R described in Lemma 3.8 with M =Md.

2. We express the Rankine-Hugoniot jump condition: ρDϕ · ν = Dϕ∞ · ν as

(3.4.12) gsh(Dϕ,ϕ, ξ) = 0 on Γshock

for gsh(p, z, ξ) defined by

(3.4.13) gsh(p, z, ξ) =
(
A(p, z)−Dϕ∞(ξ)

)
· Dϕ∞(ξ)− p

|Dϕ∞(ξ)− p| .

For δ1 > 0 from Lemma 3.17, define a smooth function ζ ∈ C∞(R) by

ζ(t) =

{
t on t ≥ 3

4δ1,
δ1
2 for t < δ1

2 ,
ζ′(t) ≥ 0 on R.

Also, we define an extension of gshmod(p, z, ξ) onto R
2 × R× Ωd by

(3.4.14) gshmod(p, z, ξ) =
(
Ã(p, z)−Dϕ∞(ξ)

)
· Dϕ∞(ξ)− p

ζ(|Dϕ∞(ξ)− p|) .

Fix a point P ∈ Γshock with dist(P,ΓO
sonic ∪ ΓN

sonic) > 2d for d > 0. Then ϕ satisfies

divÃ(Dϕ,ϕ) + B̃(Dϕ,ϕ) = 0 in Bd/2(P ) ∩ Ω,

gshmod(Dϕ,ϕ, ξ) = 0 on Bd/2(P ) ∩ Γshock.
(3.4.15)
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For ε > 0 from (3.4.5), define

R := min{d
2
, ε}.

Note that such a constant R > 0 is given depending only on (v∞, γ, d), but independent of ϕ and
P . By (3.4.5), we can write Dpg

sh
mod(Dϕ,ϕ, ξ) as

Dpg
sh
mod(Dϕ,ϕ, ξ) = Dp

(
(A(p, z, ξ)−Dϕ∞(ξ)) · n̂(p, ξ)

)
in BR(P ) ∩ Ω

for

n̂(p, ξ) =
Dϕ∞(ξ)− p

|Dϕ∞(ξ)− p| .

Since

n̂(p, ξ) ·
(
(A(p, z, ξ)−Dϕ∞(ξ))Dpn̂(p, ξ)

)
=

1

2
(A(p, z, ξ)−Dϕ∞(ξ)) ·Dp(|n̂(p, ξ)|2) = 0,

a direct computation yields that

Dpg
sh
mod(Dϕ,ϕ, ξ) · n̂(Dϕ, ξ) =

2∑

i,j=1

∂piÃj(Dϕ,ϕ, ξ)n̂in̂j =: λ̂(Dϕ, ξ) in BR(P ) ∩ Ω

for n̂i = êi · n̂(Dϕ, ξ).
By Lemma 3.8(ii), there exists a constant λd > 0 depending only on (v∞, γ, d) such that

Dpg
sh
mod(Dϕ,ϕ, ξ) · n̂(Dϕ, ξ) ≥ λd > 0 in BR(P ) ∩Ω.

This implies that

(3.4.16) |Dpg
sh
mod(Dϕ,ϕ, ξ)| ≥ Dpg

sh
mod(Dϕ,ϕ, ξ) · n̂(Dϕ, ξ) ≥ λd > 0 in BR(P ) ∩ Ω.

3. By estimate (3.1.25) of Lemma 3.5, (3.4.7), Lemma 3.8, and (3.4.16), the boundary value
problem (3.4.15) satisfies all the conditions necessary to apply Theorem C.8. Therefore, there exist
β ∈ (0, 1) and C > 0 depending only on (v∞, γ, d) such that

‖ϕ‖1,β,Bd/4(P )∩Ω ≤ C for all P ∈ Γshock ∩ Ωd.

Combining the C1,β–estimate of ϕ with (3.4.5) implies that fO∞,sh is C1,β away from θ =
θP1 , θP2 . Then we apply Theorem C.9 to the boundary value problem (3.4.15) to obtain the estimate:

‖ϕ‖2,β,Bd/8(P )∩Ω ≤ C for all P ∈ Γshock ∩ Ωd

for some constant C > 0 depending only on (v∞, γ, d). This implies that fO∞,sh is C1,α for any
α ∈ (0, 1) away from θ = θP1 , θP2 , so that ϕ is C2,α for any α ∈ (0, 1) on Γshock away from

ΓO
sonic ∪ ΓN

sonic by Theorem C.9.
Finally, the Ck–estimates, k = 2, 3, · · · , are obtained by a bootstrap argument via application

of Theorem C.9 and Corollary C.10. �

As a result, directly following from Lemmas 3.9 and 3.18, we conclude the following uniform
Ck–estimates of admissible solutions:

Corollary 3.19. Fix γ ≥ 1 and v∞ > 0. For each d > 0 and k = 2, 3, · · · , there exists a
constant Ck,d > 0 depending only on (v∞, γ, k, d) such that any admissible solution ϕ corresponding
to (v∞, β) ∈ Rweak satisfies

‖ϕ‖
k,Ω∩{dist(ξ,ΓO

sonic∪ΓN
sonic)>d}

≤ Ck,d.
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3.4.2. C2,α–estimates near ΓN
sonic. For fixed γ ≥ 1 and v∞ > 0, the sonic arc ΓN

sonic, defined
by Definition 2.23 corresponding to the normal shock part of each admissible solution, is fixed to be
the same for all β ∈ (0, π2 ). By Definition 2.24(ii) and Proposition 3.15, the ellipticity of Eq. (3.2.2)

(or equivalently, Eq. (2.1.19)) degenerates near ΓN
sonic. In order to establish a uniform weighted

C2,α–estimate of admissible solutions up to ΓN
sonic, the method of parabolic scaling is employed. We

keep following Definition 2.23 for the notations used hereafter.
Define

(3.4.17) ĉN :=
cN + ξN2

2
.

Note that ĉN is the same for all β ∈ [0, π2 ). In UN :=
(
B 3cN

2
(ON ) \ BĉN (ON )

)
∩ {ξ : ξ1 > 0}, let

(r, θ) be the polar coordinates with respect to ON = (0, 0). Define

(3.4.18) (x, y) := (cN − r, θ).

Let ϕ be an admissible solution corresponding to (v∞, β) ∈ Rweak, and let Ω be its pseudo-subsonic
region. Define

(3.4.19) ΩN :=
(
Ω ∩ {ξ1 > 0}

)
\BĉN (ON ).

Then ΩN ⊂ BcN (ON ) and ΩN ⊂ {(x, y) : x > 0}.
In ΩN , we define a function ψ by

(3.4.20) ψ := ϕ− ϕN in ΩN .

We rewrite Eq. (2.1.19) and the boundary conditions (2.5.35)–(2.5.37) in the (x, y)–coordinates as
follows:

(i) Equation for ψ in ΩN : For each j = 1, · · · , 5, define ON
j (p, z, x) by

ON
j (p, z, x) := Oj(p, z, x, cN )

for Oj(p, z, x, c) given by (3.2.29). Then Eq. (2.1.19) is written as

(3.4.21)
(
2x− (γ + 1)ψx +ON

1

)
ψxx +ON

2 ψxy +
( 1

cN
+ON

3

)
ψyy −

(
1 +ON

4

)
ψx +ON

5 ψy = 0,

with ON
j = ON

j (Dψ,ψ, x) for j = 1, · · · , 5.
(ii) Boundary condition for ψ on Γshock ∩ ∂ΩN : By the definitions of (ϕ∞, ϕN ) given in Defi-

nition 2.23, we rewrite the condition that ϕ∞ − ϕ = 0 on Γshock ∩ ΩN as

ξ2 = ξN2 − ψ

v∞
on Γshock ∩ ΩN .

For gshmod(p, z, ξ) given by (3.4.14), we define

(3.4.22) M(p, z, ξ1) := gshmod(p+DϕN , z + ϕN , ξ1, ξ
N
2 − z

v∞
)

with (DϕN , ϕN ) evaluated at (ξ1, ξ
N
2 − z

v∞
). Then the boundary condition (2.5.37) is written as

M(Dψ,ψ, ξ1) = 0 on Γshock. Denote

φN∞ := ϕ∞ − ϕN .

Then |D(φN∞ − ψ)| = |∂ν(ϕ∞ − ϕ)| > 0 on Γshock. Rewriting the boundary condition |D(φN∞ −
ψ)|M(Dψ,ψ, ξ1) = 0 on Γshock ∩ ∂ΩN in the (x, y)–coordinates, we obtain

(3.4.23) BN
1 (ψx, ψy, ψ, x, y) = 0 on Γshock ∩ ∂ΩN
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for BN
1 (px, py, z, x, y) defined by

(3.4.24) BN
1 (px, py, z, x, y) := |DφN∞ − p|M(p, z, ξ1)

with

(3.4.25) ξ1 = (cN − x) cos y, p =

(
− cos y − sin y
− sin y cos y

)(
px
py

cN−x

)
.

(iii) Other properties of ψ: By (2.1.30) and Definition 2.24(ii)–(iv), ψ satisfies

ψ ≥ 0 in ΩN ,

ψ = 0 on ΓN
sonic,

ψy = 0 on Γwedge ∩ ∂ΩN .

(3.4.26)

For each β ∈ [0, π2 ), let D be defined by (2.5.27), and define

ΛN := D ∩
(
B 3cN

2
(ON ) \BĉN (ON )

)
∩ {ξ1 > 0}.

Note that ΛN is the same for all β ∈ [0, π2 ), and ΛN ⊂ {ξ2 < ξN2 }.
By using the definitions of (ΓN

sonic, ϕ∞, ϕN ) given in Definition 2.23, the following lemma can
be directly verified:

Lemma 3.20. Fix γ ≥ 1 and v∞ > 0. There exist positive constants ε1, ε0, δ0, ω0, C, and M

depending only on (v∞, γ) with ε1 > ε0 and M ≥ 2 so that the following properties hold:

(a) {ϕN < ϕ∞} ∩ ΛN ∩ Nε1(Γ
N
sonic) ⊂ {0 < y < π

2 − δ0}, where Nε(Γ) denotes the ε–
neighborhood of a set Γ in the ξ–coordinates;

(b) {ϕN < ϕ∞} ∩ Nε1(Γ
N
sonic) ∩ {y > yP2} ⊂ {x > 0};

(c) In {(x, y) : |x| < ε1, 0 < y < π
2 − δ0}, φN∞ = ϕ∞ − ϕN satisfies

(3.4.27)
2

M
y ≤ ∂xφ

N
∞(x, y) ≤ M

2
,

2

M
≤ −∂yφN∞ ≤ M

2
;

(d) |(D2
(x,y), D

3
(x,y))φ

N
∞| ≤ C in {|x| < ε1};

(e) There exists a unique function f̂N ,0 ∈ C∞([−ε0, ε0]) such that

(3.4.28){
{ϕN < ϕ∞} ∩ ΛN ∩ Nε1(Γ

N
sonic) ∩ {|x| < ε0} = {(x, y) : |x| < ε0, 0 < y < f̂N ,0(x)},

SN ∩ Nε1(Γ
N
sonic) ∩ {|x| < ε0} = {(x, y) : x ∈ (−ε0, ε0), y = f̂N ,0(x)};

(f) f̂N ,0 in (e) satisfies

2ω0 ≤ f̂ ′
N ,0 ≤ C on (−ε0, ε0).

Let Ω be the pseudo-subsonic region of an admissible solution ϕ corresponding to (v∞, β) ∈
Rweak. For ε ∈ (0, ε1], define a set ΩN

ε by

(3.4.29) ΩN
ε := Ω ∩ Nε̂(Γ

N
sonic) ∩ {x < ε}

for some ε̂ = ε̂(ε, ω0) > ε.
Note that ΩN

ε ⊂ {0 < x < ε}.
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Lemma 3.21. Let ε0, ω0, and M be from Lemma 3.20. Then there exist constants ε̄ ∈ (0, ε0],
L ≥ 1, δ ∈ (0, 12 ), and ω ∈ (0, ω0] ∩ (0, 1) depending only on (v∞, γ) such that, whenever ε ∈ (0, ε̄],

any admissible solution ϕ = ψ + ϕN satisfies the following properties in ΩN
ε :

(a) ψx(x, y) ≤ 2−δ
1+γx ≤ Lx;

(b) ψx ≥ 0 and |ψy(x, y)| ≤ Lx;

(c) 2
M
y − 2−δ

1+γx ≤ ∂x(ϕ∞ − ϕ)(x, y) ≤ M and 1
M

≤ −∂y(ϕ∞ − ϕ) ≤ M;

(d) there exists a unique function f̂N ,sh ∈ C1([0, ε]) such that

ΩN
ε = {(x, y) : x ∈ (0, ε), 0 < y < f̂N ,sh(x)},

Γshock ∩ ∂ΩN
ε = {(x, y) : x ∈ (0, ε), y = f̂N ,sh(x)},

ω ≤ f̂ ′
N ,sh(x) ≤ L for 0 < x < ε;

(e) 0 ≤ ψ(x, y) ≤ Lx2.

Proof. We divide the proof into four steps.

1. By (3.3.8) and (3.4.21), there exists a constant δ̄ ∈ (0, 14 ) depending only on (v∞, γ) such
that

(3.4.30) 2x− (γ + 1)ψx +ON
1 (Dψ(x, y), ψ(x, y), x) ≥ 2δ̄x in ΩN

for ΩN defined by (3.4.19). Since ON
1 (Dψ(x, y), ψ(x, y), x) ≤ (γ+1)

cN
xψx by (3.2.29) and (3.4.26), we

obtain from (3.4.30) that

ψx(x, y) ≤
2− 2δ̄

(1 + γ)(1− ε̄0
cN

)
x in ΩN

ε̄0

for

ε̄0 = min{cN − ĉN , ε0},
where ĉN is given by (3.4.17). Then ε̄ ∈ (0, ε0] can be chosen, depending only on (v∞, γ), so that
ψ satisfies

ψx(x, y) ≤
2− δ̄

1 + γ
x in ΩN

ε̄ .

This proves statement (a).
By Lemma 3.6, (3.4.18), and (3.4.25), we have

(3.4.31) ψx cos y +
ψy

cN − x
sin y ≥ 0, ψx sin y −

ψy
cN − x

cos y ≥ 0 in ΩN .

By property (f) of Lemma 3.20, there exists a constant δ1 ∈ (0, π10 ) depending only on (v∞, γ) such
that

(3.4.32) ΩN ⊂ {0 < y <
π

2
− δ1}.

Then (3.4.31), combined with statement (a), yields that

(3.4.33) 0 ≤ ψx(x, y) ≤
2− δ̄

1 + γ
x in ΩN

ε̄ .

Owing to (3.4.32), the second inequality in (3.4.31) is equivalent to

ψy(x, y) ≤ (cN − x)ψx(x, y) tan y in ΩN .
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Then it follows directly from (3.4.33) that

(3.4.34) ψy ≤ Cx in ΩN
ε̄

for a constant C > 0 chosen depending only on (v∞, γ).

2. In order to obtain a lower bound of ψy by a linear function of x near ΓN
sonic, a different

approach is used.
By Proposition 3.11 and (3.4.32), there exists δ′1 ∈ (0, π10 ) depending only on (v∞, γ) such that

(3.4.35) ∂ΩN ∩ Γshock ⊂ {δ′1 ≤ y ≤ π

2
− δ′1},

where Γshock denotes the curved pseudo-transonic shock of ϕ. Thus, the first inequality in (3.4.31)
is equivalent to ψy(x, y) ≥ −(cN −x)ψx(x, y) cot y on ΩN ∩Γshock. Then (3.4.33) implies that there
exists a constant Csh > 0 depending only on (v∞, γ) such that

(3.4.36) ψy ≥ −Csh x on Γshock ∩ ∂ΩN
ε̄ .

By (3.4.26), we have

(3.4.37) ψy = 0 on ΓN
sonic ∪ (Γwedge ∩ ∂ΩN

ε̄ ).

By (3.1.25) in Lemma 3.5, there exists a constant Cin > 0 depending only on (v∞, γ) such that ψ
satisfies

(3.4.38) ψy ≥ −Cin on ΩN .

3. By adjusting Step 3 in the proof of [11, Lemma 11.2.6], the following lemma holds:

Lemma 3.22. Fix constants γ ≥ 1, c > 0, and r0 ∈ (0, c2 ]. Given an open set

U ⊂ {(x, y) ∈ R
2 : 0 < x < r0},

assume that a function ψ ∈ C3(U) satisfies the equation:

Npl(ψ) :=
(
2x− (γ + 1)ψx +O1

)
ψxx +O2ψxy +

(1
c
+ O3

)
ψyy − (1 +O4)ψx +O5ψy = 0 in U,

with Oj = Oj(Dψ(x, y), ψ(x, y), x, c) for j = 1 · · · , 5, where each Oj(px, py, z, x, c) is defined by

(3.2.29). Moreover, let ψ satisfy the following inequalities:

ψ ≥ 0, 0 ≤ ψx ≤ 2− δ0
1 + γ

x in U,

for some constant δ0 ∈ (0, 1). Then there exists a constant ε ∈ (0, r0) depending only on (γ, c, δ0)
so that ∂yNpl(ψ) = 0 is rewritten as a linear equation for w := ψy in the following form:

Lψ(w) :=
(
2x− (γ + 1)O1

)
wxx +O2wxy +

(1
c
+O3

)
wyy

+ b
(ψ)
1 wx + b

(ψ)
2 wy + b

(ψ)
0 w = 0 in U ∩ {x < ε},

(3.4.39)

with

(3.4.40) b
(ψ)
1 ≤ 0, b

(ψ)
0 ≤ 0 in U ∩ {x < ε}.
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By Definition 2.24(iv) and (3.4.33), we can apply Lemma 3.22 to ψ = ϕ − ϕN . Therefore, we
can further reduce constant ε̄ ∈ (0, ε0] depending only on (v∞, γ) so that ψy satisfies the elliptic
equation:

Lψ(ψy) = 0 in ΩN
ε̄ .

For constants Csh and Cin from (3.4.36) and (3.4.38), respectively, we chooseM := max{Csh,
Cin

ε̄ }.
Then w = ψy satisfies

w +Mx ≥ 0 on ∂ΩN
ε̄ ,

Lψ(w +Mx) = Lψ(Mx) =M
(
b
(ψ)
1 + b

(ψ)
0 x

)
≤ 0 in ΩN

ε̄ .

The second inequality stated above is obtained from (3.4.40). Note that constant M is chosen
depending only on (v∞, γ). By the maximum principle, we obtain

w(x, y) ≥ −Mx in ΩN
ε̄ .

Combining this with (3.4.33)–(3.4.34) yields statement (b) of Lemma 3.21.

4. By Lemma 3.20(c) and Lemma 3.21(b), we have

∂x(ϕ∞ − ϕ) ≤ ∂xφ
N
∞ ≤ M

2
in ΩN

ε̄ .

By Lemma 3.20(c) and Lemma 3.21(a), we obtain

∂x(ϕ∞ − ϕ)(x, y) = ∂xφ
N
∞(x, y)− ψx ≥ 2y

M
− 2− δ

1 + γ
x in ΩN

ε̄ .

The estimate of ∂y(ϕ∞ − ϕ) stated in statement (c) of Lemma 3.21 is similarly obtained.

The existence of a function f̂N ,sh : [0, ε̄] → R
+ satisfying statement (d) directly follows from

ϕ∞ − ϕ = 0 on Γshock, Lemma 3.21(c), and the implicit function theorem.
Finally, statement (e) directly follows from statements (a)–(b) and (d) of Lemma 3.21, and

Definition 2.24(iv). �

Lemma 3.23. Write Eq. (3.4.21) in ΩN as

2∑

i,j=1

ÂN
ij (Dψ,ψ, x)D

2
ijψ +

2∑

i=1

ÂN
i (Dψ,ψ, x)Diψ = 0,

with (D1, D2) = (Dx, Dy) and Â
N
21 = ÂN

12. Then there exist εN ∈ (0, ε̄4 ] and λN > 0 depending only

on (v∞, γ) such that, for any admissible solution ϕ = ψ + ϕN corresponding to (v∞, β) ∈ Rweak, if

(x, y) ∈ ΩN
4εN

, then

(3.4.41)
λN
2

|κ|2 ≤
2∑

i,j=1

ÂN
ij (Dψ(x, y), ψ(x, y), x)

κiκj

x2−
i+j
2

≤ 2

λN
|κ|2 for all κ = (κ1, κ2) ∈ R

2.

Moreover, BN
1 defined by (3.4.24) satisfies the following properties:

(a) BN
1 (0, 0, x, y) = 0 for all (x, y) ∈ R

2;

(b) For each k = 2, 3, · · · , there exist constants δbc > 0 and C > 1 depending only on (v∞, γ, k)
such that, whenever |(px, py, z, x)| ≤ δbc and |y − yP2 | ≤ δbc,

|Dk
(px,py,z,x,y)

BN
1 (px, py, z, x, y)| ≤ C;
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(c) There exist constants δ̂bc > 0 and C > 1 depending only on (v∞, γ) such that, whenever

|(px, py, z, x)| ≤ δ̂bc and |y − yP2 | ≤ δ̂bc,

D(px,py,z)B
N
1 (px, py, z, x, y) ≤ −C−1.

In (b) and (c) above, yP2 represents the y–coordinate of point P2, defined by Definition 2.23.

Proof. (3.4.41) can be checked directly from (3.2.29). Properties (a)–(b) of BN
1 are the results

directly following from the definition of ϕN , (3.4.13), (3.4.22), and (3.4.24).
A direct calculation by using the definition of ϕN in Definition 2.23, (3.2.3)–(3.2.4), (3.4.13),

(3.4.22), and (3.4.24) yields that

∂zBN
1 (0, 0, 0, yP2) = −ρN v∞ξ

N
2

c2N
,

∂pxBN
1 (0, 0, 0, yP2) = −ρN − 1

cN
(ξN1 )2,

∂pyBN
1 (0, 0, 0, yP2) = −ξ

N
1

c2N

(
ρN v∞ + (ρN − 1)ξN2

)
.

Then property (c) is obtained by combining the results stated immediately above with property
(b). �

Lemma 3.24. Let ε0 > 0 and L ≥ 1 be the constants from Lemma 3.20 and Lemma 3.21,
respectively. Then there exist constants ε ∈ (0, ε02 ] and C > 0 depending only on (v∞, γ) such

that any admissible solution ϕ = ϕN + ψ corresponding to (v∞, β) ∈ Rweak satisfies the following

equation:
2∑

i,j=1

Â
(mod)
ij (Dψ,ψ, x)Dijψ +

2∑

i=1

Â
(mod)
i (Dψ,ψ, x)Diψ = 0 in ΩN

ε ,

with coefficients (Â
(mod)
ij , Â

(mod)
i ) satisfying the following properties:

(a) (Â
(mod)
ij , Â

(mod)
i ) = (ÂN

ij , Â
N
i ) in {(px, py, z, x) : |(px, py)| ≤ Lx, |z| ≤ Lx2, x ∈ (0, ε)},

(b) |(Â(mod)
11 , Â

(mod)
12 , Â

(mod)
2 )(px, py, z, x)| ≤ Cx in R

2 × R× (0, ε),

(c) ‖(Â(mod)
22 , Â

(mod)
1 )‖0,R2×R×(0,ε) ≤ C,

(d) ‖D(px,py,z,x)(Â
(mod)
ij , Â

(mod)
i )‖0,R2×R×(0,ε) ≤ C.

Proof. This lemma can be proved by adjusting the proof of [11, Corollary 11.2.12].
Choose a function η ∈ C∞(R) such that 0 ≤ η ≤ 1 with η(t) = 1 for |t| ≤ L and η(t) = 0 for

|t| ≥ 2L. For such a function η, we define (Â
(mod)
ij , Â

(mod)
i ) by

(3.4.42) (Â
(mod)
ij , Â

(mod)
i )(px, py, z, x) = (ÂN

ij , Â
N
i )(xη(

px
x
), xη(

py
x
), x2η(

z

x2
), x).

Then Lemma 3.24 directly follows from (3.4.21) and Lemma 3.21. �

For the uniform weighted C2,α–estimates of admissible solutions near ΓN
sonic, we recall the

definition of the norm introduced in [10].

Definition 3.25 (Parabolic norms). Fix a constant α ∈ (0, 1).
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(i) For z = (x, y), z̃ = (x̃, ỹ) ∈ R
2 ∩ {x > 0}, define

δ(par)α (z, z̃) :=
(
|x− x̃|2 +max{x, x̃}|y − ỹ|2

)α
2 .

(ii) Let D be an open set in R
2∩{x > 0}. For a function u ∈ C2(D) in the (x, y)–coordinates,

define

‖u‖(par)2,0,D :=
∑

0≤k+l≤2

sup
z∈D

(
xk+

l
2−2|∂kx∂lyu(z)|

)
,

[u]
(par)
2,α,D :=

∑

k+l=2

sup
z,z̃∈D,z 6=z̃

(
min

{
xα+k+

l
2−2, x̃α+k+

l
2−2
} |∂kx∂lyu(z)− ∂kx∂

l
yu(z̃)|

δ
(par)
α (z, z̃)

)
,

‖u‖(par)2,α,D := ‖u‖(par)2,0,D + [u]
(par)
2,α,D.

(iii) Fix an open interval I := (0, a). For a function f ∈ C2(I), define

‖f‖(par)2,0,I :=
2∑

k=0

sup
x∈I

(
xk−2|∂kxf(x)|

)
,

[f ]
(par)
2,α,I := sup

x,x̃∈I,x 6=x̃

(
min{xα, x̃α} |∂

2
xf(x) − ∂2xf(x̃)|

|x− x̃|α
)
,

‖f‖(par)2,α,I := ‖f‖(par)2,0,I + [f ]
(par)
2,α,I .

(iv) Given constants σ > 0, α ∈ (0, 1), and m ∈ Z+, define

‖u‖(σ),(par)m,0,D :=
∑

0≤k+l≤m
sup
z∈D

(
xk+

l
2−σ|∂kx∂lyu(z)|

)
,

[u]
(σ),(par)
m,α,D :=

∑

k+l=m

sup
z,z̃∈D,z 6=z̃

(
min

{
xα+k+

l
2−σ, x̃α+k+

l
2−σ

} |∂kx∂lyu(z)− ∂kx∂
l
yu(z̃)|

δ
(par)
α (z, z̃)

)
,

‖f‖(σ),(par)m,0,I :=

m∑

k=0

sup
x∈I

(
xk−σ|∂kxf(x)|

)
,

[f ]
(σ),(par)
m,α,I := sup

x,x̃∈I,x 6=x̃

(
min

{
xα+m−σ, x̃α+m−σ} |∂mx f(x)− ∂mx f(x̃)|

|x− x̃|α
)
,

‖u‖(σ),(par)m,α,D := ‖u‖(σ),(par)m,0,D + [u]
(σ),(par)
m,α,D , ‖f‖(σ),(par)m,α,I := ‖f‖(σ),(par)m,0,I + [f ]

(σ),(par)
m,α,I .

Note that norm ‖ · ‖(par)2,α,D in (ii) is norm ‖ · ‖(2),(par)2,α,D above here.

(v) Denote by Cm,α(σ),(par)(D) the completion of set {u ∈ C∞(D) : ‖u‖(σ),(par)m,α,D < ∞} under

norm ‖ · ‖(σ),(par)m,α,D .

Proposition 3.26. Let εN > 0 be from Lemma 3.23. For each α ∈ (0, 1), there exists C > 0
depending only on (v∞, γ, α) such that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak

satisfies

(3.4.43) ‖ϕ− ϕN ‖(par)
2,α,ΩN

εN

+ ‖f̂N ,sh − f̂N ,0‖(par)2,α,(0,εN ) ≤ C.

Proof. The proof is divided into six steps.
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1. Re-scaling coordinates . Fix ε ∈ (0, εN2 ]. For z0 := (x0, y0) ∈ ΩN
ε \ΓN

sonic and r ∈ (0, 1], define

R̃z0,r := {(x, y) : |x− x0| <
r

4
x0, |y − y0| <

r

4

√
x0}, Rz0,r := R̃z0,r ∩ΩN

2ε.

If ε ≤ y2P2
and z0 ∈ Γshock ∩ ΩN

ε , then it follows from Lemma 3.21(d) that

(3.4.44) Rz0,1 ⊂ {(x, y) :
3

4
x0 < x <

5

4
x0}.

For r > 0, define the sets:

Qr := (−r, r)2, Q(z0)
r := {(S, T ) ∈ Qr : z0 +

1

4
(x0S,

√
x0 T ) ∈ Rz0,r}.

2. Re-scaled function ψ(z0). Let ψ be given by (3.4.20). For z0 ∈ ΩN ∩Γshock, define a function
ψ(z0)(S, T ) by

ψ(z0)(S, T ) =
1

x20
ψ(x0 +

x0
4
S, y0 +

√
x0

4
T ) for (S, T ) ∈ Q

(z0)
1 .

By Lemma 3.21 and (3.4.44), we have

|ψ(z0)| ≤ L, |ψ(z0)
S | ≤ L, |ψ(z0)

T | ≤ Lx
−1/2
0 in Q

(z0)
1/2 .

Moreover, Lemma 3.24 implies that ψ(z0) satisfies the equation:

2∑

i,j=1

A
(z0)
ij (Dψ(z0), ψ(z0), S)Dijψ

(z0) +

2∑

i=1

A
(z0)
i (Dψ(z0), ψ(z0), S)Diψ

(z0) = 0 in Q
(z0)
1/2 ,

where (D1, D2) = (DS , DT ), Dij = DiDj, and

A
(z0)
ij (p1, p2, z, S) := x

i+j
2 −2

0 A
(mod)
ij (4x0p1, 4x

3/2
0 p2, x

2
0z, x0(1 +

S

4
)),

A
(z0)
i (p1, p2, z, S) :=

1

4
x

i−1
2

0 A
(mod)
i (4x0p1, 4x

3/2
0 p2, x

2
0z, x0(1 +

S

4
)).

For f̂N ,sh given in Lemma 3.21(d), we define

(3.4.45) F (z0)(S) :=
4√
x0

(
f̂N ,sh(x0 +

x0
4
S)− f̂N ,sh(x0)

)
for −1 < S < 1.

It follows directly from Lemma 3.21(d) and (3.4.45) that F (z0) satisfies

(3.4.46) F (z0)(0) = 0, ‖F (z0)‖C1([−1,1]) ≤ C
√
x0

for some constant C > 0 depending only on (v∞, γ). Therefore, there exists ε∗ ∈ (0, ε̄2 ] depending

only on (v∞, γ) such that F (z0)(S) > − r
2 for S ∈ (−r, r), whenever r ∈ (0, 1) and z0 ∈ ΩN

ε∗ ∩Γshock.

For z0 ∈ ΩN
ε∗ ∩ Γshock, define

Γ
(z0)
shock := {(S, T ) : S ∈ (−1, 1), T = F (z0)(S)} ⊂ ∂Q

(z0)
1 .

Then dist(Γ
(z0)
shock, ∂Q

(z0)
1 ∩ {T = −1}) ≥ 1

2 .
By Lemma 3.21(a)–(b) and (e), we can fix a small constant ε∗ ∈ (0, ε̄2 ] depending only on

(v∞, γ) so that any admissible solution satisfies

|(ψx, ψy, ψ, y − yP2)| ≤
1

4
min{δbc, δ̂bc} in ΩN

2ε∗
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for constants (δbc, δ̂bc) from Lemma 3.23. Then we apply Lemma 3.23(c) and the implicit function
theorem to rewrite the boundary condition (3.4.23) as

(3.4.47) ψx = bN (ψy, ψ, x, y) on Γshock ∩ΩN
2ε∗
.

By Lemma 3.23(a)–(b), we have

bN (0, 0, x, y) = 0 in ΩN
2ε∗
,

|DkbN (py, z, x, y)| ≤ Ck in R× R× ΩN
2ε∗

for k = 1, 2, 3, · · · ,
(3.4.48)

where constants Ck > 0 depend only on (v∞, γ, k).
For each z0 ∈ Γshock ∩ΩN

ε∗ , denote

(3.4.49) B
(z0)
N (pT , z, S, T ) :=

1

4x0
bN (4x

3/2
0 pT , x

2
0z, x, y) for (x, y) = z0 + (x0

4 S,
√
x0

4 T ).

It follows directly from (3.4.48) that there exists a constant m1 > 0 depending only on (v∞, γ) such
that

B
(z0)
N (0, 0, S, T ) = 0 in Q

(z0)
1 ,

‖∂pTB(z0)
N (pT , z, ·)‖

0,Q
(z0)
1

≤ m1
√
x0 for all (pT , z) ∈ R× R,

‖D(pT ,z)B
(z0)
N (pT , z, ·)‖

1,Q
(z0)
1

≤ m1
√
x0 for all (pT , z) ∈ R× R.

(3.4.50)

By (3.4.47), ψ(z0) satisfies

(3.4.51) ψ
(z0)
S = B

(z0)
N (ψ

(z0)
T , ψ(z0), S, T ) on Γ

(z0)
shock.

3. Uniform estimates of ψ(z0) for z0 ∈ Γshock. By (3.4.46) and (3.4.50), we can apply Theorem
C.5 to find constants (ε, δ, C) ∈ (0, ε∗]× (0, 1)× (0,∞) depending only on (v∞, γ) so that, for any

z0 ∈ ΩN
ε ∩ Γshock, we have

(3.4.52) ‖ψ(z0)‖
1,δ,Q

(z0)

3/4

≤ C.

By (3.4.45), for each z0 ∈ ΩN
ε ∩ Γshock, φ

N
∞ = ϕ∞ − ϕN satisfies

(3.4.53) φN∞(x0 +
x0
4
S, f̂N ,sh(x0) +

√
x0
4
F (z0)(S))− x20ψ

(z0)(S, F (z0)(S)) = 0 for −1 < S < 1.

Differentiating (3.4.53) with respect to S, we have

(3.4.54) (F (z0))′ = −
√
x0(∂xφ

N
∞ − 4x0∂Sψ

(z0))

∂yφN∞ − 4x
3/2
0 ∂Tψ(z0)

.

By combining this expression with Lemma 3.20(c) and (3.4.52), a direct computation shows that
there exists a small constant ε ∈ (0, ε∗] depending on (v∞, γ) such that F (z0) satisfies the estimate:

(3.4.55) ‖F (z0)‖1,δ,[−3/4,3/4] ≤ C
√
x0 for all z0 = (x0, y0) ∈ Γshock ∩ΩN

ε

for some constant C > 0 depending only on (v∞, γ).
This result, combined with Lemma 3.18, yields that Γshock is C1,δ up to ΓN

sonic away from ΓO
sonic.

Next, it follows directly from (3.4.55) and a direct computation by using (3.4.48)–(3.4.49) that
the boundary condition (3.4.51) satisfies all the conditions stated in Theorem C.6 with (α,Φ,W ) =

(δ, 1√
x0
F (z0), B

(z0)
N ) for all z0 ∈ Γshock ∩ ∂ΩN

ε , where ε > 0 is the constant in (3.4.55). Therefore,
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we can further reduce ε ∈ (0, ε∗] depending on (v∞, γ) so that, for each z0 ∈ Γshock ∩ ∂ΩN
ε , the

re-scaled function ψ(z0) satisfies the estimate:

(3.4.56) ‖ψ(z0)‖
2,δ,Q

(z0)

1/2

≤ C,

where C depends only on (v∞, γ).
We combine estimate (3.4.56) with (3.4.54) to see that F (z0) ∈ C1,α([− 1

2 ,
1
2 ]) for any α ∈ (0, 1).

Furthermore, we have

sup
z0∈Γshock∩∂ΩN

ε

1√
x0

‖F (z0)‖1,α,[− 1
2 ,

1
2 ]

≤ C,

where C > 0 depends only on (v∞, γ). Then we can repeat the previous argument by applying
Theorem C.6 to conclude that, for each α ∈ (0, 1), the small constant ε ∈ (0, ε∗] can be further
reduced so that

sup
z0∈Γshock∩∂ΩN

ε

‖ψ(z0)‖
2,α,Q

(z0)

1/4

+
1√
x0

‖F (z0)‖2,α,[− 1
4 ,

1
4 ]

≤ C,

where C > 0 is a constant depending only on (v∞, γ, α).

4. Uniform estimates of ψ(z0) for z0 6∈ Γshock. If Q
(z0)
1 = Q1, we apply Theorem C.3 to obtain

that, for each α ∈ (0, 1), ‖ψ(z0)‖
2,α,Q

(z0)

1/2

is uniformly bounded above by a constant depending

only on (v∞, γ, α). If z0 ∈ Γwedge ∩ ∂ΩN
ε , then Q

(z0)
1 = Q1 ∩ {T > 0}, and ψ(z0) satisfies that

ψ
(z0)
T (S, 0) = 0 for all −1 < S < 1. This is owing to the slip boundary condition (3.4.37). In this

case, we apply Theorem C.7 to obtain a uniform estimate of ‖ψ(z0)‖
2,α,Q

(z0)

1/2

for all z0 ∈ Γwedge∩∂ΩN
ε .

5. Estimate for ‖ϕ−ϕN‖(par)
2,α,ΩN

εN

. Since the estimates of ‖ψ(z0)‖
2,α,Q

(z0)

1/8

are given independently

of z0 ∈ ΩN
ε \ΓN

sonic and β ∈ [0, β
(v∞)
d ), the estimate of ‖ϕ−ϕN ‖(par)

2,α,ΩN
εN

in (3.4.43) is finally obtained

by combining the uniform Ck–estimate of admissible solutions given in Corollary 3.19 and all the
estimates of ‖ψ(z0)‖

2,α,Q
(z0)

1/8

from Steps 3–4, and by scaling back to the (x, y)–coordinates. For the

details, we refer to [1, Steps 3–4 in the proof of Theorem 3.1] or [11, Lemma 4.6.1].

6. Estimate for ‖f̂N ,sh − f̂N ,0‖(par)2,α,(0,εN ). By Lemma 3.20(e) and Lemma 3.21(d), we have

φN∞(x, f̂N ,0(x)) = 0, (φN∞ − ψ)(x, f̂N ,sh(x)) = (ϕ∞ − ϕ)(x, f̂N ,sh(x)) = 0 for all x ∈ [0, εN ].

This yields that

(3.4.57) φN∞(x, f̂N ,sh(x)) − φN∞(x, f̂N ,0(x)) = ψ(x, f̂N ,sh(x)) for all x ∈ [0, εN ].

Since |∂yφN∞| > 0 from Lemma 3.20(c), we can rewrite (3.4.57) as

f̂N ,sh(x)− f̂N ,0(x) =
ψ(x, f̂N ,sh(x))∫ 1

0 ∂yφ
N∞(x, tf̂N ,sh(x) + (1 − t)f̂N ,0(x)) dt

.

Then a direct computation by using Lemma 3.20 and the estimate of ‖ψ‖(par)2,α,ΩN
εN

≤ C achieved in

Step 5 implies that

‖f̂N ,sh − f̂N ,0‖(par)2,α,(0,εN ) ≤ C,

where C > 0 is a constant depending only on (v∞, γ, α). This completes the proof. �
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3.5. Weighted C2,α–Estimates Near ΓO
sonic

According to Definition 2.23, ΓO
sonic depends continuously on β ∈ [0, π2 ). In particular, the

sonic arc ΓO
sonic shrinks to a point when β increases up to β

(v∞)
s , and becomes a point Pβ for all

β ≥ β
(v∞)
s , although the location of Pβ changes continuously on β ∈ [β

(v∞)
s , π2 ). Furthermore, the

ellipticity of Eq. (3.2.2) on ΓO
sonic also changes. According to Proposition 3.15, the ellipticity of

(3.2.2) degenerates on ΓO
sonic for β ≤ β

(v∞)
s . On the other hand, for β > β

(v∞)
s , Eq. (3.2.2) (or

equivalently Eq. (2.1.19)) is uniformly elliptic up to ΓO
sonic away from ΓN

sonic. For that reason, the
weighted C2,α–estimates of admissible solutions near ΓO

sonic are given for the following four cases
separately:

1. β < β
(v∞)
s away from β

(v∞)
s ,

2. β < β
(v∞)
s close to β

(v∞)
s ,

3. β ≥ β
(v∞)
s close to β

(v∞)
s ,

4. β ∈ (β
(v∞)
s , β

(v∞)
d ) away from β

(v∞)
s .

3.5.1. Case 1: Admissible solutions for β < β
(v∞)
s away from β

(v∞)
s . For

(v∞, β) ∈ Rweak ∩ {β : 0 < β < β(v∞)
s },

let OO and P1 be given by Definition 2.23. For each β > 0, let MO be defined by (2.4.6). Define

(3.5.1) c∗O :=
|P1OO|+ cOMO

2




= cO(1+MO)

2 for β ≤ β
(v∞)
s ,

< cO(1+MO)
2 for β ≥ β

(v∞)
s .

In UO :=
(
B 3cO

2
(OO) \Bc∗O (OO)

)
∩ {ξ : ξ1 < uO}, use (r, θ) as the polar coordinates with respect

to OO = (uO, 0) and define

(3.5.2) (x, y) := (cO − r, π − θ).

Also, define a set ΩO by

ΩO :=
(
Ω ∩ {ξ1 < uO}

)
\Bc∗O(OO).

Since ΩO ⊂ BcO (OO), ΩO ⊂ {(x, y) : x > 0}. In the (x, y)–coordinates defined by (3.5.2), ϕO
given by Definition 2.23 is written as

ϕO = −1

2
(cO − x)2 +

1

2
u2O − v∞ξ

(β)
2 in UO.(3.5.3)

For an admissible solution ϕ corresponding to (v∞, β), let ψ be given by

(3.5.4) ψ = ϕ− ϕO in ΩO.

(i) Equation for ψ in ΩO: Similarly to (3.4.21), we rewrite Eq. (3.2.2) for ψ in the (x, y)–
coordinates given by (3.5.2). For each j = 1, · · · , 5, let OO

j (p, z, x) be given by

OO
j (p, z, x) = Oj(p, z, x, cO)

for Oj(p, z, x, c) given by (3.2.29). Then Eq. (2.1.19) is written as

(3.5.5)
(
2x− (γ + 1)ψx +OO

1

)
ψxx +OO

2 ψxy +
( 1

cO
+OO

3

)
ψyy −

(
1 +OO

4

)
ψx +OO

5 ψy = 0,

with OO
j = OO

j (Dψ,ψ, x) for j = 1, · · · , 5.
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(ii) Boundary condition for ψ on Γshock ∩ ∂ΩO: Similarly to (3.4.22), we define

(3.5.6) Mβ(p, z, ξ1) = gshmod(p+DϕO, z + ϕO, ξ1, ξ
(β)
2 − uOξ1 + z

v∞
)

for gshmod given by (3.4.14), where (DϕO, ϕO) are evaluated at (ξ1, ξ
(β)
2 −uOξ1+z

v∞
). Note that (uO, ξ

(β)
2 )

depend continuously on β ∈ (0, π2 ) and that

lim
β→0+

(uO, ξ
(β)
2 ) = (0, ξN2 ).

Define

(3.5.7) φO∞ = ϕ∞ − ϕO.

Rewriting the boundary condition: |D(φO∞ − ψ)|Mβ(Dψ,ψ, ξ1) = 0 on Γshock ∩ ∂ΩO in the (x, y)–
coordinates given by (3.5.2), we have

(3.5.8) BO
1 (ψx, ψy, ψ, x, y) = 0 on Γshock ∩ ∂ΩO

for BO
1 (px, py, z, x, y) given by

(3.5.9) BO
1 (px, py, z, x, y) = |DφO∞ − (p1, p2)|Mβ(p1, p2, z, ξ1)

with

(3.5.10) ξ1 = uO − (cO − x) cos y,

(
p1
p2

)
=

(
cos y sin y
− sin y cos y

)(
px
py

cO−x

)
.

(iii) Other properties of ψ: By (2.1.30) and conditions (ii) and (iv) of Definition 2.24, ψ satisfies

ψ ≥ 0 in Ω,

ψ = 0 on ΓO
sonic,

ψy = 0 on Γwedge ∩ ∂ΩO.

(3.5.11)

For set D defined by (2.5.27), let an open subset ΛO
β of D be given by

ΛO
β := D ∩

(
B 3cO

2
(OO) \Bc∗O (OO)

)
∩ {ξ1 < uO}(3.5.12)

for c∗O defined by (3.5.1).

Lemma 3.27. Fix γ ≥ 1 and v∞ > 0. There exist positive constants ε1, ε0, δ0, ω0, C, and M

depending only on (v∞, γ) with ε1 > ε0 and M ≥ 2 such that, for each β ∈ (0, β
(v∞)
s ], the following

properties hold:

(a) {ϕO < ϕ∞} ∩ ΛO
β ∩ Nε1(Γ

O
sonic) ⊂ {0 < y < π

2 − β − δ0};
(b) {ϕO < ϕ∞} ∩ Nε1(Γ

O
sonic) ∩ {y > yP1} ⊂ {x > 0};

(c) In {(x, y) : |x| < ε, 0 < y < π
2 − β − δ0}, φO∞ given by (3.5.7) satisfies

(3.5.13)
2

M
(y + tanβ) ≤ ∂xφ

O
∞ ≤ M

2
,

2

M
≤ −∂yφO∞ ≤ M

2
;

(d) |(D2
(x,y), D

3
(x,y))φ

O
∞| ≤ C in {|x| < ε1};

(e) There exists a unique function f̂O,0 ∈ C∞([−ε0, ε0]) such that

(3.5.14)




{ϕO < ϕ∞} ∩ ΛO

β ∩ Nε1(Γ
O
sonic) ∩ {|x| < ε0} = {(x, y) : |x| < ε0, 0 < y < f̂O,0(x)},

SO ∩Nε1(Γ
O
sonic) ∩ {|x| < ε0} = {(x, y) : x ∈ (−ε0, ε0), y = f̂O,0(x)};
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(f) f̂O,0 given in (e) satisfies

2ω0 ≤ f̂ ′
O,0 ≤ C on (−ε0, ε0).

Proof. Note that line SO intersects with circle ∂BcO(OO) at two different points, due to
(2.4.43) for any (v∞, γ) ∈ Rweak. Point P1 is an intersection point of SO = {ξ : ϕ∞ = ϕO}
with ∂BcO(OO). Let P ′

1 be the other intersection point of SO and ∂BcO(OO), and let QO be the

midpoint of the line segment P1P ′
1. Then ∠QOOOP4 = π

2 − β. Since |P1QO| depends continuously
on β ∈ [0, π2 ), there exists ε1 > 0 depending only on (v∞, γ) such that |P1QO| ≥ 2ε1 for all

β ∈ [0, β
(v∞)
s ]. Let Q′

O be the midpoint of P1QO, and let (xQ′
O
, yQ′

O
) denote the (x, y)–coordinates

of Q′
O. Then there exists a constant δ0 > 0 depending only on (v∞, γ) such that

(3.5.15) yQ′
O
<
π

2
− β − δ0.

Moreover, it follows directly from (3.5.7) that

∂xφ
O
∞ = v∞(sin y + cos y tanβ), ∂yφ

O
∞ = −v∞(cO − x)(cos y + sin y tanβ) in ΛO

β .

Then statements (a)–(e) can be verified by performing a direct computation and using the obser-
vation obtained above.

Since φO∞ = 0 on SO, we have

φO∞(x, f̂O,0(x)) = 0 for |x| < ε0,

so that f̂ ′
O,0(x) = −∂xφ

O
∞

∂yφO
∞
(x, f̂ ′

O,0(x)) holds. This expression, combined with (3.5.13), yields state-

ment (f). �

Similarly to (3.4.29), for an admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β ≤
β
(v∞)
s }, let Ω be its pseudo-subsonic region. Let ε1 be the constant given in Lemma 3.27. For
ε ∈ (0, ε1], define

(3.5.16) ΩO
ε := Ω ∩ Nε1(Γ

O
sonic) ∩ {x < ε}.

Then ΩO
ε = ΩO

ε ∩ {x > 0}.
Adjusting the proof of Lemma 3.21 by using Lemma 3.27 instead of Lemma 3.20, we have the

following lemma:

Lemma 3.28. Let ε0, ω0, and M be three constants in Lemma 3.27. Then there exist ε̄ ∈ (0, ε0],
L ≥ 1, δ ∈ (0, 12 ), and ω ∈ (0, ω0]∩(0, 1) depending only on (v∞, γ) such that any admissible solution

ϕ = ψ + ϕO corresponding to (v∞, β) ∈ Rweak ∩ {β ≤ β
(v∞)
s } satisfies the following properties in

ΩO
ε̄ :

(a) ψx(x, y) ≤ 2−δ
1+γx ≤ Lx;

(b) ψx ≥ 0 and |ψy(x, y)| ≤ Lx;

(c) 2
M
(y + tanβ)− 2−δ

1+γx ≤ ∂x(ϕ∞ − ϕ)(x, y) ≤ M and 1
M

≤ −∂y(ϕ∞ − ϕ) ≤ M;

(d) There exists a function f̂O,sh ∈ C1([0, ε̄]) such that

ΩO
ε̄ = {(x, y) : x ∈ (0, ε̄), 0 < y < f̂O,sh(x)},

Γshock ∩ ∂ΩO
ε̄ = {(x, y) : x ∈ (0, ε̄), y = f̂O,sh(x)},

ω ≤ f̂ ′
O,sh(x) ≤ L for 0 < x < ε̄;
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(e) 0 ≤ ψ(x, y) ≤ Lx2.

Lemma 3.29. Let ϕ be an admissible solution corresponding to (v∞, β) ∈ Rweak ∩{β ≤ β
(v∞)
s }.

Let Eq. (3.5.5) in ΩO be expressed as

(3.5.17)

2∑

i,j=1

ÂO
ij(Dψ,ψ, x)Dijψ +

2∑

i=1

ÂO
i (Dψ,ψ, x)Diψ = 0,

with (D1, D2) = (Dx, Dy), Dij = DiDj, and Â
O
21 = ÂO

12. Then there exist εO ∈ (0, ε̄4 ] and λO > 0

depending only on (v∞, γ) such that, if (x, y) ∈ ΩO
4εO

,

(3.5.18)
λO
2

|κ|2 ≤
2∑

i,j=1

ÂO
ij(Dψ(x, y), ψ(x, y), x)

κiκj

x2−
i+j
2

≤ 2

λO
|κ|2 for all κ ∈ R

2.

Moreover, BO
1 defined by (3.5.9) satisfies the following properties:

(a) BO
1 (0, 0, x, y) = 0 holds for all (x, y) ∈ R

2;

(b) For each k = 2, 3, · · · , there exist constants δbc > 0 and C > 1 depending only on (v∞, γ, k)
such that, whenever |(px, py, z, x)| ≤ δbc and |y − yP1 | ≤ δbc,

|Dk
(px,py,z,x,y)

BO
1 (px, py, z, x, y)| ≤ C;

(c) There exist constants δ̂bc > 0 and C > 1 depending only on (v∞, γ) such that, whenever

|(px, py, z, x)| ≤ δ̂bc and |y − yP1 | ≤ δ̂bc,

D(px,py,z)BO
1 (px, py, z, x, y) ≤ −C−1;

(d) There exists a constant ε′ > 0 depending only on (v∞, γ), and constants δ̂bc > 0 and

C > 1 in property (c) can be further reduced depending only on (v∞, γ) such that, whenever

|(px, py, z, x)| ≤ δ̂bc and |y − yP1 | ≤ δ̂bc,

D(px,py)BO
1 (px, py, z, x, y) · ν(x,y)

sh ≥ C−1 on Γshock ∩ ∂ΩO
ε′ ,

where Γshock represents the curved shock of the admissible solution, and ν
(x,y)
sh is the unit

normal vector to Γshock. The vector field ν
(x,y)
sh is expressed in the (x, y)–coordinates and

oriented towards the interior of Ω.

In properties (b)–(d), yP1 represents the y–coordinate of point P1, defined by Definition 2.23.

Even though this lemma is similar to Lemma 3.23, the proof is more complicated, because

uO, cO, ϕO, and SO depend on β ∈ (0, β
(v∞)
s ].

Proof. We divide the proof into three steps.

1. As just mentioned above, (uO, cO) depend continuously on β ∈ (0, π2 ). In particular, |uO|
and cO increase with respect to β. Therefore, there exists a constant c̄ > 1 depending only on
(v∞, γ) such that

|uO| ≤ c̄, 1 ≤ cO ≤ c̄ for all β ∈ [0, β
(v∞)
d ].

Then inequality (3.5.18) and properties (a)–(b) can be directly checked from (2.4.4), (3.2.29),
(3.4.14), (3.5.6), (3.5.9), and Lemma 3.28.
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2. A direct computation by using (2.4.3)–(2.4.4), (3.2.4), (3.4.13), (3.5.6), and (3.5.9) yields
that

∂zBO
1 (0, 0, 0, yP1) = −cOv∞ secβ

ργ−2
O

sin(yP1 + β),

∂pxBO
1 (0, 0, 0, yP1) = −cO(ρO − 1) cos2(yP1 + β),

∂pyBN
1 (0, 0, 0, yP1) = −

(
(ρO − 1) sin(yP1 + β) +

cOv∞ secβ

cO

)
cos(yP1 + β).

For β ≤ β
(v∞)
s , we have

cos(
π

2
− β − yP1) =MO(β),

where MO is defined by (2.4.6), which is a continuous function of β ∈ [0, π2 ) that satisfies MO < 1.
Then there exists a constant δ0 ∈ (0, π2 ) depending only on (v∞, γ) such that yP1 + β ≤ π

2 − δ0 for

all β ∈ [0, β
(v∞)
s ]. This implies that there exists a constant m0 > 0 depending only on (v∞, γ) such

that

D(px,py,z)BO
1 (0, 0, 0, yP1) ≤ −m−1

0 for all β ∈ (0, β(v∞)
s ].

We combine this inequality with property (b) to obtain property (c).

3. By (2.4.6) and (A.18), we have

Dpg
sh
mod(DϕO(P1), ϕO(P1), P1) · νO = ρO(1−M2

O)

for the unit normal vector νO to the straight oblique shock SO pointing towards the ξ1–axis. It is
shown in the proof of Lemma 2.22 that

dMO
dβ

< 0 for all β ∈ (0,
π

2
).

Therefore, there exists a constant m1 > 0 depending only on (v∞, γ) such that

νO ·Dpg
sh
mod(DϕO(P1), ϕO(P1), P1) ≥ m−1

1 for all β ∈ (0, β
(v∞)
d ].

A direct computation by using (3.5.2), (3.5.6), and (3.5.10) leads to

(3.5.19) D(px,py)BO
1 (0, 0, 0, 0, yP1) · ν(x,y)

sh (0, yP1) = νO ·Dpg
sh
mod(DϕO(P1), ϕO(P1), P1) ≥ m−1

1 .

Owing to (3.5.19) and property (b), there exist small constants δ̂bc > 0 and δ̂ν > 0 depending only
on (v∞, γ) such that, whenever

|(px, py, z, x)| ≤ δ̂bc, |y − yP1 | ≤ δ̂bc, |ν(x,y)
sh − ν

(x,y)
sh (0, yP1)| ≤ δ̂ν ,

we have

D(px,py)BO
1 (px, py, z, x, y) · ν(x,y)

sh ≥ 1

4m1
.

Note that ν
(x,y)
sh is represented as ν

(x,y)
sh =

D(x,y)(ϕ∞ − ϕO − ψ)

|D(x,y)(ϕ∞ − ϕO − ψ)| on Γshock ∩ ∂ΩO. Therefore,

we can choose a small constant ε′ > 0 depending only on (v∞, γ) so that, by properties (a)–(b) of

Lemma 3.28, |ν(x,y)
sh − ν

(x,y)
sh (0, yP1)| ≤ δ̂ν on Γshock ∩ ∂ΩO

ε′ . This completes the proof of property
(d) of Lemma 3.29. �
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Proposition 3.30. Let ε̄ > 0 be the constant introduced in Lemma 3.28. Fix σ ∈ (0, β
(v∞)
s ).

For each α ∈ (0, 1), there exist ε ∈ (0, ε̄] depending only on (v∞, γ, σ), and C > 0 depending only on

(v∞, γ, α) such that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩{β ≤ β
(v∞)
s − σ}

satisfies

(3.5.20) ‖ϕ− ϕO‖(par)2,α,ΩO
ε
+ ‖f̂O,sh − f̂O,0‖(par)2,α,(0,ε) ≤ C.

Proof. For each β ∈ (0, β
(v∞)
s ], point P1 defined by Definition 2.23 satisfies

(3.5.21) sin yP1 =
ξP1
2

cO
.

In the proof of Lemma 2.22, it is shown that ξP1
2 is a decreasing function of β ∈ (0, β

(v∞)
s ] with

ξP1
2 = 0 at β = β

(v∞)
s , and cO is an increasing function of β. Therefore, for each σ ∈ (0, β

(v∞)
s ), there

exists a constant δ1 > 0 depending only on (γ, c∞, σ) such that yP1 ≥ δ1 for all β ∈ (0, β
(v∞)
s − σ].

By combining this estimate with Lemma 3.28(d), we obtain a constant lso > 0 depending only on

(v∞, γ, σ) such that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β ≤ β
(v∞)
s − σ}

satisfies

(3.5.22) f̂O,sh ≥ lso on [0, ε̄].

We choose

ε∗ = min{ ε̄
2
, l2so}.

Then we repeat the proof of Proposition 3.26 to find a constant ε ∈ [0, ε∗] depending only on (v∞, γ)

such that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β ≤ β
(v∞)
s − σ} satisfies

estimate (3.5.20) for a constant C > 0 depending only on (v∞, γ, α).
The main difference from the proof of Proposition 3.26 is that the uniform positive lower bound

of f̂O,sh for admissible solutions corresponding to (v∞, β) ∈ Rweak ∩ {β ≤ β
(v∞)
s − σ} depends on

σ ∈ (0, β
(v∞)
s ) so that the choice of ε to satisfy estimate (3.5.20) becomes dependent on σ as well,

due to Theorem C.11. �

Remark 3.31. Note that ξP1
2 depends on β ∈ [0, π2 ) continuously. Furthermore, ξP1

2 > 0 for

β < β
(v∞)
s , and ξP1

2 = 0 for β ≥ β
(v∞)
s . Since

(3.5.23) lim
β→β

(v∞)
s

ξP1
2 = 0,

we have

lso = 0 at β = β(v∞)
s

for constant lso from (3.5.22).

3.5.2. Case 2: Admissible solutions for β < β
(v∞)
s close to β

(v∞)
s . Now we extend

Proposition 3.30 up to β = β
(v∞)
s .

Proposition 3.32. Let ε̄ > 0 be the constant introduced in Lemma 3.28. For each α ∈ (0, 1),
there exist ε ∈ (0, ε̄] and σ1 ∈ (0, 1) depending only on (v∞, γ), and C > 0 depending only on
(v∞, γ, α), such that any admissible solution ϕ = ψ + ϕO corresponding to (v∞, β) ∈ Rweak ∩
{β(v∞)

s − σ1 ≤ β < β
(v∞)
s } satisfies estimate (3.5.20).
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Proof. We divide the proof into five steps.

1. Owing to Remark 3.31, we cannot apply Theorem C.11 directly to establish estimate (3.5.20)

up to β = β
(v∞)
s . We first observe that there exists a constant k > 1 depending only on (v∞, γ)

such that, for any admissible solution corresponding to (v∞, β) ∈ Rweak ∩ β < β
(v∞)
s },

(3.5.24) {0 < x < 2ε̄, 0 < y < yP1 +
x

k
} ⊂ ΩO

2ε̄ ⊂ {0 < x < 2ε̄, 0 < y < yP1 + kx}.

Using (3.5.24) and Lemmas 2.22 and 3.28, we can adjust the proof of Proposition 3.26 to conclude
that, for each α ∈ (0, 1), there exist a small constant σ∗ > 0 depending on (v∞, γ) and a constant
C > 0 depending on (v∞, γ, α) such that any admissible solution ϕ corresponding to (v∞, β) ∈
Rweak ∩ {β(v∞)

s − σ∗ ≤ β < β
(v∞)
s } satisfies

(3.5.25) ‖ϕ− ϕO‖(par)2,α,ΩO
y2
P1

≤ C.

2. Claim: There exist ε̂ ∈ (0, ε̄2 ], σ
′ ∈ (0, σ∗], and C∗ > 0 depending only on (v∞, γ) such that

any admissible solution ϕ = ψ + ϕO corresponding to Rweak ∩ {β(v∞)
s − σ′ ≤ β < β

(v∞)
s } satisfies

(3.5.26) 0 ≤ ψ(x, y) ≤ C∗x4 in ΩO
2ε̂ ∩ {x > y2P1

10
}.

In what follows, unless otherwise specified, the universal constant C represents a positive con-
stant depending only on (v∞, γ), which may be different at each occurrence.

For an admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β < β
(v∞)
s }, let ψ be given

by (3.5.4). We regard Eq. (3.5.17) (or equivalently, (3.5.17)) as a linear equation for ψ in ΩO
ε̄ , and

represent it as

(3.5.27) Lψ :=

2∑

i,j=1

aij(x, y)Dijψ +

2∑

i=1

ai(x, y)Diψ = 0,

with (aij , ai)(x, y) = (ÂO
ij , Â

O
i )(Dψ(x, y), ψ(x, y), x) for i, j = 1, 2, where ÂO

ij and ÂO
i are from

Lemma 3.29. By (3.2.29) and Lemma 3.28, there exists a constant C > 0 depending only on
(v∞, γ) such that aij , i, j = 1, 2, satisfy

x ≤ a11(x, y) ≤ 3x, C−1 ≤ a22(x, y) ≤ C, |(a12, a21)(x, y)| ≤ Cx in ΩO
ε̄ ,(3.5.28)

a1(x, y) ≤ 0, |a2(x, y)| ≤ Cx in ΩO
ε̄ .(3.5.29)

By properties (a)–(b) and (e) of Lemma 3.28, there exists ε1 ∈ (0, ε̄] such that ψ satisfies the
estimates:

|(ψx, ψy, ψ, x)| ≤
1

2
min{δbc, δ̂bc}, |y − yP1 | ≤

1

2
min{δbc, δ̂bc} in ΩO

ε1

for constants (δbc, δ̂bc) determined in Lemma 3.29. Then the boundary condition (3.5.8) can be
written as a linear boundary condition:

(3.5.30) BL1 ψ := b1(x, y)ψx + b2(x, y)ψy + b3(x, y)ψ = 0 on Γshock ∩ ∂ΩO
ε1 ,

and Lemma 3.29 implies

(3.5.31) −C ≤ bj ≤ −C−1 for j = 1, 2, (b1, b2) · ν(x,y)
sh ≥ C−1 on Γshock ∩ ∂ΩO

ε1 .
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By (3.5.24), we have

(3.5.32) ΩO
ε̄ ⊂ {(x, y) : 0 < x < ε̄, 0 < y < yP1 + kx}.

For constants m,µ > 1 to be determined, define a function v by

v(x, y) := (x +mµy2P1
)4 −m(x+mµy2P1

)3y2.

Suppose that

(3.5.33) yP1 ≤ 1

(mµ)2
, ε̂ ≤ 1

2
min{ε1, εO,

1

mµ
}

for εO from Lemma 3.29. Then a lengthy computation by using (3.5.28) and (3.5.32) shows that
constants (m,µ) can be fixed sufficiently large depending only on (v∞, γ) such that

v(x, y) ≥ 1

2
(x+mµyP1)

4 in ΩO
2ε̂,

Lv < 0 in ΩO
2ε̂,

BL1 v < 0 on Γshock ∩ ∂ΩO
2ε̂.

(3.5.34)

For detailed calculations to obtain (3.5.34), we refer to [11, Lemma 16.4.1].
For ε̂ := 1

2 min{ε1, εO, 1
mµ}, we define

a :=
1

2ε̂2
max

∂ΩO
2ε̂∩{x=2ε̂}

ψ.

Note that, by the strong maximum principle, a is a positive constant. By Lemma 3.28(e), a is
uniformly bounded above depending only on (v∞, γ).

Note that ψ satisfies the boundary conditions (3.5.11) on ∂ΩO
2ε̂ \ ({x = 2ε̂} ∪ Γshock). Since

|y| ≤ yP1 on ΓO
sonic and µ > 1, we have

av ≥ 0 = ψ on ΓO
sonic.

On Γwedge ∩ ∂ΩO
2ε̂, vy = 0 = ψy.

By the maximum principle, we have

ψ ≤ av in ΩO
2ε̂,

provided that yP1 satisfies the inequality that yP1 ≤ (mµ)−2.
By (3.5.21) and (3.5.23), there exists σ′ ∈ (0, σ∗] such that each yP1 corresponding to β ∈

[β
(v∞)
s − σ′, β(v∞)

s ) satisfies the inequality that yP1 ≤ (mµ)−2. This verifies the claim.

3. Let ϕ = ψ+ϕO be an admissible solution corresponding to (v∞, β) ∈ Rweak∩{β(v∞)
s −σ′ ≤

β < β
(v∞)
s }. For z0 = (x0, y0) ∈ ΩO

ε̂ ∩ {x > y2P1

5 } and r ∈ (0, 1], define the sets:

R̃z0,r := {(x, y) : |x− x0| <
x
3/2
0

10k
r, |y − y0| <

x0
10k

r},

Rz0,r := R̃z0,r ∩ ΩO
2ε̂.

Here, Rz0,1 may intersect with Γshock∪Γwedge. However, if Rz0,1∩Γshock 6= ∅, then Rz0,1∩Γwedge = ∅,
and vice versa. Note that the dimensions of rectangle R̃z0,r are given such that

(i) the re-scaled function ψ(z0) defined below satisfies a uniformly elliptic equation, due to
(3.5.18) stated in Lemma 3.29;

(ii) Rz0,1 does not intersect with Γshock and Γwedge simultaneously.
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For r > 0, define the sets:

Qr := (−r, r)2,

Q(z0)
r := {(S, T ) ∈ Qr : z0 +

√
x0

10k
(x0S,

√
x0 T ) ∈ Rz0,r}.

For z0 ∈ ΩO
ε̂ ∩ {x > y2P1

5 }, define

ψ(z0)(S, T ) =
1

x40
ψ(x0 +

x
3/2
0

10k
S, y0 +

x0
10k

T ) for (S, T ) ∈ Q
(z0)
1 .

For constant L from Lemma 3.28, choose a function η ∈ C∞(R) such that 0 ≤ η ≤ 1 with
η(t) = 1 for |t| ≤ L and η(t) = 0 for |t| ≥ 2L. For such a function η, we define

(3.5.35) (Â
O,(mod)
ij , Â

O,(mod)
i )(px, py, z, x) := (ÂO

ij , Â
O
i )(xη(

px
x
), xη(

py
x
), x2η(

z

x2
), x).

Then (Â
O,(mod)
ij , Â

O,(mod)
i ), i, j = 1, 2, satisfy the following lemma, which is a generalization of

Lemma 3.24:

Lemma 3.33. Let ε0 > 0 and L ≥ 1 be the constants from Lemmas 3.27–3.28, respectively.
Then there exist constants ε ∈ (0, ε02 ] and C > 0 depending only on (v∞, γ) such that any admissible

solution ϕ := ϕO + ψ corresponding to (v∞, β) ∈ Rweak satisfies the following equation:

(3.5.36)

2∑

i,j=1

Â
O,(mod)
ij (Dψ,ψ, x)Dijψ +

2∑

i=1

Â
O,(mod)
i (Dψ,ψ, x)Diψ = 0 in ΩO

ε ,

with coefficients (Â
O,(mod)
ij , Â

O,(mod)
i ) satisfying the following properties:

(a) (Â
O,(mod)
ij , Â

O,(mod)
i ) = (ÂO

ij , Â
O
i )

in {(px, py, z, x) : |(px, py)| ≤ Lx, |z| ≤ Lx2, x ∈ (0, ε)},
(b) |(ÂO,(mod)

11 , Â
O,(mod)
12 , Â

(mod)
2 )(px, py, z, x)| ≤ Cx in R

2 × R× (0, ε),

(c) ‖(ÂO,(mod)
22 , Â

O,(mod)
1 )‖0,R2×R×(0,ε) ≤ C,

(d) ‖D(px,py,z,x)(Â
O,(mod)
ij , Â

O,(mod)
i )‖0,R2×R×(0,ε) ≤ C.

Substituting the definition of ψ(z0) into Eq. (3.5.36), we have
(3.5.37)

2∑

i,j=1

A
(z0)
ij (Dψ(z0), ψ(z0), S, T )Dijψ

(z0) +
2∑

i=1

A
(z0)
i (Dψ(z0), ψ(z0), S, T )Diψ

(z0) = 0 in Q
(z0)
1 ,

with

A
(z0)
ij (p, z, S) = x

i+j
2 −2

0 ÂO,mod
ij (10kx

4− 3
2

0 p1, 10kx
3
0p2, x

4
0z, x0 +

x
3/2
0

10k
S),

A
(z0)
i (p, z, S) =

x
i−1
2 −1

0

10k
ÂO,mod
i (10kx

4− 3
2

0 p1, 10kx
3
0p2, x

4
0z, x0 +

x
3/2
0

10k
S).

By (3.5.26), there exists a constant C > 0 depending only on (v∞, γ) such that

(3.5.38) |ψ(z0)| ≤ C in Q
(z0)
1

for all z0 ∈ ΩO
ε̂ ∩ {x > y2P1

5 }.
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For f̂O,sh from Lemma 3.28, define

(3.5.39) F (z0)(S) :=
10k

x0

(
f̂O,sh(x0 +

x
3/2
0

10k
S)− f̂O,sh(x0)

)
for −1 < S < 1.

Similarly to (3.4.46), a direct computation by using (3.5.39) and Lemma 3.28(d) shows that there

exists a constant C > 0 depending only on (v∞, γ) so that, for each z0 = (x0, f̂O,sh(x0)) ∈ Γshock ∩
∂ΩO

ε̂ , F
(z0) satisfies

(3.5.40) F (z0)(0) = 0, ‖F (z0)‖C1([−1,1]) ≤ C
√
x0.

However, it follows from ϕ∞ − ϕ = 0 on Γshock that

(3.5.41) φO∞(x0 +
x
3/2
0

10k
S, f̂O,sh(x0) +

x0
10k

F (z0)(S))− x40ψ
(z0)(S, F (z0)(S)) = 0

for φO∞ given by (3.5.7).
Similarly to (3.4.47), by using Lemmas 3.28–3.29, we can further reduce ε̂ ∈ (0, ε̄2 ] depending

only on (v∞, γ) so that the boundary condition (3.5.8) can be rewritten as

(3.5.42) ψx = bO(ψy , ψ, x, y) on Γshock ∩ ∂ΩO
2ε̂,

where bO satisfies the following properties:

bO(0, 0, x, y) = 0 in ΩO
2ε̂,

|DlbO(py, z, x, y)| ≤ Cl in R× R× ΩO
2ε̂, for l = 1, 2, 3, · · · ,

(3.5.43)

for Cl > 0 chosen depending only on (v∞, γ, l).
For each z0 ∈ Γshock ∩ ∂ΩO

ε̂ , we substitute ψ(z0) into (3.5.42) to obtain the following boundary

condition on Γ
(z0)
shock = {T = F (z0)(S) : −1 < S < 1}:

(3.5.44) ψ
(z0)
S = B

(z0)
O (ψ

(z0)
T , ψ(z0), S, T ),

for B
(z0)
O (ψ

(z0)
T , ψ(z0), S, T ) given by

B
(z0)
O (ψ

(z0)
T , ψ(z0), S, T ) :=

x
−4+3/2
0

10k
bO(10kx

3
0ψ

(z0)
T , x40ψ

(z0), x0 +
x
3/2
0

10k
S, y0 +

x0
10k

T ).

It can be checked directly from (3.5.43) that, for each z0 ∈ Γshock ∩ ∂ΩO
ε̂ , B

(z0)
O satisfies

B
(z0)
O (0, 0, S, T ) = 0 in Q

(z0)
1 ,

‖∂pTB(z0)
O (pT , z, ·)‖

0,Q
(z0)
1

≤ m2
√
x0 for all (pT , z) ∈ R× R,

‖D(pT ,z)B
(z0)
O (pT , z, ·)‖

1,Q
(z0)
1

≤ m2
√
x0 for all (pT , z) ∈ R× R,

(3.5.45)

where m2 > 0 is a constant depending only on (v∞, γ).

4. Using (3.5.18), Lemma 3.33, (3.5.40), and (3.5.45), we see that Eq. (3.5.37) and the boundary
condition (3.5.44) satisfy all the conditions required to apply Theorem C.5. Therefore, by (3.5.38)
and Theorem C.5, there exist ε ∈ (0, ε̂], α̂ ∈ (0, 1), C, and σ1 ∈ (0, σ′] depending only on (v∞, γ)
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such that any admissible solution ϕ = ψ + ϕO corresponding to (v∞, β) ∈ Rweak ∩ {β(v∞)
s − σ1 ≤

β < β
(v∞)
s } satisfies

(3.5.46) ‖ψ(z0)‖
1,α̂,Q

(z0)

3/4

≤ C for all z0 ∈ Γshock ∩ ∂ΩO
ε ∩ {x > y2P1

5
}.

To obtain the C1,α̂–estimate of F (z0), we follow the approach given in the latter part of Step 3
in the proof of Proposition 3.26. Namely, we differentiate (3.5.41) with respect to S to obtain

(3.5.47) (F (z0))′ = −
√
x0

(
∂xφ

O
∞(xS , yS)− 10kx

5/2
0 ∂Sψ

(z0)(S, T )
)

∂yφO∞(xS , yS)− 10kx30∂Tψ
(z0)(S, T )

for (xS , yS) := (x0 +
x
3/2
0

10k
S, f̂O,sh(x0) +

x0
10k

F (z0)(S)).

Then a direct computation by using Lemma 3.27(c), (3.5.46)–(3.5.47), and the smoothness of
φO∞ yields that there exists a constant C > 0 depending only on (v∞, γ) such that

(3.5.48)
1√
x0

‖F (z0)‖1,α̂,[−3/4,3/4] ≤ C for all z0 ∈ Γshock ∩ ∂ΩO
ε ∩

{
x >

y2P1

5

}
.

For higher order derivative estimates of ψ(z0) and F (z0), we follow the bootstrap argument given
in the latter part of Step 3 in the proof of Proposition 3.26 by using (3.5.46), (3.5.48), and Theorem
C.6. As a result, we find constants ε ∈ (0, ε̂] and σ1 ∈ (0, σ′] depending only on (v∞, γ) such that, for

each α ∈ (0, 1), any admissible solution corresponding to (v∞, β) ∈ Rweak∩{β(v∞)
s −σ1 ≤ β < β

(v∞)
s }

satisfies

‖ψ(z0)‖
2,α,Q

(z0)

1/2

+
1√
x0

‖F (z0)‖2,α,[−1/2,1/2] ≤ C for all z0 ∈ Γshock ∩ ∂ΩO
ε ∩

{
x >

y2P1

5

}
,

where the estimate constant C depends only on (v∞, γ, α).
Furthermore, by repeating the argument of Step 4 in the proof of Proposition 3.26, it can be

shown that, for each α ∈ (0, 1), there exists a constant C > 0 depending only on (v∞, γ, α) such that

any admissible solution ϕ = ψ+ ϕO corresponding to (v∞, β) ∈ Rweak ∩ {β(v∞)
s − σ1 ≤ β < β

(v∞)
s }

satisfies

‖ψ(z0)‖
2,α,Q

(z0)

1/2

+
1√
x0

‖F (z0)‖2,α,[−1/2,1/2] ≤ C for all z0 ∈ ΩO
ε ∩ {x > y2P1

5
}.

Denote Uε := ΩO
ε ∩ {x > y2P1

5 }. Collecting all the estimates of ψ(z0) established above, scaling
back to the (x, y)–coordinates, and following the argument of Step 3 in the proof of [11, Proposition
16.4.6], we have

∑

0≤k+l≤2

sup
z∈Uε

(
x

3k
2 +l−4|∂kx∂lyψ(z)|

)

+
∑

k+l=2

sup
z,z̃∈Uε,

z 6=z̃

(
min{x 3

2 (α+k)+l−4, x̃
3
2 (α+k)+l−4} |∂

k
x∂

l
yψ(z)− ∂kx∂

l
yψ(z̃)|

δparα (z, z̃)

)
≤ C,

where k and l are nonnegative integers, C is a constant depending only on (v∞, γ, α), and we have
used the notation that z = (x, y) and z̃ = (x̃, ỹ). This implies that

(3.5.49) ‖ψ‖(par)
2,α,ΩO

ε ∩{x>y2P1
/5} ≤ C.
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5. Combining estimates (3.5.25) and (3.5.49) together, we obtain

‖ϕ− ϕO‖(par)2,0,ΩO
ε
≤ C,

where constant C > 0 depends only on (v∞, γ, α).

In order to estimate [ϕ − ϕO]
(2),(par)

2,α,ΩO
ε

, we consider two cases: (i) either z = (x, y), z̃ = (x̃, ỹ) ∈

ΩO
y2P1

, or z, z̃ ∈ ΩO
ε ∩ {x > y2P1

5 }, and (ii) x > y2P1
>

y2P1

5 > x̃.

For k + l = 2, define

qk,l(z, z̃) := min{xα+k+ l
2−2, x̃α+k+

l
2−2} |∂

k
x∂

l
yψ(z)− ∂kx∂

l
yψ(z̃)|

δ
(par)
α (z, z̃)

.

For case (i), qk,l(z, z̃) satisfies
∑

k+l=2

qk,l(z, z̃) ≤ 4
(
‖ψ‖(par)

2,α,ΩO
y2
P1

+ ‖ψ‖(par)
2,α,ΩO

ε ∩{x>y2P1
/5}

)
.

For case (ii), since δ
(par)
α (z, z̃) ≥ xα

2α ≥ x̃α

2α , we have

∑

k+l=2

qk,l(z, z̃) ≤ 2α+2
(
‖ψ‖(par)

2,0,ΩO
y2
P1

+ ‖ψ‖(par)
2,0,ΩO

ε ∩{x>y2P1
/5}

)
.

Therefore, we conclude that there exists a constant C > 0 depending only on (v∞, γ, α) such
that

‖ϕ− ϕO‖(par)2,α,ΩO
ε
≤ C.

In order to estimate ‖f̂O,sh − f̂O,0‖(par)2,α,(0,ε), we adjust the argument of Step 6 in the proof of

Proposition 3.26 by using Lemma 3.27, instead of Lemma 3.20. �

3.5.3. Case 3: Admissible solutions for β ≥ β
(v∞)
s close to β

(v∞)
s .

Lemma 3.34 (Extension of Lemma 3.27 for all β ∈ (0, β
(v∞)
d )). For the (x, y)–coordinates given

by (3.5.2), define

(3.5.50) x̂ := x− xP1 .

Then there exist positive constants ε1, ε0, δ0, ω0, C, and M depending only on (v∞, γ) with ε1 > ε0
and M ≥ 2 such that Lemma 3.27 holds for any admissible solution corresponding to (v∞, β) ∈
Rweak, where x is replaced by x̂ in all the properties stated in Lemma 3.27.

Proof. By the definition of P1 given in Definition 2.23, xP1 = 0 for β ≤ β
(v∞)
s , which implies

that x̂ = x for β ≤ β
(v∞)
s . Therefore, Lemma 3.34 coincides with Lemma 3.27 for β ≤ β

(v∞)
s .

For β > β
(v∞)
s , x̂ < x, since xP1 > 0.

For β > β
(v∞)
s , we repeat the proof of Lemma 3.27, except for replacing cO by |P1OO| =

cOMO csc β for MO defined by (2.4.6). Note that |P1OO|
cO

= MO csc β = 1 at β = β
(v∞)
s . Since

MO is decreasing with respect to β by (2.4.43), we see that dMO csc β
dβ ≤ 0 for β ∈ (0, π2 ) as well.

Then we conclude that 0 < MO csc β|
β=β

(v∞)
d

≤ MO cscβ < 1 for β > β
(v∞)
s with MO cscβ = 1
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at β = β
(v∞)
s , and |P1QO| > 0 depends continuously on β for all β ∈ (0, β

(v∞)
d ]. Therefore, there

exists a constant ε1 > 0 depending only on (v∞, γ) such that

|P1QO| ≥ 2ε1 for all β ∈ (0, β
(v∞)
d ].

Then we can also choose a constant δ0 > 0, depending only on (v∞, γ), to satisfy (3.5.15) for all

β ∈ (0, β
(v∞)
d ). The rest of the proof is the same as for the case β ≤ β

(v∞)
s . �

Lemma 3.35. Let ε1 be the constant introduced in Lemma 3.34. For ε ∈ (0, ε1), let Ω
O
ε be given

by (3.5.16). For each σ ∈ (0, β
(v∞)
d − β

(v∞)
s ), define a half-open interval I(σ) by

(3.5.51) I(σ) := (0, β(v∞)
s + σ].

Then, for any given ε ∈ (0, ε1), there exists σ > 0 depending only on (v∞, γ, ε) such that, for any

admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β ∈ I(σ)}, ΩO
ε is nonempty.

Proof. For β ≤ β
(v∞)
s , ΩO

ε is always nonempty, owing to Proposition 3.11.

Suppose that β > β
(v∞)
s . It follows from Definition 2.24(i-4) of Case II, Proposition 3.11, and

the definition of the (x, y)–coordinates given by (3.5.2) that ΩO
ε is nonempty if xPβ

< ε. From this
perspective, we need to find a small constant σ > 0 so that xPβ

< ε holds for all β ∈ I(σ).

For each admissible solution ϕ, define M(P ) := |Dϕ(P )|
c(|Dϕ(P )|2,ϕ(P )) ; that is, M(P ) is the pseudo-

Mach number of ϕ at point P . For each β ∈ (0, π2 ), let Pβ be the ξ1–intercept Pβ of the straight
oblique shock SO. By Definition 2.24(ii-3), we have

M(Pβ) =
|DϕO(Pβ)|

cO
=MO cscβ

for MO given by (2.4.6). According to the proof of Lemma 2.22, MO is a decreasing function of
β ∈ (0, π2 ). This implies that

(3.5.52)
dM(Pβ)

dβ
≤ 0 for all β ∈ (0,

π

2
),

so that

inf
β∈I(σ)

M(Pβ) =M(P
β
(v∞)
s +σ

) < 1, lim
σ→0+

inf
β∈I(σ)

M(Pβ) = 1.(3.5.53)

By (3.5.2), xPβ
can be expressed as

(3.5.54) xPβ
= cO − |DϕO(Pβ)| = cO

(
1−M(Pβ)

)
.

Moreover, we obtain from (2.4.40) and (3.5.52) that

(3.5.55)
dxPβ

dβ
> 0 for β ∈ (0,

π

2
).

Furthermore, (3.5.53) yields that

(3.5.56) sup
β∈I(σ)

xPβ
= xPβ

|
β=β

(v∞)
s +σ

> 0, lim
σ→0+

sup
β∈I(σ)

xPβ
= 0.

Therefore, for any given ε > 0, we can choose σ > 0 depending only on (v∞, γ, ε) so that xPβ
< ε

for all β ∈ I(σ). �
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Lemma 3.36 (Extension of Lemma 3.28 for β > β
(v∞)
s ). Let ε0, ω0, and M be from Lemma

3.34. Then there exist constants ε̄ ∈ (0, ε0], σ2 ∈ (0, 1), L ≥ 1, δ ∈ (0, 12 ), and ω ∈ (0, ω0] ∩ (0, 1)
depending only on (v∞, γ) such that any admissible solution ϕ = ψ+ϕO corresponding to (v∞, β) ∈
Rweak ∩ {β ∈ I(σ2)} satisfies properties (a)–(e) of Lemma 3.28 with the following changes:

(i) The definition of ΩO
ε̄ in (3.5.16) is replaced by

(3.5.57) ΩO
ε̄ = Ω ∩Nε(ΓO

sonic) ∩ {xP1 < x < xP1 + ε̄},
(ii) ΩO

ε̄ = {(x, y) : x ∈ (xP1 , xP1 + ε̄), 0 < y < f̂O,sh(x)},
(iii) Γshock ∩ ∂ΩO

ε̄ = {(x, y) : x ∈ (xP1 , xP1 + ε̄), y = f̂O,sh(x)},
(iv) ω ≤ f̂ ′

O,sh(x) ≤ L for xP1 < x < xP1 + ε̄,

where I(σ2) is given by (3.5.51).

Proof. As in Lemma 3.28, this lemma is proved by adjusting the proof of Lemma 3.21.

Let x̂ be given by (3.5.50). Since x̂ = x holds for β ≤ β
(v∞)
s so that Lemma 3.36 is the same as

Lemma 3.28, it suffices to consider the case that β > β
(v∞)
s .

By Definition 2.23, Remark 3.14, and Proposition 3.15, combined with (3.3.4)–(3.3.5), (3.5.5),
and (3.5.54), there exist constants σ′ ∈ (0, 1), ε′ ∈ (0, ε0), and δ

′ ∈ (0, 12 ) depending only on (v∞, γ)

so that any admissible solution corresponding to (v∞, γ) ∈ Rweak∩{β ∈ I(σ′)∩ [β
(v∞)
s , π2 )} satisfies

2x− (γ + 1)ψx +OO
1 (Dψ,ψ, x) ≥ δ′

(
dist(ξ,ΓO

sonic) + cO
(
1− |DϕO(P1)|

cO

))

= δ′
(
(x − xP1) + xPβ

)
= δ′x in ΩO

ε′ ,

(3.5.58)

where we have used P1 = Pβ for β ≥ β
(v∞)
s , and (3.3.8) in Proposition 3.15.

Since ψ ≥ 0 holds in ΩO
ε0 by Definition 2.24(iv), we use (3.2.29) to obtain

OO
1 (Dψ,ψ, x) ≤ γ + 1

cO
xψx in ΩO

ε0 .

Then we can choose ε̄ ∈ (0, ε′] and δ ∈ (0, 12 ) depending only on (v∞, β) so that, for any admissible

solution ϕ = ψ + ϕO corresponding to (v∞, γ) ∈ Rweak ∩ {β ∈ I(σ′) ∩ [β
(v∞)
s , π2 )}, (3.5.58) implies

that

ψx(x, y) ≤
2− δ

1 + γ
x

in domain ΩO
ε̄ given by (3.5.57).

By Lemma 3.28, we can adjust δ ∈ (0, δ′] and ε̄ ∈ (0, ε′] depending only on (v∞, γ) so that
property (a) of Lemma 3.36 holds for any admissible solution corresponding to (v∞, γ) ∈ Rweak ∩
{β ∈ I(σ′)}.

Next, we choose a constant σ2 ∈ (0, σ′] depending only on (v∞, γ) so that ΩO
ε̄ is nonempty for

any admissible solution corresponding to (v∞, γ) ∈ Rweak ∩ {β ∈ I(σ2)}. Such a constant σ2 can
be chosen due to Lemma 3.35. Then property (a) of Lemma 3.36 is verified.

The proofs of properties (b)–(e) of Lemma 3.36 for β > β
(v∞)
s are the same as for the case that

β ≤ β
(v∞)
s , except that x is replaced by x̂ for the range of variables for which the lemma holds, and

Lemma 3.34 is applied instead of Lemma 3.27. More details for proving (b)–(e) of this lemma can
be given by adjusting the proof of Lemma 3.21. �
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Lemma 3.37. For each σ ∈ (0, β
(v∞)
d −β(v∞)

s ), there exists a constant µ0 > 0 depending only on

(v∞, γ, σ) such that, for any β ∈ [β
(v∞)
s , β

(v∞)
d − σ], gshmod defined by (3.4.14) satisfies the following

properties:

∂pjg
sh
mod(DϕO(P1), ϕO(P1), P1) ≤ −µ0 for j = 1, 2,

∂zg
sh
mod(DϕO(P1), ϕO(P1), P1) ≤ −µ0.

Proof. Since Pβ = P1 for β ≥ β
(v∞)
s due to (2.5.6) in Definition 2.23, we apply Lemma A.4

to obtain

∂p1g
sh
mod(DϕO(P1), ϕO(P1), P1) ≤ −C−1 for any β ∈ [β(v∞)

s , β
(v∞)
d − σ],

with a constant C > 1 depending only on (v∞, γ, σ).
A direct computation by using ∂ξ2ϕO(P1) = ∂ξ2ϕO(Pβ) = 0, (2.4.3), Definition 2.23, and (A.18)

yields that

∂p2g
sh
mod(DϕO(P1), ϕO(P1), P1) = −(ρO + 1) cosβ.

By using (2.4.2), it can be directly checked that

∂zg
sh
mod(DϕO(P1), ϕO(P1), P1) = −cOMO

ργ−2
O

for MO > 0 given by (2.4.6).
Since (ρO, cO,MO) depend continuously on β ∈ [0, π2 ), we conclude that there exists a constant

C > 1 depending only on (v∞, γ) such that

(∂p2 , ∂z)g
sh
mod(DϕO(P1), ϕO(P1), P1) ≤ −C−1 for all β ∈ [β(v∞)

s , β
(v∞)
d ].

�

Corollary 3.38. Let ε̄ and σ2 be the constants in Lemma 3.36. Then Lemma 3.29 holds for

all (v∞, β) ∈ Rweak with β ∈ [β
(v∞)
s , β

(v∞)
s + σ2].

Proof. It suffices to check property (c) of Lemma 3.29 for β ≥ β
(v∞)
s , as the rest of the

properties of Lemma 3.29 can be verified for β ≥ β
(v∞)
s in the same way as for the case that

β < β
(v∞)
s . Since P1 = Pβ for β ≥ β

(v∞)
s , yP1 = 0. From (2.4.3) and (3.5.9)–(3.5.10), we have

(Dpx , Dpy )BO
1 (0, 0, 0, xP1, yP1) = v∞ sec β(Dp1 ,

1

cO
Dp2)g

sh
mod(DϕO(P1), ϕO(P1), P1).

Then property (c) of Lemma 3.29 is obtained for the case that β
(v∞)
s ≤ β ≤ β

(v∞)
s +σ2 from Lemma

3.37 and the smoothness of BO
1 . �

We now establish the uniform C2,α–estimate of the admissible solution ϕ = ψ+ϕO correspond-

ing to (v∞, β) ∈ Rweak for β ≥ β
(v∞)
s close to β

(v∞)
s .

Proposition 3.39. Let ε̄ and σ2 be the constants in Lemma 3.36. Then, for each α ∈ (0, 1),
there exist constants ε ∈ (0, ε̄] and σ3 ∈ (0, σ2] depending only on (v∞, γ), and a constant C > 0
depending only on (v∞, γ, α), such that any admissible solution ϕ = ψ + ϕO corresponding to

(v∞, β) ∈ Rweak ∩ {β(v∞)
s ≤ β ≤ β

(v∞)
s + σ3} satisfies

‖ψ‖
C2,α(ΩO

ε )
≤ C,

|Dm
ξ ψ(P1)| = |Dm

ξ ψ(Pβ)| = 0 for m = 0, 1, 2.
(3.5.59)
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Moreover, f̂O,sh from Lemma 3.36 satisfies

‖f̂O,sh − f̂O,0‖2,α,[xP1 ,ε]
≤ C,

dm

dxm
(f̂O,sh − f̂O,0)(xP1 ) =

dm

dxm
(f̂O,sh − f̂O,0)(xPβ

) = 0 for m = 0, 1, 2.
(3.5.60)

Proof. In this proof, all the constants are chosen depending only on (v∞, γ), unless otherwise
specified.

1. For a fixed β ∈ [β
(v∞)
s , β

(v∞)
s + σ2], define

dso(x) := x− xP1 .

If β > β
(v∞)
s , then dso(x) < x for all x ∈ ΩO

ε̄ .

Claim: There exist constants ε ∈ (0, ε̄2 ], σ3 ∈ (0, σ2], and m > 1 such that any admissible

solution ϕ = ψ + ϕO corresponding to (v∞, β) ∈ Rweak with β ∈ [β
(v∞)
s , β

(v∞)
s + σ3] satisfies

xP1 ≤ ε

10
,

0 ≤ ψ(x, y) ≤ m (dso(x))
5

in ΩO
2ε.

(3.5.61)

A more general version of the claim stated immediately above can be found from [11, Lemma
16.5.1].

Note that ψ ≥ 0 holds in Ω, due to Definition 2.24(iv).
For a large constant M > 1 to be determined later, define

v(x, y) := (x− xP1 )
5 − 1

M
(x− xP1 )

3y2.

By Lemma 3.36, there exists a constant k > 1 such that
(3.5.62)

{(x, y) : xP1 < x < ε̄, 0 < y <
1

k
(x− xP1 )} ⊂ ΩO

ε̄ ⊂ {(x, y) : xP1 < x < ε̄, 0 < y < k(x− xP1)}.

As in the proof of Proposition 3.32, we regard ψ as a solution of the linear boundary value
problem:

Lψ = 0 in ΩO
ε̄ ,

BL1 ψ = 0 on Γshock ∩ ∂ΩO
ε̄ ,

ψy = 0 on Γwedge ∩ ∂ΩO
ε̄ ,

where the linear operators L and BL1 are given by (3.5.27) and (3.5.30), respectively.
It follows from (3.2.29) and Lemma 3.36 that there exist constants ε̂1 ∈ (0, ε̄] and C depending

only on (v∞, γ) so that the linear operator L satisfies properties (3.5.28)–(3.5.29) in ΩO
ε̂1

for any

admissible solution corresponding to (v∞, β) ∈ Rweak with β
(v∞)
s ≤ β ≤ β

(v∞)
s + σ2.

From Corollary 3.38, there also exist constants ε̂2 ∈ (0, ε̂1] and C depending only on (v∞, γ)
so that the boundary operator BL1 satisfies (3.5.31) in Γshock ∩ ∂ΩO

ε̂2
for any admissible solution

corresponding to (v∞, β) ∈ Rweak with β
(v∞)
s ≤ β ≤ β

(v∞)
s + σ2.

Similarly to Step 2 in the proof of Proposition 3.32, a lengthy computation by using (3.5.28)–
(3.5.29) and (3.5.31) shows that there exist a sufficiently large constant M > 1, a sufficiently
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small constant ε ∈ (0, ε̂22 ], and a small constant σ3 ∈ (0, σ2] such that, for any admissible solution

ϕ = ψ + ϕO corresponding to β ∈ Rweak with β ∈ [β
(v∞)
s , β

(v∞)
s + σ3], we have

xP1 ≤ ε

10
,

Lv < 0 on ΩO
2ε,

BL1 v < 0 on Γshock ∩ ∂ΩO
2ε,

vy = 0 on Γwedge ∩ ∂ΩO
2ε,

v(x, y) ≥ 1

2
(x− xP1 )

5 in ΩO
2ε.

Detailed calculations for the results stated above can be obtained by following the arguments in
the proof of [11, Lemma 16.5.1].

Note that σ3 := σ3(v∞, γ, ε) ∈ (0, σ2] can be chosen sufficiently small so that ΩO
2ε is nonempty

for any admissible solution ϕ = ψ + ϕO corresponding to β ∈ Rweak with β ∈ [β
(v∞)
s , β

(v∞)
s + σ3].

For ε ∈ (0, ε̂22 ] fixed above, define mψ for (3.5.61) as

mψ :=
2

ε5
max

∂ΩO
2ε∩{x=2ε}

ψ(x, y).

By (3.1.25) stated in Lemma 3.5, there exists a constant m > 0 depending only on (γ, v∞) such
that

mψ ≤ m

for any admissible solution ϕ = ψ + ϕO corresponding to β ∈ Rweak with β ∈ [β
(v∞)
s , β

(v∞)
s + σ3].

Moreover, we have

ψ(x, y) ≤ mv(x, y) on ∂ΩO
2ε ∩ {x = 2ε}.

Then the maximum principle implies that

ψ(x, y) ≤ m

2
(x− xP1)

5 in ΩO
2ε.

The claim is verified.

2. Take ε > 0 and σ3 > 0 from Step 1. Let ϕ = ψ+ϕO be an admissible solution corresponding

to (v∞, β) ∈ Rweak with β ∈ [β
(v∞)
s , β

(v∞)
s + σ3]. For each r ∈ (0, 1) and z0 = (x0, y0) ∈ ΩO

ε \ {P1},
we define Qr and Q

(z0)
r by

Qr := (−r, r)2, Q(z0)
r := {(S, T ) ∈ Qr : z0 +

dso(x0)

10k
(
√
x0S, T ) ∈ ΩO

2ε},

and a re-scaled function ψ(z0) by

ψ(z0)(S, T ) :=
1

(dso(x0))5
ψ(x0 +

dso(x0)

10k

√
x0S, y0 +

dso(x0)

10k
T ) for (S, T ) ∈ Q

(z0)
1 ,

where k > 1 is the constant from (3.5.62).
We repeat the arguments used in Steps 3–4 in the proof of Proposition 3.32 with some adjust-

ments to obtain that, for each α ∈ (0, 1), there exists a constant C > 0 depending only on (v∞, γ, α)

such that any admissible solution corresponding to (v∞, β) ∈ Rweak with β ∈ [β
(v∞)
s , β

(v∞)
s + σ3]

satisfies

(3.5.63) ‖ψ(z0)‖
C2,α(Q

(z0)

1/10
)
≤ C for all z0 ∈ ΩO

ε \ {P1}.
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Following the argument of Step 2 in the proof of [11, Proposition 16.5.3] and using estimate
(3.5.63), we obtain

∑

0≤k+l≤2

sup
z∈ΩO

ε

(
(x− xP1 )

k+l−5x
k
2 |∂kx∂lyψ(z)|

)

+
∑

k+l=2

sup
z,z̃∈ΩO

ε ,z 6=z̃

(
(
max{x, x̃} − xP1

)k+l+α−5(
max{x, x̃}

) k+α
2

|∂kx∂lyψ(z)− ∂kx∂
l
yψ(z̃)|

δ
(par)
α (z, z̃)

)

≤ CC

(3.5.64)

for δ
(par)
α (z, z̃) given by Definition 3.25, where we have used the notation that z = (x, y) and

z̃ = (x̃, ỹ).
We further follow the proof of [11, Proposition 16.5.3] to obtain that, for all x, x̃ ∈ (xP1 , ε),

(x − xP1)
k+l−5x

k
2 ≥ x

3
2k+l−5 for 0 ≤ k + l ≤ 2,

(max{x, x̃} − xP1 )
k+l+α−5

(max{x, x̃})
k+α

2 ≥ (max{x, x̃}) 3
2 (k+α)+l−5

for k + l = 2.
(3.5.65)

This is because k + l + α − 5 < 0 holds for k, l ∈ Z
+ with 0 ≤ k + l ≤ 2 and α ∈ (0, 1). Since

3
2 (k + α) + l − 5 < 0 holds for k, l ∈ Z

+ with 0 ≤ k + l ≤ 2 and α ∈ (0, 1), it follows from (3.5.65)
that

(x − xP1)
k+l−5x

k
2 ≥ ε

3
2 k+l−5 for 0 ≤ k + l ≤ 2,

(max{x, x̃} − xP1 )
k+l+α−5 (max{x, x̃})

k+α
2 ≥ ε

3
2 (k+α)+l−5 for k + l = 2.

(3.5.66)

Assuming that ε ≤ 1 without loss of generality, we also have

(3.5.67) δ(par)α (z, z̃) ≤ |z − z̃|α for z, z̃ ∈ ΩO
ε .

Using (3.5.64) and (3.5.66)–(3.5.67), we obtain

‖ψ‖
C2,α(ΩO

ε )
≤ C

for some constant C > 0 depending only on (v∞, γ, α), because the choice of ε given in Step 1
depends only on (v∞, γ).

Furthermore, it follows directly from (3.5.64) that

|D2
(x,y)ψ(x, y)| ≤ CC(x − xP1)

2 in ΩO
ε ,

which implies that

|D2
ξψ(P1)| = 0.

Note that ψ(P1) = |Dξψ(P1)| = 0, due to Definition 2.24(ii-3) for Case 2. Therefore, (3.5.59) is
proved.

Finally, (3.5.60) can be proved by adjusting Step 6 in the proof of Proposition 3.26 and using
(3.5.59). �
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3.5.4. Case 4: Admissible solutions for β > β
(v∞)
s away from β

(v∞)
s . We first introduce

a weighted Hölder space.
For a bounded connected open set U ⊂ R

2, let Γ be a closed portion of ∂U . For x,y ∈ U,
define

δx := dist(x,Γ), δx,y := min{δx, δy}.
For k ∈ R, α ∈ (0, 1), and m ∈ Z

+, define the standard Hölder norms by

‖u‖m,0,U :=
∑

0≤|β|≤m
sup
x∈U

|Dβu(x)|, [u]m,α,U :=
∑

|β|=m
sup

x,y∈U,x 6=y

|Dβu(x)−Dβu(y)|
|x− y|α ,

and the weighted Hölder norms by

‖u‖(k),Γm,0,U :=
∑

0≤|β|≤m
sup
x∈U

(
δmax(|β|+k,0)
x |Dβu(x)|

)
,

[u]
(k),Γ
m,α,U :=

∑

|β|=m
sup

x,y∈U,x 6=y

(
δmax{m+α+k,0}
x,y

|Dβu(x)−Dβu(y)|
|x− y|α

)
,

‖u‖m,α,U := ‖u‖m,0,U + [u]m,α,U , ‖u‖(k),Γm,α,U := ‖u‖(k),Γm,0,U + [u]
(k),Γ
m,α,U ,

where Dβ := ∂β1
x1
∂β2
x2

for β = (β1, β2) with βj ∈ Z+ and |β| = β1 + β2. Denote Cm,α(k),Γ(U) the

completion space of the set of all smooth functions whose ‖ · ‖(k),Γm,α,U–norms are finite.

Let σ3 be from Proposition 3.39. Then, by Proposition 3.15, there exists δ ∈ (0, 1) depending

only on (v∞, γ) such that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak with β
(v∞)
s +

σ3

2 ≤ β < β
(v∞)
d satisfies

(3.5.68)
|Dϕ|

c(|Dϕ|2, ϕ) ≤ 1− δ in Ω ∩ {ξ1 ≤ 0}

for c(|p|2, z) defined by (3.2.5). By (3.5.68) and Lemma 3.5, there exists M∗ ≥ 2 depending only
on (v∞, γ) such that (Dϕ(ξ), ϕ(ξ)) ∈ KM∗ for KM∗ defined by (3.2.6). In particular, there exist
λ∗ > 0 and R∗ > 0 depending only on (v∞, γ) such that any admissible solution ϕ corresponding

to (v∞, β) ∈ Rweak with β
(v∞)
s + σ3

2 ≤ β < β
(v∞)
d satisfies

2∑

i,j=1

∂pjAi(Dϕ(ξ), ϕ(ξ))κiκj ≥ λ∗|κ|2

for any ξ ∈ Ω ∩BR∗(Pβ) and any κ = (κ1, κ2) ∈ R
2.

According to Definition 2.23, Pβ = P1 for β ≥ β
(v∞)
s . In this chapter, we use Pβ , instead of P1,

to emphasize that Pβ is the ξ1–intercept of the straight oblique shock SO. In order to achieve the a

priori estimates of admissible solutions for β > β
(v∞)
s away from β

(v∞)
s , the convexity of the shock

polar curves is heavily used, particularly in establishing the functional independence property of
the boundary conditions for admissible solutions near Pβ .

Lemma 3.40. For each small σ̄ ∈ (0,
β
(v∞)
d

10 ), there exist positive constants r and M depending

only on (v∞, γ, σ̄) such that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak∩{β(v∞)
s ≤

β ≤ β
(v∞)
d − σ̄} satisfies

∂p1g
sh
mod(Dϕ(ξ), ϕ(ξ), ξ) ≤ − 1

M
for all ξ ∈ Γshock ∩Br(Pβ),
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where gshmod is given by (3.4.14).

Proof. In this proof, all the constants are chosen depending only on (v∞, γ), unless otherwise
specified. The proof is divided into six steps.

1. For ξ ∈ R \ B1(O∞), denote u
(ξ)
∞ := |Dϕ∞(ξ)|, and denote f

(ξ)
polar as fpolar defined by

Lemma A.3 corresponding to (ρ∞, u∞) = (1, |Dϕ∞(ξ)|). Denote (û
(ξ)
0 , u

(ξ)
d , u

(ξ)
s ) as (û0, ud, us)

corresponding to (ρ∞, u∞) = (1, u
(ξ)
∞ ).

Fix σ̄ ∈ (0,
β
(v∞)
d

10 ). Let ϕ be an admissible solution corresponding to (v∞, β) ∈ Rweak∩{β(v∞)
s ≤

β ≤ β
(v∞)
d − σ̄}, and let Γshock be its curved pseudo-transonic shock. By Proposition 3.7, f

(ξ)
polar is

well defined for each ξ ∈ Γshock. For ξ ∈ R
2, denote

(3.5.69) e(ξ) :=
Dϕ∞(ξ)

|Dϕ∞(ξ)| ,

and let e⊥(ξ) be the unit vector obtained from rotating e(ξ) by π
2 counterclockwise. More generally,

for each e ∈ R
2 \ {0}, let e⊥ denote the vector obtained from rotating e by π

2 counterclockwise.
The Rankine-Hugoniot condition (2.5.37) implies that Dϕ(ξ) can be expressed as

(3.5.70) Dϕ(ξ) = ue(ξ) + f
(ξ)
polar(u)e

⊥(ξ) for each ξ ∈ Γshock,

with u = u(Dϕ, ξ) given by

(3.5.71) u(Dϕ, ξ) := Dϕ(ξ) · e(ξ).
By Proposition 3.15, we have

(3.5.72) u(Dϕ, ξ) ≤ u(ξ)s for each ξ ∈ Γshock.

2. By (2.5.12) and Lemma A.4, there exists a constant M0 > 1 depending only on (v∞, γ, σ̄)

such that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β(v∞)
s ≤ β ≤ β

(v∞)
d − σ̄}

satisfies

(3.5.73) ∂p1g
sh
mod(Dϕ(Pβ), ϕ(Pβ), Pβ) = ∂p1g

sh(DϕO(Pβ), ϕ∞(Pβ), Pβ) ≤ −M−1
0 .

Let (t1, t2)–coordinates be given so that (1, 0)(t1,t2) = e(Pβ) and (0, 1)(t1,t2) = e⊥(Pβ). For

ξ ∈ R
2 \B1(O∞), we define a function g(ξ)(u) by

(3.5.74) g(ξ)(u) = g(u)

for g(u) given by (A.7) with u∞ = (|Dϕ∞(ξ)|, 0) (see Fig. 3.1). If we denote

u∗ := e(Pβ) ·DϕO(Pβ),

then

DϕO(Pβ) = (u∗, f
(Pβ)
polar(u∗)), g(Pβ)(DϕO(Pβ)) = 0.

Since DϕO(Pβ)·eξ2 = 0, it can be checked directly from the definitions of gsh and g given in (3.4.13)
and (A.7), respectively, that

(3.5.75) g
(Pβ)
u (DϕO(Pβ)) · e1 = ∂p1g

sh(DϕO(Pβ), ϕ∞(Pβ), Pβ).

Moreover, from (3.5.73), we obtain

(3.5.76) g
(Pβ)
u (DϕO(Pβ)) · e1 ≤ −M−1

0 .
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t2

t1

g(Pβ)(u) = 0

SO

g
(Pβ)
u (DϕO(Pβ))

DϕO(Pβ)

Dϕ∞(Pβ)

ξ1

ξ2

Pβ

n

Lu∗

Figure 3.1. The graph of curve g(Pβ)(u) = 0

Note that g
(Pβ)
u (DϕO(Pβ)) is a normal vector of curve (u, f

(Pβ)
polar(u)) at u = u∗. Let Lu∗ be the

tangent line of curve (u, f
(Pβ)
polar(u)) at u = u∗. Then g

(Pβ)
u (DϕO(Pβ)) is perpendicular to Lu∗ . Let

n∗ be the unit normal vector to Lu∗ with n∗ · e⊥(Pβ) > 0. Then n∗ · n < 0 for n = Dϕ∞−DϕO

|Dϕ∞−DϕO| ,

owing to the convexity of curve (u, f
(Pβ)
polar(u)).

It follows from (A.9) that g
(Pβ)
u (DϕO(Pβ)) · n∗ = −|g(Pβ)

u (DϕO(Pβ))| < 0 (see Fig. 3.1). This
implies that

g
(Pβ)
u (u, f

(Pβ)
polar(u))

|g(Pβ)
u (u, f

(Pβ)
polar(u))|

=
( d
duf

(Pβ)
polar(u),−1)

√
1 +

(
d
duf

(Pβ)
polar(u)

)2 ,

and

(3.5.77) sgn
(
g
(Pβ)
u (u, f

(Pβ)
polar(u)) · e1

)
= sgn

( d

du
f
(Pβ)
polar(u)

)
for û

(Pβ)
0 < u < u

(Pβ)
∞ ,

where we have continued to work in the (t1, t2)–coordinates with basis {e(Pβ), e⊥(Pβ)}.
By the convexity of curve (u, f

(Pβ)
polar(u)), we have

d2

du2
f
(Pβ)
polar(u) ≤ 0 for û

(Pβ)
0 < u < u

(Pβ)
∞ .

Then, from (3.5.75)–(3.5.77), we obtain

g
(Pβ)
u (u, f

(Pβ)
polar(u)) · e1 ≤ −M−1

0 for ∂e(Pβ)ϕO(Pβ) ≤ u
(Pβ)
∞ .
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Note that (Pβ , DϕO(Pβ), e(Pβ)) and the shock polar curve (u, f
(Pβ)
polar(u)) depend smoothly on

β ∈ [β
(v∞)
s , β

(v∞)
d ] (for further details, see Lemma A.3 or [11, Claim 16.6.7]). Therefore, there exists

a small constant ε1 > 0 depending only on (γ, v∞, σ̄) so that

(3.5.78) g
(Pβ)
u (u, f

(Pβ)
polar(u)) · e1 ≤ − 1

2M0
for ∂e(Pβ)ϕO(Pβ)− ε1 ≤ u < u

(Pβ)
∞ ,

where β ∈ [β
(v∞)
s , β

(v∞)
d − σ̄].

3. For u(Dϕ, ξ) given by (3.5.71), we define

(3.5.79) qβ(u(Dϕ, ξ)) := u(Dϕ, ξ)e(Pβ) + f
(Pβ)
polar(u(Dϕ, ξ))e

⊥(Pβ),

provided that û
(Pβ)
0 < u(Dϕ, ξ) < u

(Pβ)
∞ holds.

By the definitions of gsh and g(Pβ) given in (3.4.13) and (3.5.74), respectively, we have

(3.5.80) ∂p1g
sh(qβ(u), ϕ∞(Pβ), Pβ) = g

(Pβ)
u (qβ(u(Dϕ, ξ))) · e1.

Since ϕ− ϕ∞ = 0 holds on Γshock, we have

∂p1g
sh(Dϕ(ξ), ϕ(ξ), ξ) ≤ ∂p1g

sh(qβ(u), ϕ∞(Pβ), Pβ)

+ |∂p1gshmod(Dϕ(ξ), ϕ∞(ξ), ξ)− ∂p1g
sh
mod(qβ(u), ϕ∞(Pβ), Pβ))|,

(3.5.81)

where u = u(Dϕ, ξ) for ξ ∈ Γshock.

4. Claim: There exist a small constant r1 > 0 and a constant C > 0 so that, if r ∈ (0, r1] and

ϕ is an admissible solution corresponding to β ∈ [β
(v∞)
s , β

(v∞)
d − σ̄], then

(3.5.82) ∂e(ξ)ϕ(ξ) ≥ ∂e(Pβ)ϕO(Pβ)− ε1 on Γshock ∩Br1(Pβ)
for constant ε1 > 0 from (3.5.78).

Similarly to (3.1.16), define a cone generated by vectors u,v ∈ R
2 by

cone(u,v) := {α1u+ α2v : α1, α2 ≥ 0}.

For each β ∈ [β
(v∞)
s , β

(v∞)
d ), it is clear that

(3.5.83) e(Pβ) ∈ cone(eSO ,−e2)

for eSO = (cos β, sinβ) and e2 = (0, 1). We also find from (2.4.1) that

eSO · e(Pβ) =
cOMO cotβ

|Dϕ∞(Pβ)|
> 0, −e2 · e(Pβ) =

v∞
|Dϕ∞(Pβ)|

> 0

for MO defined by (2.4.6). Moreover, eSO ·e(Pβ) and −e2 ·e(Pβ) depend continuously on β. Thus,
there exists a constant κ0 > 0 such that

min
β∈[β

(v∞)
s ,β

(v∞)
d ]

{eSO · e(Pβ),−e2 · e(Pβ)} ≥ κ0.

Therefore, we can fix a small constant r1 > 0 so that

(3.5.84) min
ξ∈Br1(Pβ)

min{eSO · e(ξ),−e2 · e(ξ)} ≥ κ0
2

for all β ∈ [β(v∞)
s , β

(v∞)
d ].
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By (3.5.83) and Lemmas 3.5–3.6, there exists a constant C♯ > 0 such that any admissible solution

ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β(v∞)
s ≤ β ≤ β

(v∞)
d − σ̄} satisfies

∂e(ξ)ϕ(ξ) = ∂e(ξ)(ϕ− ϕO)(ξ) + ∂e(ξ)ϕO(ξ)

≥ ∂e(Pβ)ϕO(Pβ)− C♯|ξ − Pβ | for ξ ∈ Γshock.
(3.5.85)

We choose a constant r1 > 0 depending only on (v∞, γ, σ̄) to satisfy C♯r1 ≤ ε1
2 so that (3.5.82)

follows directly from (3.5.85). The claim is verified.

5. Claim: There exists a small constant r2 ∈ (0, r1] depending only on (γ, v∞, σ̄) so that, if ϕ

is an admissible solution corresponding to β ∈ [β
(v∞)
s , β

(v∞)
d − σ̄], then

(3.5.86) |Dϕ(ξ)− qβ(u(Dϕ, ξ))| ≤ C|ξ − Pβ | for all ξ ∈ Γshock ∩Br2(Pβ).

Define

µ2 := min
β∈[β

(v∞)
s ,β

(v∞)
d ]

(
u
(Pβ)
∞ − u

(Pβ)
s

)
.

Such a constant µ2 is positive, depending only on (v∞, γ). Choose a small constant r̂2 ∈ (0, r1] so

that |u(ξ)s − u
(Pβ)
s | ≤ µ2

4 for all ξ ∈ Br̂2(Pβ). Then we obtain from (3.5.72) and (3.5.82) that

(3.5.87) ∂e(Pβ)ϕO(Pβ)− ε1 ≤ u(Dϕ, ξ) ≤ u
(Pβ)
∞ − µ2

2
on Γshock ∩Br̂2(Pβ).

By Lemma 3.5, (3.5.70), and (3.5.79), we have

(3.5.88) |Dϕ(ξ)− qβ(u(Dϕ, ξ))| ≤ C
(
|ξ − Pβ |+ |(f (Pβ)

polar − f
(ξ)
polar)(u(Dϕ, ξ))|

)

on Γshock ∩Br̂2(Pβ).
By the continuous dependence of (û

(ξ)
0 , u

(ξ)
∞ ) and the smooth dependence of f

(ξ)
polar(u) on ξ ∈

R
2 \B1(O∞) for u ∈ (û

(ξ)
0 , u

(ξ)
∞ ) due to Lemma A.3, and by (3.5.87) and the continuous dependence

of Pβ on β ∈ [β
(v∞)
s , β

(v∞)
d ], there exist C > 0 and r2 ∈ (0, r̂2] depending only on (v∞, γ, σ̄) such

that

(3.5.89) |(f (Pβ)
polar − f

(ξ)
polar)(u(Dϕ, ξ))| ≤ C|ξ − Pβ | on Γshock ∩Br2(Pβ).

Then (3.5.86) follows directly from (3.5.88)–(3.5.89).

6. By (3.5.78), (3.5.80), and (3.5.87), we have

(3.5.90) ∂p1g
sh(qβ(Dϕ, ξ), ϕ∞(Pβ), Pβ) ≤ − 1

2M0
for ξ ∈ Γshock ∩Br2(Pβ)

for any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β(v∞)
s ≤ β ≤ β

(v∞)
d − σ̄}.

By Lemma 3.8, (3.4.14), and (3.5.86), there exists a constant Cpolar > 0 such that

(3.5.91)
∣∣∂p1gshmod(Dϕ(ξ), ϕ∞(ξ), ξ)− ∂p1g

sh
mod(qβ(u), ϕ∞(Pβ), Pβ))| ≤ Cpolar|ξ − Pβ

∣∣

for ξ ∈ Γshock ∩Br2(Pβ).
Choosing

r := min{r2,
1

4M0Cpolar
},
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we conclude from (3.5.81) and (3.5.90)–(3.5.91) that

∂p1g
sh(Dϕ(ξ), ϕ(ξ), ξ) ≤ − 1

4M0
on Γshock ∩Br(Pβ)

for any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β(v∞)
s ≤ β ≤ β

(v∞)
d − σ̄}. This

completes the proof. �

To simplify notations, let eβ denote e(Pβ) for each β ∈ [β
(v∞)
s , β

(v∞)
d ), and let e⊥β be the unit

vector obtained from rotating eβ by π
2 counterclockwise. By (3.2.27), (3.4.5), and (3.5.69), we have

∂eβ
(ϕ∞ − ϕ)(ξ) ≥ d1 + (eβ − e(ξ)) ·D(ϕ∞ − ϕ)(ξ) for all ξ ∈ Nε(Γshock) ∩ Ω,

where constants d1 and ε are from (3.4.5). Therefore, we can apply Lemma 3.5 to choose a constant
s∗ > 0 depending only on (v∞, γ) such that any admissible solution ϕ corresponding to (v∞, β) ∈
Rweak ∩ {β(v∞)

s ≤ β < β
(v∞)
d } satisfies

(3.5.92) ∂eβ
(ϕ∞ − ϕ) ≥ d1

8
in B2s∗(Pβ) ∩Ω.

Definition 3.41. Introduce the (S, T )–coordinates so that

(i) Pβ becomes the origin in the (S, T )–coordinates,

(ii) eβ = (1, 0)(S,T ) and e⊥β = (0, 1)(S,T ).

In fact, the (S, T )–coordinates are the same as the (t1, t2)–coordinates in Fig. 3.1.

In the (S, T )–coordinates given by Definition 3.41, SO, Γshock, Γwedge, and Ω near Pβ can be
represented as

SO ∩Bs∗(Pβ) = {S = aSO(β)T : T > 0} ∩Bs∗(Pβ),
Γshock ∩Bs∗(Pβ) = {S = fe(T ) : T > 0} ∩Bs∗(Pβ),
Γwedge ∩Bs∗(Pβ) = {S = aw(β)T : T > 0} ∩Bs∗(Pβ),
Ω ∩Bs∗(Pβ) = {(S, T ) : aeSO

(β)T ≤ fe(T ) < S < aw(β)T, T > 0} ∩Bs∗(Pβ),
where aw(β) depends continuously on β ∈ (0, π2 ), and aSO (β) = tan θβ with θβ := tan−1 aw(β)−β >
0 for each β ∈ (0, π2 ). Note that there is a constant C > 0 depending only on (v∞, γ) such that

C−1 ≤ aw(β) ≤ C for all β ∈ [β
(v∞)
s , β

(v∞)
d ). The representation of Γshock ∩ Bs∗(Pβ) as a graph of

S = fe(T ) is obtained by the implicit function theorem, combined with (3.5.92).

Proposition 3.42. Let positive constants σ3 and r be from Proposition 3.39 and Lemma

3.40, respectively. For small constants σs ∈ (0, σ3

2 ] and σd ∈ (0,
β
(v∞)
d

10 ), there exist constants
s ∈ (0, r), α ∈ (0, 1), and C > 0 depending only on (v∞, γ, σs, σd) such that any admissible solution

ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β(v∞)
s + σs ≤ β ≤ β

(v∞)
d − σd} satisfies the estimates:

‖ϕ‖(−1−α),{Pβ}
2,α,Ω∩Bs(Pβ)

+ ‖fe‖(−1−α),{0}
2,α,(0,s) ≤ C,

|Dm
ξ (ϕ− ϕO)(Pβ)| = 0 for m = 0, 1.

Proof. In this proof, all the estimate constants are chosen depending only on (v∞, γ, σs, σd),

unless otherwise specified. For fixed σs ∈ (0, σ3

2 ] and σd ∈ (0,
β
(v∞)
d

10 ), let ϕ be an admissible solution

for β ∈ [β
(v∞)
s + σs, β

(v∞)
d − σd].
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1. Denote φ̄ := ϕ∞ − ϕ, and rewrite Eq. (2.1.19) and the derivative boundary conditions
(3.4.12) and (2.5.36) in terms of φ̄ as follows:

2∑

i,j=1

Aij(Dφ̄, φ̄, ξ)Dij φ̄ = 0 in Bs∗(Pβ) ∩ Ω,

ĝsh(Dφ̄, φ̄, ξ) = 0 on Γshock,

ĝw(Dφ̄, φ̄, ξ) = 0 on Γwedge,

(3.5.93)

where

Aij(p, z, ξ) = ĉ2(p, z, ξ)δij − (∂iϕ∞ − pi)(∂jϕ∞ − pj) for i, j = 1, 2,

ĉ2(p, z, ξ) = 1− (γ − 1)
(1
2
|Dϕ∞ − p|2 + ϕ∞ − z

)
,

ĝsh(p, z, ξ) = −gsh(Dϕ∞(ξ)− p, ϕ∞(ξ)− z, ξ),

ĝw(p, z, ξ) = p2 + (ξ2 + v∞),

(3.5.94)

where gsh is given by (3.4.13) and s∗ ∈ (0, r] is from (3.5.92).
Next, we apply a partial hodograph transform to φ̄ in Bs∗(Pβ) ∩ Ω in the direction of eβ . For

each (S, T ) ∈ Bs∗(Pβ) ∩ Ω, define y = (y1, y2) = (φ̄(S, T ), T ). By (3.5.92), there exists a unique
function v(y) such that

(3.5.95) v(y1, y2) = S if and only if φ̄(S, y2) = y1

for y ∈ Dβ
s∗ := {y = (φ̄(S, T ), T ) : (S, T ) ∈ Bs∗(Pβ)∩Ω}. By taking derivatives of v(φ̄(S, y2), y2) =

S, it can be directly checked that

(3.5.96) ∂y1v =
1

∂Sφ̄
, ∂y2v = −∂T φ̄

∂Sφ̄
.

By Lemma 3.5, (3.5.92), and (3.5.95)–(3.5.96), there exists a constant K > 1 depending only
on (γ, v∞) such that

(3.5.97)
1

K
≤ ∂y1v ≤ 8

d1
, |v|+ |Dv| < 2K in Dβ

s∗ .

Using the definition of v, (3.5.93) can be written in terms of v:

2∑

i,j=1

aij(Dv, v,y)∂yiyjv = 0 in Dβ
s∗ ,

gshh (Dv, v,y) = 0 on Γ
(h)
shock = {y = (0, T ) : (S, T ) ∈ Bs∗(Pβ) ∩ Γshock},

gwh (Dv, v,y) = 0 on Γ
(h)
wedge = {y = (φ̄(S, T ), T ) : (S, T ) ∈ Bs∗(Pβ) ∩ Γwedge},

(3.5.98)
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where (aij , g
sh
h , g

w
h )(p, z,y) are directly computed by using (3.5.94) and the definition of v. More

precisely, (aij , g
sh
h , g

w
h )(p, z,y) are given by

a11(p, z,y) =
1

p31
(A11 − 2p2A12 + p22A22),

a12(p, z,y) = a21(p, z,y) =
1

p21
(A12 − p2A22),

a22(p, z,y) =
p2
p1
A22,

(gshh , g
w
h )(p, z,y) = −(ĝsh, ĝw),

with

(A11, A12, A22, ĝ
sh, ĝw) = (A11, A12, A22, ĝ

sh, ĝw)((
1

p1
,−p2

p1
), y1, (z, y2)).

Define a set

U := {(p, z,y) ∈ R
2 × R×Dβ

s∗}.
We fix a cut-off function ζ ∈ C∞(R) satisfying that ζ(t) ≡ 0 on (−∞, 1

10K ) and ζ(t) ≡ 1 on

( 1
4K ,∞). Furthermore, we define

(amod
ij , gsh,mod

h , gw,mod
h )(p, z,y) = ζ(p1)(aij , g

sh
h , g

w
h )(p, z,y) for i, j = 1, 2.

Then (3.5.98) can be rewritten as

2∑

i,j=1

amod
ij (Dv, v,y)∂yiyjv = 0 in Dβ

s∗ ,

gsh,mod
h (Dv, v,y) = 0 on Γ

(h)
shock,

gw,mod
h (Dv, v,y) = 0 on Γ

(h)
wedge.

(3.5.99)

Furthermore, for any l = 0, 1, 2, · · · , there exists a constant Cl > 0 depending only on (γ, v∞, l)
such that

(3.5.100) |Dl
(p,z,y)(a

mod
ij , gsh,mod

h , gw,mod
h )| ≤ Cl on U.

2. In this step, we apply Proposition C.12 to obtain

(3.5.101) |gwh (Dv(y), v(y),y) − gwh (Dv(0), v(0),0)| ≤ C|y|α1 for y ∈ Dβ
s∗ ∩Bl∗(0)

for some α1 ∈ (0, 1), C > 0, and l∗ > 0.

Γ
(h)
shock is flat so that it is C2 up to its endpoints, and Γ

(h)
wedge is Lipschitz continuous up to its

endpoints. Then we regard Γ
(h)
wedge and Γ

(h)
shock as Γ1 and Γ2, respectively, in Proposition C.12. Then

(gw,mod
h , gsh,mod

h , 0) in (3.5.99) become (b(1), b(2), h) in Proposition C.12. It follows directly from
(3.5.100) that (3.5.99) satisfies conditions (C.4.5)–(C.4.8).

Also, (3.5.97) implies that v satisfies condition (C.4.1) stated in Proposition C.12.
A direct computation by using the definition of v in (3.5.95) yields that

|Dpg
w
h (Dv(y), v(y),y)| = | 1

v2y1
(vy2 ,−vy1)| ≥

1

|vy1 |
= |φ̄S | for all y ∈ Dβ

s∗ .
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Thus, (3.5.92) implies that

|Dpg
w
h (Dv(y), v(y),y)| ≥

d1
8

for all y ∈ Dβ
s∗ .

This shows that b(1) = gwh satisfies condition (ii) of Proposition C.12. By (3.4.13), (A.18), Lemma
3.5, Remark 3.14, and Proposition 3.15, there exists a constant λ1 > 0 depending only on (v∞, γ, σs)

such that any admissible solution ϕ for β ∈ [β
(v∞)
s + σs, β

(v∞)
d ) satisfies

Dpg
sh
mod(Dϕ(ξ), ϕ(ξ), ξ) · νs(ξ) ≥ λ1 for all ξ ∈ Γshock ∩Bs∗(Pβ),

where νs is the unit normal vector to Γshock towards the interior of Ω. Then a direct computation
by using (3.5.92) and (3.5.94)–(3.5.95) shows that

∂p1 ĝ
sh(Dv(y), v(y),y) = |Dφ̄|φ̄SDpg

sh
mod(Dϕ(ξ), ϕ(ξ), ξ) · νs(ξ) ≥ λ1

(d1
8

)2
on Γ

(h)
shock.

This implies that b(2) = gshh satisfies condition (iii) of Proposition C.12. In order to apply Propo-

sition C.12, we also need to show that (b(1), b(2)) = (gwh , g
sh
h ) satisfies condition (iv). A direct

computation by using Lemma 3.40, (3.5.92), and (3.5.94)–(3.5.95) yields that
(3.5.102)∣∣∣∣∣det

(
Dpg

sh
h (Dv(y), v(y),y)

Dpg
w
h (Dv(y), v(y),y)

)∣∣∣∣∣ = φ̄3S |∂p1gsh(Dϕ(ξ), ϕ(ξ), ξ)| ≥
1

M

(d1
3

)3
for y ∈ Γ

(h)
shock

for constant M from Lemma 3.40. We have shown that condition (iv) of Proposition C.12 holds.
Then we apply Proposition C.12 to conclude that there exist constants α1 ∈ (0, 1), C > 0, and

l∗ > 0 depending only on (v∞, γ, σs, σd) such that (3.5.101) holds.

3. We know from (3.5.98) that v satisfies that |gshh (Dv(y), v(y),y) − gshh (Dv(0), v(0),0)| ≡ 0

on Γ
(h)
shock. This, combined with (3.5.101), implies that condition (C.4.12) stated in Proposition

C.13 is satisfied with α = α1. It follows from (3.5.100) that condition (C.4.9) holds. Also, (3.5.102)
implies that v satisfies condition (C.4.10) with y0 = 0. Moreover, condition (C.4.11) holds for the

line segment Γ
(h)
shock. Therefore, we obtain from Proposition C.13 that

(3.5.103) |Dv(y) −Dv(0)| ≤ C|y|α1 for y ∈ Γ
(h)
shock ∩Bl∗(0)

for a constant C > 0 depending only on (v∞, γ, σs, σd).
Since φ̄(0) = 0 in the (S, T )–coordinates, then |y| ≤ |φ̄(S, T ) − φ̄(0)| + |T | for each y =

(φ̄(S, T ), T ) ∈ Dβ
s∗ . We apply Lemma 3.5 to obtain

(3.5.104) |y| ≤ C|(S, T )| = C|ξ − Pβ |
for a constant C > 0 depending only on (γ, v∞).

By (3.5.95), |ξ − Pβ | = |(S, T )| ≤ |v(y) − v(0)| + |y2| for each (S, T ) ∈ Bs∗(Pβ) ∩ Ω. Then we
apply (3.5.97) to obtain

(3.5.105) |ξ − Pβ | = |(S, T )| ≤ (2K + 1)|y|
for constant K from (3.5.97).

We write (3.5.101) and (3.5.103) back in the ξ–coordinates, and apply (3.5.104)–(3.5.105) to
obtain

|ϕξ2(ξ)− ϕξ2(Pβ)| ≤ C|ξ − Pβ |α1 in Ω ∩Bs1(Pβ),
|Dϕ(ξ)−Dϕ(Pβ)| ≤ C|ξ − Pβ |α1 on Γshock ∩Bs1(Pβ),

(3.5.106)
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where C > 0 and s1 ∈ (0, s∗] depend only on (v∞, γ, σs, σd).
For the rest of proof, each estimate constant is chosen depending only on (v∞, γ, σs, σd), unless

otherwise specified. For ξ ∈ Ω, define f(ξ) := τw · (Dφ̄(ξ) − Dφ̄(Pβ)) for the unit tangent vector
τw = (1, 0) to Γwedge. Then (3.5.106) implies that

(3.5.107) |f(ξ)− f(Pβ)| ≤ Ĉ|ξ − Pβ |α1 for ξ ∈ Γshock ∩Bs1(Pβ).
Denote gsh∗ (p) := τw · (p − Dφ̄(Pβ)), and regard gsh∗ (Dφ̄) = f as a boundary condition for

ϕ on Γshock. Since Γwedge is flat in the ξ–coordinates, we can apply Proposition C.12 by setting

(Γ1,Γ2) := (Γshock,Γwedge) and (b(1), b(2)) := (gsh∗ , ĝ
w) for Γj , b(j), j = 1, 2, from Proposition C.12.

In particular, condition (C.4.8) holds with β = α1, owing to (3.5.107). Then we obtain constants
α ∈ (0, α1], C > 0, and s2 ∈ (0, s1] such that

|gsh∗ (Dϕ(ξ))− gsh∗ (Dϕ(Pβ))| ≤ C|ξ − Pβ |α for ξ ∈ Ω ∩Bs2(Pβ).

Combining this with (3.5.106), and noting that both boundary conditions ĝw and gsh∗ are linear
with constant coefficients and are linearly independent of each other, we finally have

(3.5.108) |Dϕ(ξ)−Dϕ(Pβ)| ≤ C∗|ξ − Pβ |α for ξ ∈ Ω ∩Bs2(Pβ).

4. For each ξ ∈ Γshock, define d(ξ) := |ξ − Pβ |.
Claim: There exist constants ω0 > 0 and s3 ∈ (0, s2] such that, for all ξ ∈ Γshock ∩Bs3(Pβ),

dist(ξ,Γwedge) ≥ ω0 d(ξ).

If this claim holds, then Ωs3 = Ω ∩Bs3(Pβ) satisfies condition (ii) of Proposition C.14 so that
Proposition 3.42 follows from (3.5.108) and Proposition C.14, where we use (3.5.108) to satisfy
condition (C.4.13) stated in Proposition C.14.

Now we show the claim. For a fixed point P ∈ Γshock, let P
′ be the point on SO so that

PP ′ ⊥ Γwedge. Then

(3.5.109) dist(P,Γwedge) = d(P ′) sinβ − |P ′ − P | ≥ d(P ) sinβ − |P ′ − P |.

Denote P = (ξP1 , ξ
P
2 ) and P ′ = (ξP

′

1 , ξP
′

2 ) in the ξ–coordinates. Then we see that P ′ − P =

(0, ξP
′

2 − ξP2 ). Since P ′ ∈ SO and P ∈ Γshock, (ϕ∞ − ϕO)(P ′) = (ϕ∞ − ϕ)(P ) = 0 so that

v∞|ξP ′

2 − ξP2 | = |(ϕ∞ − ϕO)(P
′)− (ϕ∞ − ϕO)(P )| = |(ϕO − ϕ)(P )|.

Since (ϕO − ϕ)(Pβ) = 0 by (2.5.12), the equation above gives

|P ′ − P | = 1

v∞
|(ϕO − ϕ)(P )− (ϕO − ϕ)(Pβ)|.

Then we apply (3.5.108) to obtain

|P ′ − P | = 1

v∞
|(ϕO − ϕ)(P )| ≤ Cd(P )1+α for P ∈ Ω ∩Bs2(Pβ)

for some constant C > 0. Combining this estimate with (3.5.109), we can choose constants ω0 > 0
and s3 ∈ (0, s2] so that the claim holds.

Then Proposition C.14, combined with (3.5.68) and the results from Steps 3–4, leads to Propo-
sition 3.42. �
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3.6. Compactness of the Set of Admissible Solutions

Fix γ ≥ 1, v∞ > 0, and β̄ ∈ (0, β
(v∞)
d ). According to all the a priori estimates obtained

in Lemma 3.18, Corollary 3.19, Propositions 3.26, 3.30, 3.39, and 3.42, there exists ᾱ ∈ (0, 1)
depending only on (v∞, γ, β̄) such that the set:

{
‖ϕ‖C1,ᾱ(Ω) + ‖Γshock‖C1,ᾱ :

ϕ is an admissible solution corresponding
to (v∞, β) ∈ Rweak ∩ {0 ≤ β ≤ β̄}

}

is bounded. For each admissible solution, its pseudo-subsonic region Ω is a bounded domain enclosed
by ΓO

sonic, ΓN
sonic, Γshock, and Γwedge. These four curves intersect only at Pj for j = 1, 2, 3, 4.

According to Definition 2.23, ΓN
sonic, ON , P2, and P3 are fixed so as to be the same for all admissible

solutions. Moreover, ΓO
sonic, OO, P1, and P4 depend continuously on β ∈ [0, β

(v∞)
d ]. From this

observation, the following lemma is obtained:

Lemma 3.43. Fix γ ≥ 1, v∞ > 0, and β̄ ∈ (0, β
(v∞)
d ). For each β ∈ [0, β̄], let Λβ be defined

by Definition 2.23. Let {ϕ(j)} be a sequence of admissible solutions corresponding to (v∞, β) ∈
Rweak ∩ {0 ≤ β ≤ β̄}, and let limj→∞ βj = β∞ for some β∞ ∈ [0, β̄]. For each j, let Ω(j) and

Γ
(j)
shock be the pseudo-subsonic region and the curved pseudo-transonic shock of ϕ(j), respectively.

Then there exists a subsequence {ϕ(jk)} ⊂ {ϕ(j)} such that the following properties hold:

(a) {ϕ(jk)} converges uniformly on any compact subset of Λβ∞ to a function ϕ(∞) ∈ C0,1
loc (Λβ∞),

and ϕ(∞) is an admissible solution corresponding to (v∞, β∞);

(b) Ω(jk) → Ω(∞) in the Hausdorff metric;

(c) If ξ(jk) ∈ Ω(jk), and ξ(jk) converges to ξ(∞) ∈ Ω(∞), then

ϕ(jk)(ξ(jk)) → ϕ(∞)(ξ(∞)), Dϕ(jk)(ξ(jk)) → Dϕ(∞)(ξ(∞)),

where, in the case of ξ(jk) ∈ Γ
(jk)
shock, Dϕ

(jk)(ξ(jk)) := limξ∈Ω(jk),ξ→ξ(jk) Dϕ(jk)(ξ), and

Dϕ(∞)(ξ) for ξ ∈ Γ
(∞)
shock is defined similarly.





CHAPTER 4

Iteration Set

In order to prove the existence of admissible solutions in the sense of Definition 2.24 for all
(v∞, β) ∈ Rweak by employing the Leray-Schauder degree for a fixed point, we first introduce the
iteration set.

4.1. Mapping the Admissible Solutions to the Functions Defined in Qiter

Fix γ ≥ 1 and v∞ > 0. We continue to follow Definition 2.23 for the notations: O∞, OO, ON ,
ΓN
sonic, Γ

O
sonic, and Pj for j = 1, 2, 3, 4, etc.. Denote Qiter = (−1, 1)× (0, 1).

Definition 4.1. Let (ϕ∞, ϕN , ϕO) be defined by (2.5.1).

(i) Definition of ĉO. For each β ∈ [0, β
(v∞)
d ], define ĉO by

ĉO := dist(ΓO
sonic,OO) =

{
cO for β < β

(v∞)
s ,

|OOPβ | for β ≥ β
(v∞)
s .

Note that ĉO < cO if β > β
(v∞)
s .

(ii) Extended sonic arcs. Since ĉO depends continuously on β ∈ [0, π2 ), a constant δ0 > 0 can be

chosen depending only on (v∞, γ) such that Sδ0N = {ξ ∈ R
2 : (ϕ∞−ϕN )(ξ) = −δ0} and ∂BcN (ON )

intersect at two distinct points, and Sδ0O = {ξ ∈ R
2 : (ϕ∞−ϕO)(ξ) = −δ0} and ∂BĉO(OO) intersect

at two distinct points for each β ∈ [0, β
(v∞)
d ]. Let ΓO,δ0

sonic be the smaller arc lying on ∂BĉO(OO) with
endpoints P4 and P

′
1, where P

′
1 is the intersection point of Sδ0O and ∂BĉO(OO) closer to P1. Similarly,

let ΓN ,δ0
sonic be the smaller arc lying on ∂BcN (ON ) between Sδ0N and ξ2 = 0 with endpoints P ′

2 and

P3, where P
′
2 is the intersection point of Sδ0N and ∂BcN (ON ) closer to P2.

(iii) Definition of Qβ. Define Qβ as the bounded region enclosed by ΓO,δ0
sonic, Γ

N ,δ0
sonic, S

δ0
O , Sδ0N , and

Γwedge.

For each β ∈ [0, β
(v∞)
d ], we first define a mapping G1 : Qβ → R

2 such that

(4.1.1) G1(ξ) =




(x+ uO − cO, y) for ξ near ΓO,δ0

sonic,

(cN − x, y) for ξ near ΓN ,δ0
sonic,

for the (x, y)–coordinates defined by (3.5.2) near ΓO,δ0
sonic and by (3.4.18) near ΓN ,δ0

sonic. We take several
steps to construct G1. The definition of G1 is given in (4.1.28). First, we define a mapping

F1 : Qβ → R
2 such that F1(ξ) · (1, 0) = x + uO − cO for ξ near ΓO,δ0

sonic and F1(ξ) · (1, 0) = cN − x

for ξ near ΓN ,δ0
sonic. Then we define a mapping F2 : F1(Q

β) → R
2 so that (F2 ◦F1)(ξ) · (1, 0) = F1(ξ),

and (F2 ◦ F1)(ξ) · (0, 1) = y for ξ near ΓO,δ0
sonic ∪ ΓN ,δ0

sonic. Finally, G1 is defined by G1 = F2 ◦ F1 as in
(4.1.28).

117
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For ε > 0, define two sets DO
ε and DN

ε by

DO
ε := (Qβ ∩ {ξ1 < uO}) \BĉO−ε(OO),

DN
ε := (Qβ ∩ {ξ1 > 0}) \BcN−ε(ON ).

(4.1.2)

Since ĉO, SO, and OO depend continuously on β ∈ [0, π2 ), there exist constants k > 4 and δ1 ∈ (0, π2 )

depending only on (v∞, γ) such that, for each β ∈ [0, β
(v∞)
d ], we have

DO
4
k ĉO

⊂ {xP1 < x < xP1 +
4

k
ĉO, β < y + β <

π

2
− δ1},

DN
4
k cN

⊂ {0 < x <
4

k
cN , 0 < y <

π

2
− δ1}.

(4.1.3)

Define cut-off functions ζO, ζN , χO, and χN as follows:

(i) ζO, ζN ∈ C4(R) satisfy

ζO(r) =

{
1 for r ≥ ĉO(1− 2

k ),

0 for r < ĉO(1− 3
k ),

0 ≤ ζ′O(r) ≤
2k

ĉO
on R;(4.1.4)

ζN (r) =

{
1 for r ≥ cN (1− 2

k ),

0 for r < cN (1− 3
k ),

0 ≤ ζ′N (r) ≤ 2k

cN
on R;(4.1.5)

(ii) Let qδ0O be the distance between OO = (uO, 0) and S
δ0
O , and denote

(4.1.6) uδ0O := uO − qδ0O sinβ.

Since uO = −v∞ tanβ < 0, uδ0O < 0. Then χO, χN ∈ C4(R) satisfy

χO(ξ1) =

{
1 for ξ1 ≤ uδ0O − 2ĉO

k ,

0 for ξ1 ≥ uδ0O ,
− 2k

ĉO
≤ χ′

O(ξ1) ≤ 0 on R;(4.1.7)

χN (ξ1) =

{
0 for ξ1 ≤ cN

k ,

1 for ξ1 ≥ 2cN
k ,

0 ≤ χ′
N (ξ1) ≤

2k

cN
on R.(4.1.8)

Choose constant k > 4 sufficiently large, depending only on (v∞, γ), such that

(4.1.9) DO
3
k ĉO

∩ {ξ1 < uδ0O } ⊂ {ξ1 < uδ0O − 3ĉO
k

}, DN
3
k cN

⊂ {ξ1 >
3cN
k

}.
Next, define a variable r by

(4.1.10) r =

{√
(ξ1 − uO)2 + ξ22 for ξ1 ≤ uδ0O ,√
ξ21 + ξ22 for ξ1 ≥ 0.

Since uδ0O < 0, r is well defined by (4.1.10).
For the cut-off functions (ζO, ζN , χO, χN ) given by (4.1.4)–(4.1.8) under the choice of k to

satisfy (4.1.9), we define a function h1 : Qβ → R as

h1(ξ1, ξ2) :=
(
(uO − r)ζO(r) + (1 − ζO(r))ξ1

)
χO

+
(
1− χO

)(
ξ1(1 − χN ) + (rζN (r) + (1− ζN (r))ξ1)χN

)
.

(4.1.11)

In (4.1.11), χO and χN are evaluated at ξ1.
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Define a mapping F1 : Qβ → R
2 by

(4.1.12) F1(ξ1, ξ2) :=
(
h1(ξ1, ξ2), ξ2

)
.

Lemma 4.2. There exist constants C > 0 and δF1 > 0 depending only on (v∞, γ) such that, for

each β ∈ [0, β
(v∞)
d ], F1 defined by (4.1.12) satisfies the following properties:

(a) ‖F1‖C4(Qβ)
+ ‖F−1

1 ‖
C4(F1(Qβ))

≤ C, and det(DF1) ≥ δF1 in Qβ;

(b) Denoting F1(ξ) := (s, t), then

(4.1.13) F1(Γwedge) = {(s, 0) : s ∈ (uO − ĉO, cN )};
(c) For φ∞ := ϕ∞ + 1

2 |ξ|2,
∂tφ∞

(
F−1
1 (s, t)

)
= −v∞ for all (s, t) ∈ F1(Qβ);

(d) For each j = 1, · · · , 4, denote Pj = (ξ
Pj

1 , ξ
Pj

2 ) in the ξ–coordinates. Then

F1(P1) = (uO − ĉO, ξ
P1

2 ), F1(P2) = (cN , ξ
P2

2 ),

F1(P3) = (cN , 0), F1(P4) = (uO − ĉO, 0);

(e) For h1 defined by (4.1.11),

h1(ξ) =

{
uO − cO + x if dist(ξ,ΓO,δ0

sonic) <
ĉO
k ,

cN − x if dist(ξ,ΓN ,δ0
sonic) <

cN
k

for the (x, y)–coordinates defined by (3.4.18) and (3.5.2).

Proof. By the definition of F1 in (4.1.12), we have

(4.1.14) det(DF1) = ∂ξ1h1.

Choose constant k large to satisfy that χNχ′
O = 0 and ζNχ′

N = ζOχ′
O = 0. Then, from definition

(4.1.11) of h1 and (4.1.4)–(4.1.8),

(4.1.15) ∂ξ1h1(ξ) =

3∑

j=1

aj ,

where

a1 =
(uO − ξ1

r
ζO + (1− ζO) +

uO − ξ1
r

(r − (uO − ξ1))ζ
′
O
)
χO,

a2 =
(ξ1
r
ζN + (1− ζN ) +

ξ1
r
(r − ξ1)ζ

′
N
)
χN (1− χO),

a3 = (1− χN )(1− χO).

Then (4.1.3) implies that

∂ξ1h1 ≥
(uO − ξ1

r
ζO + (1− ζO)

)
χO +

((ξ1
r
ζN + (1− ζN )

)
χN + (1− χN )

)
(1 − χO)

≥ cos(
π

2
− δ1)

(4.1.16)

for δ1 from (4.1.3).
Moreover, it follows from (4.1.15) that

(4.1.17) sup
ξ∈Qβ

∂ξ1h1(ξ) ≤ C
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for a constant C > 0 depending only on (γ, v∞).
For a constant a, if Qβ ∩ {ξ2 = a} is nonempty, then (4.1.16) implies that the one-dimensional

mapping (ξ1, a) ∈ Qβ∩{ξ2 = a} 7→ h1(ξ1, a) is invertible. Then it follows directly from the definition

of F1 given in (4.1.12) that F1 is invertible. Also, we can directly check that F1 and F−1
1 are C4

from (4.1.11), which yields (a). Finally, (b), (d), and (e) follow from (4.1.11)–(4.1.12).
By (2.4.1) and (4.1.12), φ∞

(
F−1
1 (s, t)

)
= −v∞t, which gives

∂tφ∞
(
F−1
1 (s, t)

)
= −v∞ for all (s, t) ∈ F1(Q).

This proves (c). �

By the definition of h1 in (4.1.11), we have

F1(Qβ) ⊂ [uO − ĉO, cN ]× [0,∞).

Lemma 4.3. Fix γ ≥ 1, v∞ > 0, and β̄ ∈ (0, β
(v∞)
d ). Then there exists a constant m0 > 0

depending only on (v∞, γ, β̄) such that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak∩
{0 ≤ β ≤ β̄} satisfies

(4.1.18) ∂t(ϕ∞ − ϕ)(F−1
1 (s, t)) ≤ −m0 < 0 in F1(Ω).

Therefore, there exists a unique function g̃sh : [uO − ĉO, cN ] → R+ such that

F1(Γshock) = {(s, g̃sh(s)) : uO − ĉO < s < cN }.

Proof. For each β ∈ [0, β
(v∞)
d ], we represent F−1

1 as

F−1
1 (s, t) = (h̃1(s, t), t) in F1(Qβ).

This expression yields that

(4.1.19) ∂t(ϕ∞ − ϕ)(F−1
1 (s, t)) = D(ϕ∞ − ϕ)|F−1

1 (s,t) · (∂th̃1(s, t), 1).

It follows from (F1 ◦ F−1
1 )(s, t) =

(
h1(h̃1(s, t)), t

)
= (s, t) that ∂th̃1(s, t) = −∂ξ2h1

∂ξ1h1
. This implies

that

(∂th̃1(s, t), 1) = − 1

∂ξ1h1
(∂ξ2h1,−∂ξ1h1),

where D(ξ1,ξ2)h1 is evaluated at ξ = F−1
1 (s, t).

Next, we compute v := 1
∂ξ1h1

(−∂ξ2h1, ∂ξ1h1).
Case 1. If χO 6= 0 so that χN = χ′

N = 0, we use ζO(r)χ′
O(ξ1) ≡ 0 to obtain

(4.1.20) ∂ξ1h1v = k1a1 + k2a2,

where

a1 = (sin y, cos y), a2 = (0, 1), k1 =
(
ζO + r(1 − cos y)ζ′O

)
χO, k2 = 1− ζOχO

for the (x, y)–coordinates defined by (3.5.2).

Case 2. If χO = 0 so that χO = χ′
O = 0, we use ζN (r)χ′

N (ξ1) ≡ 0 to obtain

(4.1.21) ∂ξ1h1v = l1b1 + l2b2,

where

b1 = (− sin y, cos y), b2 = (0, 1), l1 =
(
ζN + r(1 − cos y)ζ′N

)
χN , l2 = 1− ζNχN

for the (x, y)–coordinates defined by (3.4.18).
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Claim: There exists a constant m̃ > 0 depending only on (v∞, γ, β̄) such that any admissible solution

ϕ corresponding to (v∞, β) ∈ Rweak ∩ {0 ≤ β ≤ β̄} satisfies

sup
P∈Ω

(
D(ϕ∞ − ϕ) · v

)
(P ) ≤ −m̃.

Fix an admissible solution ϕ for β ∈ [0, β̄]. Let the unit vectors a1, a2, b1, and b2 be from
(4.1.20)–(4.1.21). Then a1,a2 ∈ Cone0(eSO , eSN ) for all y ∈ [0, π2 − β − δ1] for δ1 > 0 from (4.1.3),

and b1, b2 ∈ Cone0(eSO , eSN ) for all y ∈ [0, π2 − δ1]. Moreover, kj and lj, j = 1, 2, are nonnegative

and satisfy that k1 + k2 ≥ 1 and l1 + l2 ≥ 1 for all P ∈ Ω. Then (3.1.17) yields

sup
P∈Ω

(
∂ξ1h1D(ϕ∞ − ϕ) · v

)
(P ) ≤ −mϕ < 0

for a constant mϕ > 0. Furthermore, Lemma 3.43 implies that there exists a constant m1 >
0 depending only on (v∞, γ, β̄) such that any admissible solution ϕ corresponding to (v∞, β) ∈
Rweak ∩ {0 ≤ β ≤ β̄} satisfies

(4.1.22) sup
P∈Ω

(
∂ξ1h1D(ϕ∞ − ϕ) · v

)
(P ) ≤ −m1.

Combining (4.1.22) with (4.1.16)–(4.1.17), we conclude that there exists a constant m0 > 0 de-
pending only on (v∞, γ, β̄) such that any admissible solution ϕ for β ∈ [0, β̄] satisfies

(4.1.23) ∂t(ϕ∞ − ϕ)(F−1
1 (s, t)) = (D(ϕ∞ − ϕ) · v)(F−1

1 (s, t)) ≤ −m0 < 0

for all (s, t) ∈ F1(Ω). �

Next, we define a mapping F2 : F1(Qβ) → R
2 so that mapping G1 := F2 ◦F1 satisfies property

(4.1.1) in Qβ.

For each β ∈ [0, β
(v∞)
d ], we define F2 : F1(Qβ) → R

2 by

(4.1.24) F2(s, t) :=
(
s, h2(s, t)

)
,

and define a function h2 : F1(Qβ) → [0,∞) by

(4.1.25) h2(s, t) := χ̃O sin−1(
t

uO − s
) + (1− χ̃O)

(
t(1− χ̃N ) + χ̃N sin−1(

t

s
)
)

for the cut-off functions χ̃O, χ̃N ∈ C4(R) satisfying the following conditions:

χ̃O(s) =

{
1 for s < uO − ĉO(1− 1

2k ),

0 for s > uO − ĉO(1− 1
k ),

χ̃N (s) =

{
0 for s < cN (1− 1

k ),

1 for s > cN (1− 1
2k ),

0 ≤ χ̃O, χ̃N ≤ 1, − 4k

ĉO
≤ χ̃′

O ≤ 0 ≤ χ̃′
N ≤ 4k

cN
, χ̃′

Oχ̃
′
N = 0,

where k > 4 is the constant chosen to satisfy (4.1.9) and all the properties used in the proof of
Lemma 4.2.

Then h2 satisfies

(4.1.26) h2(s, t) = y for (s, t) near F1(Γ
O,δ0
sonic ∪ ΓN ,δ0

sonic).
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Lemma 4.4. There exist constants C > 0 and κ1 > 0 depending only on (v∞, γ) such that, for

each β ∈ [0, β
(v∞)
d ], F2 defined by (4.1.24) satisfies the following properties:

(a) ‖F2‖C4l(F1(Qβ)) + ‖F−1
2 ‖C4(F2◦F1(Qβ) ≤ C, and det(DF2) = ∂th2 ≥ κ1 in F1(Qβ);

(b) For F2(s, t) := (s̃, t̃), (F2 ◦ F1)(Γwedge) = {(s̃, 0) : s̃ ∈ (uO − ĉO, cN )}.

Proof. A direct computation by using (4.1.24) shows that

det(DF2) = ∂th2(s, t) =
χ̃O√

(uO − s)2 − t2
+ (1 − χ̃O)

(
(1− χ̃N ) +

χ̃N√
s2 − t2

)
.

For s < uO − ĉO(1− 1
2k ), we can write

√
(uO − s)2 − t2 = r cos y,

by (4.1.4) and (4.1.11), where r and y are given by (4.1.10) and (3.5.2) for ξ = F−1
1 (s, t). Similarly,

for s > cN (1 − 1
2k ), we can write as

√
s2 − t2 = r cos y, where r and y are given by (4.1.10) and

(3.4.18) for ξ = F−1
1 (s, t). Then there exists a constant κ1 > 0 depending only on (v∞, γ) such that

(4.1.27) det(DF2) = ∂th2 ≥ κ1 in F1(Qβ).

For a constant a, if F1(Qβ) ∩ {s = a} is nonempty, then (4.1.27) implies that the one-dimensional
mapping (a, t) ∈ F1(Qβ) ∩ {s = a} 7→ h2(a, t) is invertible. Then mapping F2 given by (4.1.24) is
also invertible.

The C4–estimates of F2 and F−1
2 and (b) are obtained directly from (4.1.13) and (4.1.25). �

By (4.1.25) and the invertibility of F2, there exists a function h̃2 : [uO − ĉO, cN ] → R+ such
that

F−1
2 (s′, t′) = (s′, h̃2(s

′, t′)) for all (s′, t′) ∈ (F2 ◦ F1)(Qβ).

For F1 and F2 given by (4.1.12) and (4.1.24) respectively, define a mapping G1 : Qβ → [uO −
ĉO, cN ]× R+ by

(4.1.28) G1 := F2 ◦ F1,

and denote G1(ξ) = (s′, t′). Mapping G1 satisfies property (4.1.1).

For each β ∈ [0, β
(v∞)
d ], define

(4.1.29) sβ := uO − ĉO.

Note that sβ varies continuously on (γ, v∞) and β ∈ [0, π2 ). Define a linear function Lβ(s
′) by

(4.1.30) Lβ(s
′) :=

2

cN − sβ
(s′ − sβ)− 1.

Then Lβ maps [sβ , cN ] onto [−1, 1]. We define a mapping Gβ1 : Qβ → [−1, 1]× R+ by

(4.1.31) Gβ1 (ξ) = (Lβ(s
′), t′) for (s′, t′) = G1(ξ).

Lemma 4.5. There exist constants C > 0 and κ > 0 depending only on (v∞, γ) such that, for

any β ∈ [0, β
(v∞)
d ], Gβ1 defined by (4.1.31) satisfies the following properties:

(a) ‖Gβ1 ‖C4(Qβ)
+ ‖(Gβ1 )−1‖

C4(Gβ
1 (Qβ))

≤ C;

(b) | det(DGβ1 )| ≥ κ in Qβ ;
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(c) Gβ1 (Γwedge) = {(s, 0) : s ∈ (−1, 1)};
(d) For φ∞ := ϕ∞ + 1

2 |ξ|2, ∂t′φ∞
(
(Gβ1 )−1(s, t′)

)
≤ −κ < 0 for all (s, t′) ∈ Gβ1 (Qβ).

In addition, for any β̄ ∈ (0, β
(v∞)
d ), there exists m2 > 0 depending only on (v∞, γ, β̄) such that any

admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {0 ≤ β ≤ β̄} satisfies

(4.1.32) ∂t′(ϕ∞ − ϕ)((Gβ1 )−1(s, t′)) ≤ −m2 < 0 in Gβ1 (Ω).

Proof. Fix β̄ ∈ (0, β
(v∞)
d ). It follows from (4.1.11), (4.1.25), (4.1.28), and Lemmas 4.2 and

4.4 that there exist constants C, κ2 > 0 depending only on (v∞, γ) such that, for any β ∈ [0, β
(v∞)
d ],

mapping G1 defined by (4.1.28) satisfies the following properties:

(a′) ‖G1‖C4(Qβ) + ‖G−1
1 ‖C4(G1(Qβ)) ≤ C;

(b′) | det(DG1)| ≥ κ2 in Qβ ;

(c′) G1(Γwedge) = {(s′, 0) : s′ ∈ (uO − ĉO, cN )}.
These properties, combined with (4.1.31), yield (a)–(c) for some κ < κ2.

By (4.1.12) and (4.1.24)–(4.1.28), we find that, at ξ = G−1
1 (s′, t′),

∂t′(ϕ∞ − ϕ)(G−1
1 (s′, t′)) = Dξ(ϕ∞ − ϕ) · (∂th̃1, 1)∂t′ h̃2 =

D(ξ1,ξ2)(ϕ∞ − ϕ) · v
∂th2

for v given by (4.1.20)–(4.1.21). Then (4.1.32) follows by combining (4.1.16) and (4.1.23) with
Lemma 4.4(a) and (4.1.31). Assertion (d) can be verified similarly. �

By using (2.4.3) and the definitions of (ϕ∞, ϕO, ϕN ) given in (2.5.1), it can be directly checked
that SO = {ξ : (ϕ∞−ϕO)(ξ) = 0} and SN = {ξ : (ϕ∞−ϕN )(ξ) = 0} intersect at a unique point:

(4.1.33) PI = (ξI1 , ξ
N
2 ) for ξI1 = −ξ

(β)
2 − ξN2
tanβ

,

where ξ
(β)
2 is the ξ2–intercept of SO. Then S

δ0
O and Sδ0N intersect at (ξI1 , ξ

N
2 + δ0

v∞
). It follows from

(2.4.14) and (2.4.42) that
dξ

(β)
2

dβ > 0 for β ∈ (0, π2 ) so that

(4.1.34) ξI1 < 0.

Since point PI lies on SO, and its ξ2–coordinate is greater than the ξ2–coordinate of P1, we have

(4.1.35) ξI1 > ξP1
1 .

By (2.4.3), (4.1.3), and (4.1.20)–(4.1.21), there exists a constant m3 > 0 depending only on

(v∞, γ) such that, for each β ∈ [0, β
(v∞)
d ],

∂t′
(
(ϕ∞ − ϕO) ◦ (Gβ1 )−1(s, t′)

)
≤ −m3,

∂t′
(
(ϕ∞ − ϕN ) ◦ (Gβ1 )−1(s, t′)

)
≤ −m3

(4.1.36)

for all (s, t′) ∈ Gβ1 (Qβ). By the implicit function theorem, there exists a unique function fβ ∈
C0,1([−1, 1]) such that

(4.1.37) Gβ1 (Qβ) = {(s, t′) : −1 < s < 1, 0 < t′ < fβ(s)}, ‖fβ‖C0,1([−1,1]) ≤ C

for a constant C depending only on (v∞, γ).
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Proposition 4.6. Fix γ ≥ 1 and v∞ > 0. For each admissible solution ϕ corresponding to
(v∞, β) ∈ Rweak, there exists a unique function

gsh : [−1, 1] → R+

satisfying the following properties:

(a) Gβ1 (Ω) = {(s, t′) : −1 < s < 1, 0 < t′ < gsh(s)},
Gβ1 (Γshock) = {(s, gsh(s)) : −1 < s < 1}.

(b) For any constant ε̂ ∈ (0, 1
10 ], there exists a constant Cε̂ > 0 depending only on (v∞, γ)

such that

‖gsh‖C3([−1+ε̂,1−ε̂]) ≤ Cε̂.

(c) Let ε∗0 > 0 be the minimum of ε0 from Lemmas 3.20 and 3.34. For each ε ∈ (0, ε∗0], denote

(4.1.38) ε̂ :=
2

cN − sβ
ε.

Let Qβ0 be the bounded region enclosed by ΓO
sonic, Γ

N
sonic, SO, SN , and Γwedge. Then

Ω ⊂ Qβ0 ⊂ Qβ

for Qβ given by Definition 4.1(iii). For DN
ε and DO

ε defined by (4.1.2), there exist unique
functions gN and gO so that

Gβ1 (Qβ0 ∩ DN
ε ) = {(s, t′) : 1− ε̂ < s < 1, 0 < t′ < gN (s)},

Gβ1 (Qβ0 ∩ DO
ε ) = {(s, t′) : −1 < s < −1 + ε̂, 0 < t′ < gO(s)},

(4.1.39)

for ε̂ defined by (4.1.38). Moreover, there exists a constant C > 0 depending only on
(v∞, γ) such that

(4.1.40) ‖gN ‖C3([1−ε̂∗0 ,1]) + ‖gO‖C3([−1,−1+ε̂∗0 ])
≤ C.

For any α ∈ (0, 1), there exists Cpar > 0 depending only on (v∞, γ, α) such that, for any
admissible solution corresponding to (v∞, β) ∈ Rweak,

‖gN − gsh‖(par)2,α,(1−ε̂∗0 ,1)
≤ Cpar,

where the norm, ‖ · ‖(par)2,α,(1−ε̂∗0 ,1)
, is defined by Definition 3.25(iii) with the replacement of

x by 1− |s| for the weight of the norm.

(d) For each β̄ ∈ (0, β
(v∞)
d ), there exist ᾱ ∈ (0, 1) and Cβ̄ > 0 depending only on (v∞, γ, β̄)

such that, for any admissible solution corresponding to β ∈ [0, β̄],

(4.1.41) ‖gsh‖(−1−ᾱ),{−1}
2,ᾱ,(−1,−1+ε̂∗0)

≤ Cβ̄ , (gsh − gO)(−1) = 0, (gsh − gO)
′(−1) = 0.

We note that (4.1.41) is equivalent to

‖gsh − gO‖(1+α̂),(par)2,α̂,(−1,−1+ε̂∗0)
≤ C′

β̄

for a constant C′
β̄
> 0 depending only on (v∞, γ, β̄), where the norm, ‖ · ‖(1+α̂),(par)2,α̂,(−1,−1+ε̂∗0)

, is

defined by Definition 3.25(iv) with the replacement of x by 1− |s|.
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(e) For each β̄ ∈ (0, β
(v∞)
d ), there exists a constant k̂ > 1 depending only on (v∞, γ, β̄) such

that, for any admissible solution ϕ for β ∈ [0, β̄],

min{gsh(−1) +
s+ 1

k̂
,
1

k̂
} ≤ gsh(s) ≤ min{fβ(s)−

1

k̂
, gsh(−1) + k̂(s+ 1)}

for all −1 ≤ s ≤ 1.

Proof. By (4.1.32) and the implicit function theorem, property (a) is obtained. For an ad-

missible solution ϕ, we differentiate the equation: (ϕ∞ −ϕ) ◦ (Gβ1 )−1(s, gsh(s)) = 0 with respect to
s to obtain

g′sh(s) =
∂s
(
(ϕ∞ − ϕ) ◦ (Gβ1 )−1

)

∂t′
(
(ϕ∞ − ϕ) ◦ (Gβ1 )−1

) ,

where the right-hand side is evaluated at (s, gsh(s)). Then property (b) is obtained from Lemma
3.18, Corollary 3.19, and Lemma 4.5. Similarly, properties (c) and (d) are obtained from (2.5.8),
(2.5.12), and Propositions 3.26, 3.32, 3.39, and 3.42.

By Lemma 3.34 and (4.1.1), there exist constants ε̂1 ∈ (0, ε̂∗0] and m > 1 depending only on

(v∞, γ) such that, for each β ∈ [0, β
(v∞)
d ], gO satisfies

1

m
≤ g′O(s) ≤ m for all −1 ≤ s ≤ −1 + ε̂1.

For each β̄ ∈ (0, β
(v∞)
d ), by (4.1.41), we can choose ε̂2 ∈ (0, ε̂1] depending only on (v∞, γ, β̄) such

that, for any admissible solution corresponding to (v∞, β) ∈ Rweak ∩ {0 ≤ β ≤ β̄},
1

2m
≤ g′sh(s) ≤ 2m for −1 ≤ s ≤ −1 + ε̂2.

By combining this estimate with Proposition 3.11, property (e) is obtained as a result. �

Remark 4.7. By Propositions 3.30 and 3.32, for each α ∈ (0, 1), there exist constants ε̂3 > 0
and Cα > 0 depending only on (v∞, γ, α) such that, for any admissible solution corresponding to

(v∞, β) with 0 ≤ β < β
(v∞)
s ,

‖gsh − gO‖(par)2,α,(−1,−1+ε̂3)
≤ Cα,

where the norm, ‖ · ‖(par)2,α,(−1,−1+ε̂2)
, is defined by Definition 3.25(iii) with the replacement of x by

1− |s| for the weight of the norm.
By Proposition 3.39, for each α ∈ (0, 1), there exist constants ε̂4 > 0 and C′

α > 0 depending

only on (v∞, γ, α) such that, for any admissible solution corresponding to (v∞, β) for β
(v∞)
s ≤ β ≤

β
(v∞)
s + σ3,

‖gsh − gO‖C2,α([−1,−1+ε̂4] ≤ C′
α,

dm

dsm
(gsh − gO)(−1) = 0 for m = 0, 1, 2.

By (4.1.34)–(4.1.35), ξI1 given by (4.1.33) satisfies that ξP1
1 < ξI1 < 0 for any β ∈ [0, β

(v∞)
d ].

Definition 4.8. Fix β ∈ [0, β
(v∞)
d ]. For ξI1 given by (4.1.33), fix a smooth function χ∗

β such
that

χ∗
β(ξ1) =




1 for ξ1 ≤ ξI1 − ξI1−ξ

P1
1

10 ,

0 for ξ1 ≥ ξI1 ,
− 10C

ξI1 − ξP1
1

≤ (χ∗
β)

′ ≤ 0, ‖χ∗
β‖C3(R) ≤ C
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for some constant C > 0 depending only on (v∞, γ). For such a smooth cut-off function, define

(4.1.42) ϕ∗
β(ξ) := ϕO(ξ)χ

∗
β(ξ1) + ϕN (ξ)(1− χ∗

β(ξ1)).

For later use, we list the following useful properties of ϕ∗
β for β ∈ [0, β

(v∞)
d ]:

(i) Define

(4.1.43) ϕβ := max{ϕO, ϕN }.
By (2.5.1) and the definition of ξI1 given in (4.1.33), we have

ϕβ(ξ1, ξ2) =





ϕO(ξ1, ξ2) if ξ1 < ξI1 ,

ϕO(ξ1, ξ2) = ϕN (ξ1, ξ2) if ξ1 = ξI1 ,

ϕN (ξ1, ξ2) if ξ1 > ξI1 ,

so that

(4.1.44) ϕ∗
β ≤ ϕβ in R

2.

(ii) Let DO
r and ĉO be given by (4.1.2) and Definition 4.1, respectively. Then there exists a

sufficiently large constant k̄ > 1 depending only on (v∞, γ) such that, for any β ∈ [0, β
(v∞)
d ],

ϕ∗
β satisfies

(4.1.45) ϕ∗
β = ϕβ =

{
ϕO in DÔ

cO
k̄

,

ϕN in {ξ ∈ R
2 : ξ1 ≥ 0}.

(iii) The set, {ξ : ξP1
1 ≤ ξ1 ≤ ξP2

1 , (ϕ∞ − ϕ∗
β)(ξ) = 0}, is contained in Qβ and

(4.1.46) sup
Qβ

(ϕ∞ − ϕ∗
β)− inf

Qβ
(ϕ∞ − ϕ∗

β) ≥ δ̄ > 0

for some constant δ̄ depending only on (v∞, γ).

Lemma 4.9. There exists a constant m > 0 depending only on (v∞, γ) such that each ϕ∗
β for

β ∈ [0, β
(v∞)
d ] satisfies

∂t′(ϕ∞ − ϕ∗
β)((Gβ1 )−1(s, t′)) ≤ −m for all (s, t′) ∈ Gβ1 (Qβ).

Proof. We have seen in the proof of Lemma 4.5 that

∂t′(ϕ∞ − ϕ∗
β)((Gβ1 )−1(s, t′)) =

1

∂th2
Dξ(ϕ∞ − ϕ∗

β) · v

for v given by (4.1.20)–(4.1.21), where Dξ(ϕ∞ −ϕ∗
β) is evaluated at (Gβ1 )−1(s, t′). By using (2.5.1)

and (4.1.42), a direct computation yields that

Dξ(ϕ∞ − ϕ∗
β) = v∞ sec β(sinβ,− cosβ)χ∗

β + (0,−v∞)(1− χ∗
β) + (ϕN − ϕO)(χ

∗
β)

′(1, 0).

From (4.1.3) and (4.1.20)–(4.1.21), there exists a constant m∗ > 0 depending only on (v∞, γ) such
that

(4.1.47) Dξ(ϕ∞ − ϕO) · v ≤ −m∗, Dξ(ϕ∞ − ϕN ) · v ≤ −m∗ for all (s, t′) ∈ Gβ1 (Qβ).
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By (4.1.7)–(4.1.8) and the definition of χ∗
β, we see that χO(χ∗

β)
′ = χN (χ∗

β)
′ = 0 on R. This,

combined with (4.1.20)–(4.1.21), yields that (ϕN − ϕO)(χ∗
β)

′(1, 0) · v = 0. Then (4.1.47) implies
that

(4.1.48) Dξ(ϕ∞ − ϕ∗
β) · v ≤ −m∗ for all (s, t′) ∈ Gβ1 (Qβ).

The proof is completed by (4.1.48) and Lemma 4.4. �

Each admissible solution ϕ corresponding to (v∞, β) ∈ Rweak has a unique function gsh :
(−1, 1) → R+ satisfying all the properties stated in Proposition 4.6. For such a function gsh, define

a mapping G2,gsh
: Gβ1 (Qβ) → R

2 by

(4.1.49) G2,gsh
: (s, t′) 7→

(
s,

t′

gsh(s)

)
=: (s, t).

By Proposition 4.6(e), G2,gsh
is well defined and invertible with

G−1
2,gsh

(s, t) =
(
s, tgsh(s)

)
.

More importantly, we have

G2,gsh
◦ Gβ1 (Ω) = (−1, 1)× (0, 1) =: Qiter.

Therefore, a function u given by

(4.1.50) u(s, t) := (ϕ− ϕ∗
β) ◦ (Gβ1 )−1 ◦G−1

2,gsh
(s, t) for (s, t) ∈ Qiter

is well defined. To establish a uniform estimate of u given by (4.1.50) for admissible solutions
corresponding to (v∞, β) ∈ Rweak, we introduce a new weighted C2,α–norm in Qiter.

Definition 4.10. Fix constants σ > 0, α ∈ (0, 1), and m ∈ Z+.

(i) For s = (s, t), s̃ = (s̃, t̃) ∈ Qiter, define

δ(subs)α (s, s̃) :=
(
(s− s̃)2 + (max{1− |s|, 1− |s̃|})2(t− t̃)2

)α
2 .

For an open set U ⊂ Qiter, define

‖u‖(σ),(subs)m,0,U :=
∑

0≤k+l≤m
sup
s∈U

(
(1 − |s|)k−σ|∂ks ∂ltu(s)|

)
,

[u]
(σ),(subs)
m,α,U := sup

s 6=s̃∈U

(
min

{
(1− |s|)α+k−σ , (1− |s̃|)α+k−σ

} |∂ks ∂ltu(s)− ∂ks ∂
l
tu(s̃)|

δ
(subs)
α (s, s̃)

)
,

‖u‖(σ),(subs)m,α,U := ‖u‖(σ),(subs)m,0,U + [u]
(σ),(subs)
m,α,U .

(ii) (Hölder norms with parabolic scaling). For s = (s, t), s̃ = (s̃, t̃) ∈ Qiter, define

δ(par)α (s, s̃) :=
(
(s− s̃)2 +max{1− |s|, 1− |s̃|}(t− t̃)2

)α
2 .

For an open set U ⊂ Qiter, define

‖u‖(σ),(par)m,0,U :=
∑

0≤k+l≤m
sup
s∈U

(
(1− |s|)k+ l

2−σ|∂ks ∂ltu(s)|
)
,

[u]
(σ),(par)
m,α,U :=

∑

k+l=m

sup
s 6=s̃∈U

(
min

{
(1− |s|)α+k+ l

2−σ, (1− |s̃|)α+k+ l
2−σ

} |∂ks ∂ltu(s)− ∂ks ∂
l
tu(s̃)|

δ
(par)
α (s, s̃)

)
,

‖u‖(σ),(par)m,α,U := ‖u‖(σ),(par)m,0,U + [u]
(σ),(par)
m,α,U .
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For a constant r ∈ (0, 1), denote
(4.1.51)
QO
r := Qiter ∩ {−1 < s < −1 + r}, QN

r := Qiter ∩ {1− r < s < 1}, Qint
r := Qiter ∩ {|s| < 1− r}.

Remark 4.11 (Compact embedding properties of the norms in Definition 4.10). For m ∈ Z+,
α ∈ [0, 1), σ > 0, and an open bounded set U in R

2, let Cm,α(σ),par(U) be the completion under the

norm, ‖ · ‖(σ),(par)m,α,U , of the set of all smooth functions whose ‖ · ‖(σ),(par)m,α,U –norms are finite. Moreover,

let Cm,α(σ),(subs)(U) be the completion in norm ‖ · ‖(σ),(subs)m,α,U of the set of all smooth functions whose

‖ · ‖(σ),(subs)m,α,U –norms are finite. Then the following compact embedding properties hold:

(i) Let r ∈ (0, 1), α, α̂ ∈ [0, 1) with α < α̂, and m ∈ {1, 2}. Then Cm,α̂(1+α̂),(sub)(QO
r ) is

compactly embedded into Cm,α(1+α),(sub)(QO
r ); see [11, Corollary 17.2.7].

(ii) Let m1 and m2 be nonnegative integers, α1, α2 ∈ [0, 1), and m1 + α1 > m2 + α2, and
let σ1 > σ2 > 0. Then Cm1,α1

(σ1),(par)
(U) is compactly embedded into Cm2,α2

(σ2),(par)
(U); see [11,

Lemma 4.6.3].

For ε0 > 0 from Proposition 3.36 and sβ from (4.1.29), define

(4.1.52) ε′0 :=
ε0

max
β∈[0,β

(v∞)
d ]

sβ
.

Proposition 4.12. For each β̄ ∈ (0, β
(v∞)
d ), there exist constants M > 0 and ᾱ ∈ (0, 13 ]

depending only on (v∞, γ, β̄) such that, for any admissible solution ϕ corresponding to (v∞, β) ∈
Rweak ∩ {0 ≤ β ≤ β̄}, u : Qiter → R defined by (4.1.50) satisfies

(4.1.53) ‖u‖C2,ᾱ(Qint
ε′0/4

) + ‖u‖(2),(par)
2,ᾱ,QN

ε′0

+ ‖u‖(1+ᾱ),(par)
2,ᾱ,QO

ε′0

+ ‖u‖(1+ᾱ),(subs)
1,ᾱ,QO

ε′0

≤M.

Proof. We divide the proof into six steps.

1. Estimate of u away from s = −1: A direct computation by using Corollary 3.19, Proposition
3.26, Lemma 4.2, Proposition 4.6, (4.1.45), and (4.1.50) shows that, for any α ∈ (0, 1), there exists
a constant M1 > 0 depending only on (v∞, γ, α) such that

(4.1.54) ‖u‖C2,α(Qint
ε′
0
/4

) + ‖u‖(2),(par)
2,α,QN

ε′0

≤M1

for any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak.

2. To obtain the a priori estimates of u near s = −1, the following two embedding inequalities
from [11] are applied in the next two steps:

Lemma 4.13 (Lemma 17.2.10 in [11]). For a nonnegative integer m, α ∈ (0, 1), and σ > 0, let

both norms ‖ · ‖(σ),(subs)m,α,U and ‖ · ‖(σ),(par)m,α,U be defined in Definition 4.10. For r ∈ (0, 1], there exists a

constant C > 0 independent of (r, α) such that

‖u‖(σ),(par)m,α,QO
r

≤ ‖u‖(σ),(subs)m,α,QO
r
.

Lemma 4.14 (Lemma 17.2.11 in [11]). For a nonnegative integer m, α ∈ (0, 13 ], σ > 0, and
r ∈ (0, 1), there exists a constant C > 0 independent of (r, α) such that

‖u‖(1+α),(subs)
1,α,QO

r
≤ C‖u‖(2),(par)

2,0,QO
r
.
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The estimates of u near s = −1 for the admissible solution are given for two cases separately:

(i) β ∈ [0, β
(v∞)
s ) and (ii) β ∈ [β

(v∞)
s , β̄].

3. Estimate of u near s = −1 for β ∈ [0, β
(v∞)
s ): For each β ∈ [0, β

(v∞)
d ], by (4.1.1), (4.1.31),

and Definition 4.15, we have

(4.1.55) u(s, t) = (ϕ− ϕO)(x, y) for (s, t) ∈ Qiter ∩ {−1 < s < −1 + ε′0}

with

(s, t) = (Lβ(x+ uO − cO),
y

(gsh ◦ Lβ)(x+ uO − cO)
)

for the (x, y)–coordinates defined by (3.5.2). Differentiating (4.1.55), we have

us =
cN − sβ

2
ψx + tg′shψy, ut = gshψy,

uss =
(cN − sβ

2

)2
ψxx + 2tg′sh

cN − sβ
2

ψxy + tg′′shψy + (tg′sh)
2ψyy,

ust = g′shψy +
cN − sβ

2
gshψxy + tg′shgshψyy,

utt = g2shψyy.

(4.1.56)

A direct computation by using (4.1.50) and Propositions 3.30 and 3.32 shows that, for β ∈ [0, β
(v∞)
s )

and α ∈ (0, 1), there exists a constant C > 0 depending only on (v∞, γ, α) such that

(4.1.57) ‖u‖(2),(par)
2,α,QO

ε′0

≤ C.

Furthermore, (4.1.57), combined with Lemma 4.14, implies that there exists a constant M ′
2 > 0

depending only on (v∞, γ) such that

(4.1.58) ‖u‖(1+
1
3 ),(subs)

1,13 ,QO
ε′0

≤M ′
2

for any admissible solution corresponding to (v∞, β) ∈ Rweak ∩ {0 ≤ β < β
(v∞)
s }. Combining the

two estimates (4.1.57)–(4.1.58) together, we have

(4.1.59) ‖u‖(1+
1
3 ),(par)

2,13 ,QO
ε′0

+ ‖u‖(1+
1
3 ),(subs)

1, 13 ,QO
ε′0

≤M2

for a constant M2 > 0 depending only on (v∞, γ).

4. Estimate of u near s = −1 for β ∈ [β
(v∞)
s , β

(v∞)
s +σ3]: Denote ψ := ϕ−ϕO. By Proposition

3.39, any admissible solution corresponding to (v∞, β) ∈ Rweak∩{β(v∞)
s ≤ β ≤ β

(v∞)
s +σ3} satisfies

(4.1.60) ψ(Pβ) = |Dψ(Pβ)| = 0.
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Regarding ψ as a function of (x, y) in DO
ε0 for ε0 > 0 from Proposition 3.36, one can directly

check by using (4.1.60) that ψ satisfies the following estimate: For x = (x, y), x̃ = (x̃, ỹ) ∈ DO
ε0 ,

‖ψ‖′(−1−α)
2,α,DO

ε0

:=
∑

0≤k+l≤2

sup
x∈DO

ε0

(
|x− xPβ

|k+l−(1+α)|∂kx∂lyψ(x)|
)

+

2∑

k=0

sup
x,x̃∈DO

ε0
,x 6=x̃

(
min{|x− xPβ

|, |x̃− xPβ
|} |∂

k
x∂

2−k
y ψ(x)− ∂kx∂

2−k
y ψ(x̃)|

|x− x̃|α
)

≤ κ1‖ψ‖(−1−α),{Pβ}
2,α,Ω∩DO

ε0

(4.1.61)

for some constant κ1 > 0 depending only on (v∞, γ, α).

Since gsh(−1) = 0 for β ≥ β
(v∞)
s , Proposition 4.6(e) implies that

1− |s|
k̂

≤ gsh(s) ≤ k̂(1− |s|) for s ∈ [−1,−1 + ε′0].

Then, following the calculations in the proof of [11, Lemma 17.2.5], we obtain from (4.1.56) and
Remark 4.7 that

‖u‖(1+α),(subs)
2,α,QO

ε′
0

≤ κ2‖ψ‖′(−1−α)
2,α,DO

ε0

for some constant κ2 > 0 depending only on (v∞, γ, α).
By Corollary 3.19 and Proposition 3.39, for each α ∈ (0, 1), there exists a constant C > 0

depending only on (v∞, γ, α) such that any admissible solution corresponding to (v∞, β) ∈ Rweak ∩
{β(v∞)

s ≤ β ≤ β
(v∞)
s + σ3} satisfies

(4.1.62) ‖ψ‖(−1−α),{Pβ}
2,α,Ω∩DO

ε0

≤ C

for ε0 > 0 from Proposition 3.36. Therefore, there exists a constant M3 > 0 depending only on
(v∞, γ, α) such that u given by (4.1.50) associated with ϕ satisfies

(4.1.63) ‖u‖(1+α),(par)
2,α,QO

ε′0

≤ ‖u‖(1+α),(subs)
2,α,QO

ε′0

≤M3.

5. Estimate of u near s = −1 for β ∈ [β
(v∞)
s + σ3

2 , β̄]: By Propositions 3.42 and 4.6, there

exists α̂ ∈ (0, 1) depending on (v∞, γ, β̄) so that ψ = ϕ− ϕO still satisfies estimate (4.1.62) for all

β ∈ [β
(v∞)
s + σ3

2 , β̄] and α ∈ (0, α̂]. Then there exists M4 > 0 depending only on (v∞, γ, β̄) such

that any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {β(v∞)
s + σ2

2 ≤ β ≤ β̄} satisfies
estimate (4.1.63) with α = α̂ and M3 =M4.

6. Finally, (4.1.53) is proved by choosing ᾱ = min{α̂, 13} andM = 4max{M1,M2,M3,M4}. �

4.2. Mapping the Functions in Qiter to Approximate Admissible Solutions

Fix γ ≥ 1 and v∞ > 0. For each β ∈ [0, β
(v∞)
d ], let Qβ be defined by Definition 4.1(iii). For

each s∗ ∈ (−1, 1), define

(4.2.1) Qβ(s∗) := Qβ ∩ (Gβ1 )−1
(
{s = s∗}

)
.

For each β ∈ [0, π2 ), let ϕ
∗
β be defined by (4.1.42). Then

inf
Qβ(−1)

(ϕ∞ − ϕ∗
β) < 0 ≤ sup

Qβ(−1)

(ϕ∞ − ϕ∗
β).
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In particular, the nonstrict inequality on the right above becomes strict when β < β
(v∞)
s and

becomes an equality when β ≥ β
(v∞)
s .

Definition 4.15. Fix α ∈ (0, 1), β̄ ∈ (0, β
(v∞)
d ), and β ∈ (0, β̄]. Let u ∈ C1,α(Qiter) be a

function satisfying that, for any s ∈ (−1, 1),

(4.2.2) inf
Qβ(s)

(ϕ∞ − ϕ∗
β) < u(s, 1) < sup

Qβ(s)

(ϕ∞ − ϕ∗
β).

We define functions g
(u,β)
sh , F(u,β), and ϕ(u,β) as follows:

(i) By Lemma 4.9, for each s ∈ (−1, 1), there exists a unique t̄′ > 0 such that

(ϕ∞ − ϕ∗
β) ◦ (Gβ1 )−1(s, t̄′) = u(s, 1).

Define a function g
(u,β)
sh : (−1, 1) → R

+ by

(4.2.3) g
(u,β)
sh (s) = t̄′.

(ii) For g
(u,β)
sh from (i), define G

2,g
(u,β)
sh

by (4.1.49). For Gβ1 given by (4.1.31), define a mapping

F(u,β) : Qiter → Qβ by

F(u,β) = (Gβ1 )−1 ◦G−1

2,g
(u,β)
sh

.

(iii) For F(u,β) from (ii), define the sets:

Γshock(u, β) := F(u,β)((−1, 1)× {1}), Ω(u, β) := F(u,β)(Qiter).

Moreover, define a function ϕ(u,β) in Ω(u, β) by

(4.2.4) ϕ(u,β)(ξ) = (u ◦ F−1
(u,β))(ξ) + ϕ∗

β(ξ) for all ξ ∈ Ω(u, β).

For α ∈ (0, 1) and β̄ ∈ (0, β
(v∞)
d ), define

(4.2.5) Gβ̄α :=

{
(u, β) ∈ C1,α(Qiter)× [0, β̄] :

(u, β) satisfy (4.2.2) for each s ∈ (−1, 1)

and (u,Du)(±1, ·) = (0,0)

}
.

The next lemma follows from Definition 4.15. For details of the proof, we refer to [11, Lemmas
12.2.7 and 17.2.13].

Lemma 4.16. Fix α ∈ (0, 1) and β̄ ∈ (0, β
(v∞)
d ). For each (u, β) ∈ Gβ̄α, the following properties

hold:

(a) g
(u,β)
sh ∈ C1,α([−1, 1]).

(b) For domain Λβ defined by Definition 2.23,

Ω(u, β) ∪ Γshock(u, β) ⊂ Qβ ⊂ Λβ.

Denote P1 = F(u,β)(−1, 1), P2 = F(u,β)(1, 1), P3 = F(u,β)(1, 0), and P4 = F(u,β)(−1, 0).

Then Γshock(u, β) is a C1,α–curve up to its endpoints P1 and P2, and is tangential to SO
at P1 and to SN at P2. For f̂O,0 and f̂N ,0 defined in Lemmas 3.20 and 3.27,

g
(u,β)
sh (−1) = f̂O,0(xβ), g

(u,β)
sh (1) = f̂N ,0(0),

d

ds
g
(u,β)
sh (−1) =

cN − sβ
2

f̂ ′
O,0(xβ),

d

ds
g
(u,β)
sh (1) = −cN − sβ

2
f̂ ′
N ,0(0),

(4.2.6)



132 4. ITERATION SET

where sβ is defined by (4.1.29) and xβ is given by

xβ =

{
0 if β < β

(v∞)
s ,

xPβ
if β ≥ β

(v∞)
s .

In the above, Pβ is the ξ1–intercept of SO, and xPβ
represents the x–coordinate of Pβ in the

(x, y)–coordinates defined by (3.5.2). Note that dk

dsk g
(u,β)
sh (±1), k = 0, 1, are uniquely deter-

mined depending only on (v∞, β), but independent of u ∈ Gβ̄α. Boundary ∂Ω(u, β) consists
of Γwedge = F(u,β)

(
(−1, 1) × {0}

)
, ΓN

sonic = F(u,β)

(
{1} × (0, 1)

)
, ΓO

sonic = F(u,β)

(
{−1} ×

(0, 1)
)
, and Γshock(u, β) = F(u,β)

(
(−1, 1) × {1}

)
which do not intersect at the points of

their relative interiors.

(c) Let δ0 > 0 be from Definition 4.1. Let the (x, y)–coordinates be defined by (3.5.2) near

ΓO
sonic, and by (3.4.18) near ΓN

sonic. For a constant ε > 0, define the two sets ΩO
ε and ΩN

ε

by

ΩO
ε := Nε0(Γ

O,δ0
sonic) ∩ {xP1 < x < xP1 + ε} ∩ Ω(u, β),

ΩN
ε := Nε0(Γ

N ,δ0
sonic) ∩ {0 < x < ε} ∩ Ω(u, β)

for ε0 > 0 to be fixed, where Nr(Γ) denotes an open r–neighborhood of Γ. Then there

exists a constant ε0 > 0 depending only on (v∞, γ) such that the following holds: for Lβ
defined by (4.1.30), define the two functions f̂O,sh and f̂N ,sh by

f̂O,sh(x) = g
(u,β)
sh ◦ Lβ(x+ uO − cO), f̂N ,sh(x) = g

(u,β)
sh ◦ Lβ(cN − x).

Then

ΩO
ε = {(x, y) : x ∈ (xP1 , xP1 + ε), 0 < y < f̂O,sh(x)},

Γshock(u, β) ∩ ∂ΩO
ε = {(x, f̂O,sh(x)) : x ∈ (xP1 , xP1 + ε)},

Γwedge ∩ ∂ΩO
ε = {(x, 0) : x ∈ (xP1 , xP1 + ε)},

ΓO
sonic = ΓO

sonic ∩ ∂ΩO
ε = {(0, y) : 0 < y < f̂O,sh(0)},

and

ΩN
ε = {(x, y) : x ∈ (0, ε), 0 < y < f̂N ,sh(x)},

Γshock(u, β) ∩ ∂ΩN
ε = {(x, f̂N ,sh(x)) : x ∈ (0, ε)},

Γwedge ∩ ∂ΩN
ε = {(x, 0) : x ∈ (0, ε)},

ΓN
sonic = ΓN

sonic ∩ ∂ΩN
ε = {(0, y) : 0 < y < f̂N ,sh(0)}.

(d) Suppose that (u, β), (ũ, β̃) ∈ Gβ̄α satisfy that ‖(u, ũ)‖
C1,α(Qiter)

< M for some constant

M > 0. Then there exists a constant C > 0, depending only on (v∞, γ,M, α), satisfying
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the following estimates:

‖g(u,β)sh ‖C1,α([−1,1]) + ‖F(u,β)‖C1,α(Qiter)
≤ C,

‖g(u,β)sh − g
(ũ,β̃)
sh ‖C1,α([−1,1]) ≤ C

(
‖u− ũ‖

C1,α(Qiter)
+ |β − β̃|

)
,

‖F(u,β) − F(ũ,β̃)‖C1,α(Qiter)
≤ C

(
‖u− ũ‖

C1,α(Qiter)
+ |β − β̃|

)
,

‖ϕ(u,β) ◦ F(u,β) − ϕ(ũ,β̃) ◦ F(ũ,β̃)‖C1,α(Qiter)
≤ C

(
‖u− ũ‖

C1,α(Qiter)
+ |β − β̃|

)
,

‖(ϕ(u,β) − ϕ∗
β) ◦ F(u,β) − (ϕ(ũ,β̃) − ϕ∗

β̃
) ◦ F(ũ,β̃)‖C1,α(Qiter)

≤ C
(
‖u− ũ‖

C1,α(Qiter)
+ |β − β̃|

)
.

(e) ψ(u,β) := ϕ(u,β) −max{ϕO, ϕN } = 0 holds on ΓO
sonic ∪ ΓN

sonic.

(f) For ε > 0, let ε̂ be defined by (4.1.38). Let ε0 > 0 be the constant from (c). Assume that,

for constants α ∈ (0, 1), σ ∈ (1, 2], and M > 0,

(4.2.7) ‖u‖
2,α,Qiter∩{|s|<1− ε̂0

10 }
+ ‖u‖(σ),(par)

2,α,Qiter∩{|s|>1−ε̂0} ≤M.

Then there exist C > 0 depending only on (v∞, γ, α, σ) and C0 > 0 depending only on

(v∞, γ) such that

(4.2.8) ‖g(u,β)sh ‖
2,α,[−1+

ε̂0
10 ,1−

ε̂0
10 ]

+ ‖g(u,β)sh − gO‖(σ),(par)2,α,(−1,−1+ε̂0)
+ ‖g(u,β)sh − gN ‖(σ),(par)2,α,(1−ε̂0,1) ≤ CM,

F(0,β) in {1− |s| < ε0} × (0,∞) defined by

F(0,β)(s, t
′) =

{(
G2,gO ◦ Gβ1

)−1
(s, t′) for s ∈ (−1,−1 + ε̂0),(

G2,gN ◦ Gβ1
)−1

(s, t′) for s ∈ (1 − ε̂0, 1)

satisfies

‖F(0,β)‖C3(Qiter∩{|s|≥1−ε̂0}) ≤ C0,

‖F(u,β)‖2,α,Qiter∩{|s|<1− ε̂0
10 }

+ ‖F(u,β) − F(0,β)‖(σ),(par)2,α,Qiter∩{|s|>1−ε̂0} ≤ C.

(g) Let fβ be from (4.1.37). For constants M > 0 and δsh > 0, assume that (u, β) ∈ Gβ̄α
satisfies (4.2.7) and

min
{
g
(u,β)
sh (−1) +

s+ 1

M
, δsh

}
≤ g

(u,β)
sh (s) ≤ min

{
g
(u,β)
sh (−1) +M(s+ 1), fβ(s)−

1

M

}

for all −1 ≤ s ≤ 1 and δsh ≥ g
(u,β)
sh (−1). Then, for any ε ∈ (0, 14 min{sβ, cN }), there

exists a constant Cε > 0 depending only on (v∞, γ, α, δsh, ε,M) such that

‖F−1
(u,β)‖2,α,Ω(u,β)\(ΩO

ε ∪ΩN
ε )

+ ‖F−1
(u,β) − F

(−1)
(0,β)‖

(σ),(par)

2,α,ΩN
ε0

≤ Cε,

‖ϕ− ϕ∗
β‖2,α,Ω(u,β)\(ΩO

ε ∪ΩN
ε )

+ ‖ϕ− ϕ∗
β‖(σ),(par)2,α,ΩN

ε0

≤ Cε.

(h) Let (u, β) and (ũ, β̃) be as in (d). For any open set K ⋐ Qiter so that K ⊂ (−1 + δ, 1−
δ)× (0, 1) for some δ > 0, there exists a constant Cδ > 0 depending only on (v∞, γ, α, σ, δ)
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such that

‖F(u,β) − F(ũ,β̃)‖C2,α(K) ≤ Cδ
(
‖(u− ũ)(·, 1)‖C2,α([−1+δ,1−δ]) + |β − β̃|

)
,

‖ϕ(u,β) ◦ F(u,β) − ϕ(ũ,β̃) ◦ F(ũ,β̃)‖C2,α(K) ≤ Cδ
(
‖u− ũ‖C2,α(K) + |β − β̃|

)
,

‖ψ(u,β) ◦ F(u,β) − ψ(ũ,β̃) ◦ F(ũ,β̃)‖C2,α(K) ≤ Cδ
(
‖u− ũ‖C2,α(K) + |β − β̃|

)
,

where ψ(u,β) is given by ψ(u,β) := ϕ(u,β) − ϕ∗
β for each (u, β) ∈ Gβ̄α.

Remark 4.17. By (4.1.1) and (4.2.6), for any (u, β) ∈ Gβ̄α, we have

g
(u,β)
sh (1) = sin−1(

ξN2
cN

) > 0

Fix δ ∈ (0, β
(v∞)
s ), and suppose that (u, β) ∈ Gβ̄α and β ∈ [0, β

(v∞)
s − δ]. Then it follows from

(3.5.22), (4.1.1), and (4.2.6) that there exists a constant lso > 0 depending only on (v∞, γ, δ) such
that

g
(u,β)
sh (−1) ≥ lso.

Therefore, there exists b ∈ (0, 1) depending only on (v∞, γ, σ, δ,M) such that, for any (u, β) ∈ Gβ̄α
with β ∈ [0, β

(v∞)
s − δ], g

(u,β)
sh satisfies

(4.2.9) b ≤ g
(u,β)
sh (s) ≤ b−1 for all s ∈ [−1, 1].

Then there exist Ĉ > 0 depending on (v∞, γ, α, σ, δ) and Ĉ0 > 0 depending only on (v∞, γ, δ) such
that

‖F−1
(0,β)‖C3(Qβ∩Dε0)

≤ Ĉ0 for Dε0 = Nε0(Γ
O,δ0
sonic) ∪Nε0 (Γ

N ,δ0
sonic),

‖F−1
(u,β)‖C2,α(Ω(u,β)\Dε0/10)

+ ‖F−1
(u,β) − F−1

(0,β)‖
(σ),(par)
2,α,Ω(u,β)∩Dε0

≤ ĈM.
(4.2.10)

Furthermore, ϕ = ϕ(u,β) defined by (4.2.4) corresponding to (u, β) satisfies

(4.2.11) ‖ϕ− ϕ∗
β‖C2,α(Ω(u,β)\Dε0/10)

+ ‖ϕ− ϕ∗
β‖(σ),(par)2,α,Ω(u,β)∩Dε0

≤ ĈM.

4.3. Definition of the Iteration Set

Definition 4.18. For ε0 > 0 from Lemma 4.16(c), let ε̂0 be given by (4.1.38).

(i) Define u(norm) ∈ C3(Qiter) by (4.1.50) with β = 0 and ϕ = ϕN . Note that ϕ∗
β ≡ ϕN in

Qβ by (4.1.42) because ϕO = ϕN when β = 0, which yields that

u(norm) ≡ 0 in Qiter.

(ii) For α ∈ (0, 1) and α′ ∈ (0, 1], we introduce the norm:

‖u‖(∗,α
′)

2,α,Qiter := ‖u‖
C2,α(Qint

ε̂0/4
)
+ ‖u‖(1+α

′),(par)

2,α,QN
ε̂0

+ ‖u‖(1+α),(par)
2,α,QO

ε̂0

+ ‖u‖(1+α),(subs)
1,α,QO

ε̂0

,

where Qint
ε̂0/4

, QN
ε̂0
, and QO

ε̂0
are defined in (4.1.51). Denote by C2,α

(∗,α′)(Qiter) the set of

all C2(Qiter)–functions whose ‖ · ‖(∗,α
′)

2,α,Qiter–norms are finite. Note that C2,α
(∗,α′)(Qiter) is

compactly embedded into C2,α̃
(∗,α̃′)(Qiter) whenever 0 ≤ α̃ < α < 1 and 0 ≤ α̃′ < α′ ≤ 1.
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For fixed γ ≥ 1, v∞ > 0, and β∗ ∈ (0, β
(v∞)
d ), we define the iteration set K ⊂ C1,α(Qiter)×[0, β∗]

for some appropriate α ∈ (0, 1). For each β ∈ [0, β∗], Kβ := {u ∈ C1,α(Qiter) : (u, β) ∈ K}. In the
definition to come, the iteration set K is given such that

• K0 contains u(norm);

• If β is sufficiently close to 0, then u ∈ Kβ is also close to u(norm) in an appropriate norm;

• If β is away from 0, then any ϕ(u,β) given by (4.2.4) for u ∈ Kβ satisfies the strict
directional monotonicity properties (3.1.6)–(3.1.7);

• Kβ varies continuously on β ∈ [0, β∗].

For γ ≥ 1 and v∞ > 0, fix β∗ ∈ (0, β
(v∞)
d ). For ᾱ ∈ (0, 13 ] from Proposition 4.12, define

(4.3.1) α∗ :=
ᾱ

2
.

Let ε0 > 0 be from Lemma 4.16. For constants α ∈ (0, α∗], α1 ∈ (0, 1), δ1, δ2, δ3, ε ∈ (0, ε02 ), and

N1 > 1 to be specified later, we now define the iteration set K ⊂ C2,α
(∗,α1)

(Qiter)× [0, β∗].

Definition 4.19. For fixed β∗ ∈ (0, β
(v∞)
d ), the iteration set K ⊂ C2,α

(∗,α1)
(Qiter)× [0, β∗] is the

set of all (u, β) satisfying the following properties:

(i) Fix α1 = 7
8 . Then (u, β) satisfies

‖u− u(norm)‖(∗,α1)

2,α,Qiter < K1(β)

for K1 ∈ C0,1(R) given by

K1(β) =





δ1 if β ≤ δ1
N1
,

N0 if β ≥ 2δ1
N1
,

linear if β ∈ ( δ1N1
, 2δ1N1

),

with N0 = max{10M, 1} for constant M from Proposition 4.12.

(ii) For set Gβ∗
α defined by (4.2.5), (u, β) is contained in Gβ∗

α . Moreover, let gsh = g
(u,β)
sh ,

Γshock = Γshock(u, β), Ω = Ω(u, β), and ϕ = ϕ(u,β) be defined by Definition 4.15.

(iii) Γshock and gsh satisfy

dist(Γshock, B1(O∞)) > N−1
2 ,

(4.3.2) min{gsh(−1) +N−1
3 (s+ 1), N−1

3 } < gsh(s) < min{gsh(−1) +N3(s+ 1), fβ(s)−N−1
3 }

for all −1 < s < 1 with N2 = 2C for C from Proposition 3.7, and N3 = 2k̂ for k̂ from
Proposition 4.6(e) with gsh(−1) ≥ 0, where fβ is defined by (4.1.37).

(iv) Let the (x, y)–coordinates be defined by (3.4.18) near ΓN
sonic and by (3.5.2) near ΓO

sonic.
For ϕβ = max{ϕO, ϕN }, denote ψ := ϕ − ϕβ . For r > 0, let DO

r and DN
r be defined by
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(4.1.2). Let ϕ and ψ satisfy the following:

ψ > K2(β) in Ω \ (DO
ε
10

∪ DN
ε
10
),(4.3.3)

∂eSO
(ϕ∞ − ϕ) < −K2(β) in Ω \ DO

ε
10
,(4.3.4)

−∂ξ1(ϕ∞ − ϕ) < −K2(β) in Ω \ DN
ε
10
,(4.3.5)

|∂xψ(x, y)| <
2− µ0

1 + γ
x in Ω ∩ (DN

ε0 \ DN
ε/10),(4.3.6)

|∂xψ(x, y)| < K3(β)x in Ω ∩ (DO
ε0 \ DO

ε/10),(4.3.7)

|∂yψ(x, y)| < N4x in Ω ∩
(
(DO

ε0 \ DO
ε/10) ∪ (DN

ε0 \ DN
ε/10)

)
,(4.3.8)

|(∂xψ, ∂yψ)| < N4ε in Ω ∩ (DO
ε ∪DN

ε ),(4.3.9)

‖ϕ− ϕN ‖C0,1(Ω) + ‖ϕ− ϕO‖C0,1(Ω) < N5,(4.3.10)

∂ν(ϕ∞ − ϕ) > µ1, ∂νϕ > µ1 on Γshock,(4.3.11)

for the unit normal vector ν to Γshock towards the interior of Ω. In the above conditions,
functions K2,K3 ∈ C(R) are defined by

(4.3.12) K2(β) = δ2 min
{
β − δ1

N2
1

,
δ1
N2

1

}
,

K3(β) =





2−µ0

1+γ if 0 ≤ β ≤ β
(v∞)
s + σ2

2 ,

linear if β
(v∞)
s + σ2

2 < β < β
(v∞)
s + σ2,

N4 if β
(v∞)
s + σ2 ≤ β,

for constants ε0, σ2, µ0, µ1, N4, and N5 chosen as follows:

(iv-1) ε0 is from Lemma 4.16.

(iv-2) σ2 > 0 is from Lemma 3.36, and µ0 = δ
2 for δ > 0 from Lemmas 3.28 and 3.36.

(iv-3) µ1 = δ1
2 for δ1 > 0 from Corollary 3.17.

(iv-4) Choice of N4: By (3.5.55)–(3.5.56), for each σ ∈ (0, β
(v∞)
d − β

(v∞)
s ),

(4.3.13) inf
β
(v∞)
s +σ≤β<β(v∞)

d

xPβ
= xPβ

|
β=β

(v∞)
s +σ

=: xσ > 0.

By Propositions 3.30, 3.32, and 3.39, there exists C1 > 0 depending only on (v∞, γ)

such that any admissible solution ϕ = ψ + ϕβ for β ∈ (0, β
(v∞)
s + σ3] satisfies that

|(∂x, ∂y)ψ(x, y)| ≤ C1x in Ω ∩DO
ε0 .

Let ᾱ ∈ (0, 1) be from Proposition 4.12. By Proposition 3.42 and (4.3.13), any

admissible solution ϕ = ψ + ϕβ for β ≥ β
(v∞)
s + σ3

2 satisfies

|(∂x, ∂y)ψ(x, y)| ≤ C2x
ᾱ ≤ C2

(
xPβ

|
β=β

(v∞)
s +

σ3
2

)ᾱ−1
x in Ω ∩DO

ε0

for a constant C2 > 0 depending only on (v∞, γ, β∗). Then there exists a constant
C∗

1 > 0 depending only on (v∞, γ, β∗, σ) such that any admissible solution ϕ = ψ+ϕβ
for β ∈ (0, β∗] satisfies

|(∂x, ∂y)ψ(x, y)| ≤ C∗
1x in Ω ∩DO

ε0 .
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By combining this inequality with Proposition 3.26, there exists a constant C∗ > 0
depending only on (v∞, γ, β∗) such that any admissible solution ϕ for β ∈ [0, β∗]
satisfies

|(∂x, ∂y)ψ(x, y)| ≤ C∗x in Ω ∩ (DO
ε0 ∪ DN

ε0 ).

We choose N4 := 10C∗.

(iv-5) By Lemma 3.5 and the continuous dependence of uO and cO on β ∈ [0, π2 ), there

exists a constant Ĉ > 0 depending only on (v∞, γ) such that any admissible solution

ϕ for β ∈ [0, β
(v∞)
d ) satisfies

‖ϕ− ϕN ‖C0,1(Ω) + ‖ϕ− ϕO‖C0,1(Ω) ≤ Ĉ.

For such Ĉ > 0, we choose N5 := 10Ĉ.

(v) Let c(|Dϕ|2, ϕ) be defined by

(4.3.14) c(|Dϕ|2, ϕ) := ρ
γ−1
2 (|Dϕ|2, ϕ)

for ρ(|p|2, z) given by (2.4.2). Then ϕ satisfies

(4.3.15)
|Dϕ(ξ)|2

c2(|Dϕ(ξ)|2, ϕ(ξ)) < 1− µ̃dist♭(ξ,ΓO
sonic ∪ ΓN

sonic) for ξ ∈ Ω \ (DN
ε/10 ∪ DO

ε/10).

In (4.3.15), µ̃ = µel

2 for µel > 0 from Remark 3.16.

(vi) ρ(|Dϕ|2, ϕ) given by (2.4.2) satisfies
a∗
2
< ρ(|Dϕ|2, ϕ) < 2C in Ω \ (DN

ε/10 ∪ DO
ε/10),

for a∗ = ( 2
γ+1)

1
γ−1 and C from (3.1.26) in Lemma 3.5. For such constants, denote

ρmin :=
a∗
2
, ρmax = 2C.

(vii) The boundary value problem

(4.3.16)





N(u,β)(φ̂) = A11φ̂ξ1ξ1 + 2A12φ̂ξ1ξ2 +A22φ̂ξ2ξ2 = 0 in Ω,

M(u,β)(Dφ̂, φ̂, ξ) = 0 on Γshock,

φ̂ = max{ϕN , ϕO} − ϕN on ΓO
sonic ∪ ΓN

sonic,

φ̂ξ2 = 0 on Γwedge

has a unique solution φ̂ ∈ C2(Ω) ∩ C1(Ω), where N(u,β) and M(u,β) are determined by
(u, β) in §4.4. Moreover, this solution satisfies that û(s, t), defined by

(4.3.17) û(s, t) := (φ̂ + ϕN − ϕ∗
β) ◦ F(u,β)(s, t) in Qiter,

satisfies

(4.3.18) ‖û− u‖(∗,α1)

2,α2 ,Qiter < δ3.

Remark 4.20. By (4.1.45), the boundary condition φ̂ = max{ϕN , ϕO}− ϕN on ΓO
sonic ∪ ΓN

sonic

given in (4.3.16) is equivalent to

φ̂ =

{
ϕO − ϕN on ΓO

sonic,

0 on ΓN
sonic.
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Remark 4.21. For a fixed β∗ ∈ (0, β
(v∞)
d ), let the iteration set K be defined by Definition

4.19. For each (u, β) ∈ K, let gsh = g
(u,β)
sh , Ω = Ω(u, β), Γshock = Γshock(u, β), and ϕ = ϕ(u,β) be

defined by Definition 4.15. Then there exist constants Mdom > 0 depending only on (v∞, γ), C > 0
depending only on (v∞, γ, α), and Cβ∗ > 0 depending only on (v∞, γ, β∗, α) such that the following
properties hold:

(i) Let gO and gN be from (4.1.39). For N0 from Definition 4.19 (i), gsh satisfies

‖gsh‖(−1−α),{±1}
2,α,(−1,1) ≤ CN0,

dk

dsk
(gsh − gO)(−1) =

dk

dsk
(gsh − gN )(1) = 0 for k = 0, 1.

(4.3.19)

(ii) Γshock is a C1,α–curve up to its endpoints. Furthermore, Γshock∩DO
ε0 and Γshock∩DN

ε0 are

graphs y = f̂O,sh(x) and y = f̂N ,sh(x) for

(4.3.20) f̂O,sh(x) = (gsh ◦ L−1
β )(sβ + x), f̂N ,sh(x) = (gsh ◦ L−1

β )(cN − x),

with f̂N ,sh and f̂O,sh satisfying that

‖f̂N ,sh − f̂N ,0‖(1+α1),(par)
2,α,(0,ε0)

+ ‖f̂O,sh − f̂O,0‖(1+α),(par)2,α,(0,ε0)
< CK1(β)

for f̂N ,0 and f̂O,0 from Lemmas 3.20(e) and 3.27(e), respectively.

(iii) Ω ⊂ BMdom
(0).

(iv) ψ = ϕ− ϕ∗
β satisfies

Dkψ = 0 on ΓO
sonic ∪ ΓN

sonic for k = 0, 1,

‖ψ‖C1,α(Ω) < CK1(β).

By Lemma 3.27(e) and (4.3.19), we can adjust ε0 depending on (v∞, γ) to satisfy

0 <
1

2
g′O(−1) ≤ g′sh(s) ≤ 4g′O(−1) for all s ∈ [−1,−1 + ε̂0].

Then, for each β < β
(v∞)
s ,

|∂yψ(x, y)| =
|ut(s, t)|
gsh(s)

≤ ‖u‖(1+α),(subs)
1,α,QO

ε̂0

(1− |s|)1+α
gsh(−1)

≤ Cx
1
2+α for (x, y) ∈ Ω ∩ DO

r̂ ,

where r̂ = min{g2sh(−1), ε0} (note that gsh(−1) > 0 for each (u, β) ∈ K ∩ {β < β
(v∞)
s }).

For each σ ∈ (0, β
(v∞)
s ), there exists a constant N∗

0 (σ) depending only on (v∞, γ, β∗, σ)

such that, if (u, β) ∈ K ∩ {β < β
(v∞)
s − σ}, then

‖ψ‖(1+α),(par)
2,α,DO

ε0

< N∗
0 (σ).

(v) For each r ∈ (0, ε0), there exists a constant Cβ∗,r > 0 depending only on (v∞, γ, β∗, r, α)
such that

‖ϕ‖
C2,α(Ω\(DO

r ∪DN
r ))

< Cβ∗,r.

Definition 4.22. Define the following sets:

(i) Denote Kext as

(4.3.21) Kext := {(u, β) ∈ C2,α
(∗,α1)

(Qiter) : (u, β) satisfy Definition 4.19(i)–(vi)};
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(ii) K and Kext are the closures of K and Kext in C2,α
(∗,α1)

(Qiter)× [0, β∗], respectively;

(iii) For each C ∈ {K,Kext,K,Kext} and each β ∈ [0, β∗], denote

Cβ := {u : (u, β) ∈ C}.

Note that Cβ ⊂ C2,α
(∗,α1)

(Qiter).

Remark 4.23. Each (u, β) ∈ Kext satisfies property (ii) of Definition 4.19, as well as properties
(i) and (iii)–(vi) of Definition 4.19, and all the properties stated in Remark 4.21 with nonstrict
inequalities in the estimates.

4.4. Boundary Value Problem (4.3.16)

In order to complete Definition 4.19, it remains to define the nonlinear differential operators
N(u,β) and M(u,β) in (4.3.16) for each (u, β) ∈ K.

For each (u, β) ∈ Kext, let gsh = g
(u,β)
sh , F = F(u,β), Ω = Ω(u, β), and Γshock = Γshock(u, β), and

let ϕ = ϕ(u,β) be defined by (4.2.4).

4.4.1. Definition of N(u,β) in (4.3.16). For ϕN defined by (2.5.1), denote

φ := ϕ− ϕN .

For a C2–function φ̂ in Ω, we define N(u,β)(φ̂) by

(4.4.1) N(u,β)(φ̂) =
2∑

i,j=1

Aij(Dφ̂, ξ)∂ξiξj φ̂

so that the following properties hold:

• Equation N(u,β)(φ̂) = 0 is strictly elliptic in Ω \ (ΓO
sonic ∪ ΓN

sonic);

• If φ is a solution of (4.3.16), then equation N(u,β)(φ) = 0 coincides with (3.1.2).

The coefficient functions Aij(p, ξ), i, j = 1, 2, of the nonlinear operator N(u,β) are defined in
the following six steps:

1. For a constant r > 0, let DO
r and DN

r be defined by (4.1.2), and let Dr := DO
r ∪ DN

r . Let

ε0 > 0 be from Lemma 4.16. For a constant εeq ∈ (0, ε02 ) to be chosen later, we define A
(1)
ij (ξ) for

ξ ∈ Ω \ Dεeq/10 by

(4.4.2) A
(1)
ij (ξ) := Apotn

ij (Dφ(ξ), φ(ξ), ξ),

where

Apotn
11 (p, z, ξ) = c2 − (p1 + ∂ξ1ϕN )2,

Apotn
12 (p, z, ξ) = Apotn

21 (p, z, ξ) = −
(
p1 + ∂ξ1ϕN (ξ)

)(
p2 + ∂ξ2ϕN (ξ)

)
,

Apotn
22 (p, z, ξ) = c2 − (p2 + ∂ξ2ϕN (ξ))2

(4.4.3)

for c2 = c2(|p+DϕN |2, z + ϕN ) given by (4.3.14).
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2. For µ0 > 0 from Definition 4.19(iv-1), fix a function ζ1 ∈ C3(R) such that

ζ1(s) :=




s if |s| ≤ 2−µ0

5

1+γ ,

(2−µ0
10 )sgn(s)

1+γ if |s| > 2
1+γ ,

(4.4.4)

0 ≤ ζ′1(s) ≤ 10, ζ1(−s) = −ζ1(s) for all s ∈ R,(4.4.5)

− 20(1 + γ)

µ0
≤ ζ′′1 (s) ≤ 0 for all s ≥ 0.(4.4.6)

Define cβ , uβ, r, and φβ by

(cβ , uβ) :=

{
(cO, uO) in DO

2εeq ,

(cN , 0) in DN
2εeq ,

(4.4.7)

r =
√
(ξ1 − uβ)2 + ξ22 ,(4.4.8)

φβ := ϕ∗
β − ϕN(4.4.9)

for ϕ∗
β given by (4.1.42).

Denote ψ := φ− φβ = ϕ− ϕ∗
β . Suppose that φ̂ is a solution of (4.3.16). We denote

(4.4.10) ψ̂ := φ̂− φβ .

Let the (x, y)–coordinates be defined by (3.4.18) and (3.5.2) in DN
2εeq and DO

2εeq , respectively.

For p ∈ R
2, denote

p′ := p−D(x,y)φβ .

Note that p′ = p in DN
2εeq and p′ = p −D(x,y)(ϕO − ϕN ) in DO

2εeq . Let N4 be the constant from

Definition 4.19(iv-4). In D2εeq = DN
2εeq ∪ DO

2εeq , define O
mod
j (p, x, y) by

(4.4.11) Omod
j (p1, p2, x, y) = Oj(x

3/4ζ1(
p′1
x3/4

), (γ + 1)N4xζ1(
p′2

(γ + 1)N4x
), ψ(x, y), x, cβ)

for j = 1, · · · , 5, where each Oj(p, z, x) is given by (3.2.29). With Omod
j = Omod

j (φ̂x, φ̂y , x, y) for

j = 1, · · · , 5, define a nonlinear differential operator N polar
(u,β) by

N polar
(u,β) (φ̂) :=

(
2x− (γ + 1)xζ1(

ψ̂x
x
) +Omod

1

)
ψ̂xx +Omod

2 ψ̂xy +
( 1

cβ
+Omod

3

)
ψ̂yy

− (1 +Omod
4 )ψ̂x +Omod

5 ψ̂y

=: a11(D(x,y)φ̂, x, y)ψ̂xx + 2a12(D(x,y)φ̂, x, y)ψ̂xy + a22(D(x,y)φ̂, x, y)ψ̂yy

+ a1(D(x,y)φ̂, x, y)ψ̂x + a2(D(x,y)φ̂, x, y)ψ̂y.

(4.4.12)

3. For a C2–function φ̂ = ψ̂ + φβ , the expression of cβN polar
(u,β) (φ̂) in the ξ–coordinates is given

in the form:

(4.4.13) cβN polar
(u,β) (φ̂) =

2∑

i,j=1

A
(2)
ij (Dξφ̂, ξ)∂ξiξj φ̂+

2∑

i=1

A
(2)
i (Dξφ̂, ξ)∂ξi φ̂ in Ω ∩D2εeq ,
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where we have used that D2
ξψ̂ ≡ D2

ξφ̂ holds in Ω ∩ D2εeq . In the expression above, cβ is multiplied

to N polar
(u,β) because the expression of cβN polar

(u,β) without cutoffs in the ξ–coordinates coincides with

the left-hand side of Eq. (3.1.2).
In Ω ∩DO

2εeq , a direct computation shows that

A
(2)
1 =

(
(cO − x)Omod

5 −Omod
2

)
sin y +

(
(cO − x)

( 1

cO
+Omod

3

)
− (1 +Omod

4 )
)
cos y,

A
(2)
2 =

(
(cO − x)Omod

5 −Omod
2

)
cos y −

(
(cO − x)

( 1

cO
+Omod

3

)
− (1 +Omod

4 )
)
sin y.

From this, combined with (3.2.29) and (4.4.11), we see that A
(2)
1 = A

(2)
2 = 0 in Ω∩DO

2εeq . Similarly,

it can be checked that A
(2)
1 = A

(2)
2 = 0 in Ω ∩ DN

2εeq . Therefore, we have

A
(2)
1 = A

(2)
2 = 0 in Ω ∩ D2εeq .

For ξ ∈ Ω ∩DN
2εeq , define A

N
ij as

(4.4.14) AN
ij (p, ξ) := A

(2)
ij (p, ξ).

For ξ ∈ Ω ∩DO
2εeq , define A

O
ij as

(4.4.15) AO
ij(p, ξ) := A

(2)
ij (p, ξ).

By using Definition 4.19, the next two lemmas can be directly derived. We first discuss the properties
of coefficients (aij , ai) near Γ

N
sonic.

Lemma 4.24 (Coefficients (aij , ai)(p, x, y) in Ω∩DN
2εeq). There exist constants λ1 ∈ (0, 1), εeq ∈

(0, ε02 ), and Neq ≥ 1 depending only on (v∞, γ, β∗) such that, for any (u, β) ∈ Kext ∩ {0 ≤ β <

β
(v∞)
d }, coefficients (aij , ai)(p, x, y) defined by (4.4.12) satisfy the following properties:

(a) For any (x, y) ∈ Ω ∩ DN
2εeq and p,κ = (κ1, κ2) ∈ R

2,

λ1|κ|2 ≤
2∑

i,j=1

aij(p, x, y)
κiκj

x2−
i+j
2

≤ λ−1
1 |κ|2.

(b) aij , ai ∈ C1,α(R2 × (Ω ∩ DN
εeq \ ΓN

sonic)) for j = 1, 2, and

‖(a11, a12, a2)‖C0,1(R2×Ω∩DN
εeq

)
≤ Neq,

‖(a22, a1)‖L∞(R2×Ω∩DN
εeq

)
+ ‖D(p,y)(a22, a1)‖L∞(R2×Ω∩DN

εeq
)
≤ Neq,

sup
(p,x,y)∈R2×Ω∩DN

εeq

|x1/4Dx(a22, a2)(p, x, y)| ≤ Neq,

sup
p∈R2

‖(aij , ai)(p, ·, ·)‖C3/4(Ω∩DN
εeq

)
≤ Neq for i, j = 1, 2.

(c) For each k = 1, 2, Dk
p(aij , ai) ∈ C1,α(R2 × (Ω ∩ DN

εeq \ ΓN
sonic)) and

sup
p∈R2

‖Dk
p(aij , ai)(p, ·, ·)‖C1,α(R2×(Ω∩DN

εeq
\Nr(ΓN

sonic)))
≤ Neqr

−5 for each r ∈ (0,
εeq
2 ).
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(d) There exists a constant Ĉ > 0 depending only on (v∞, γ, β∗) such that

|∂y(a11, a12)(p, x, y)| ≤ Ĉx1/2 for all p ∈ R
2 and (x, y) ∈ Ω ∩ DN

εeq .

(e) For every (p, x, y) ∈ R
2 × Ω ∩ DN

εeq ,

(a11, a22, a2)((p1,−p2), x, y) = (a11, a22, a2)((p1, p2), x, y),

|aii(p, x, y)− aii(0, 0, y)| ≤ Neqx
3/4 for i = 1, 2,

|a12(p, x, y)| ≤ Neqx,

a1(p, x, y) ≤ −1

2
.

(f) For any p ∈ R
2, the values of (aij , ai)(p, ·, ·) are given on ΓN

sonic = {x = 0} ∩ ∂(Ω ∩ DN
εeq)

by fixing p and taking a limit in (x, y) from Ω ∩ Dεeq ⊂ {x > 0}. More explicitly, for any

p ∈ R
2 and (0, y) ∈ ΓN

sonic,

aij(p, 0, y) = 0 for all (i, j) 6= (2, 2),

a22(p, 0, y) = c−1
N , a1(p, 0, y) = −1, a2(p, 0, y) = 0.

(g) φ = ψ + φβ satisfies

Omod
j (φx, φy , x, y) = Oj(ψx, ψy, ψ, x, y, cβ) in Ω ∩ DN

εeq for j = 1, · · · , 5.

In addition, if ψ satisfies

|ψx| ≤
2− µ0

5

1 + γ
x in Ω ∩ DN

ε/10

for ε ∈ (0,
εeq
2 ] from Definition 4.19(iv), then, in Ω ∩DN

εeq ,

N polar
(u,β) (φ) = (2x− (γ + 1)ψx +O1)ψxx +O2ψxy + (

1

cβ
+O3)ψyy − (1 +O4)ψx +O5ψy

for Oj = Oj(ψx, ψy, ψ, x, y, cN ). Therefore, equation N polar
(u,β) (φ) = 0 coincides with Eq.

(3.1.2) in Ω ∩ DN
εeq .

Let σ3 be from Proposition 3.39. CoefficientsAO
ij , i, j = 1, 2, are used only for (u, β) ∈ Kext∩{β :

β ∈ [0, β
(v∞)
s + σ3]} to define N(u,β).

In the next lemma, we discuss the properties of coefficients (aij , ai) near Γ
O
sonic for β ≤ β

(v∞)
s +

σ3. While ΓN
sonic is fixed to be the same for all β ∈ [0, π2 ), Γ

O
sonic changes as β varies. As β ∈ [0, β

(v∞)
s )

tends to β
(v∞)
s , ΓO

sonic shrinks to a point set {P1} for P1 given in Definition 2.23, and it remains

to be the point set {P1} for β > β
(v∞)
s . For that reason, the properties of (aij , ai) near Γ

O
sonic are

different from Lemma 4.24.

Lemma 4.25 (Coefficients (aij , ai)(p, x, y) in Ω ∩ DO
2εeq). For each (u, β) ∈ Kext ∩ {β : β ∈

[0, β
(v∞)
s + σ3]}, let (aij , ai) be defined by (4.4.12). Then there exists a constant εeq ∈ (0, ε02 )

depending only on (v∞, γ, β∗) satisfying the following properties:
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(a) There exist constants λ1 ∈ (0, 1) and Neq ≥ 1 depending only on (v∞, γ, β∗) such that, for

each (u, β) ∈ Kext with β ∈ [0, β
(v∞)
s + σ3], coefficients (aij , ai) satisfy all the assertions

of Lemma 4.24 except for assertions (d) and (g) of Lemma 4.24 by replacing (DN
εeq ,Γ

N
sonic)

with (DO
εeq ,Γ

O
sonic).

(b) Assertion (d) of Lemma 4.24 now takes the following form:

(b-1) There exists a constant Ĉ > 0 depending only on (v∞, γ, β∗, α) such that, for each

(u, β) ∈ Kext with β ∈ [0, β
(v∞)
s ),

|Dy(a11, a12)(p, x, y)| ≤ Ĉx1/2 for (p, x, y) ∈ R
2 × (Ω ∩ DO

r ),

where r = min{g2sh(−1), εeq};
(b-2) Let σ1 > 0 be from Proposition 3.32. For any δ ∈ (0, σ1

2 ), there exists a constant Ĉδ >

0 depending on (v∞, γ, β∗, δ) such that, for each (u, β) ∈ Kext ∩ {β ∈ (0, β
(v∞)
s − δ]},

|Dy(a11, a12)(p, x, y)| ≤ Ĉδx
1/2 for (p, x, y) ∈ R

2 × (Ω ∩DO
εeq).

(c) Assertion (g) of Lemma 4.24 now takes the following form: suppose that ψ satisfies

(4.4.16) |ψx| ≤ C′x, |ψy| ≤ C′x3/2 in Ω ∩ DO
εeq

for some constant C′ > 0; then there exists a small constant ε(1) ∈ (0,
εeq
2 ) depending

on (v∞, γ, C′) such that, whenever ε from Definition 4.19(iv) with ε ≤ ε(1), φ = ψ + φβ
satisfies

Omod
j (φx, φy, x, y) = Oj(ψx, ψy, ψ, x, y, cβ) in Ω ∩ DO

εeq for j = 1, · · · , 5.

(c-1) For Pβ given by (2.5.3), suppose that

xPβ
<

ε

10
, i.e., Ω ∩ DO

ε/10 6= ∅.

If ψ satisfies

|ψx| ≤
2− µ0

5

1 + γ
x in Ω ∩DO

ε/10,

then, in Ω ∩ DO
εeq ,

N polar
(u,β) (φ) = (2x− (γ + 1)ψx +O1)ψxx +O2ψxy + (

1

cβ
+O3)ψyy − (1 +O4)ψx +O5ψy

for Oj = Oj(ψx, ψy, ψ, x, y, cβ). Therefore, if N polar
(u,β) (φ) = 0 holds in Ω ∩ DO

εeq , then

ϕ satisfies Eq. (3.1.2) in Ω ∩ DO
εeq .

(c-2) For β ∈ (β
(v∞)
s , β

(v∞)
s + σ3], suppose that

xPβ
≥ ε

10
,

which is equivalent to the case that Ω ∩ DO
ε/10 = ∅. Then equation N polar

(u,β) (φ) = 0

coincides with Eq. (3.1.2) in Ω ∩ DO
εeq .
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(d) For all (u, β) ∈ Kext with β > β
(v∞)
s , (aij , ai)(p, ·, ·) and Dk

p(aij , ai)(p, ·, ·), k = 1, 2,

are in C1,α(Ω ∩ DO
εeq). In particular, for each δ ∈ (0, σ3

2 ), there exists a constant Cδ > 0

depending only on (v∞, γ, β∗, δ) such that, if (u, β) ∈ Kext with β ∈ [β
(v∞)
s +δ, β

(v∞)
s + σ3

2 ),
then

sup
p∈R2

‖(aij , ai)(p, ·, ·)‖C1,α(Ω∩DO
εeq

)
≤ Cδ,

sup
p∈R2

‖Dk
p(aij , ai)(p, ·, ·)‖C1,α(Ω∩DO

εeq
)
≤ Cδ for k = 1, 2.

4. In this step, we define N(u,β) near Γ
O
sonic for (u, β) ∈ Kext with β ≥ β

(v∞)
s + σ3

4 .

Lemma 4.26. For each (u, β) ∈ Kext, let gsh = g
(u,β)
sh , F = F(u,β), ϕ = ϕ(u,β), and Ω = Ω(u, β)

be defined by Definition 4.15, and let

(4.4.17) φ := ϕ(u,β) − ϕN

for ϕN given by (2.5.1). For any given σ ∈ (0, 1), there exists a constant Cσ > 0 depending only

on (v∞, γ, β∗, σ) such that, for each (u, β) ∈ Kext, there exists a function v
(u,β)
σ ∈ C4(Ω) satisfying

the following two properties:

(a) ‖v(u,β)σ − φ‖C1(Ω) ≤ σ2 and ‖v(u,β)σ ‖C4(Ω) ≤ Cσ;

(b) v
(u,β)
σ depends continuously on (u, β) ∈ Kext in the sense that, if {(uk, βk)} ⊂ Kext con-

verges to (u, β) in C1,α(Qiter)× [0, β∗] for some (u, β) ∈ Kext, then

v(uk,βk)
σ ◦ F(uk,βk) → v(u,β)σ ◦ F(u,β) in C1,α(Qiter).

Proof. For Gβ1 defined by (4.1.31), denote

w(s, t′) := φ ◦ (Gβ1 )−1(s, t′)

for (s, t′) ∈ Gβ1 (Ω) = {(s, t′) : −1 < s < 1, 0 < t′ < g
(u,β)
sh (s)}. For each small constant ε > 0, define

a function w̃ε(s, t
′) by

w̃ε(s, t
′) := w(

s

1 + ε
M1

,
t′ + ε

2M2

1 + ε
)

for constants M1 > 1 and M2 > 1 to be determined later. Then w̃ε is well defined in the set:

Aε :=
{
(s, t′) : |s| < 1 +

ε

M1
, − ε

2M2
< t′ < (1 + ε)gsh(

s

1 + ε/M1
)− ε

2M2

}
.

Using (i) and (iii) of Definition 4.19, and Remark 4.21(i), we choose constants M1,M2,M3 > 1

depending only on (v∞, γ, β∗) such that the ε
M3

–neighborhood N ε
M3

(Gβ1 (Ω)) of Gβ1 (Ω) is contained
in Aε.

Define
wε(s, t

′) := (w̃ε ∗ χ ε
2M3

)(s, t′) in Gβ1 (Ω)
with χδ(ξ) := 1

δ2χ(
ξ
δ ), where χ(·) is a standard mollifier: χ ∈ C∞

0 (R2) is a nonnegative function

with supp(χ) ⊂ B1(0) and
∫
R2 χ(ξ) dξ = 1. Then we define

V (u,β)
ε (ξ) := wε ◦ Gβ1 (ξ) in Ω.

For each σ ∈ (0, 1), there exists a small constant ε∗(σ) > 0 depending on (v∞, γ, β∗, σ) such that

v
(u,β)
σ := V

(u,β)
ε∗(σ)

satisfies properties (a)–(b). �
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Let ς ∈ C∞(R) be a cut-off function satisfying that

ς(t) =

{
1 for t < 1,

0 for t > 2,
0 ≤ ς ≤ 1 on R.

For a constant σ > 0, denote

(4.4.18) ςσ(t) := ς(
t

σ
).

Let σcf ∈ (0, 1) be a constant to be specified later. For each (u, β) ∈ Kext, let v
(u,β)
σcf be the

function given by Lemma 4.26. For each i, j = 1, 2, we define

AO,subs
ij (p, ξ) = ςσcf

(|p−Dv(u,β)σcf
(ξ)|)Apotn

ij (p, φ(ξ), ξ)

+
(
1− ςσcf

(|p−Dv(u,β)σcf
(ξ)|)

)
Apotn
ij (Dv(u,β)σcf

(ξ), φ(ξ), ξ)(4.4.19)

for Apotn
ij (p, z, ξ) defined by (4.4.3).

Lemma 4.27. There exist two small constants ε(2) > 0 and δ
(1)
1 > 0 depending only on (v∞, γ)

such that, whenever ε and δ1 from Definition 4.19 satisfy

ε ≤ ε(2), δ1 ≤ δ
(1)
1 ,

there exist C > 0 depending only on (v∞, γ, β∗) and λ ∈ (0, 1) depending only on (v∞, γ) so that,

for each (u, β) ∈ Kext ∩ {β ≥ β
(v∞)
s + σ3

4 }, the associated coefficients AO,subs
ij defined by (4.4.19)

with σcf =
√
δ1 satisfy the following properties:

(a) For all (p, ξ) ∈ R
2 × Ω ∩ DO

εeq satisfying that |p−Dφ(ξ)| <
√
δ1
2 ,

AO,subs
ij (p, ξ) = Apotn

ij (p, φ(ξ), ξ),

so that

AO,subs
ij (Dφ(ξ), ξ) = Apotn

ij (Dφ(ξ), φ(ξ), ξ) in Ω;

(b) For all (p, ξ) ∈ R
2 × Ω ∩ DO

εeq ,

|AO,subs
ij (p, ξ)−AO,subs

ij (Dφ(ξ), ξ)| ≤ C
√
δ1;

(c) For each p ∈ R
2, Dk

pA
O,subs
ij (p, ·) are in C1,α(Ω ∩DO

εeq) for k = 0, 1, 2, with

2∑

k=0

‖Dk
pA

O,subs
ij (p, ·)‖

C1,α(Ω∩DO
εeq

)
≤ C;

(d) For all ξ ∈ Ω ∩ DO
εeq and p, κ = (κ1, κ2) ∈ R

2,

λ|κ|2 ≤
2∑

i,j=1

AO,subs
ij (p, ξ)κiκj ≤ λ−1|κ|2.

5. Let χeq ∈ C∞(R) be a function satisfying that

χeq(β) =

{
1 if β ≤ β

(v∞)
s + σ3

4 ,

0 if β ≥ β
(v∞)
s + σ3

2 ,
χ′
eq(β) ≤ 0 on R.
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For such a cut-off function χeq, we define

(4.4.20) A
(3)
ij (p, ξ) =




χeq(β)A

O
ij(p, ξ) + (1 − χeq(β))A

O,subs
ij (p, ξ) =: A

(3,O)
ij (p, ξ) for ξ1 < 0,

AN
ij (p, ξ) for ξ1 > 0

for AN
ij and AO

ij given by (4.4.14) and (4.4.15), respectively.

6. Finally, we combine (4.4.2) with (4.4.20) to complete the definition of N(u,β)(φ̂) in (4.4.1).

Definition 4.28. We define the following:

(i) For a parameter τ ∈ (0, 12 ], introduce a family of functions ζ̄2(s, t; τ) so that

• ζ̄2(·, ·; τ) ∈ C4(R2) for each τ ∈ (0, 12 ];

• ∂tζ̄2(s, t; τ) = 0 for each τ ∈ (0, 12 ] and (s, t) ∈ R
2;

• For each τ ∈ (0, 12 ], ζ̄2(s, t; τ) =

{
1 for |s| < 1− τ,

0 for |s| ≥ 1− τ
2 ;

• ζ̄2(−s, t; τ) = ζ̄(s, t; τ) for all s ∈ R and τ ∈ (0, 12 ];

• − 10
τ ≤ ∂sζ̄2(s, t; τ) ≤ 0 for all s ≥ 0 and τ ∈ (0, 12 ];

• ‖ζ̄2(·, ·; τ)‖C4(R2) is a continuous function of τ ∈ (0, 12 ].

(ii) For β∗ ∈ (0, β
(v∞)
d ), define a set Q∪

β∗
⊂ R

2
+ × [0, π2 ) as

Q∪
β∗

:= ∪β∈[0,β∗]Q
β × {β}

for Qβ defined by Definition 4.1(iii).
For ε > 0 and β ∈ [0, β∗], let ε̂ be given by (4.1.38). For (ξ, β) ∈ Q∪

β∗
, define a function

ζ
(ε,β)
2 : Q∪

β∗
→ R by

(4.4.21) ζ
(ε,β)
2 (ξ) := ζ̄2(Gβ1 (ξ); ε̂).

The C1–dependence of (sβ , cβ, uO) on β ∈ [0, π2 ) yields the following lemma:

Lemma 4.29. Let ε0 > 0 be from Lemma 4.16(c). For each ε ∈ (0, ε02 ), ζ
(ε,β)
2 satisfies the

following properties:

(a) ζ
(ε,β)
2 : Q∪

β∗
→ R is C4 with respect to ξ ∈ Qβ for β ∈ [0, β∗], and is continuous with

respect to β ∈ [0, β∗];

(b) There exists a constant Cε > 0 depending only on (v∞, γ, ε) such that

‖ζ(ε,β)2 ‖
C4(Qβ)

≤ Cε;

(c) ζ
(ε,β)
2 =

{
1 in Ω(u, β) \ Dε,
0 in Ω(u, β) ∩ Dε/2.

Finally, we define coefficients Aij(p, ξ) for the nonlinear differential operator N(u,β) given by
(4.4.1) as follows:

(4.4.22) Aij(p, ξ) := ζ
(εeq,β)
2 (ξ)A

(1)
ij (ξ) +

(
1− ζ

(εeq,β)
2 (ξ)

)
A

(3)
ij (p, ξ), i, j = 1, 2.

Hereafter, we continue to adjust εeq > 0 depending only on (v∞, γ).
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Lemma 4.30. For each (u, β) ∈ Kext, let coefficients Aij(p, ξ), i, j = 1, 2, of N(u,β) in (4.4.1)
be given by (4.4.22). Then there exist constants εeq ∈ (0, ε02 ), λ0 ∈ (0, 1), Neq ≥ 1, and C > 0 with

λ0 depending only on (v∞, γ), (Neq, εeq) depending on (v∞, γ, β∗), and C > 0 depending only on

(v∞, γ, β∗, α) such that the following properties hold:

(a) For all ξ ∈ Ω with Ω = Ω(u, β) and all p,κ = (κ1, κ2) ∈ R
2,

λ0 dist(ξ,ΓO
sonic ∪ ΓN

sonic)|κ|2 ≤
2∑

i,j=1

Aij(p, ξ)κiκj ≤ λ−1
0 |κ|2;

(b) A12(p, ξ) = A12(p, ξ) holds in R
2 × Ω, and each Aij satisfies

‖Aij‖L∞(R2×Ω) ≤ Neq;

(c) For ξ = (ξ1, ξ2) ∈ Ω \ Dεeq , Aij(p, ξ) = A
(1)
ij (ξ) and

‖Aij‖C1,α(Ω\Dεeq )
≤ C;

(d) For each p ∈ R
2,

‖Aij(p, ·, ·)‖C3/4(Ω) + ‖DpAij(p, ·, ·)‖L∞(Ω) ≤ Neq;

(e) For each k = 0, 1, 2, Dk
pAij ∈ C1,α(R2 × (Ω \ ΓO

sonic ∪ ΓN
sonic). Furthermore, for each

s ∈ (0, ε02 ), D
k
pAij satisfies

‖Dk
pAij‖C1,α(R2×(Ω\Ns(ΓO

sonic∪ΓN
sonic)))

≤ Cs−5;

(f) For each i, j = 1, 2, Aij(p, ξ) = AN
ij (p, ξ) holds for all (p, ξ) ∈ R

2 × (Ω ∩ DN
εeq/2

);

(g) If β ≤ β
(v∞)
s + σ3

4 , then Aij(p, ξ) = AO
ij(p, ξ) holds for all (p, ξ) ∈ R

2 ×DO
εeq/2

;

(h) If β ∈ [β
(v∞)
s + δ, β∗] for δ ∈ (0, σ3

2 ), then Aij(p, ξ) = A
(3)
ij (p, ξ) holds for all (p, ξ) ∈

R
2 × (Ω ∩ DO

εeq/2
), and

λ0
(
dist(ξ,ΓO

sonic) + δ
)
|κ|2 ≤

2∑

i,j=1

Aij(p, ξ)κiκj ≤ λ−1
0 |κ|2 for all κ = (κ1, κ2) ∈ R

2,

sup
p∈R2

‖Dk
pAij(p, ·, ·)‖C1,α(Ω∩DO

εeq/2
)
≤ C for k = 0, 1, 2;

(i) For each (u, β) ∈ Kext, let φ = φ(u,β) be defined by (4.4.17). Suppose that ε from Definition

4.19 satisfies that 0 < ε <
εeq
2 . Then equation N(u,β)(φ) = 0 coincides with (3.1.2) in

Ω \ (DO
ε/10 ∪ DN

ε/10). In addition, if xPβ
≥ ε

10 or β ≥ β
(v∞)
s + σ3

2 holds, then equation

N(u,β)(φ) = 0 coincides with (3.1.2) in Ω \ DN
ε/10.

4.4.2. Definition of M(u,β)(p, z, ξ) in (4.3.16). The definition of M(u,β)(p, z, ξ) in (4.3.16) is
given in the following five steps:

1. For ϕN and gsh given by (2.5.1) and (3.4.13), respectively, define

(4.4.23) M0(p, z, ξ) := gsh(p+DϕN (ξ), z + ϕN (ξ), ξ) for p, ξ ∈ R
2 and z ∈ R.
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The nonlinear function M0(p, z, ξ) is well defined on the set:

AM0 :=





(p, z, ξ) ∈ B4N5(0)× (−4N5, 4N5)×B4Mdom
(0)

: 2ργ−1
max > ργ−1

N + (γ − 1)
(
ξ · p− |p|2

2 − z
)
>

ργ−1
min

2 ,
|p− (0,−v∞)| > µ1

2





for constants (µ1, N5, ρmin, ρmax) from properties (iv) and (vi) of Definition 4.19, and Mdom from
Remark 4.21. Since these constants are chosen depending only on (v∞, γ), for each k = 1, 2, · · · ,
there exists a constant Ck > 0 depending only on (v∞, γ, k) to satisfy

(4.4.24) ‖M0‖Ck(AM0)
≤ Ck.

2. Similarly to (3.4.22), we define a function M1(p, z, ξ1) by

(4.4.25) M1(p, z, ξ1) = M0(p, z, ξ1, ξ
N
2 − z

v∞
).

M1 is well defined in the set:

AM1 :=





(p, z, ξ) ∈ B3N5(0)× (−3N5, 3N5)×B3Mdom
(0)

: 2ργ−1
max > ργ−1

N + (γ − 1)
(
p1ξ

N
2 + p2(ξ1 − z

v∞
)− |p|2

2 − z
)
>

ργ−1
min

2 ,

|p− (0,−v∞)| > µ1

2




.

For each k = 1, 2, · · · , there exists a constant Ck > 0 depending only on (v∞, γ, k) such that

(4.4.26) ‖M1‖Ck(AM1)
≤ Ck.

In particular, M1 is homogeneous in the sense of

(4.4.27) M1(0, 0, ξ1) = 0, M1(D(ϕO − ϕN ), ϕO − ϕN , ξ1) = 0 for all ξ1 ∈ R.

3. For (ϕO, ϕN ) given by (2.5.1), denote

(4.4.28) φO := ϕO − ϕN .

For a constant σ > 0, let function ςσ be given by (4.4.18). For a constant σbc > 0 to be determined
later, we define

M(p, z, ξ) = ςσbc
(|(p, z)|)M1(p, z, ξ1)

+
(
1− ςσbc

(|(p, z)|)
)(
ςσbc

(|(p, z)− (DφO, φO(ξ))|)M1(p, z, ξ1)

+
(
1− ςσbc

(|(p, z)− (DφO , φO(ξ))|)
)
M0(p, z, ξ)

)(4.4.29)

for (p, z, ξ) ∈ AM := AM0 ∩ AM1 .

For each (u, β) ∈ Kext, let gsh = g
(u,β)
sh , F = F(u,β), Ω = Ω(u, β), Γshock = Γshock(u, β), and

ϕ = ϕ(u,β) be defined by Definition 4.15. Denote φ := ϕ− ϕN .

For a constant σ > 0, we define

E(φ,Γshock) = {(p, z, ξ) ∈ R
2 × R× R

2 : p = Dφ(ξ), z = φ(ξ), ξ ∈ Γshock}
and

Eσ(φ,Γshock) = {(p, z, ξ) ∈ R
2 × R× R

2 : dist(ξ,Γshock) < σ, |p−Dφ(ξ)| < σ, |z − φ(ξ)| < σ}.
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Lemma 4.31. There exists a constant σ̄bc > 0 depending only on (v∞, γ) such that, whenever

σbc ∈ (0, σ̄bc], there exists a constant Cσbc
> 0 depending only on (v∞, γ, σbc) such that

‖M‖C4(AM) ≤ Cσbc
.

Furthermore, it holds that, for each (u, β) ∈ Kext,

(a) Eσbc
(φ,Γshock) ⊂ AM ;

(b) The mapping: β 7→ M is in C([0, β∗];C4(AM));
(c) On Γshock, M(Dφ, φ, ξ) = M0(Dφ, φ, ξ) and ∂pM(Dφ, φ, ξ) = ∂pM0(Dφ, φ, ξ);

(d) φ satisfies

(4.4.30) M(Dφ, φ, ξ) = 0 on Γshock

if and only if ϕ satisfies (3.4.12);

(e) M is homogeneous in the sense that

(4.4.31) M(0, 0, ξ) = 0, M(D(ϕO − ϕN ), ϕO − ϕN , ξ) = 0 for all ξ ∈ B2Mdom
(0).

Lemma 4.32. For constant σ̄bc from Lemma 4.31, there exist constants σbc ∈ (0, σ̄bc], ε̄bc > 0,
and δbc > 0 depending only on (v∞, γ) such that, if ε from Definition 4.19 satisfies that 0 < ε ≤ ε̄bc,

then, for each (u, β) ∈ Kext, M(p, z, ξ) satisfies that, for all ξ ∈ Γshock,

δbc ≤ DpM(Dφ(ξ), φ(ξ), ξ) · νsh(ξ) ≤ δ−1
bc ,(4.4.32)

DzM(Dφ(ξ), φ(ξ), ξ) ≤ −δbc,(4.4.33)

where νsh is the unit normal vector to Γshock towards the interior of Ω.

Proof. By Lemma 4.31(c), it suffices to estimate DpM0(Dφ, φ, ξ) · νsh to prove (4.4.32).
Following Definition 2.23, let ξP1 and ξP2 be the ξ–coordinates of points P1 and P2, respectively.
By Definition 4.19(i), Du(±1, 1) = 0, which implies that Dφ = Dφβ −DϕN at ξP1 and ξP2 , for φβ
given by (4.4.9). By (4.1.45), we have

DpM0(Dφ(ξ
Pj ), φ(ξPj ), ξPj ) · νsh(ξ

Pj ) =




ρO(1−M2

O) for j = 1,

ρN
(
1− (

ξN2
cN

)2
)

for j = 2,

for MO given by (2.4.6). For each β ∈ [0, π2 ), MO < 1 ≤ ρO. Furthermore, it is shown in (2.4.40)–

(2.4.43) that dρO
dβ > 0 and dMO

dβ < 0 for all β ∈ (0, π2 ). Then there exists a constant δ
(1)
bc ∈ (0, 1)

depending only on (v∞, γ) such that

δ
(1)
bc ≤ inf

β∈[0,β
(v∞)
d ]

DpM0(Dφ(ξ
Pj ), φ(ξPj ), ξPj ) · νsh(ξ

Pj ) ≤ 1

δ
(1)
bc

for j = 1, 2.

By (4.4.24), there exists a constant ε̄bc ∈ (0, ε0) depending only on (v∞, γ) such that, for each

(u, β) ∈ Kext,

δ
(1)
bc

2
≤ DpM0(Dφ, φ, ξ) · νsh(ξ) ≤

2

δ
(1)
bc

for all ξ ∈ Γshock ∩ Dε̄bc
.
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By Definition 4.19(v)–(vi), if ε from Definition 4.19 satisfies that 0 < ε < ε̄bc, then there exists

a constant δ
(2)
bc > 0 depending only on (v∞, γ) such that

DpM0(Dφ, φ, ξ) · νsh(ξ) = ρ
(
1− |Dϕ(ξ)|2

c2(|Dϕ(ξ)|2, ϕ(ξ))
)
≥ δ

(2)
bc for all ξ ∈ Γshock \ Dε̄bc/4.

Then (4.4.32) is obtained from the previous two inequalities.
A direct computation by using (4.4.25) yields that, for all ξ = (ξ1, ξ2) ∈ BMdom

(0),

DzM1(DφO(ξ), φO(ξ), ξ1) = −ρOMO − (ρO − 1)
cosβ

v∞
,

DzM1(0, 0, ξ1) = −ρ2−γN ξN2 − ρN − 1

v∞
.

Then there exists a constant δ
(3)
bc > 0 depending only on (v∞, γ) such that

max
β∈[0,β

(v∞)
d ]

{DzM1(DφO(ξ), φO(ξ), ξ1), DzM1(0, 0, ξ1)} ≤ −δ(3)bc for all ξ ∈ Γshock.

By (4.4.26), there exists a constant σbc ∈ (0, σ̄bc] depending on (v∞, γ) such that

(4.4.34) DzM1(p, z, ξ1) ≤ −δ
(3)
bc

2

for all ξ ∈ BMdom
(0) and for all (p, z) satisfying that either |(p, z)| ≤ σbc or |(p, z)−(DφO , φO(ξ))| ≤

σbc. By (4.3.11), (4.4.23), and Definition 4.19(vi), there exists a constant δ
(4)
bc > 0 depending on

(v∞, γ) such that

DzM0(Dφ(ξ), φ(ξ), ξ) = − 1

ργ−2
Dϕ · νsh(ξ) ≤ −δ(4)bc on Γshock \ (DN

ε/10 ∪DO
ε/10).

By Definition 4.19(i), ρ(|Dϕ|2, ϕ) = ρO on ΓO
sonic and ρ(|Dϕ|2, ϕ) = ρN on ΓN

sonic. Using Defini-
tion 4.19(i), we can further reduce ε̄bc > 0 depending only on (v∞, γ, β∗) so that ρ(|Dϕ|2, ϕ) ≥
1
10 min{ρO, ρN } > 0 on Γshock ∩ (DN

ε̄bc
∪ DO

ε̄bc
). Therefore, if ε ∈ (0, ε̄bc), then we obtain

(4.4.35) DzM0(Dφ(ξ), φ(ξ), ξ) = − 1

ργ−2
Dϕ · νsh(ξ) ≤ −δ(5)bc on Γshock

for a constant δ
(5)
bc > 0 depending on (v∞, γ).

Then (4.4.33) is obtained by combining inequalities (4.4.34)–(4.4.35). �

Hereafter, let σbc > 0 in (4.4.29) be fixed as in Lemma 4.32. This completes the definition of
M in (4.4.29).

4. For φβ given by (4.4.9), denote ψ := φ− φβ = ϕ− ϕ∗
β .

Let the (x, y)–coordinates be defined by (3.4.18) and (3.5.2) near ΓN
sonic and ΓO

sonic, respectively.
For M given by (4.4.29), and for ξ = ((cN − x) cos y, (cN − x) sin y) near ΓN

sonic, we use (3.4.25) to

define M̂N by

M̂N (q1, q2, z, x, y)

:= M(−q1 cos y −
q2 sin y

cN − x
,−q1 sin y +

q2 cos y

cN − x
, z, (cN − x) cos y, (cN − x) sin y).

(4.4.36)

For ξ = (uO − (cO − x) cos(π − y), (cO − x) sin(π − y)) near ΓO
sonic, we first denote

MO(q, z, ξ) := M(q+DφO , z + φO, ξ),
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and then define M̂O by

M̂O(q1, q2, z, x, y)(4.4.37)

:= MO(−q1 cos(π − y) +
q2 sin(π − y)

cO − x
,−q1 sin(π − y)− q2 cos(π − y)

cO − x
, z,

uO − (cO − x) cos(π − y), (cO − x) sin(π − y)).

Lemma 4.33. Let constant σ2 > 0 be from Lemma 3.36. Following Definition 2.23, let (xPj , yPj )
be the (x, y)–coordinates of Pj for j = 1, 2. Let ε̄bc be from Lemma 4.32. Then there exist εbc ∈
(0, ε̄bc), σ̂bc > 0, and C > 0 depending only on (v∞, γ) such that, for any β ∈ [0, β

(v∞)
s + σ2

4 ] and
all (q, z) satisfying that

(4.4.38) |(q, z)| ≤ σ̂bc,

the following properties hold:

(a) If 0 < x− xP1 ≤ εbc, then

DqiM̂O(q, z, x, y) ≤ −C−1 for i = 1, 2, DzM̂O(q, z, x, y) ≤ −C−1;

(b) If 0 < x− xP2 ≤ εbc, then

DqiM̂N (q, z, x, y) ≤ −C−1 for i = 1, 2, DzM̂N (q1, q2, z, x, y) ≤ −C−1.

Proof. By (3.4.25) and (3.5.10), there exists a constant σ̂∗
bc depending only on (v∞, γ) such

that, for each β ∈ [0, β
(v∞)
s + σ2

4 ], if |(q, z)| ≤ σ̂∗
bc, then M on the right-hand side of (4.4.36)

and (4.4.37) is the same as M1 given by (4.4.25). A direct computation shows that there exists a

constant C̃ > 0 depending only on (v∞, γ) such that, for each β ∈ [0, β
(v∞)
s + σ2

4 ],

DqiM̂O(0, 0, xP1 , yP1) ≤ −C̃−1, DzM̂O(0, 0, xP1 , yP1) ≤ −C̃−1,

DqiM̂N (0, 0, xP2 , yP2) ≤ −C̃−1, DzM̂N (0, 0, xP2 , yP2) ≤ −C̃−1

for i = 1, 2. Then, by Lemma 4.31, there exist constants σ̂bc ∈ (0, σ̂∗
bc] and C > 0 depending only

on (v∞, γ) such that properties (a) and (b) hold. �

5. The next step is to extend the definition of M in (4.4.29) to all (p, z) ∈ R
2 × R.

For each (u, β) ∈ Kext and a constant σ > 0, let v
(u,β)
σ ∈ C4(Ω) (from Lemma 4.26) be given.

For a constant σ > 0 to be fixed later, we define a linear operator:

L(u,β)
σ (p, z, ξ) :=M(Dv(u,β)σ (ξ), v(u,β)σ (ξ), ξ)

+DpM(Dv(u,β)σ (ξ), v(u,β)σ (ξ), ξ) · p+DzM(Dv(u,β)σ (ξ), v(u,β)σ (ξ), ξ)z.
(4.4.39)

Let σbc > 0 be from Lemma 4.32. By Lemma 4.26(a), if σ2 < σbc, then L(u,β)
σ is well defined for

all (p, z, ξ) ∈ R
2 × R × Ω. For a constant σ ∈ (0, σbc) to be determined later, depending only on

(v∞, γ, β∗), we finally define M(u,β)(p, z, ξ) by

M(u,β)(p, z, ξ) := ςσM(p, z, ξ) + (1 − ςσ)L(u,β)
σ (p−Dv(u,β)σ (ξ), z − v(u,β)σ (ξ), ξ)(4.4.40)

for ςσ = ςσ(|(p, z)− (Dv
(u,β)
σ (ξ), v

(u,β)
σ (ξ))|), where ςσ is defined by (4.4.18).

The following lemma is obtained by adjusting the proofs of [11, Lemmas 12.5.7 and 17.3.23]
via use of Definition 4.19, Lemmas 4.31–4.33, and (4.4.39)–(4.4.40):
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Lemma 4.34. Let constants ε̄bc and εbc be from Lemmas 4.32 and 4.33, respectively. Then

there exist positive constants δ
(1)
1 , N

(1)
1 , δbc, C, Cβ∗ , and εM ∈ (0, εbc] with (δ

(1)
1 , N

(1)
1 , δbc, C)

depending on (v∞, γ), εM depending on (v∞, γ, β∗), and Cβ∗ depending on (v∞, γ, β∗, α) such that,

if parameters (ε, δ1, N1) from Definition 4.19 satisfy that ε ∈ (0, ε̄bc], δ1 ∈ (0, δ
(1)
1 ], and N1 ≥ N

(1)
1 ,

then, for each (u, β) ∈ Kext, M(u,β) : R
2 ×R×Ω → R given by (4.4.40) with σ =

√
δ1 satisfies the

following properties:

(a) M(u,β) : R
2 × R× Ω → R is in C3 and, for all (p, z) ∈ R

2 × R,

‖(M(u,β)(0, 0, ·), Dk
(p,z)M(u,β)(p, z, ·))‖C3(Ω) ≤ Cβ∗ for k = 1, 2, 3;

(b) For |p−Dφ(ξ)|+ |z − φ(ξ)| ≤
√
δ1
2 ,

M(u,β)(p, z, ξ) = M(p, z, ξ)

for M defined by (4.4.29);

(c) For all (p, z, ξ) ∈ R
2 × R× Ω,

|D(p,z)M(u,β)(p, z, ξ)−D(p,z)M(Dφ(ξ), φ(ξ), ξ)| ≤ C
√
δ1;

(d) For all (p, z, ξ) ∈ R
2 × R× Γshock,

δbc ≤ DpM(u,β)(p, z, ξ) · νsh ≤ 1

δbc
, DzM(u,β)(p, z, ξ) ≤ −δbc,

where νsh is the unit normal vector to Γshock towards the interior of Ω;

(e) Representing as L(u,β)
σ (p−Dv

(u,β)√
δ1

(ξ), z − v
(u,β)√
δ1

(ξ), ξ) = B(u,β)
σ,Γshock

(p, z, ξ), define

B(u,β)
σ,Γshock

(p, z, ξ) = b
(sh)
1 (ξ)p1 + b

(sh)
2 (ξ)p2 + b

(sh)
0 (ξ)z + h(sh)(ξ).

Then

‖(b(sh)i , h(sh))‖C3(Γshock)
≤ Cβ∗ for i = 0, 1, 2,

and, for all (p, z, ξ) ∈ R
2 × R× Ω,

|M(u,β)(p, z, ξ)− B(u,β)√
δ1,Γshock

(p, z, ξ)| ≤ C
√
δ1
(
|p−Dv

(u,β)√
δ1

(ξ)|+ |z − v
(u,β)√
δ1

(ξ)|
)
,

|D(p,z)M(u,β)(p, z, ξ)−D(p,z)B(u,β)√
δ1,Γshock

(ξ)| ≤ C
√
δ1;

(f) M(u,β) is homogeneous in the sense that

{
M(u,β)(0, 0, ξ) = 0,

M(u,β)(DφO(ξ), φO(ξ), ξ) = 0

for all ξ ∈ Γshock when β ∈ [0, δ1N1
], and for all ξ ∈ Γshock ∩ DεM when β ∈ ( δ1N1

, β∗].

(g) Let the (x, y)–coordinates be defined by (3.4.18) and (3.5.2) near ΓN
sonic and ΓO

sonic, respec-

tively. For ξ ∈ Γshock ∩ DN
εbc

, define

M̂N
(u,β)(q1, q2, z, x, y)

:= M(u,β)(−q1 cos y −
q2 sin y

cN − x
,−q1 sin y +

q2 cos y

cN − x
, z, (cN − x) cos y, (cN − x) sin y).

(4.4.41)
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For ξ ∈ Γshock ∩DO
εbc

, define MO
(u,β)(p, z, ξ) := M(u,β)(p+DφO, z + φO , ξ), and

M̂O
(u,β)(q1, q2, z, x, y)

:= MO
(u,β)(−q1 cos(π − y) +

q2 sin(π − y)

cO − x
,−q1 sin(π − y)− q2 cos(π − y)

cO − x
,

uO − (cO − x) cos(π − y), (cO − x) sin(π − y)).

(4.4.42)

Then M̂N
(u,β) and M̂O

(u,β) satisfy the following properties, provided that Γshock ∩ DO
εbc

is

nonempty:

(g-1) ‖M̂N
(u,β)‖C3(R2×R×Γshock∩DN

εbc
)
+ ‖M̂O

(u,β)‖C3(R2×R×Γshock∩DO
εbc

)
≤ Cβ∗ ;

(g-2) For all |(q, z)| ≤ δbc

C ,

M̂N
(u,β)(q, z, x, y) = M̂N (q, z, x, y) in Γshock ∩ DN

εbc
,

M̂O
(u,β)(q, z, x, y) = M̂O(q, z, x, y) in Γshock ∩ DO

εbc

for M̂N and M̂O defined by (4.4.36) and (4.4.37), respectively;

(g-3) For each (q, z) ∈ R
2 × R and i = 1, 2,

DqiM̂N
(u,β)(q, z, x, y) ≤ −δbc, DzM̂N

(u,β)(q, z, x, y) ≤ −δbc in Γshock ∩DN
εM ,

DqiM̂O
(u,β)(q, z, x, y) ≤ −δbc, DzM̂O

(u,β)(q, z, x, y) ≤ −δbc in Γshock ∩DO
εM ,

provided that Γshock ∩ DO
εM is nonempty;

(h) M(u,β)(Dφ, φ, ξ) = 0 on Γshock if and only if ϕ = φ + ϕN satisfies the Rankine-Hugoniot

jump condition (3.4.12) on Γshock = {ϕ = ϕ∞}.
By (4.4.22) and (4.4.40), the definition of the nonlinear boundary value problem (4.3.16) is

completed.

4.4.3. Well-posedness of the boundary value problem (4.3.16).

Lemma 4.35. Fix γ ≥ 1, v∞ > 0, and β∗ ∈ (0, β
(v∞)
d ). Let ε0 > 0 be from Lemma 4.16(c)

with β̄ replaced by β∗. Let constant σ2 > 0 be from Lemma 3.36. Moreover, let ᾱ ∈ (0, 1) be from

Proposition 4.12 with β̄ replaced by β∗. Then there exist constants ε(w) ∈ (0, ε0], δ
(w)
1 ∈ (0, 1),

N
(w)
1 ≥ 1, and α∗

1 ∈ (0, ᾱ] depending only on (v∞, γ, β∗) such that, whenever parameters (ε, δ1, N1)

from Definition 4.19 satisfy that ε ∈ (0, ε(w)], δ1 ∈ (0, δ
(w)
1 ], and N1 ≥ N

(w)
1 , the following properties

hold:

Case 1. If β ≤ β
(v∞)
s + σ2, then the boundary value problem (4.3.16) associated with (u, β) ∈

Kext ∩ {β ≤ β
(v∞)
s + σ2} has a unique solution φ̂ ∈ C2(Ω) ∩ C1(Ω \ (ΓO

sonic ∪ ΓN
sonic)) ∩ C0(Ω) for

Ω = Ω(u, β). Moreover, there exists a constant C > 0 depending only on (v∞, γ, β∗, α) such that

solution φ̂ satisfies

(4.4.43) ‖φ̂‖L∞(Ω) ≤ C, |φ̂(ξ)− φ∗β(ξ)| ≤ C dist(ξ,ΓO
sonic ∪ ΓN

sonic) in Ω

for φ∗β = max{ϕO, ϕN } − ϕN . Furthermore, for each d ∈ (0, ε0), there exists a constant Cd > 0

depending only on (v∞, γ, β∗, d, α) such that

(4.4.44) ‖φ̂‖2,α∗
1,Ω\Dd

≤ Cd.
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Case 2. For each δ ∈ (0, σ2

2 ), if β
(v∞)
s + δ ≤ β ≤ β∗, then the boundary value problem (4.3.16)

associated with (u, β) ∈ Kext has a unique solution φ̂ ∈ C2(Ω) ∩ C1(Ω \ (ΓO
sonic ∪ ΓN

sonic)) ∩ C0(Ω)
for Ω = Ω(u, β), and the solution satisfies (4.4.43)–(4.4.44) for constants C > 0 depending only on

(v∞, γ, β∗, δ) and Cd > 0 depending only on (v∞, γ, β∗, δ, d, α).

Proof. Fix (u, β) ∈ Kext ∩ {β ≤ β
(v∞)
s + σ2}. Using Gβ1 defined by (4.1.31), we rewrite the

boundary value problem (4.3.16) associated with fixed (u, β) in domain R = Gβ1 (Ω(u, β)). Then
we follow the argument of Step 1 in the proof of [11, Proposition 17.4.2], by using Lemmas 4.2,

4.5, 4.24–4.26, and 4.34, to choose constants ε(w) ∈ (0, ε0], δ
(w)
1 ∈ (0, 1), and N

(w)
1 ≥ 1 such

that, whenever parameters (ε, δ1, N1) from Definition 4.19 satisfy that ε ∈ (0, ε(w)], δ1 ∈ (0, δ
(w)
1 ],

and N1 ≥ N
(w)
1 , the newly written boundary value problem in R satisfies all the conditions of

Proposition C.15. Then the existence and uniqueness of solution φ̂ of problem (4.3.16) satisfying
(4.4.43)–(4.4.44) directly follows from Proposition C.15.

In the case of β
(v∞)
s + δ ≤ β ≤ β∗ for δ ∈ (0, σ2

2 ), we follow the argument of Step 2 in the
proof of [11, Proposition 17.4.2] by using Lemma 4.27 and Proposition C.16 to prove that the

boundary value problem (4.3.16) associated with (u, β) ∈ Kext has a unique solution φ̂ that satisfies
(4.4.43)–(4.4.44). �

For each (u, β) ∈ Kext, the corresponding pseudo-subsonic region Ω = Ω(u, β) depends contin-
uously on (u, β). For later discussions, it is useful to rewrite (4.3.16) as a boundary value problem
for

(4.4.45) û(s, t) = (φ̂+ ϕN − ϕ∗
β) ◦ F(u,β)(s, t) in Qiter

for mapping F = F(u,β) defined by Definition 4.15(ii), where ϕ∗
β is given by (4.1.42).

Substitute expression φ̂ = û ◦ (F(u,β))
−1 − (ϕN − ϕ∗

β) into (4.3.16) and then rewrite (4.3.16) in
terms of û to obtain

2∑

i,j=1

A(u,β)
ij (Dû, s, t)∂ij û+

2∑

i=1

A(u,β)
i (Dû, s, t)∂iû = f (u,β) in Qiter = (−1, 1)× (0, 1),

M(u,β)(Dû, û, s) = 0 on ∂shQiter := (−1, 1)× {1},
û = 0 on ∂soQiter := {−1, 1} × (0, 1),

B
(w)
(u,β)(Dû, s) := b

(w)
1 (s)∂1û+ b

(w)
2 (s)∂2û = 0 on ∂wQiter := (−1, 1)× {0},

(4.4.46)

where (∂1, ∂2) = (∂s, ∂t).
Since ϕN − ϕ∗

β = 0 when β = 0, we have

f (u,β) ≡ 0 if β = 0,(4.4.47)

M(u,0)(0, 0, s) = 0 on ∂shQiter,(4.4.48)

where (4.4.48) follows from Lemma 4.34(f).
From Lemmas 4.16, 4.30, and 4.34–4.35, the following lemma is obtained:

Lemma 4.36. For each (u, β) ∈ Kext, let A(u,β)
ij , A(u,β)

i , f (u,β), M(u,β), B
(w)
(u,β), and b

(w)
j,(u,β) be

as those in (4.4.46). Then the following properties hold:
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(a) A(u,β)
ij ,A(u,β)

i ∈ C(R2 ×Qiter), f (u,β) ∈ C(Qiter), M(u,β) ∈ C(R2 × R× ∂shQiter), and

B
(w)
(u,β) ∈ C(R2 × R× ∂wQiter);

(b) Suppose that a sequence {(uk, βk)}∞k=1 ⊂ Kext converges to (u, β) ∈ Kext in C2,α
(∗,α1)

(Qiter)×
[0, β∗] as k → ∞. Then the following properties hold:

– (A(uk,βk)
ij ,A(uk,βk)

i ) → (A(u,β)
ij ,A(u,β)

i ) uniformly on compact subsets of R2 ×Qiter;

– f (uk,βk) → f (u,β) uniformly on compacts subsets of Qiter;

– M(uk,βk) → M(u,β) uniformly on compact subsets of R2 × R× ∂shQiter;

– B
(w)
(uk,βk)

→ B
(w)
(u,β) uniformly on compact subsets of R2 × ∂wQiter.

From Lemmas 4.16 and 4.35–4.36, we obtain the following corollary:

Corollary 4.37. Let constants ε(w), δ
(w)
1 , and N

(w)
1 be from Lemma 4.35. Let parameters

ε, δ1, and N1 from Definition 4.19 satisfy that ε ∈ (0, ε(w)], δ1 ∈ (0, δ
(w)
1 ], and N1 ≥ N

(w)
1 .

(a) For each (u, β) ∈ Kext, φ̂ solves the boundary value problem (4.3.16) if and only if û
given by (4.4.45) solves the boundary value problem (4.4.46). Thus, (4.4.46) has a unique

solution û ∈ C2(Qiter) ∩ C1(Qiter \ ∂soQiter) ∩ C(Qiter).
Furthermore, there exists a constant C ≥ 1 depending on (v∞, γ, β∗, α) such that

|û(s, t)| ≤ C(1 − |s|) in Qiter.

For each d̂ ∈ (0, 12 ), there exists Cd̂ depending on (v∞, γ, β∗, d̂, α) such that

‖û‖2,α∗
1,Qiter∩{1−|s|>d̂} ≤ Cd̂,

where constant α∗
1 ∈ (0, ᾱ] is from Lemma 4.35.

(b) For each (uk, βk) ∈ Kext, let ûk be the solution of the boundary value problem (4.4.46)

associated with (uk, βk). Suppose that sequence {(uk, βk)} converges to (u, β) ∈ Kext in

C1(Qiter)×[0, β∗]. Then there exists a unique solution û ∈ C2(Qiter)∩C1(Qiter\∂soQiter)∩
C(Qiter) to the boundary value problem (4.4.46) associated with (u, β). Moreover, ûk
converges to û in the following senses:

– uniformly in Qiter,

– in C1,α′

(K) for any compact subset K ⊂ Qiter \ ∂soQiter and any α′ ∈ [0, α∗
1),

– in C2,α′

(K) for any compact subset K ⊂ Qiter and any α′ ∈ [0, α∗
1).

(c) If (u, β) ∈ K, then (u, β) satisfies property (vii) of Definition 4.19 with nonstrict inequality
in (4.3.18).

Remark 4.38. For a constant M > 0, define a set KEM by

KEM :=
{
(u, β) ∈ C2,α

(∗,α1)
(Qiter) : ‖u‖(∗,α1)

2,α,Qiter ≤M, (u, β) satisfy (ii)–(vi) of Definition 4.19
}
.

Let KEM be the closure of KEM in C2,α
(∗,α1)

(Qiter)× [0, β∗]. Then Lemma 4.36 and Corollary 4.37 still

hold when Kext is replaced by KEM for some constant M > 0.
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4.5. Properties of the Iteration Set K
4.5.1. Admissible solutions. As stated in Definition 4.19, parameter α for the iteration

set K will be chosen in (0, ᾱ2 ], where ᾱ ∈ (0, 1) is the constant in Proposition 4.12.

Lemma 4.39. Given γ ≥ 1 and v∞ > 0, fix β∗ ∈ (0, β
(v∞)
d ]. Take a sequence {βj}∞j=1 ⊂

(0, β∗] such that βj converges to 0 as j → ∞. For each j ∈ N, let ϕ(j) be an admissible solution

corresponding to (v∞, βj). Let u(j) be defined by (4.1.50) corresponding to (ϕj , βj). Then there

exists a subsequence of {u(j)} converging in C2,α
(∗,α1)

(Qiter) to u(norm) ≡ 0.

Proof. By Proposition 4.12 and (4.3.1), sequence {u(j)} is uniformly bounded in C2,2α
(∗,1)(Qiter).

Since C2,2α
(∗,1)(Qiter) is compactly embedded into C2,α

(∗,α1)
(Qiter), there exists a subsequence (still

denoted as) {u(j)} such that the subsequence converges in C2,α
(∗,α1)

(Qiter) to a function u(∞) ∈
C2,α

(∗,α1)
(Qiter).

By (4.4.47), Lemma 4.36, Corollary 4.37, and Remark 4.38, we see that u = u(∞) is the solution
of the nonlinear boundary value problem:

2∑

i,j=1

A(u,0)
ij (Du, s, t)∂iju+

2∑

i=1

A(u,0)
i (Du, s, t)∂iu = 0 in Qiter,

M(u,0)(Du, u, s) = 0 on ∂shQiter,

u = 0 on ∂soQiter,

B
(w)
(u,0)(Du, s) := b

(w)
1 (s)∂1u+ b

(w)
2 (s)∂2u = 0 on ∂wQiter.

(4.5.1)

Owing to (4.4.48), u = 0 is the solution of the boundary value problem (4.5.1). Then u(∞) = 0 in
Qiter by the uniqueness of solutions. In other words, u(∞) = u(norm) in Qiter. �

Corollary 4.40. Let constants ε(w), δ
(w)
1 , and N

(w)
1 be from Lemma 4.35, and let parameters

(ε, δ1) in Definition 4.19 be fixed from (0, ε(w)] × (0, δ
(w)
1 ]. For each admissible solution ϕ corre-

sponding to (v∞, β) ∈ Rweak∩{0 ≤ β ≤ β∗} in the sense of Definition 2.24, let a function u = u(ϕ,β)

be given by (4.1.50). Let N1 be the parameter in Definition 4.19. For each δ1 ∈ (0, δ
(w)
1 ], there

exists a constant N
(a)
1 ∈ [N

(w)
1 ,∞) depending only on (v∞, γ, β∗, δ1) such that, if N1 ≥ N

(a)
1 , then

(u(ϕ,β), β) ∈ K for each admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {0 ≤ β ≤ β∗}.

Proof. For a fixed admissible solution ϕ corresponding to (v∞, β) ∈ Rweak ∩ {0 ≤ β ≤ β∗},
let u = u(ϕ,β) be given by (4.1.50). For simplicity of notation, denote u as u(ϕ,β) in this proof.

By the choice of constants Ni (i = 2, 3, 4, 5), µj (j = 0, 1), µ̃, σ1, ζ̂, and C in Definition 4.19,
(u, β) satisfy properties (ii)–(vi) of Definition 4.19.

By the choice of constant N0 in Definition 4.19(i), u satisfies

‖u− u(norm)‖(∗,α1)

2,α,Qiter < N0

for any admissible solution ϕ corresponding to (v∞, β) ∈ Rweak∩{0 ≤ β ≤ β∗}. Lemma 4.39 implies

that, for any given constant δ1 ∈ (0, δ
(w)
1 ], a constant N

(a)
1 ∈ [N

(w)
1 ,∞) can be chosen depending
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only on (v∞, γ, β∗, δ1) such that, whenever β ∈ [0, 2δ1
N

(a)
1

], u satisfies

‖u− u(norm)‖(∗,α1)

2,α,Qiter <
δ1
2
.

Therefore, if N1 ≥ N
(a)
1 , then any (u, β) given by (4.1.50) for an admissible solution ϕ corresponding

to (v∞, β) ∈ Rweak ∩ {0 ≤ β ≤ β∗} satisfies property (i) of Definition 4.19. This implies that
(u, β) ∈ Kext. Therefore, Lemmas 4.24, 4.27, 4.30, and 4.34 apply to the nonlinear differential
operators (N(u,β),M(u,β)). Then, by Propositions 3.30, 3.32, and 3.39, and Corollary 4.37, we
conclude that u is the unique solution of the boundary value problem (4.4.46) associated with
(u, β). That is, û = u in Qiter, for û is given by (4.3.17). Thus, (u, β) satisfies property (vii) of
Definition 4.19.

Therefore, we conclude that (u(ϕ,β), β) ∈ K for any admissible solution ϕ corresponding to
(v∞, β) ∈ Rweak ∩ {0 ≤ β ≤ β∗} in the sense of Definition 2.24. �

4.5.2. Openness of K. Let ε, δ1, δ2, δ3, and N1 be the parameters from Definition 4.19. In
this chapter, we further adjust parameters (ε, δ1), then choose δ3 > 0 small, depending only on

(ε, δ1) such that Definition 4.19 determines a relatively open subset of C2,α
(∗,α1)

(Qiter)× [0, β∗].

Lemma 4.41. For each β∗ ∈ (0, β
(v∞)
d ), the function set Kext given by Definition 4.22 is rela-

tively open in C2,α
(∗,α1)

(Qiter)× [0, β∗].

Proof. For each j = 1, 2, 3, function Kj(β) of β in Definition 4.19 is continuous for β ∈ [0, β∗].
Since ϕO defined in (2.4.1) depends continuously on β ∈ [0, π2 ), ϕβ = max{ϕO, ϕN } and ϕ∗

β defined

in (4.1.42) also depend continuously on β ∈ [0, π2 ). Moreover, sβ and Lβ defined in (4.1.29) and
(4.1.30), respectively, depend continuously on β ∈ [0, π2 ). Furthermore, for each β ∈ [0, β∗],

sup
Qβ(s∗)

(ϕ∞ − ϕ∗
β)− inf

Qβ(s∗)
(ϕ∞ − ϕ∗

β) > 0 for all s∗ ∈ [sβ , cN ],

where Qβ(s∗) is defined in (4.2.1).
By Lemma 4.16 and the observations stated above, the set determined by conditions (i)–(vi)

of Definition 4.19 is relatively open in C2,α
(∗,α1)

(Qiter) × [0, β∗], because C
2,α
(∗,α1)

(Qiter) is compactly

embedded in C1(Qiter); for further details, we refer to the proofs of [11, Lemmas 12.8.1 and 17.5.1].
�

Lemma 4.42. Let ε(w), δ
(w)
1 , N

(w)
1 , and α1 ∈ (0, ᾱ] be from Lemma 4.35. Let ε0 > 0 be from

Lemma 4.16(c). Then there exists ε(lb) ∈ (0, ε(w)] depending only on (v∞, γ, β∗) such that, whenever

parameters (ε, δ1, N1) in Definition 4.19 are from (0, ε(lb)] × (0, δ
(w)
1 ] × [N

(w)
1 ,∞), there is δ̄3 > 0

depending only on (v∞, γ, β∗, δ1, δ2, N1) for δ2 from Definition 4.19(iv) so that, if parameter δ3 in

Definition 4.19(vii) satisfies that δ3 ∈ (0, δ̄3], then the following properties hold: For each (u♯, β♯) ∈
K, a constant δ♯ > 0 can be chosen depending only on (v∞, γ, β∗, u♯, β♯) such that solution φ̂ of the

boundary value problem (4.3.16) associated with (u, β) satisfies

(4.5.2) φ̂− (ϕ∗
β − ϕN ) > 0 in Ω

for Ω = Ω(u, β), provided that (u, β) ∈ Kext satisfies

(4.5.3) ‖u♯ − u‖
C1(Qiter)

+ |β♯ − β| ≤ δ♯.
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Proof. We consider two cases separately: (i) β♯ ∈ [ 2δ1
N2

1
, β∗] and (ii) β♯ ∈ [0, 2δ1

N2
1
].

1. Suppose that β♯ ∈ [ 2δ1
N2

1
, β∗]. By (4.3.3) in Definition 4.19(iv), u♯ satisfies

u♯ >
δ1δ2
N2

1

in Qiter ∩ {1− |s| ≥ ε̃

10
}

for ε̃ = 2ε
cN−sβ . If δ3 > 0 satisfies

(4.5.4) δ3 ≤ δ1
2N2

1

δ2,

then it follows from (4.3.18) that û♯ := (φ̂♯ + ϕN − ϕ∗
β♯) ◦ F(u♯,β♯) satisfies

(4.5.5) û♯ >
δ1
2N2

1

δ2 in Qiter ∩ {1− |s| ≥ ε̃

10
}

for ε̃ = 2ε
cN−sβ , provided that φ̂♯ is the solution of the boundary value problem (4.3.16) associated

with (u♯, β♯).
Note that û♯ is the solution of (4.4.46) determined by (u♯, β♯). Then, by Corollary 4.37, there

exists a constant δ♯ > 0 small, depending on (v∞, γ, β∗, δ3, u♯, β♯), such that, if (u, β) ∈ Kext satisfies
(4.5.3), then (4.5.5) implies that û given by (4.3.17) satisfies

(4.5.6) û >
δ1
4N2

1

δ2 in Qiter ∩ {1− |s| ≥ ε̃

10
}.

For a constant r > 0, denote Dr := DN
r ∪DO

r for DN
r and DO

r defined by (4.1.2). By Proposition
4.16(c), F−1

(u,β)(Dε/10) = Qiter ∩ {1− |s| < ε̃
10}. Thus, (4.5.6) implies

(4.5.7) φ̂− (ϕ∗
β − ϕN ) = û ◦ F−1

(u,β) > 0 in Ω \ Dε/10.
Define

(4.5.8) ψ̂ := φ̂− (ϕ∗
β − ϕN ) in Ω ∩ Dε/2.

By (4.1.45), we have

(4.5.9) ψ̂ =

{
φ̂− (ϕO − ϕN ) in Ω ∩ DO

ε/2,

φ̂ in Ω ∩ DN
ε/2,

provided that the condition:

(4.5.10) ε <
2ĉO
k̄

holds for k̄ > 1 from (4.1.45).

By (2.5.1), ϕO − ϕN is a linear function depending only on ξ1. Since φ̂ is a solution of the

boundary value problem (4.3.16) associated with (u, β), ψ̂ satisfies

L(u,β)(ψ̂) :=

2∑

i,j=1

Aij(Dφ̂, ξ)∂ξiξj ψ̂ = 0 in Ω ∩ DO
ε/2,

ψ̂ = 0 on ΓO
sonic,

∂ξ2 ψ̂ = 0 on Γwedge ∩ ∂DO
ε/2,
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where {Aij(Dφ̂, ξ)}2i,j=1 is given by (4.4.22). By Lemma 4.30(g)–(h), L(u,β)(ψ̂) = 0 is strictly

elliptic in DO
ε/2. By Lemma 4.34(f), the boundary condition M(u,β)(Dφ̂, φ̂, ξ) = 0 on Γshock∩∂DO

ε/2

is equivalent to

M(u,β)(Dφ̂, φ̂, ξ)−M(u,β)(D(ϕO − ϕN ), ϕO − ϕN , ξ) = 0 on Γshock ∩ ∂DO
ε/2.

By Lemma 4.34(d), the boundary condition stated immediately above can be rewritten as

β · ∇ψ̂ − µψ̂ = 0 on Γshock ∩ ∂DO
ε/2,

where β and µ satisfy

δbc ≤ β · νsh ≤ δ−1
bc , µ ≥ δbc on Γshock ∩ ∂DO

ε/2

for constant δbc > 0 from Lemma 4.34(d) and the unit normal vector νsh to Γshock towards the
interior of Ω.

By (4.5.7), the strong maximum principle, and Hopf’s lemma, we obtain that ψ̂ > 0 in DO
ε/2,

which implies that

(4.5.11) û > 0 in Qiter ∩ {−1 < s < −1 +
ε̃

2
},

provided that condition (4.5.10) holds.
By using (4.5.9), Lemma 4.30(a), and properties (d) and (f) of Lemma 4.34, it can be similarly

checked that

(4.5.12) û > 0 in Qiter ∩ {1− ε̃

2
< s < 1}.

From (4.5.6) and (4.5.11)–(4.5.12), we obtain that û > 0 in Qiter, provided that δ♯ > 0 is chosen

sufficiently small and ε satisfies (4.5.10). This proves (4.5.2) for β♯ ∈ [ 2δ1
N2

1
, β∗].

2. Suppose that β♯ ∈ [0, 2δ1
N2

1
]. Choose δ♯ ∈ (0, 2δ1

N2
1
) so that (4.5.3) implies that β ∈ [0, δ1N1

).

By Lemma 4.34(d), the maximum principle applies to solution φ̂ of the boundary value problem

(4.3.16) associated with (u, β) ∈ Kext satisfying (4.5.3) so that

(4.5.13) φ̂ > 0 in Ω.

For (ϕO, ϕN ) given by (2.5.1), denote φβ := ϕO − ϕN . Since φβ is a linear function of ξ, φ̂ − φβ
satisfies

N(u,β)(φ̂− φβ) = N(u,β)(φ̂) = 0 in Ω

for the second-order differential operator (4.4.1). From properties (d) and (f) of Lemma 4.34, it

follows that M(u,β)(Dφ̂, φ̂, ξ) −M(u,β)(Dφβ , φβ , ξ) = 0 for all ξ ∈ Γshock. This condition can be
written as

b ·Dξ(φ̂− φβ) + b0(φ̂− φβ) = 0 on Γshock,

where b and b0 satisfy that b ·νsh > 0 and b0 < 0 on Γshock for the unit normal vector νsh to Γshock

towards the interior of Ω. Then the comparison principle implies that φ̂ ≥ φβ in Ω. Furthermore,

φ̂ = 0 > φβ on ΓN
sonic. By the strong maximum principle, we conclude that

(4.5.14) φ̂ > φβ in Ω.

Then (4.5.2) is obtained from (4.5.13)–(4.5.14), because max{0, φβ} ≥ ϕ∗
β − ϕN holds in Ω. �
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Lemma 4.43 (Estimate of φ̂ away from ΓO
sonic). Let ε0 > 0 be from Lemma 4.16(c). Let ε(w),

δ
(w)
1 , N

(w)
1 , and α∗

1 ∈ (0, ᾱ] be from Lemma 4.35. Let ε(lb) and δ̄3 be from Lemma 4.42. For a

constant r > 0, let DO
r be defined by (4.1.2). Then there exist ε(par) ∈ (0, ε(lb)] depending only on

(v∞, γ, β∗) and C > 0 depending only on (v∞, γ, β∗, α) such that, whenever parameters (ε, δ1, N1) in

Definition 4.19 are from (0, ε(lb)]×(0, δ
(w)
1 ]×[N

(w)
1 ,∞), and δ3 ∈ (0, δ̄3], then the following properties

hold: For each (u♯, β♯) ∈ K, a constant δ♯ > 0 can be chosen depending only on (v∞, γ, β∗, u♯, β♯) so
that, if (u, β) ∈ Kext satisfies (4.5.3), solution φ̂ of the boundary value problem (4.3.16) associated
with (u, β) satisfies the estimate:

(4.5.15) ‖φ̂‖(2),(par)
2,α∗

1,Ω\DO
ε0/10

≤ C

for Ω = Ω(u, β), where norm ‖ · ‖(2),(par)
2,α∗

1 ,Ω\DO
ε0/10

is defined by Definition 3.25.

Proof. The proof is divided into two steps.

1. Claim: There exists a constant C > 0 depending only on (v∞, γ, β∗) such that, for each

(u, β) ∈ Kext, φ̂ satisfies

(4.5.16) φ̂(x, y) ≤ Cx2 in Ω ∩DN
ε0

in the (x, y)–coordinates defined by (3.4.18).
For the (x, y)–coordinates defined by (3.4.18), denote

v(x, y) :=
A

2
x2

for a constant A ≥ 2−µ0
10

γ+1 to be determined later, where µ0 is from Definition 4.19(iv-1). For

the elliptic cut-off ζ1 defined by (4.4.4), ζ1(
vx
x ) =

2−µ0
10

γ+1 . By Lemma 4.24 and (4.4.22), equation

N(u,β)(φ̂) = 0 is rewritten in the (x, y)–coordinates as

N polar
(u,β) (φ̂) = 0 in Ω ∩ DN

εeq/2

for the nonlinear differential operator N polar
(u,β) given by (4.4.12), where εeq ∈ (0, ε02 ) is from Lemma

4.24.
By ζ1(

vx
x ) =

2−µ0
10

γ+1 and (4.4.12), we have

N polar
(u,β) (v) = Ax

(
− (1− µ0

10
) +

Omod
1

x
+Omod

4

)
in Ω ∩ DN

εeq/2
,

with Omod
j = Omod

j (vx, 0, x, y) for j = 1, 4. It follows from (4.4.11) that |O
mod
1

x | + |Omod
4 | ≤ C

√
x

for C > 0 depending only on (v∞, γ). Therefore, there exists ε̄ ∈ (0, 12 min{ε0, εeq, ε̄bc}) depending
only on (v∞, γ) such that

N polar
(u,β) (v) ≤ Ax

(
− (1− µ0

10
) + C

√
ε̄
)
< −Ax

2

(
1− µ0

10

)
< 0 = N polar

(u,β) (φ̂) in Ω ∩ DN
ε̄ .

Note that 0 < µ0 < 1 by Definition 4.19(iv-1) and Lemma 3.28.
On Γshock(u, β) ∩ DN

ε̄ , properties (f)–(g) of Lemma 4.34 imply that

M(u,β)(Dv, v, ξ) = M(u,β)(Dv, v, ξ)−M(u,β)(0, 0, ξ)

≤ −δbc(Ax +
A

2
x2) < 0 = M(u,β)(Dφ̂, φ̂, ξ)
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for constant δbc > 0 from Lemma 4.34(g). On Γwedge ∩ DN
ε̄ , ∂ξ2v = ∂yv = 0 = ∂nw φ̂. On ΓN

sonic,

v = 0 = φ̂ holds.
By (4.4.43) and Remark 4.21(ii), there exists a constant Ĉ > 0 depending only on (v∞, γ, β∗)

such that φ̂ satisfies

(4.5.17) φ̂(x, y) ≤ Ĉx on Ω ∩ DN
ε0 .

Choose A = max{ 2Ĉ
ε̄ ,

2−µ0
10

1+γ } so that v satisfies

φ̂ ≤ v on Ω ∩ {x = ε̄}.
By Lemmas 4.30 and 4.34, and the comparison principle, we have

(4.5.18) φ̂ ≤ v in Ω ∩ DN
ε̄ .

In order to extend this result onto Ω ∩ DN
ε0 , we adjust the choice of A as

A = max
{2Ĉ
ε̄
,
2− µ0

10

1 + γ
,
2Ĉε0
ε̄2

}
,

so that, from (4.5.17),

(4.5.19) φ̂(x, y) ≤ Ĉε0 ≤ A

2
ε̄2 ≤ v(x, y) in Ω ∩ (DN

ε0 \ DN
ε̄ ).

Combining (4.5.18) with (4.5.19), we obtain (4.5.16) with C = A for A given above before (4.5.19).

2. By Definition 4.19(iii) and Remark 4.21(ii), there exists a constant l > 0 depending only on
(γ, v∞) such that

(4.5.20) f̂N ,sh(x) ≥ l on [0, ε0].

By Remark 4.21(ii), f̂N ,sh satisfies the estimate:

(4.5.21) ‖f̂N ,sh‖(−1−α),{0}
2,α,(0,ε0)

≤ ‖f̂N ,0‖C3([0,ε0]) + CN0.

By (4.5.16), (4.5.20)–(4.5.21), Lemmas 4.24 and 4.33–4.34, the boundary value problem (4.3.16)

associated with (u, β) ∈ Kext satisfying (4.5.3) satisfies all the conditions of Theorem C.11. There-
fore, we conclude from Theorem C.11 that, for each α′ ∈ (0, 1), there exists a constant Cα′ > 0

depending only on (v∞, γ, β∗, α′) such that φ̂ satisfies

(4.5.22) ‖φ̂‖(2),(par)
2,α′,Ω∩DN

ε0

≤ Cα′ .

Finally, (4.5.15) is obtained by combining estimate (4.5.22) with Lemma 4.35. �

As pointed out earlier, ΓO
sonic defined in Definition 2.23 depends continuously on β ∈ [0, π2 ).

Therefore, the pseudo-subsonic region Ω(u, β) associated with (u, β) ∈ Kext depends continuously
on (u, β). In particular, Ω(u, β) ∩ DO

ε0 changes from a rectangular domain to a triangular domain

as β increases from β < β
(v∞)
s to β > β

(v∞)
s . Furthermore, the ellipticity of equation N(u,β)(φ̂) = 0

near ΓO
sonic changes as β varies. For that reason, the a priori estimate of a solution φ̂ of the boundary

value problem (4.3.16) is given for the three cases separately:

(i) β < β
(v∞)
s ;

(ii) β ≥ β
(v∞)
s close to β

(v∞)
s ;

(iii) β > β
(v∞)
s away from β

(v∞)
s .
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Lemma 4.44 (Estimates of φ̂ near ΓO
sonic). Let ε(par) be from Lemma 4.43. There exist εO ∈

(0, ε(par)] and δ
(E)
1 depending only on (v∞, γ, β∗) such that, whenever parameters (ε, δ1, δ3, N1) in

Definition 4.19 are chosen as in Lemma 4.43, and (ε, δ1) further satisfy

0 < ε < εO, 0 < δ1 ≤ δ
(E)
1 ,

then, for each (u♯, β♯) ∈ K, there is a constant δ♯ depending on (v∞, γ, β∗, δ2, δ3, u♯, β♯) so that, if

(u, β) ∈ Kext satisfies (4.5.3), then the following properties hold:

(i) If β ∈ [0, β
(v∞)
s ), for each α′ ∈ (0, 1), there exist constants ε̂p ∈ (0, ε0] and Cα′ > 0

depending only on (v∞, γ, β∗, α′) such that solution φ̂ ∈ C2(Ω) ∩ C1(Ω) of the boundary

value problem (4.3.16) associated with (u, β) satisfies

‖φ̂− (ϕO − ϕN )‖(2),(par)
2,α′,Ω∩DO

ε̂p

≤ Cα′ ;

(ii) There exists a constant δ̂ ∈ (0, β∗ − β
(v∞)
s ) depending only on (v∞, γ, β∗) such that, if

β ∈ [β
(v∞)
s , β

(v∞)
s +δ̂], then, for each α′ ∈ (0, 1), there exist constants ε̂p ∈ (0, ε0] depending

on (v∞, γ, β∗) and Cα′ > 0 depending only on (v∞, γ, β∗, α′) so that φ̂ satisfies

‖φ̂− (ϕO − ϕN )‖C2,α′(Ω∩DO
ε̂p

) ≤ Cα′ ,

Dm(φ̂− ϕO + ϕN )(Pβ) = 0 for m = 0, 1, 2,

where Pβ is defined in Definition 2.23;

(iii) There exist constants α̂ ∈ (0, 13 ) depending only on (v∞, γ, β∗) and C > 0 depending only

on (v∞, γ, β∗) so that, if β ∈ [β
(v∞)
s + δ̂

2 , β∗], then φ̂ satisfies

‖φ̂− (ϕO − ϕN )‖(−1−α̂),{Pβ}
2,α̂,Ω∩DO

ε0

≤ C,(4.5.23)

Dm(φ̂ − ϕO + ϕN )(Pβ) = 0 for m = 0, 1.(4.5.24)

Proof. We divide the proof into two steps.

1. Assertion (i): Owing to Remark 3.31, we need to consider two cases separately: (i) β < β
(v∞)
s

away from β
(v∞)
s and (ii) β < β

(v∞)
s close to β

(v∞)
s .

By Lemma 4.2(e), (4.1.26), (4.1.31), Proposition 4.6, and Definition 4.19(iii), there exist ε̂ ∈
(0, ε(par)] and σ̂1 ∈ (0,

β(v∞)
s

10 ) such that, for any (u, β) ∈ Kext, it holds that, if σ ∈ (0, σ̂1], then we

can fix m̂ > 1 depending only on (v∞, γ, σ) and k̂ > 1 depending only on (v∞, γ) such that

(a) if 0 ≤ β ≤ β
(v∞)
s − σ

2 , then

(4.5.25) {0 < x < 2ε̂, 0 < y <
1

2m̂
} ⊂ Ω ∩ DO

2ε̂ ⊂ {0 < x < 2ε̂, 0 < y < 2m̂};

(b) if β
(v∞)
s − σ ≤ β < β

(v∞)
s , then

(4.5.26) {0 < x < 2ε̂, 0 < y < yP1 +
x

2k̂
} ⊂ Ω ∩ DO

2ε̂ ⊂ {0 < x < 2ε̂, 0 < y < yP1 + 2k̂x}.

For a fixed σ ∈ (0, σ̂1], suppose that 0 ≤ β ≤ β
(v∞)
s − σ

2 . Let ψ̂ be given by (4.5.8). By Lemma
4.42, we have

(4.5.27) ψ̂ > 0 in Ω ∩ DO
ε/2,
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provided that (u, β) ∈ Kext satisfies (4.5.2) for δ♯ > 0 from Lemma 4.42.
Owing to (4.1.45), if condition (4.5.10) holds, then we can repeat Step 1 in the proof of Lemma

4.43 to obtain

(4.5.28) ψ̂(x, y) ≤ Cx2 in Ω ∩ DO
ε̂0 for ε̂0 := min{ε0,

ĉO
k̄
}

for C > 0 depending only on (v∞, γ, β∗), where the (x, y)–coordinates are given by (3.5.2), and
ĉO and k̄ are given by Definition 4.1 and (4.1.45), respectively. Repeating Step 2 in the proof of

Lemma 4.43 with (4.5.27)–(4.5.28) and f̂O,sh given by (4.3.20), and using (4.5.25), we can show
that, for each α′ ∈ (0, 1), there exists a constant Cα′ > 0 depending only on (v∞, γ, β∗, α′) such
that

‖φ̂− (ϕO − ϕN )‖(2),(par)
2,α′,Ω∩DO

ε̂0

= ‖ψ̂‖(2),(par)
2,α′,Ω∩DO

ε̂0

≤ Cα′ .

Next, suppose that β
(v∞)
s −σ ≤ β < β

(v∞)
s . In this case, we need to combine two estimates: (i)

in Ω ∩ {x < y2P1
} and (ii) in Ω ∩ {x > y2P1

10 } near ΓO
sonic.

In Ω ∩ {x < y2P1
}, we repeat the argument of Step 2 in the proof of Lemma 4.43 to obtain

‖φ̂− (ϕO − ϕN )‖(2),(par)
2,α′,Ω∩DO

y2
P1

= ‖ψ̂‖(2),(par)
2,α′,Ω∩DO

y2
P1

≤ Cα′

for each α′ ∈ (0, 1), where Cα
′

> 0 is given, depending only on (v∞, γ, β∗, α′).
In Ω ∩ {x > y2P1

} near ΓO
sonic, we adjust the argument in Step 2 in the proof of Proposition

3.32 to show that there exist sufficiently small constants σ̄ ∈ (0, σ1] and ε∗ ∈ (0, ε̂0] ∩ (0, ε(par)]

depending only on (v∞, γ, β∗) so that ψ̂ satisfies

ψ̂(x, y) ≤ Cx4 in Ω ∩ DO
ε∗ ∩ {x > y2P1

10
}

for C > 0 depending only on (v∞, γ, β∗). For f̂O,sh defined by (4.3.20) and z0 = (x0, y0) ∈
Ω ∩ DO

ε∗ ∩ {x > y2P1

5 }, we define F (z0)(S) by (3.5.39) given in the proof of Proposition 3.32. By

Remark 4.21(i)–(ii), F (z0) satisfies

‖F (z0)‖C2([−1,1]) ≤ CN0
√
x0

for C > 0 depending only on (v∞, γ, α). Then we apply Theorem C.6 and adjust the later part of
Step 4 in the proof of Proposition 3.32 to conclude that

‖φ̂− (ϕO − ϕN )‖(2),(par)
2,α′,Ω∩DO

ε∗
= ‖ψ̂‖(2),(par)

2,α′,Ω∩DO
ε∗

≤ Cα′

for each α′ ∈ (0, 1), where Cα′ > 0 is given, depending only on (v∞, γ, β∗, α′), provided that
σ ∈ (0, σ̄].

The proof of assertion (i) is completed.

2. Assertions (ii) and (iii): Assertion (ii) can be proved in a way similar to Proposition 3.39.
Estimate (4.5.23) in assertion (iii) directly follows from Proposition C.16.

For β ≥ βs +
δ̂
2 , (4.4.43) implies that

(4.5.29) (φ̂− φO)(Pβ) = 0
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for φO = ϕO − ϕN . By Lemma 4.34(f) and (4.5.29), φ̂ satisfies
∫ 1

0

M(u,β)(tDφ̂+ (1− t)Dφ0, tφ̂+ (1− t)φ0, ξ) dt ·D(φ̂− φ0) = 0 at ξ = Pβ .

By (4.4.23), (4.4.25), (4.4.29), and Lemma 4.34,

|∂p1M(u,β)(p, z, Pβ)− ∂p1g
sh(DϕO(Pβ), ϕO(Pβ), Pβ)| ≤ C

√
δ1

for some C > 0 depending only on (v∞, γ, β∗). This inequality, combined with Lemma 3.37, implies
that, if δ1 > 0 is chosen small, depending only on (v∞, γ, β∗), then the boundary conditions:

M(u,β)(Dφ̂, φ̂, ξ) = 0 on Γshock and φ̂ξ2 = 0 on Γwedge are functionally independent at Pβ so that

D(φ̂− φO)(Pβ) = 0.

In proving assertions (i)–(iii), all the required properties of N(u,β) and M(u,β) are provided by
Lemmas 4.25, 4.27, 4.30, and 4.32–4.34. �

Corollary 4.45. In Definition 4.19, choose parameters (α, ε, δ1, δ3, N1) as follows:

(i) For ᾱ, α1, and α̂ from Lemmas 4.35, 4.43, and 4.44, respectively, choose

α =
1

2
min{ᾱ, α1, α̂};

(ii) Choose (ε, δ1, N1) to satisfy

(ε, δ1, N1) ∈ (0, εO]× (0, δ
(w)
1 ]× [N

(a)
1 ,∞)

for N
(a)
1 ∈ [N

(w)
1 ,∞) from Corollary 4.40;

(iii) For (δ1, N1) ∈ (0, δ
(w)
1 ]× [N

(a)
1 ,∞), denote δ̄ := δ1

2N2
1
δ2, where δ2 > 0 is a parameter to be

determined later. Choose δ3 to satisfy

δ3 ∈ (0, δ̄3].

Under the choices of parameters (α, ε, δ1, δ3, N1) above, there exists a constantC > 0 depending only

on (v∞, γ, β∗) such that, for each (u, β) ∈ Kext, denoting the unique solution of the boundary value

problem (4.3.16) associated with (u, β) by φ̂ ∈ C2(Ω(u, β))∩C1(Ω(u, β)) and defining û : Qiter → R

by (4.3.17), we have

(4.5.30) ‖û‖(∗,1)2,2α,Qiter ≤ C.

Proof. By the choice of parameters α ∈ (0, 16 ) and (ε, δ1, δ3, N1), estimate (4.5.30) follows
from Lemmas 4.43–4.44 by repeating the argument in the proof of Proposition 4.12. �

Proposition 4.46. Under the choices of parameters (α, ε, δ1, δ3, N1) as in Corollary 4.45, the

iteration set K defined in Definition 4.19 is relatively open in C2,α
(∗,α1)

(Qiter)× [0, β∗].

Proof. We have shown in Lemma 4.41 that Kext is relatively open in C2,α
(∗,α1)

(Qiter) × [0, β∗].
Therefore, it remains to check that property (vii) of Definition 4.19 defines a relatively open subset

of C2,α
(∗,α1)

(Qiter)× [0, β∗] under the choice of δ3 given by (iii) in the statement of Corollary 4.45.

Suppose that this is not true. Then there exist (u♯, β♯) ∈ K and a sequence {(un, βn)}∞n=1 ⊂ Kext

such that

lim
n→∞

‖un − u♯‖(∗,α1)

2,α/2,Qiter + |βn − β♯| = 0, ‖ûn − un‖(∗,α1)

2,α/2,Qiter ≥ δ3 for all n ∈ N,
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where each ûn for n ∈ N is given by (4.3.18) for (u, β) = (un, βn).
Let û♯ be given by (4.3.17) with (u, β) = (u♯, β♯), and denote

δ♯ :=
δ3 − ‖û♯ − u♯‖(∗,α1)

2,α/2,Qiter

10
.

By (4.3.18), it holds that δ♯ > 0. Therefore, we can choose n♯ ∈ N sufficiently large such that

‖un − u♯‖(∗,α1)

2,α/2,Qiter + |βn − β♯| ≤ δ♯ for all n ≥ n♯. Then we have

‖ûn − û♯‖(∗,α1)

2,α/2,Qiter ≥ 9δ♯ for all n ≥ n♯.

By Corollary 4.45, {ûn} is bounded in C2,2α
(∗,1)(Qiter). It is noted in Definition 4.18 that C2,2α

(∗,1)(Qiter)

is compactly embedded into C2,α
(∗,α1)

(Qiter). Therefore, {ûn} has a subsequence {ûnj} that converges

in C2,α
(∗,α1)

(Qiter) to a function û∗ ∈ C2,α
(∗,α1)

(Qiter) so that

(4.5.31) ‖û∗ − û♯‖(∗,α1)

2,α/2,Qiter ≥ 9δ♯.

Define
φ̂∗ := û∗ ◦ F−1

(u♯,β♯)
− ϕN + ϕ∗

β♯ in F−1
(u♯,β♯)

(Qiter) = Ω(u♯, β♯).

By Lemma 4.36, φ̂∗ solves the nonlinear boundary value problem (4.3.16) associated with (u♯, β♯).
Then the uniqueness of solutions of (4.3.16) stated in Lemma 4.35 implies that û∗ = u♯, which is
in contradiction to (4.5.31). Therefore, we conclude that property (vii) of Definition 4.19 defines a

relatively open subset of C2,α
(∗,α1)

(Qiter)× [0, β∗] under the choice of δ3 given by (iii) in the statement

of Corollary 4.45. �

Remark 4.47. In Proposition 4.46, the choice of (α, ε, δ1, N1) depends only on (v∞, γ, β∗), and
the choice of δ3 depends only on (v∞, γ, β∗, δ1, δ2, N1), where parameter δ2 is to be determined later.





CHAPTER 5

Existence of Admissible Solutions up to β
(v∞)
d

– Proof of Theorem 2.31

Fix γ ≥ 1, v∞ > 0, and β∗ ∈ (0, β
(v∞)
d ). For the iteration set K defined in Definition 4.19,

define

K(β) := {u ∈ C2,α
(∗,α1)

(Qiter) : (u, β) ∈ K} for each β ∈ [0, β∗].

In this chapter, we define an iteration mapping I : K → C2,α
(∗,α1)

(Qiter) with the following properties:

(i) For each β ∈ [0, β∗], there exists u ∈ K(β) such that I(u, β) = u;

(ii) If I(u, β) = u, then ϕ given by (4.1.50) yields an admissible solution corresponding to
(v∞, β).

5.1. Definition of the Iteration Mapping

Let parameters (α, ε, δ1, δ3, N1) in Definition 4.19 be fixed as in Proposition 4.46.
In order to define an iteration map satisfying (i)–(ii) stated above, and to employ the Leray-

Schauder degree argument for proving the existence of a fixed point of I(·, β) in K(β) for all

β ∈ (0, β
(v∞)
d ), we require the compactness of I.

For each (u, β) ∈ K, let (g
(u,β)
sh ,Γshock(u, β),Ω(u, β), ϕ

(u,β)) be defined by Definition 4.15, and

denote them as (gsh,Γshock,Ω, ϕ). For such a function gsh, we define (Gβ1 , G2,gsh
) by (4.1.31) and

(4.1.49), respectively. Let φ̂ ∈ C2(Ω)∩C1(Ω) be the unique solution of the boundary value problem

(4.3.16) associated with (u, β). Then function û : Qiter → R is given by (4.3.17), and function
ϕ̂ = ϕ̂(u,β) is given by

(5.1.1) ϕ̂(u,β) = ϕ∗
β + û ◦ F−1

(u,β)

for ϕ∗
β given by (4.1.42).
Next, we define functions w, w∞, and ŵ by

w(s, t′) := (ϕ− ϕ∗
β) ◦ (Gβ1 )−1(s, t′),

w∞(s, t′) := (ϕ∞ − ϕ∗
β) ◦ (Gβ1 )−1(s, t′),

ŵ(s, t′) := (ϕ̂− ϕ∗
β) ◦ (Gβ1 )−1(s, t′).

(5.1.2)

Lemma 5.1. For each β ∈ [0, β
(v∞)
d ], there exists a unique function gβ : [−1, 1] → R+ such that

(a) w∞(s, gβ(s)) = 0 for all s ∈ [−1, 1];

(b) {(s, gβ(s)) : s ∈ (−1, 1)} ⊂ Gβ1 (Qβ) for Qβ defined in Definition 4.1(iii);

(c) ‖gβ‖C3([−1,1]) ≤ C for C > 0 depending only on (γ, v∞).

167
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(v∞)
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Proof. By property (iii) stated right after Definition 4.8, the set:

{(s, t′) : w∞(s, t′) = 0}

is contained in Gβ1 (Qβ). Then the existence and uniqueness of gβ satisfying statements (a)–(b)
follow from Lemma 4.9, combined with the implicit function theorem. Statement (c) is obtained
from Lemma 4.9 and the smoothness of ϕ∞ − ϕ∗

β , owing to (4.1.42). �

For each (u, β) ∈ K, gsh : [−1, 1] → R+ is in C0,1([−1, 1]) and satisfies gsh > 0 on (−1, 1).
Define

Rgsh
:= {(s, t′) ∈ R

2 : −1 < s < 1, 0 < t′ < gsh(s)},
Σgsh

:= {(s, gsh(s)) : −1 < s < 1}.
(5.1.3)

Note that w and ŵ are defined in Rgsh
, and w∞ is defined in R∞ := (−1, 1)× R+.

In order to define an iteration mapping I, the first step is to introduce an extension of ŵ onto
R(1+κ)gsh

for some κ ∈ (0, 13 ].

Lemma 5.2 (Regularized distance). Let R∞ := (−1, 1) × R
+. For each g ∈ C0,1([−1, 1])

satisfying

(5.1.4) g > 0 on (−1, 1),

define

(5.1.5) Rg := {(s, t′) ∈ R
2 : −1 < s < 1, 0 < t′ < g(s)}, Σg := {(s, g(s)) : −1 < s < 1}.

Then there exists a function δg ∈ C∞(R∞ \Rg), the regularized distance, such that

(i) For all x = (s, t′) ∈ R∞ \ Σg,
1

2
dist(x,Σg) ≤ δg(x) ≤

3

2
dist(x,Σg).

(ii) For all x = (s, t′) ∈ R∞ \ Σg,

|Dmδg(x)| ≤ C(m)
(
dist(x,Σg)

)1−m
for m = 1, 2, 3, · · · ,

where C(m) depends only on m.

(iii) There exists C∗ > 0 depending only on Lip[g] such that

δg(x) ≥ C∗(t
′ − g(s)) for all x ∈ R∞ \Rg.

(iv) Suppose that gi ∈ C0,1([−1, 1]) and g ∈ C0,1([−1, 1]) satisfy (5.1.4) and

‖gi‖C0,1([−1,1]) ≤ L for all i ∈ N

for some constant L > 0. If {gi(s)}i∈N converges to g(s) uniformly on [−1, 1], then

{δgi(x)}i∈N converges to δg(x) in Cm(K) for any m = 0, 1, 2, · · · , and any compact set

K ⊂ R∞ \Rg.
(v) For C∗ from (iii), define

(5.1.6) δ∗g(x) :=
2

C∗
δg(x).
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Then there exists κ ∈ (0, 13 ] depending only on Lip[g] such that, for each x = (s, t′) ∈
R(1+κ)g \Rg,

(s, t′ − λδ∗g(x)) ∈ {s} × [
g(s)

3
, g(s)− (t′ − g(s))] ⋐ Rg for all λ ∈ [1, 2].

(vi) There exist constants C∗ > 0 and κ ∈ (0, 13 ] depending only on (γ, v∞, β∗) such that, for

each (u, β) ∈ Kext, the regularized distance δ
(u,β)
gsh

can be given so that properties (i)–(iii)
and (v) stated above are satisfied.

(vii) If {(uj, βj)}nj=1 ⊂ Kext converges to (u, β) in C2,α
(∗) (Qiter)× [0, β∗], then δ

(uj ,βj)
gsh

converges

to δ
(u,β)
gsh

in Cm(K) for any m = 0, 1, 2, · · · , and any compact K ⊂ R∞ \R(u,β)
gsh

.

Proof. Statements (i)–(iv) of this lemma follow directly from [11, Lemma 13.9.1]. Statement
(v) can be verified by using statement (iii). We refer to [11, Lemma 13.9.4] for a proof of statement
(v). Finally, statements (i)–(v), combined with (d) and (g)–(h) of Lemma 4.16 and (i) of Remark
4.21, lead to statements (vi) and (vii). �

By [11, Lemma 13.9.2], there exists a function Ψ ∈ C∞
c (R) satisfying that

suppΨ ⊂ [1, 2],
∫ ∞

−∞
Ψ(y) dλ = 1,

∫ ∞

−∞
λmΨ(λ) dλ = 0 for m = 1, 2.

(5.1.7)

For a function g ∈ C0,1([−1, 1]) satisfying (5.1.4), let Rg and δ∗g be given by (5.1.5) and (5.1.6),

respectively. Let κ ∈ (0, 13 ] be fixed depending on Lip[g] to satisfy Lemma 5.2(v). For a function

v ∈ C0(Rg) ∩C2(Rg ∪ Σg), we define its extension Eg(v) onto R(1+κ)g by

(5.1.8) Eg(v)(x) =
{
v(x) for x = (s, t′) ∈ Rg,∫∞
−∞ v

(
s, t′ − λδ∗g(x)

)
Ψ(λ) dλ for x ∈ R(1+κ)g \Rg.

Definition 5.3 (Extension mapping). For each (u, β) ∈ Kext, let g denote g
(u,β)
sh , and let δg be

the regularized distance given in Lemma 5.2. For constant C∗ > 0 from Lemma 5.2(vi), let δ∗g be

given by (5.1.6). Let κ ∈ (0, 13 ] be from Lemma 5.2(vi). Then, for each v ∈ C0(Rg) ∩C2(Rg ∪Σg),
define its extension Eg(v) onto R(1+κ)g by (5.1.8) for Ψ given by (5.1.7).

Proposition 5.4 (Properties of extension operator E). For each (u, β) ∈ Kext, the extension
operator Eg given by Definition 5.3 maps C2(Rg∪Σg) into C2(R(1+κ)g) with the following properties:
Fix α ∈ (0, 1). Then

(a) Fix b1, b2 with −1 < b1 < b2 < 1.

(a-1) There exists C > 0 depending only on (v∞, γ, β∗, α) such that

‖Eg(v)‖2,α,R(1+κ)g∩{b1<s<b1} ≤ C‖v‖2,α,Rg∩{b1<s<b1}.

More precisely,

‖Eg(v)‖m,0,R(1+κ)g∩{b1<s<b2} ≤ C‖v‖m,0,Rg∩{b1<s<b2} for m = 0, 1, 2,

[D2Eg(v)]α,R(1+κ)g∩{b1<s<b2} ≤ C[D2v]α,Rg∩{b1<s<b2}.

(a-2) Eg : C2,α(Rg ∩ {b1 < s < b2}) −→ C2,α(R(1+κ)g ∩ {b1 < s < b2}) is linear and con-
tinuous.
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(a-3) Suppose that {(uj, βj)} ⊂ Kext converges to (u, β) in C2,α̃
(∗,α1)

(Qiter)× [0, β∗] for some

α̃ ∈ (0, 1). If {vj} satisfies

vj ∈ C2,α(R
(uj ,βj)
gsh

∩ {b1 < s < b2}), ‖vj‖
2,α,R

(uj,βj)

gsh
∩{b1<s<b2}

≤M for all j ∈ N

for some constantM > 0 and converges uniformly to v on compact subsets of R
g
(u,β)
sh

for some v ∈ C2,α(R
(u,β)
gsh

∩ {b1 < s < b2}), then E
g
(uj,βj)

sh

(vj) converges to E
g
(u,β)
sh

(v) in

C2,α′

(R(1+κ
2 )g

∩ {b1 < s < b2}) for all α′ ∈ (0, α), where E
g
(uj,βj)

sh

(vj) is well defined

on R
(1+κ

2 )g
(u,β)
sh

∩ {b1 < s < b2} for large j.

(b) Fix σ > 0 and ε ∈ (0, 14 ].

(b-1) There exists Cpar > 0 depending only on (v∞, γ, β∗, α, σ) such that

‖Eg(v)‖(σ),(par)2,α,R(1+κ)g∩{−1<s<−1+ε} ≤ Cpar‖v‖(σ),(par)2,α,Rg∩{−1<s<−1+ε},

‖Eg(v)‖(σ),(par)2,α,R(1+κ)g∩{1−ε<s<1} ≤ Cpar‖v‖(σ),(par)2,α,Rg∩{1−ε<s<1}.

(b-2) The mapping

Eg : C2,α
(σ),(par)(Rg ∩ {−1 < s < −1 + ε}) → C2,α

(σ),(par)(R(1+κ)g ∩ {−1 < s < −1 + ε})

is linear and continuous. The same is true when we replace {−1 < s < −1 + ε} by
{1− ε < s < 1}.

(b-3) If {(uj , βj)} ⊂ Kext converges to (u, β) in C2,α̃
(∗,α1)

(Qiter) × [0, β∗] for some α̃ ∈ (0, 1),

and if

{vj} ⊂ C2,α
(σ),(par)(R

(uj ,βj)
gsh

∩ {−1 < s < −1 + ε}),

v ∈ C2,α
(σ),(par)(R

(u,β)
gsh

∩ {−1 < s < −1 + ε}),

and vj converges uniformly to v on compact subsets of R
g
(u,β)
sh

, then E
g
(uj ,βj)

sh

(vj)

converges to E
g
(u,β)
sh

(v) in C2,α′

(σ′),(par)(R(1+κ
2 )g ∩ {−1 < s < −1 + ε}) for all α′ ∈ (0, α)

and all σ′ ∈ (0, σ). The same is true when we replace {−1 < s < −1 + ε} by
{1− ε < s < 1}.

(c) Consider the case that s ∈ (−1, 12 ).

(c-1) There exists Csub > 0 depending only on (v∞, γ, β∗, α) such that

‖Eg(v)‖(−1−α),{s=−1}
2,α,R(1+κ)g∩{−1<s<− 1

2}
≤ Csub‖v‖(−1−α),{s=−1}

2,α,Rg∩{−1<s<− 1
2 }
.

Furthermore, if (v,Dv) = (0,0) on Rg ∩ {s = −1}, then

(Eg(v), DEg(v)) = (0,0) on R(1+κ)g ∩ {s = −1}.

(c-2) Eg : C2,α
(−1−α),{s=−1}(Rg ∩ {−1 < s < − 1

2})
−→ C2,α

(−1−α),{s=−1}(R(1+κ)g ∩ {−1 < s < − 1
2}) is linear and continuous.
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(c-3) If {(uj , βj)} ⊂ Kext converges to (u, β) in C2,α̃
(∗,α1)

(Qiter) × [0, β∗] for some α̃ ∈ (0, 1),

and if

{vj} ⊂ C2,α
(−1−α),{s=−1}(Rg

(uj ,βj)

sh

∩ {−1 < s < −1

2
}),

v ∈ C2,α
(−1−α),{s=−1}(Rg

(u,β)
sh

∩ {−1 < s < −1

2
}),

and vj converges uniformly to v on compact subsets of R
g
(u,β)
sh

, then E
g
(uj ,βj)

sh

(vj)

converges to E
g
(u,β)
sh

(v) in C2,α′

(−1−α′),{s=−1}(R(1+ κ
2 )g

∩ {−1 < s < − 1
2}) for all α′ ∈

(0, α).

Proof. We divide the proof into three steps.

1. By Remark 4.21, Lip[gsh] is uniformly bounded by a constant C > 0 depending only on

(v∞, γ, β∗) for all (u, β) ∈ Kext. Then statements (a-1)–(a-2) follow from [11, Lemma 13.9.6(i)–

(ii)]. By Lemma 4.16(d), if {(uj , βj)} ⊂ Kext converges to (u, β) in C2,α̃
(∗,α1)

(Qiter)× [0, β∗] for some

α̃ ∈ (0, 1), then g
(uj ,βj)
sh converges to g

(u,β)
sh in C1([−1, 1]). Thus, we apply [11, Lemma 13.9.6 (iii)]

to obtain statement (a-3).

2. Statements (b-1)–(b-2) can be proved by following Steps 2–3 in the proof of [11, Theorem
13.9.5]. Since Lip[gsh] is uniformly bounded by a constant C > 0 depending only on (v∞, γ, β∗) for
all (u, β) ∈ Kext, the estimate constant Cpar in (b-1) can be given uniformly, depending only on

(v∞, γ, β∗, α, σ), for all (u, β) ∈ Kext. Moreover, statement (b-3) can be proved by following Step

4 in the proof of [11, Theorem 13.9.5] and using the uniform convergence of g
(uj ,βj)
sh to g

(u,β)
sh on

[−1, 1] when {(uj, βj)} ⊂ Kext converges to (u, β) in C2,α̃
(∗,α1)

(Qiter)× [0, β∗] for some α̃ ∈ (0, 1).

3. Finally, we follow the proof of [11, Theorem 13.9.8] to obtain statements (c-1)–(c-3). Sim-

ilarly to Steps 1–2, the uniform boundedness of Lip[gsh] for all (u, β) ∈ Kext implies that the

estimate constant Csub depends only on (v∞, γ, β∗, α) for all (u, β) ∈ Kext. To prove (c-3), we use

the uniform convergence of g
(uj ,βj)
sh to g

(u,β)
sh on [−1, 1] when {(uj , βj)} ⊂ Kext converges to (u, β)

in C2,α̃
(∗,α1)

(Qiter)× [0, β∗] for some α̃ ∈ (0, 1). �

Lemma 5.5. Let parameters (α, ε, δ1, δ3, N1) in Definition 4.19 be fixed as in Proposition 4.46.

Then there exists a constant δ
(imp)
3 > 0 depending only on (v∞, γ, β∗, δ2) (where parameter δ2 in

Definition 4.19 is determined later) such that, if δ3 further satisfies 0 < δ3 ≤ δ
(imp)
3 , for each

(u, β) ∈ K, there exists a unique function ĝsh : [−1, 1] → R+ such that

(5.1.9) (w∞ − Egsh
(ŵ))(s, ĝsh(s)) = 0 for all s ∈ [−1, 1].

Furthermore, there exists a constant C > 0 depending only on (v∞, γ, β∗) such that ĝsh satisfies



‖ĝsh − gβ‖(2),(par)2,2α,(− 1

2 ,1)
+ ‖ĝsh − gβ‖(−1−2α),{−1}

2,2α,(−1,0) ≤ C,

dk

dxk (ĝsh − gβ)(−1) = 0 for k = 0, 1,
(5.1.10)

‖ĝsh − gsh‖1,α2 ,(−1,1) ≤ Cδ3,(5.1.11)

(ĝsh − gsh)(±1) = (ĝsh − ĝsh)
′(±1) = 0,(5.1.12)

where gβ is from Lemma 5.1.
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Proof. We divide the proof into three steps.

1. By Definition 4.15(i), w given by (5.1.2) satisfies

(5.1.13) w∞ − w = 0 on Σgsh
.

By (4.3.11) in Definition 4.19(iv), Lemma 4.5(a), and (5.1.2), there exists a constant C′ > 0
depending on (v∞, γ) such that

(5.1.14) |D(w∞ − w)| ≥ C′µ1 > 0 on Σgsh
.

Therefore, we have

D(w∞ − w)

|D(w∞ − w)| = − (−g′sh, 1)√
1 + (g′sh)

2
on Σgsh

.

Since Lip[gsh] is uniformly bounded by a constant C > 0 depending only on (v∞, γ, β∗) for all
(u, β) ∈ K, there exists a constant µ̄ > 0 depending only on (v∞, γ, β∗) to satisfy

(5.1.15) ∂t′(w∞ − w) = −|D(w∞ − w)|√
1 + (g′sh)

2
≤ −µ̄ on Σgsh

.

For each (u, β) ∈ Kext, the corresponding function gsh = g
(u,β)
sh satisfies that gsh(−1) ≥ 0.

Therefore, Definition 4.19(iii) implies that

1

N3
(1 + s) ≤ gsh(s) ≤ gsh(−1) +N3(1 + s) for −1 ≤ s ≤ −1 + ε̂0(5.1.16)

for ε̂0 = 1
5 , where N3 > 1 is the constant from Definition 4.19(iii). The lower bound of gsh(s) in

(5.1.16) is obtained from Definition 4.19(iii), and gsh(−1) ≥ 0 which follows from (4.2.6).
Let κ ∈ (0, 13 ] be fixed as in Definition 5.3. In other words, let κ be from Lemma 5.2(vi).

By Definition 4.19(i), Remark 4.21, (5.1.15), and Proposition 5.4, there exists a small constant
σ ∈ (0, 14 min{1, κ}] depending only on (v∞, γ, β∗) such that, for each (u, β) ∈ K, gsh satisfies

0 < gsh(s)− σ < gsh(s) + σ < (1 + κ)gsh(s) for −1 +
ε̂0
2

≤ s ≤ 1,

and the corresponding function w given by (5.1.2) satisfies

∂t′(w∞ − Egsh
(w))(s, t′) ≤ − µ̄

2
for −1 ≤ s ≤ −1 + ε̂0 and 1− σ ≤ t′

gsh(s)
≤ 1 + σ,

∂t′(w∞ − Egsh
(w))(s, t′) ≤ − µ̄

2
for −1 +

ε̂0
2

≤ s ≤ 1 and |t′ − gsh(s)| ≤ σ.

(5.1.17)

2. By (5.1.13) and the linearity of the extension operator Egsh
, we have

(w∞ − Egsh
(ŵ))(s, (1 + σ)gsh(s)) = A1 +A2,

where

A1 = (w∞ − Egsh
(w))(s, (1 + σ)gsh(s))− (w∞ − Egsh

(w))(s, gsh(s)),

A2 = Egsh
(w − ŵ)(s, (1 + σ)gsh(s)).

By (5.1.16)–(5.1.17), we have

(5.1.18) A1 ≤ − µ̄σ

2N3
(1− |s|) for −1 ≤ s ≤ −1 + ε̂0.
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By (4.3.18), (5.1.2), and properties (b-1) and (c-1) of Proposition 5.4, there exists a constant C > 0
depending only on (v∞, γ, β∗) such that

(5.1.19) |A2| ≤ Cδ3(1− |s|) for −1 ≤ s ≤ 1,

where δ3 > 0 is the constant in (4.3.18). From (5.1.18)–(5.1.19), we obtain

(w∞ − Egsh
(ŵ))(s, (1 + σ)gsh(s)) ≤ (1 − |s|)

(
Cδ3 −

µ̄σ

2N3

)
for −1 ≤ s ≤ −1 + ε̂0.

Therefore, a constant δ
(imp)
3 ∈ (0, δ̄3] can be chosen depending only on (v∞, γ, β∗) such that, when-

ever δ3 ∈ (0, δ
(imp)
3 ], the inequality above implies that, for any (u, β) ∈ K,

(5.1.20) (w∞ − Egsh
(ŵ)) (s, (1 + σ)gsh(s)) < 0 for −1 < s ≤ −1 + ε̂0.

Under the same choice of δ3, we also have

(5.1.21) (w∞ − Egsh
(ŵ)) (s, (1− σ)gsh(s)) > 0 for −1 < s ≤ −1 + ε̂0.

Adjusting the argument above, we can further reduce δ
(imp)
3 > 0 depending only on (v∞, γ, β∗)

so that, whenever δ3 ∈ (0, δ
(imp)
3 ],

(5.1.22) (w∞ −Egsh
(ŵ))(s, gsh(s) + σ) < 0 < (w∞ −Egsh

(ŵ))(s, gsh(s)− σ) for −1 +
ε̂0
2

≤ s ≤ 1.

3. Finally, by (4.3.18), (5.1.17), and Proposition 5.4, we can reduce δ
(imp)
3 > 0 depending only

on (v∞, γ, β∗) so that, whenever δ3 ∈ (0, δ
(imp)
3 ], ŵ satisfies

∂t′(w∞ − Egsh
(ŵ))(s, t′) ≤ − µ̄

4
for −1 ≤ s ≤ −1 + ε̂0 and 1− σ ≤ t′

gsh(s)
≤ 1 + σ,

∂t′(w∞ − Egsh
(ŵ))(s, t′) ≤ − µ̄

4
for −1 +

ε̂0
2

≤ s ≤ 1 and |t′ − gsh(s)| ≤ σ.

(5.1.23)

Then (5.1.9) follows from the implicit function theorem. By (5.1.16) and (5.1.20)–(5.1.22), there
exists a constant C > 0 depending only on (v∞, γ, β∗) such that

‖ĝsh − gsh‖C0([−1,1]) < Cσ.

By Lemmas 4.5 and 4.43, and definition (5.1.2), for any ε ∈ (0, 1), we have

‖ŵ‖(2),(par)2,2α,Rgsh
∩{s>−1+ε} ≤ Cε,

where constant Cε > 0 depends only on (v∞, γ, β∗) and ε. Furthermore, by Lemmas 4.5 and 4.44,
we obtain

‖ŵ‖(−1−2α),{s=−1}
2,2α,Rgsh

∩{−1<s<0} ≤ C, ŵ(−1, t′) = Dŵ(−1, t′) = 0 for 0 < t′ < gsh(−1)

for a constant C > 0 depending only on (v∞, γ, β∗). Combining these two estimates of ŵ with
(5.1.9), (5.1.23), and Proposition 5.4, we obtain (5.1.10).

Next, we use (5.1.1)–(5.1.2), Lemma 4.5, Definition 4.15(ii), Lemma 4.16(d), and estimate
(4.3.18) given in Definition 4.19(vii) to obtain

‖ŵ − w‖1,α2 ,Gβ
1 (Ω) = ‖(û− u) ◦ F−1

(u,β) ◦ (G
β
1 )

−1‖1,α/2,Gβ
1 (Ω) ≤ Cδ3

for a constant C > 0 depending only on (v∞, γ, β∗). Using this estimate and (5.1.17), we obtain

(5.1.11). Finally, (5.1.12) follows directly from (5.1.10) and the fact that dk

dxk (gsh − gβ)(±1) = 0 for
k = 0, 1. �
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Let parameters (α, ε, δ1, δ3, N1) in Definition 4.19 be chosen as in Lemma 5.5. For each (u, β) ∈
K, let ĝsh : [−1, 1] → R+ be given by (5.1.9). From (5.1.11)–(5.1.12), further reducing δ3, we
obtain that ĝsh satisfies estimate (4.3.2) in Definition 4.19(iii) with N3 replaced by 2N3. We define

a function ũ : Qiter → R by

(5.1.24) ũ = Egsh
(ŵ) ◦ (G2,ĝsh

)−1

for G2,ĝsh
defined by (4.1.49). By Corollary 4.45, Proposition 5.4, and Lemma 5.5, there exists a

constant C > 0 depending only on (v∞, γ, β∗) such that ũ satisfies

(5.1.25) ‖ũ‖(∗,1)2,2α,Qiter ≤ C.

Now we define the iteration mapping I : K → C2,α
(∗,α1)

(Qiter).

Definition 5.6. Let parameters (α, ε, δ1, δ3, N1) in Definition 4.19 be fixed as in Proposition

4.46. Then we adjust δ3 ∈ (0, δimp
3 ] for δimp

3 from Lemma 5.5 so that Lemma 5.5 holds for all

(u, β) ∈ K. For each (u, β) ∈ K, let ũ be given by (5.1.24). Then define an iteration mapping

I : K → C2,α
(∗,α1)

(Qiter) by

I(u, β) = ũ.

Lemma 5.7. The iteration mapping I defined in Definition 5.6 satisfies the following properties:

(a) For any β ∈ [0, β∗], define

K(β) := {u ∈ C2,α
(∗,α1)

(Qiter) : (u, β) ∈ K}.

For each (u, β) ∈ K, define

I(β)
1 (u) = û,

where û is given by (4.3.17). Then u ∈ K(β) satisfies I(u, β) = u if and only if I(β)
1 (u) =

u.

(b) For α̃ = α
2 , there exists a constant C > 0 depending only on (v∞, γ, β∗) such that, for

each (u, β) ∈ K,

‖I(u, β)‖(∗,1)2,α+α̃,Qiter ≤ C.

Proof. For a fixed β ∈ [0, β∗], suppose that I(u, β) = u for some u ∈ K(β); that is, ũ = u for
ũ given by (5.1.24). Then, by Definition 4.15 and (5.1.24), we see that, for all s ∈ [−1, 1],

w∞(s, gsh(s)) = u(s, 1) = Egsh
(ŵ)(s, ĝsh(s)) = w∞(s, ĝsh(s)).

This, combined with Lemma 4.9 and (5.1.2), implies that gsh = ĝsh on [−1, 1]. Then it follows from

(5.1.24) that ũ = Egsh
(ŵ) ◦ (G2,gsh

)−1 = û, which implies that u = û = I(β)
1 (u) in Qiter.

Next, suppose that I(β)
1 (u) = u for some u ∈ K(β). Then gsh = ĝsh on [−1, 1]. This, combined

with (5.1.24), implies that ũ = I(u, β) = Egsh
(ŵ) ◦ (G2,gsh

)−1 = û. Therefore, we obtain that ũ = u
in Qiter.

Finally, statement (b) directly follows from (5.1.25). �
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5.2. Fixed Points of I(·, β) and Admissible Solutions

For the iteration map I defined in Definition 5.6, we show that, if u ∈ K(β) is a fixed point of
I(·, β) for some β ∈ (0, β∗], then ϕ defined by (4.2.4) in Definition 4.15 is an admissible solution
corresponding to (v∞, β) ∈ Rweak in the sense of Definition 2.24.

Proposition 5.8. Let parameters (α, ε, δ1, δ3, N1) in Definition 4.19 be fixed as in Definition
5.6. Then parameters (ε, δ1) can be further reduced depending only on (v∞, γ, β∗) so that, for each

β ∈ (0, β∗], u ∈ K(β) is a fixed point of I(·, β) : K(β) → C2,α
(∗,α1)

(Qiter) if and only if ϕ, defined

by (4.2.4) in Definition 4.15, yields an admissible solution corresponding to (v∞, β) ∈ Rweak in

the sense of Definition 2.24 by extending ϕ into Λβ via (2.5.8) if β < β
(v∞)
s , and via (2.5.12) if

β ≥ β
(v∞)
s .

Proof. By Corollary 4.40, it suffices to prove that, if u ∈ K(β) is a fixed point of I(·, β) :

K(β) → C2,α
(∗,α1)

(Qiter), then ϕ, defined by (4.2.4) in Definition 4.15, yields an admissible solution

corresponding to (v∞, β) ∈ Rweak in the sense of Definition 2.24. We divide the proof into six steps.

1. For (u, β) ∈ K, let (Ω,Γshock, ϕ) = (Ω(u, β),Γshock(u, β), ϕ
(u,β)) be defined by Definition

4.15, and denote φ := ϕ − ϕN . Let φ̂ ∈ C2(Ω) ∩ C1(Ω) be the unique solution of the boundary
value problem (4.3.16) determined by (u, β).

Suppose that

I(u, β) = u for some u ∈ K(β).

By Lemma 5.7, we have

(5.2.1) φ̂ = φ in Ω.

Let ϕ be extended onto Λβ by (2.5.8) for β < β
(v∞)
s , and by (2.5.12) for β ≥ β

(v∞)
s . Moreover, let

ΓO
sonic, Γ

N
sonic, eSO , eSN , ϕ∞, ϕO, and ϕN be defined by Definition 2.23.

2. Verification of properties (i-2)–(i-4) and (ii-1)–(ii-3) of Definition 2.24.
Properties (i-2)–(i-3) follows from Remark 4.21(i). By using Lemma 4.16(b), it can be directly

checked that property (i-4) holds.

By Definition 4.19(i) (or Corollary 4.45) and the extension of ϕ onto Λβ described in Step 1, ϕ
satisfies properties (ii-1) and (ii-3).

We define

Aij(ξ) := Aij(Dφ̂, ξ), i, j = 1, 2,

for Aij(Dφ̂, ξ) given by (4.4.22). By Definition 4.19(i) (or Corollary 4.45), coefficients Aij(ξ), i, j =

1, 2, of equation N(u,β)(φ̂) = 0 in (4.3.16) are in C1,α(Ω \ (ΓO
sonic ∪ ΓN

sonic)). Furthermore, Lemma

4.30(a) implies that N(u,β)(φ̂) = 0 is strictly elliptic in Ω. Then the standard interior Schauder

estimates for linear elliptic equations imply that ϕ ∈ C3,α(Ω). This, combined with Definition
4.19(i) (or Corollary 4.45), implies that ϕ satisfies property (ii-2).

3. Verification of property (iv) of Definition 2.24.
For Aij(ξ) defined in Step 2, we define a linear operator L(u,β) by

L(u,β)(v) :=

2∑

i,j=1

Aij∂ξiξjv.
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Since ϕ∞ − ϕN is a linear function of ξ, and ϕ− ϕ∞ = φ̂− (ϕ∞ − ϕN ), we have

(5.2.2) L(u,β)(ϕ− ϕ∞) = L(u,β)(φ̂) = 0 in Ω.

By Lemma 4.30(a), the equation stated above is strictly elliptic in Ω so that the maximum principle
applies to ϕ−ϕ∞ in Ω. From (5.1.13) and (5.2.1), we obtain that ϕ−ϕ∞ = 0 on Γshock. By Definition

4.8(ii), it follows directly from the boundary condition φ̂ = max{ϕO, ϕN } − ϕN on ΓO
sonic ∪ ΓN

sonic

given in (4.3.16) that ϕ − ϕ∞ = ϕO − ϕ∞ ≤ 0 on ΓO
sonic, and ϕ − ϕ∞ = ϕN − ϕ∞ ≤ 0 on ΓN

sonic.

Furthermore, the boundary condition for φ̂ξ2 = 0 on Γwedge given in (4.3.16) implies that

(5.2.3) ∂ξ2(ϕ∞ − ϕ) = −v∞ < 0 on Γwedge.

Therefore, by the maximum principle and Hopf’s lemma, we obtain

(5.2.4) ϕ ≤ ϕ∞ in Ω.

When β < 2δ1
N2

1
, we have shown in Step 2 in the proof of Lemma 4.42 that

(5.2.5) max{ϕO, ϕN } ≤ ϕ in Ω.

When β ≥ 2δ1
N2

1
, (4.3.3) in Definition 4.19(iv) implies that max{ϕO, ϕN } ≤ ϕ holds in Ω\(DO

ε/10∪
DN
ε/10). Note that parameter ε in Definition 4.19 has been chosen so that ε < ĉO

k̄
for ĉO

k̄
from (4.1.45)

in Definition 4.8. Therefore, ϕ∗
β = max{ϕO, ϕN } in Ω∩ (DO

ε ∪DN
ε ) for ϕ∗

β given by (4.1.42). Then

we obtain from (4.5.2) in Lemma 4.43 that max{ϕO, ϕN } ≤ ϕ holds in Ω ∩ (DO
ε/10 ∪ DN

ε/10).

Therefore, we conclude that inequality (5.2.5) holds for any β ∈ (0, β∗]. Combining this in-
equality with (5.2.4), we conclude that ϕ satisfies property (iv) of Definition 2.24.

4. Verification of property (v) of Definition 2.24. In order to show that ϕ satisfies property (v)
of Definition 2.24, it suffices to verify the following claim:

Claim. There exist small constants εfp > 0 and δfp > 0 depending only on (γ, v∞, β∗) so that,

if parameters (ε, δ1) in Definition 4.19 satisfy ε ∈ (0, εfp] and δ1 ∈ (0, δfp], then ϕ satisfies

(5.2.6) ∂eSO
(ϕ∞ − ϕ) ≤ 0, ∂eSN

(ϕ∞ − ϕ) ≤ 0 in Ω.

Similarly to the previous step, we consider two cases: β ∈ [ δ1
N2

1
, β∗] and β ∈ (0, δ1

N2
1
), separately.

4-1. Suppose that β ∈ [ δ1
N2

1
, β∗]. Define

W := ϕ∞ − ϕ in Ω.

Let (X,Y ) be the rectangular coordinates such that (eSO , e
⊥
SO

) = (eX , eY ). By (5.2.2), W
satisfies that L(u,β)(W ) = 0 in Ω. Since the (X,Y )–coordinates are obtained from rotating the
(ξ1, ξ2)–plane by β counter-clockwise, equation L(u,β)(W ) = 0 can be rewritten in the (X,Y )–
coordinates as follows:

(5.2.7) Â11WXX + 2Â12WXY + Â22WY Y = 0 in Ω,

with Âij ∈ Cα(Ω) ∩ C1,α(Ω \ (ΓO
sonic ∪ ΓN

sonic)), i, j = 1, 2.
Define

w :=WX = ∂eSO
(ϕ∞ − ϕ).

By (4.3.4) in Definition 4.19(iv), w satisfies

(5.2.8) w < 0 in Ω \ DO
ε/10.
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Next, we prove that w ≤ 0 in Ω ∩ DO
ε/10.

Differentiating (5.2.7) with respect to X , we have

Â11wXX + 2Â12wXY + Â22wY Y + ∂X Â11wX + 2∂XÂ12wY + ∂XÂ22WY Y = 0 in Ω.

Using the strict ellipticity of operator L(u,β) following from Lemma 4.30(a), we obtain that Â22 > 0
in Ω such that WY Y can be expressed as

WY Y = − Â11wX + 2Â12wY

Â22

in Ω.

Substituting this expression into the equation immediately above, we obtain a strictly elliptic equa-
tion for w in the following form:

(5.2.9) Â11wXX + 2Â12wXY + Â22wY Y + Â1wX + Â2wY = 0 in Ω.

Since Âij ∈ Cα(Ω)∩C1,α(Ω\(ΓO
sonic∪ΓN

sonic)), i, j = 1, 2, we see that Âi ∈ Cα(Ω\(ΓO
sonic∪ΓN

sonic)), i =
1, 2.

By a direct computation, applying Lemma 4.44 and the definitions of (eSO , ϕ∞, ϕO) given in
Definition 2.23, we have

(5.2.10) w = ∂eSO
(ϕ∞ − ϕO) = 0 on ΓO

sonic.

On Γwedge, w satisfies the homogeneous oblique boundary condition:

(5.2.11) bw · ∇w = 0 with bw · nw > 0 on Γwedge

for the inward unit normal vector nw to Γwedge. This can be verified as follows: Differentiating the
boundary condition (5.2.3) along Γwedge ⊂ {ξ2 = 0}, we find that Wξ1ξ2=0 on Γwedge. Equation
(5.2.2), combined with ∂ξ1ξ2W = 0 on Γwedge, leads to

A11Wξ1ξ1 +A22Wξ2ξ2 = 0 on Γwedge.

Note that A11 > 0 and A22 > 0 hold on Γwedge by Lemma 4.30(a). Then a direct computation by
using the definition of eSO shows that

A11

cosβ
wξ1 +

A22

sinβ
wξ2 = 0 with A22

sin β > 0 on Γwedge.

This implies the strict obliqueness of the boundary condition for w on Γwedge.
In order to obtain a boundary condition for w on Γshock, we apply [11, Lemma 13.4.5]. For

this purpose, we need to check that all the conditions to apply [11, Lemma 13.4.5] are satisfied.
Let MO and cO be given by (2.4.6), and let SO and OO be given by Definition 2.23. Then

cO − dist(SO, OO) > 0 if and only if MO < 1. By Lemma 2.13, MO < 1 for β = 0. Then (2.4.43)
given in the proof of Lemma 2.22 implies that MO < 1 for β ∈ (0, β∗]. Therefore, there exists a
constant µ0 > 0 depending only on (v∞, γ) such that

(5.2.12) cO − dist(SO, OO) ≥ µ0 for all β ∈ (0, β∗].

By Lemma 4.34(h) and (5.2.1), ϕ satisfies the Rankine-Hugoniot condition (2.5.37) on Γshock.
Let ν be the unit normal vector to Γshock towards the interior of Ω, and let τ be obtained from

rotating ν by π
2 counter-clockwise (τ is a unit tangent vector to Γshock). By Definition 4.19(i) (or

by Corollary 4.45), we have

(5.2.13) ‖ϕ− ϕO‖C1(Ω∩DO
ε )

+ ‖τ − eX‖
C0(Γshock∩DO

ε )
+ ‖ν − (−eY )‖C0(Γshock∩DO

ε )
≤ Cεα



178 5. EXISTENCE OF ADMISSIBLE SOLUTIONS UP TO β
(v∞)
d – PROOF OF THEOREM 2.31

for a constant C > 0 depending only on (v∞, γ, β∗), where point P1 is defined in Definition 2.23.
Note that point P1 lies on ΓO

sonic. At P1, τ = eSO = eX and ν = −eY .
By the definition of Aij given in (4.4.22), Corollary 4.45, and (5.2.1), we have

(5.2.14) Aij = Apotn
ij (D(ϕO − ϕN ), (ϕO − ϕN )(P1), P1) at P1

for Apotn
ij , i, j = 1, 2, defined by (4.4.3). By (2.5.1), this yields

A11 = c2O − (∂ξ1ϕO)
2, A12 = A21 = −∂ξ1ϕO∂ξ2ϕO = 0, A22 = c2O − (∂ξ2ϕO)

2 at P1.

Then we have

(5.2.15)

2∑

i,j=1

Aijνiνj = c2O − (∂νϕO)
2 = c2O − (dist(SO, OO))

2 = c2O(1−M2
O) > λ0 at P1

for some constant λ0 > 0. By (5.2.12), constant λ0 > 0 in (5.2.15) can be fixed, depending only

on (v∞, γ). By (5.2.13) and (5.2.15), there exists a small constant ε
(1)
fp > 0 depending only on

(v∞, γ, β∗) such that

(5.2.16)
2∑

i,j=1

Aijνiνj ≥
λ0
2

in Γshock ∩ DO
ε
(1)
fp

.

By Lemma 4.30(a), there exists a constant λ1 > 0 depending only on (γ, v∞, β∗) such that

(5.2.17)

2∑

i,j=1

Aijνiνj ≥ λ1 in (Γshock ∩ DO
ĉO/10

) \ DO
ε
(1)
fp /2

for ĉO defined in Definition 4.1.
Since ϕ satisfies the Rankine-Hugoniot condition (2.5.37) on Γshock, it follows from (5.2.13) and

(5.2.16)–(5.2.17) that ϕ satisfies all the conditions required to apply [11, Lemma 13.4.5]. Then, by
[11, Lemma 13.4.5], we obtain a boundary condition for w in the form:

(5.2.18) bsh · ∇w = 0 on Γshock ∩ DO
ε
(2)
fp

for some small constant ε
(2)
fp > 0 depending on (γ, v∞, β∗), where bsh satisfies

bsh · ν > 0 on Γshock ∩ DO
ε
(2)
fp

.

In conclusion, w satisfies the strictly elliptic equation (5.2.9) in Ω∩DO
ε for ε > 0 to be specified

later, the boundary condition w = 0 on ΓO
sonic, and the oblique boundary conditions (5.2.11) on

Γwedge and (5.2.18) on Γshock ∩ DO
ε
(2)
fp

. Therefore, if parameter ε > 0 in Definition 4.19 satisfies

(5.2.19) 0 < ε ≤ ε
(2)
fp ,

then it follows from the maximum principle, Hopf’s lemma, and (5.2.8) that

w ≤ 0 in Ω ∩DO
ε
(2)
fp

.

Finally, we combine this result with (5.2.8) to conclude that

∂eSO
(ϕ∞ − ϕ) ≤ 0 in Ω for β ∈ [

δ1
N2

1

, β∗],

provided that ε satisfies condition (5.2.19).
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4-2. Suppose that β ∈ (0, δ1
N2

1
). Note that w satisfies (5.2.9)–(5.2.11). By the definitions of

(eSO , ϕ∞, ϕN ) given in Definition 2.23 and Corollary 4.45, w satisfies

w = ∂eSO
(ϕ∞ − ϕN ) = −v∞ sinβ < 0 on ΓN

sonic.

By (2.4.3) and (2.5.1), ϕO − ϕN = v∞(ξ1 tanβ − ξ
(β)
2 + ξN2 ). Note that ξN2 = ξ

(β)
2 |β=0. Then,

by (2.4.14) and the continuous differentiability of M∞ with respect to β ∈ [0, β
(v∞)
d ], there exists a

constant C > 0 depending only on (γ, v∞) such that

(5.2.20) ‖ϕO − ϕN ‖C1,α(Ω) ≤ Cβ for all β ∈ [0, β
(v∞)
d ].

By Definition 4.19(i) and (5.2.20), we see that, for any β ∈ (0, δ1
N2

1
),

(5.2.21) ‖ϕ− ϕO‖C1,α(Ω) ≤ ‖ϕ− ϕN ‖C1,α(Ω) + ‖ϕO − ϕN ‖C1,α(Ω) ≤ Cδ1

for some constant C > 0 depending only on (γ, v∞, β∗) so that

[Aij ]α,Ω + [ν]α,Γshock
+ [τ ]α,Γshock

≤ Cδ1

for C > 0 depending only on (γ, v∞, β∗). By (5.2.15) and the estimate immediately above, there
exists a small constant δfp > 0 depending only on (v∞, γ, β∗) so that, if

(5.2.22) δ1 ∈ (0, δfp],

then
2∑

i,j=1

Aijνiνj ≥
λ0
2

on Γshock

for λ0 > 0 from (5.2.15). Then [11, Lemma 13.4.5] implies that w satisfies a boundary condition
in the form:

(5.2.23) bsh · ∇w = 0 on Γshock,

with bsh satisfying bsh · ν > 0 on Γshock.
Since w satisfies the strictly elliptic equation (5.2.9) in Ω, w ≤ 0 on ΓO

sonic ∪ ΓN
sonic, and the

strictly oblique boundary conditions (5.2.11) on Γwedge and (5.2.23) on Γshock, it follows from the
maximum principle and Hopf’s lemma that

w ≤ 0 in Ω,

provided that parameter δ1 > 0 in Definition 4.19 satisfies (5.2.22).

4-3. By repeating the argument in Steps 4-1 and 4-2 with w = ∂eSO
(ϕ∞ − ϕ) replaced by

w = ∂eSN
(ϕ∞ − ϕ), we can also show that

∂eSN
(ϕ∞ − ϕ) ≤ 0 in Ω,

provided that constants (ε
(2)
fp , δfp) from (5.2.19) and (5.2.22) are adjusted, depending only on

(v∞, γ, β∗).
For the rest of the proof, parameters (ε, δ1) in Definition 4.19 satisfy

0 < δ1 < δfp, 0 < ε < min{ε(1)fp , ε
(2)
fp }.

5. Verification of property (ii-4) of Definition 2.24. Since Eq. (2.1.19) is equivalent to (3.1.2),
it suffices to check that equation N(u,β)(φ) = 0 coincides with Eq. (3.1.2).
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5-1. Equation N(u,β)(φ) = 0 away from ΓO
sonic∪ΓN

sonic. In order to show that ϕ satisfies property
(ii-4), it suffices to show that equation N(u,β)(φ) = 0 from (4.3.16) coincides with Eq. (3.1.2) in

Ω. By Lemma 4.30(i), equation N(u,β)(φ) = 0 coincides with Eq. (3.1.2) in Ω \ (DO
ε/10 ∪ DN

ε/10) for

parameter ε > 0 in Definition 4.19 fixed as in Definition 5.6.

5-2. Equation N(u,β)(φ) = 0 near ΓN
sonic. In ΩN

ε := Ω ∩ DN
ε , let the (x, y)–coordinates be

defined by (3.4.18). Define ψ := ϕ− ϕN = ϕ̂ − ϕN in ΩN
ε . By Lemma 4.24(g), if it can be shown

that

(5.2.24)
∣∣ψx(x, y)

∣∣ < 2− µ0

5

1 + γ
x in Ω ∩ DN

ε
2

for µ0 ∈ (0, 1) from Definition 4.19(iv-1), then equation N(u,β)(φ) = 0 coincides with Eq. (3.1.2) in

ΩN
ε/10.

Define

v(x, y) := Ax− ψx(x, y) for A =
2− µ0

5

1 + γ
.

Then v satisfies

(5.2.25) v = 0 on ΓN
sonic = {x = 0}, vy = 0 on Γwedge ∩ ∂ΩN

ε ,

because ∂ξ2ϕ = ∂ξ2ϕN = 0 on Γwedge.
By (5.2.1) and properties (a), (f), and (g-3) of Lemma 4.34, the boundary condition on Γshock

in (4.3.16) can be written as

b1ψx + b2ψy + b0ψ = 0 on Γshock ∩ DN
ε

for (b0, b1, b2) satisfying that

−δ−1 ≤ bj ≤ −δ on Γshock ∩DN
ε

for a constant δ ∈ (0, 1) depending only on (v∞, γ, β∗). Then |ψx| ≤ C(|ψy |+ |ψ|) on Γshock ∩ DN
ε

for C > 0 depending only on (v∞, γ, β∗). By combining this inequality with estimate (4.5.15) given
in Lemma 4.43, we have

|ψx| ≤ Cx3/2 on Γshock ∩ DN
ε

for C > 0 depending only on (v∞, γ, β∗). Then we can fix a small constant ε
(3)
fp depending only on

(v∞, γ, β∗) so that, if

(5.2.26) 0 ≤ ε ≤ ε
(3)
fp ,

we have

(5.2.27) v ≥ 0 on Γshock ∩ ∂DN
ε .

By (4.3.6) in Definition 4.19(iv), we obtain

(5.2.28) v ≥ 4µ0ε

5(1 + γ)
> 0 on ∂ΩN

ε ∩ {x = ε}.

By Lemma 4.43, ε
(3)
fp can be further reduced, depending only on (v∞, γ, β∗), so that, if (5.2.26)

holds, then

ζ1(
ψx
x3/4

) =
ψx
x3/4

, ζ1(
ψy

(γ + 1)N4x
) =

ψy
(γ + 1)N4x

in ΩN
ε
(3)
fp
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for ζ1 given by (4.4.4). This implies that

Omod
j (ψx, ψy, x, y) = Oj(ψx, ψy, ψ, x, y) in ΩN

ε
(3)
fp

for all j = 1, · · · , 5,

for Omod
j and Oj defined by (4.4.11) and (3.2.29), respectively.

By (4.4.22) and (5.2.1), equation N(u,β)(φ̂) = 0 in ΩN
ε/2 becomes N polar

(u,β) (ψ) = 0 in the (x, y)–

coordinates given by (3.4.18) for N polar
(u,β) defined by (4.4.12). We differentiate N polar

(u,β) (ψ) = 0 with

respect to x in ΩN
ε/2 and then rewrite the resulting equation as an equation for v(x, y) in the following

form:

(5.2.29) a11vxx + a12vxy + a22vyy + a1vx + a0v = −A
(
(γ + 1)A− 1

)
+ E(x, y) in ΩN

ε/2,

where

aij = aij(D(x,y)ψ, x, y) for aij(D(x,y)ψ, x, y) given by (4.4.12),

a1 = 1− (γ + 1)
(
ζ1(A− v

x
) + ζ′1(A− v

x
)(
v

x
− vx +A)

)
,

a0 = (γ + 1)
A

x

(
ζ′1(A− v

x
)−

∫ 1

0

ζ′1(A− s
v

x
) ds

)
,

E(x, y) = ψxx∂xÔ1 + ψxy∂xÔ2 + ψyy∂xÔ3 − ψxxÔ4 − ψx∂xÔ4 + ψxyÔ5 + ψy∂xÔ5,

Ôj(x, y) = Oj(ψx(x, y), ψy(x, y), ψ(x, y), x, y) for j = 1, · · · , 5.
By Lemma 4.24(a), Eq. (5.2.29) is strictly elliptic in ΩN

ε/2. Estimate (4.5.15) given in Lemma

4.43 implies that aij , a1, a0 ∈ C(Ω \ {x = 0}). Since ζ′′1 ≤ 0 by (4.4.6), a0v ≥ 0 in ΩN
ε/2. By (3.2.29)

and (4.5.15), there exists a constant C > 0 depending on (v∞, γ, β∗) such that |E(x, y)| ≤ Cx in

ΩN
ε/2. Therefore, we can fix a small constant ε

(4)
fp depending only on (v∞, γ, β∗) so that, if

(5.2.30) 0 ≤ ε ≤ ε
(4)
fp ,

then −A
(
(γ + 1)A− 1

)
+ E(x, y) < 0 in ΩN

ε/2. Thus, for such ε, we have

(5.2.31) a11vxx + a12vxy + a22vyy + a1vx + a0v < 0 in ΩN
ε/2.

By properties (5.2.25), (5.2.27)–(5.2.28), and (5.2.31), we can apply the maximum principle
and Hopf’s lemma to conclude that, if

(5.2.32) 0 < ε < min{ε(3)fp , ε
(4)
fp },

then v ≥ 0 in ΩN
ε/2, which is equivalent to stating that

ψx(x, y) ≤
2− µ0

5

1 + γ
in ΩN

ε/2.

Next, we show that ψx ≥ − 2−µ0
5

1+γ x in ΩN
ε/2. Since ∂eSN

(ϕ∞ − ϕN ) = 0, we obtain from (5.2.6)

that

(5.2.33) ∂eSN
ψ = ∂eSN

(ϕ− ϕ∞) ≥ 0 in Ω.

By (3.4.25), ∂eSN
ψ is represented as

(5.2.34) ∂eSN
ψ = ψx cos y +

sin y

cN − x
ψy in ΩN

cN /2
.
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By Remark 4.21(i)–(ii), we can fix a small constant ε
(5)
fp > 0 depending only on (v∞, γ, β∗) such that

ΩN
ε
(5)
fp

⊂ {(x, y) : x ∈ (0, ε
(5)
fp ), 0 < y < π

2 − σ0} for some constant σ0 > 0 that is chosen depending

only on (v∞, γ). Then it follows from estimate (4.5.15) given in Lemma 4.43 and (5.2.33)–(5.2.34)
that there exists a constant C > 0 depending only on (v∞, γ, β∗) such that

ψx ≥ − tan(
π

2
− σ0)ψy ≥ −Cx3/2 in ΩN

ε
(5)
fp

.

Therefore, ε
(5)
fp can be further reduced, depending only on (v∞, γ, β∗), so that the inequality above

implies

ψx ≥ −2− µ0

5

1 + γ
x in ΩN

ε
(5)
fp

.

We finally conclude that ϕ satisfies (5.2.24), provided that parameter ε in Definition 4.19
satisfies

(5.2.35) 0 < ε ≤ min{ε(3)fp , ε
(4)
fp , ε

(5)
fp }.

Therefore, equation N(u,β)(φ) = 0 coincides with Eq. (3.1.2) in ΩN
ε/10, provided that condition

(5.2.35) holds.

5-3. Equation N(u,β)(φ) = 0 near ΓO
sonic. In ΩO

ε := Ω ∩ DO
ε , let the (x, y)–coordinates be

defined by (3.5.2).

By (3.5.54)–(3.5.56), there exists a small constant ε
(6)
fp > 0 depending only on (v∞, γ) so that, if

xPβ
<

ε
(6)
fp

10 , then β < β
(v∞)
s + 1

2 min{σ3, δ̂} for δ̂ > 0 from Lemma 4.44(ii) and σ3 from Proposition
3.39.

Assume that parameter ε in Definition 4.19 satisfies

(5.2.36) 0 < ε < ε
(6)
fp ,

and suppose that xPβ
< ε

10 . By (4.4.20) and (4.4.22), if we can show that

(5.2.37)
∣∣ψx(x, y)

∣∣ < 2− µ0

5

1 + γ
x in Ω ∩DO

ε/2,

then it follows from Lemma 4.25(c-1) that equation N(u,β)(φ) = 0 coincides with Eq. (3.1.2) in

ΩO
ε/10. To prove (5.2.37), we can mostly repeat the argument in Step 5-2 by using Lemma 4.44(i)–(ii)

and the positivity of ∂eSO
(ϕ−ϕ∞) in Ω given in (5.2.6), instead of Lemma 4.43 and the positivity

of ∂eSN
(ϕ−ϕ∞) in Ω. Then there exists a small constant ε

(6)
fp > 0 depending only on (v∞, γ) such

that, if ε satisfies condition (5.2.36), then equation N(u,β)(φ) = 0 coincides with Eq. (3.1.2) in

ΩO
ε/10.

If parameter ε in Definition 4.19 satisfies condition (5.2.36), and if xPβ
≥ ε

10 , then it follows

from Lemma 4.30(i) that equation N(u,β)(φ) = 0 coincides with Eq. (3.1.2) in ΩO
ε/10.

For the rest of the proof, parameters (ε, δ1) in Definition 4.19 satisfy

(5.2.38) 0 < δ1 < δfp, 0 < ε < min{ε(j)fp : j = 1, · · · , 6},
where δfp is from (5.2.22).

6. It remains to check that properties (i-1) and (iii) of Definition 2.24 hold.

Verification of property (iii) of Definition 2.24. In Step 5, we have shown that Eq. (3.1.2)
coincides with equation N(u,β)(φ) = 0 in Ω. Therefore, it directly follows from Lemma 4.30(a)
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and Lemmas 4.43–4.44 that Eq. (3.1.2) is strictly elliptic in Ω \ (ΓO
sonic ∪ ΓN

sonic). This proves that
property (iii) of Definition 2.24 holds, because Eq. (2.1.19) is equivalent to (3.1.2) in Ω.

Verification of property (i-1) of Definition 2.24. The strict ellipticity of Eq. (3.1.2) in Ω \
(ΓO

sonic ∪ ΓN
sonic) implies

|∂νϕ(ξ)|2
c2(|∇ϕ(ξ)|2, ϕ(ξ), ξ) ≤ |∇ϕ(ξ)|2

c2(|∇ϕ(ξ)|2, ϕ(ξ), ξ) < 1 on Γshock \ (ΓO
sonic ∪ ΓN

sonic).

for a unit normal vector ν to Γshock. We have shown in Step 4-1 that ϕ satisfies the Rankine-

Hugoniot condition (2.5.37) on Γshock. Define M := |∂νϕ(ξ)|
c2(|∇ϕ(ξ)|2,ϕ(ξ),ξ) and M∞ := |∂νϕ∞(ξ)|. We

substitute MO = M into the left-hand side of (2.4.9) in the proof of Lemma 2.17. Then, by
repeating the argument right after (2.4.9) in the proof of Lemma 2.17, we obtain that M∞ > 1 on
Γshock, which yields that

(5.2.39) |Dϕ∞(ξ)| > 1 on Γshock.

By the definition of ϕ∞ given in (2.5.1), (5.2.39) implies that ξ 6∈ B1(O∞) for all ξ ∈ Γshock.

Furthermore, {P1, P2} 6⊂ B1(O∞), because P1 and P2 lie on SO and SN , respectively.

Now it remains to show that ξP1
1 ≤ ξ1 ≤ ξP2

1 for all ξ = (ξ1, ξ2) ∈ Γshock. Since we have shown
that ϕ satisfies properties (i-2), (i-4), and (ii)–(v) of Definition 2.24 in the previous steps, we can
repeat the proof of Lemma 3.2 to show that ϕ satisfies the directional monotonicity properties
(3.1.6)–(3.1.7). Then, by repeating the proof of Proposition 3.4, we obtain a function fsh satisfying

Γshock = {ξ = (ξ1, ξ2) : ξ2 = fsh(ξ1), ξ
P1
1 < ξ2 < ξP2

1 }.
Therefore, property (i-1) holds.

With these, we complete the proof. �

5.3. Existence of Admissible Solutions for All (v∞, β) ∈ Rweak

In order to prove the existence of admissible solutions for all (v∞, β) ∈ Rweak, we employ the
Leray-Schauder fixed point index and its generalized homotopy invariance property.

5.3.1. Leray-Schauder degree theorem.

Definition 5.9 (Compact mapping). Let X and Y be two Banach spaces. For an open subset
G in X, a mapping f : G→ Y is called compact if

(i) f is continuous;

(ii) f(U) is precompact in Y for any bounded subset U of G.

Definition 5.10. Let G be an open bounded set in a Banach space X. Denote by V (G,X) the
set of all mappings f : G→ X satisfying the following:

(i) f is compact in the sense of Definition 5.9;

(ii) f has no fixed points on the boundary ∂G.

Definition 5.11. Two mappings f ,g ∈ V (G,X) are called compactly homotopic on ∂G if there
exists a mapping H with the following properties:

(i) H : G× [0, 1] → X is compact in the sense of Definition 5.9;

(ii) H(x, τ) 6= x for all (x, τ) ∈ ∂G× [0, 1];

(iii) H(x, 0) = f(x) and H(x, 1) = g(x) in G.
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We write ∂G : f ∼= g if f and g are compactly homotopic on ∂G, and call H a compact homotopy.

Theorem 5.12 (Leray-Schauder degree theorem). Let G be an open bounded set in a Banach

space X. Then, to each mapping f ∈ V (G,X), a unique integer Ind(f , G) can be assigned with the

following properties:

(i) If f(x) ≡ x0 for all x ∈ G and some fixed x0 ∈ G, then Ind(f , G) = 1;

(ii) If Ind(f , G) 6= 0, then there exists x ∈ G such that f(x) = x;

(iii) Ind(f , G) =
∑n
j=1 Ind(f , Gj), whenever f ∈ V (G,X)∩ (∩nj=1V (Gj , X)), where Gi∩Gj =

∅ for i 6= j and G = ∪nj=1Gj ;

(iv) If ∂G : f ∼= g, then Ind(f , G) = Ind(g, G).

Such a number Ind(f , G) is called the fixed point index of f over G.

A generalized homotopy invariance of the fixed point index is given in the following theorem:

Theorem 5.13 ([47], §13.6, A4*). Let X be a Banach space, and let t2 > t1. Let U ⊂ X×[t1, t2],
and let Ut = {x : (x, t) ∈ U}. Then

Ind(h(·, t), Ut) = const. for all t ∈ [t1, t2],

provided that U is bounded and open in X× [t1, t2], and mapping h : U → X is compact in the sense

of Definition 5.9 with h(x, t) 6= x on ∂U.

5.3.2. Proof of Theorem 2.31. In this subsection, we complete the proof of Theorem 2.31.

Parameters (α, ε, δ1, δ3, N1) in Definition 4.19: Let parameters (α, ε, δ1, δ3, N1) in Defini-
tion 4.19 be fixed as in Definition 5.6. We further reduce (ε, δ1) depending only on (v∞, γ, β∗) so
that Proposition 5.8 implies that, for each β ∈ (0, β∗], u ∈ K(β) is a fixed point of I(·, β) : K(β) →
C2,α

(∗,α1)
(Qiter) if and only if ϕ, defined by (4.2.4) in Definition 4.15, yields an admissible solution

corresponding to (v∞, β) ∈ Rweak in the sense of Definition 2.24.

In the proof of Theorem 2.31, we adjustN1 and choose δ2 so that I(·, β) has a fixed point in K(β)
for each β ∈ (0, β∗]. Then the existence of an admissible solution for each (v∞, β) ∈ Rweak∩{β ≤ β∗}
follows from Proposition 5.8. This proves Theorem 2.31, since β∗ is arbitrarily chosen in (0, β

(v∞)
d ).

Further adjustment of δ3 in Definition 4.19: Note that, if parameter N1 in Definition 4.19
is adjusted such that the new choice of N1 is greater than the previous one, all the properties stated
previously hold. Then we choose N1 greater than the previous choice in the proof of Theorem
2.31. Also, once parameters (N1, δ2) are fixed, δ3 can be adjusted to satisfy the conditions of δ3
in Lemmas 4.42–4.43. As long as the new choice of δ3 is less than the previous choice, all the
properties stated previously hold. Since N1 is adjusted to be greater than the previous one, the
new choice of δ3 is less than the previous one. Since the previous choice of (α, ε, δ1, δ2, N1) was
independent of δ3, we can reduce δ3 as described above.

Proof of Theorem 2.31. The proof is divided into three steps.

1. Claim 1: The iteration mapping I : K → C2,α
(∗,α1)

(Qiter) defined by Definition 5.6 is continu-

ous. Moreover, I : K → C2,α
(∗,α1)

is compact in the sense of Definition 5.9.

1-1. Continuity of I : K → C2,α
(∗,α1)

. Suppose that {(uj, βj)}∞j=1 ⊂ K converges to (u, β) in

C2,α
(∗,α1)

(Qiter) × [0, β∗]. For each j ∈ N, define (Ωj , g
(j)
sh ) := (Ω(uj , βj), g

(uj ,βj)
sh ) for Ω(uj , βj) and
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g
(uj ,βj)
sh given by Definition 4.15. By Lemma 4.35, the nonlinear boundary value problem (4.3.16)

associated with (uj , βj) has a unique solution φ̂(j) ∈ C2(Ωj) ∩ C1(Ωj \ (ΓO,j
sonic ∪ ΓN

sonic)) ∩ C0(Ωj),

where ΓO,j
sonic is ΓO

sonic corresponding to (v∞, βj). For such φ̂(j), define

(5.3.1) ŵ(j) := (φ̂(j) + ϕN − ϕ∗
βj
) ◦ (Gβj

1 )−1

for Gβj

1 and ϕ∗
βj

defined by (4.1.31) and (4.1.42), respectively.

Let ûj be given by (4.3.17) associated with (uj , βj , φ̂
(j)). Then Definition 4.15(ii) implies that

(5.3.2) ŵ(j) = ûj ◦G2,g
(j)
sh

for G
2,g

(j)
sh

defined by (4.1.49).

For each ŵ(j), let ĝ
(j)
sh be given from (5.1.9) with ŵ = ŵ(j). We also define Ω, gsh, φ̂, ŵ, û, and

ĝsh, similarly associated with (u, β) ∈ K.
By Lemma 4.16(d), we have

(5.3.3) g
(j)
sh → gsh in C1,α([−1, 1]).

Fix a compact set K ⊂ Gβ1 (Ω) = {(s, t′) : −1 < s < 1, 0 < t′ < gsh(s)}. Then there exists a
constant σK ∈ (0, 1) depending only on K such that K ⊂ {s ≥ −1 + σK}. Thus, by Lemma
4.16(g), there exists a constant CK > 1 depending only on (v∞, γ, β∗) and K such that, for any
(u♯, β♯) ∈ K,

(5.3.4) C−1
K < g

♯
sh(s) < CK for all (s, t′) ∈ K.

By (4.1.49) and (5.3.3)–(5.3.4), we have

(5.3.5) G
2,g

(j)
sh

→ G2,gsh
in C1,α(K).

This implies that there exists a compact set QK ⊂ Qiter such that G
2,g

(j)
sh

(K) ⊂ QK for all j, and

G2,gsh
(K) ⊂ Qk. By Corollary 4.37(b), ûj converges to û in C2(QK). Therefore, it follows from

(5.3.2) and (5.3.5) that

(5.3.6) ŵ(j) → ŵ in C1,α(K).

Since K is an arbitrary compact subset of Gβ1 (Ω), we conclude that ŵj converges to ŵ in C1,α for

any compact subset of Gβ1 (Ω).
By (5.3.1), (5.3.6), and Lemmas 4.5 and 4.43–4.44, we can apply Proposition 5.4(a-3) to obtain

the convergence of sequence {E
g
(j)
sh

(ŵ(j))} to Egsh
(ŵ(∞)) in C2,α(R(1+ κ

2 )gsh
∩ {b1 < s < b2}) for

any b1 and b2 with −1 < b1 < b2 < 1, where κ ∈ (0, 13 ] is from Definition 5.3. Note that, for

any σ ∈ (0, 1), {(s, ĝ(j)sh (s)) : −1 + σ < s < 1 − σ} ⊂ R(1+κ
2 )gsh

holds for all j sufficiently large

depending on σ. Therefore, by using the C2–estimate of ĝsh given in Lemma 5.5 and (5.1.17), it

can be directly checked that {ĝ(j)sh } converges to ĝsh in C2([−1 + σ, 1− σ]) for any σ ∈ (0, 1). Then
we obtain from (5.1.10) that

(5.3.7) ĝ
(j)
sh → ĝsh in C2,α

(∗,α1)
((−1, 1)).

By (5.1.24), (5.3.7), and properties (a-3), (b-3), and (c-3) of Proposition 5.4, we conclude that

ũj := I(uj , βj) converges to ũ = I(u, β) in C2,α
(∗,α1)

(Qiter). This implies that I : K → C2,α
(∗,α1)

is

continuous.
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1-2. Compactness of I : K → C2,α
(∗,α1)

. Let U be a subset of K ⊂ C2,α
(∗,α1)

(Qiter)× [0, β∗]. Then U

is bounded in C2,α
(∗,α1)

(Qiter)× [0, β∗]. Since C
2,2α
(∗,1)(Qiter) is compactly embedded into C2,α

(∗,α1)
(Qiter),

Lemma 5.7(b) implies that I(U) is pre-compact in C2,α
(∗,α1)

(Qiter). From this property, combined

with the continuity of I proved in the previous step, we conclude that I : K → C2,α
(∗,α1)

(Qiter) is

compact in the sense of Definition 5.9. This verifies Claim 1.

2. Claim 2: In Definition 4.19, N1 can be increased, and δ2 > 0 can be fixed such that, for any

β ∈ (0, β∗], no fixed point of I(·, β) lies on boundary ∂K(β) of K(β), where ∂K(β) is considered

relative to space C2,α
(∗,α1)

(Qiter). Furthermore, the choices of (N1, δ2) depend only on (v∞, γ, β∗).

2-1. Let I(u, β) = u for some (u, β) ∈ K, and let ϕ = ϕ(u,β) be given by (4.2.4). We extend ϕ

onto Λβ by (2.5.8) if β < β
(v∞)
s , and by (2.5.12) if β ≥ β

(v∞)
s . By Proposition 5.8, ϕ is an admissible

solution corresponding to (v∞, β) ∈ Rweak in the sense of Definition 2.24.
In order to verify Claim 2, we need to show the following:

- u satisfies the strict inequality given in condition (i) of Definition 4.19;

- ϕ satisfies all the strict inequalities given in conditions (iii)–(vi) given in Definition 4.19.

2-2. The strict inequalities in condition (i) of Definition 4.19: Note that N1 satisfies that

N1 ≥ N
(a)
1 forN

(a)
1 from Corollary 4.40. Therefore, u satisfies the strict inequality given in condition

(i) of Definition 4.19.

2-3. The strict inequalities in conditions (iii) and (v)–(vi) of Definition 4.19. In conditions (iii)

and (v)–(vi) of Definition 4.19, constants (N2, ζ̃, µ̃, a∗, C) are fixed so that any admissible solution
satisfies the strict inequalities in conditions (iii) and (v)–(vi) of Definition 4.19 by Propositions 3.7
and 4.6, Remark 3.16, and Lemma 3.5.

2-4. The strict inequalities in condition (iv) of Definition 4.19. Suppose that 0 < β < δ1
N2

1
.

Then K2(β) defined by (4.3.12) satisfies that K2(β) < 0 for any δ2 > 0. Moreover, ϕ satisfies
(4.3.3) in the whole domain Ω by Definition 2.24(iv), the strong maximum principle, and Hopf’s
lemma. The strict inequalities in (4.3.4)–(4.3.5) are satisfied by Lemma 3.2.

Next, suppose that β ≥ δ1
N2

1
. Then it follows directly from (2.5.1) that ϕN − ϕO is a nontrivial

linear function. By Definition 2.24(iv), ψ = ϕ −max{ϕO, ϕN } ≥ 0 in Ω. Since ϕ = ϕO on ΓO
sonic,

ϕN on ΓN
sonic, and ϕO−ϕN is a nonzero function, the strong maximum principle and Hopf’s lemma

apply to ϕ, so that ϕ− ϕO > 0 and ϕ− ϕN > 0 in Ω hold, which yields that

(5.3.8) ψ = ϕ−max{ϕO, ϕN } > 0 in Ω \ (DO
ε/10 ∪ DN

ε/10)

for fixed ε > 0 in Definition 4.19. By (5.3.8), Lemmas 3.2 and 3.43, and the continuous dependence
of (ΓO

sonic, ϕO) on β, there exists a constant σ > 0 depending only on (γ, v∞, β∗) such that

ψ = ϕ−max{ϕO, ϕN } > σ in Ω \ (DO
ε/10 ∪ DN

ε/10).

By Lemma 3.2, we also have

∂eSO
(ϕ∞ − ϕ) < 0 in Ω \ DO

ε/10, −∂ξ1(ϕ∞ − ϕ) < 0 in Ω \ DN
ε/10.

By Corollary 3.19, and Propositions 3.26, 3.30, 3.32, 3.39, and 3.42, the set of admissible solutions
corresponding to (v∞, β) ∈ Rweak ∩{β ≤ β∗} is uniformly bounded in C1,α. Therefore, there exists
a constant σ̂ > 0 depending only on (γ, v∞, β∗) such that

∂eSO
(ϕ∞ − ϕ) < −σ̂ in Ω \ DO

ε/10, −∂ξ1(ϕ∞ − ϕ) < −σ̂ in Ω \ DN
ε/10.
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Since δ1 > 0 is fixed, depending on (v∞, γ, β∗), we can choose N1 sufficiently large and δ2 > 0
sufficiently small, depending only on (v∞, γ, β∗, δ1, N1), such that

K2(β) ≤
δ1δ2
N2

1

< min{σ, σ̂} for all β ∈ [0, β∗].

With the choices of (N1, δ2), ϕ satisfies (4.3.3)–(4.3.5) in Definition 4.19(iv).
In inequalities (4.3.6)–(4.3.11), parameters µ0, K3(β), N4, N5, and µ1 are fixed so that any

admissible solution corresponding to (v∞, β) ∈ Rweak ∩ {β < β∗} satisfies all the strict inequalities.

2-5. With the choices of (N1, δ2) determined in Step 2-4, we conclude that any fixed point of
I(·, β) for β ∈ (0, β∗] lies in K(β). In the next step, we also show that no fixed point of I(·, 0) lies
on ∂K(0).

3. Let parameters (α, ε, δ1, δ3, N1) in Definition 4.19 be fixed as described at the beginning of
§5.3.2. Let N1 be further adjusted, and let δ2 be fixed as in Step 2 so that Claim 2 holds. Finally,
let δ3 be further adjusted to satisfy the conditions in Lemmas 4.42 and 4.43 as described at the
beginning of §5.3.2. In particular, let δ3 be adjusted to satisfy (4.5.4) given in the proof of Lemma
4.42. With these choices of parameters (α, ε, δ1, δ2, δ3, N1), the definition for the iteration set K
given in Definition 4.19 is now complete.

3-1. Claim 3: The iteration map I(·, 0) has a unique fixed point 0 with

Ind(I(·, 0),K(0)) = 1.

At β = 0, it follows from (2.5.1) that ϕO − ϕN ≡ 0, so that the boundary condition on
ΓO
sonic ∪ ΓN

sonic of the boundary value problem (4.3.16) associated with any u ∈ K(0) becomes

homogeneous. Then it follows from Lemmas 4.34(f) and 4.35 that, for any u ∈ K(0), the associated

boundary value problem (4.3.16) has a unique solution φ̂ = 0 in Ω(u, 0). From this, we have

I(u, 0) = 0 for all u ∈ K(0).

It can be directly checked from Definition 4.19 that the fixed point u = 0 of I(·, 0) lies in K(0).

Also, we have shown in Step 1 that I : K → C2,α
(∗,α1)

is compact in the sense of Definition 5.9.

Therefore, the fixed point index Ind(I(·, β),K(β)) satisfying properties (i)–(iv) stated in Theorem
5.12 is well defined. Then Theorem 5.12(i) implies that

(5.3.9) Ind(I(·, 0),K(0)) = 1.

3-2. Combining Claim 2 in Step 2 with Claim 3 in Step 3-1, we see that no fixed point of
I(·, β) lies on the boundary ∂K(β) of K(β) for all β ∈ [0, β∗]. Then, using (5.3.9) and properties
(a) and (d) of Theorem 5.13, we have

(5.3.10) Ind(I(·, β),K(β)) = Ind(I(·, 0),K(0)) for all β ∈ [0, β∗].

By Theorem 5.12(ii), (5.3.10) implies that I(·, β) has a fixed point in K(β) for all β ∈ [0, β∗]. Then
Proposition 5.8 implies that, for each (v∞, β) ∈ Rweak ∩ {0 ≤ β ≤ β∗}, an admissible solution

corresponding to (v∞, β) exists. Since v∞ > 0 is arbitrary, and β∗ is also arbitrary in (0, β
(v∞)
d ), we

finally conclude that there exists an admissible solution for any (v∞, β) ∈ Rweak. This completes
the proof of Theorem 2.31. �





CHAPTER 6

Optimal Regularity of Admissible Solutions

– Proof of Theorem 2.33

This chapter is devoted to the complete proof of Theorem 2.33.

Let ϕ be an admissible solution corresponding to (v∞, β) ∈ Rweak in the sense of Definition
2.24. We now prove statements (a)–(e) of Theorem 2.33, respectively.

1. Proof of statement (a) of Theorem 2.33. It follows from Lemmas 3.9 and 3.18 that Γshock is

C∞ in its relative interior, and ϕ ∈ C∞(Ω \ ΓO
sonic ∪ ΓN

sonic). By Definition 2.23, ΓO
sonic is a closed

portion of a circle when β < β
(v∞)
s and becomes a point Pβ when β ≥ β

(v∞)
s . Near ΓN

sonic, we combine

Proposition 3.26 with the smoothness of ϕ away from ΓO
sonic ∪ ΓN

sonic to obtain ϕ ∈ C1,1(Ω \ΓO
sonic).

Near ΓO
sonic, we consider two cases separately: (i) β < β

(v∞)
s and (ii) β ≥ β

(v∞)
s . If β < β

(v∞)
s , it

follows from Propositions 3.30 and 3.32 that ϕ is C1,1 up to ΓO
sonic. If β ≥ β

(v∞)
s , then Propositions

3.39 and 3.42 imply that ϕ is C1,α up to ΓO
sonic = {Pβ} for some α ∈ (0, 1). This completes the

proof of statement (a).

2. Proof of statements (b)–(c) of Theorem 2.33. Let the (x, y)–coordinates be defined by
(3.4.18) and (3.5.2) near ΓN

sonic and ΓO
sonic, respectively. Define

ψ := ϕ−max{ϕN , ϕO}
for ϕO and ϕN given by (2.5.1). Note that ψ = ϕ− ϕN near ΓN

sonic and ψ = ϕ− ϕO near ΓO
sonic.

By (3.2.29), (3.4.21), (3.4.26), Lemma 3.21, and Proposition 3.26, we can apply the following
theorem to ψ near ΓN

sonic:

Theorem 6.1 (Theorem 3.1 in [1]). For constants r, R > 0, define Q+
r,R by

Q+
r,R := {(x, y) : x ∈ (0, r), |y| < R}.

For positive constants a, b,M,N , and κ ∈ (0, 14 ), suppose that ψ ∈ C(Q+
r,R) ∩C2(Q+

r,R) satisfies

(2x− aψx +O1)ψxx +O2ψxy + (b +O3)ψxy − (1 +O4)ψx +O5ψy = 0 in Q+
r,R,

ψ > 0 in Q+
r,R,

ψ = 0 on ∂Q+
r,R ∩ {x = 0},

−Mx ≤ ψx ≤ 2− κ

a
x in Q+

r,R,

where terms Oi(x, y), i = 1, · · · , 5, are continuously differentiable and

|O1(x, y)|
x2

+
|DO1(x, y)|

x2
+

5∑

k=2

( |Ok(x, y)|
x

+ |DOk(x, y)|
)
≤ N in Q+

r,R.(6.1)

189
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Then

ψ ∈ C2,α(Q+
r/2,R/2) for any α ∈ (0, 1),

with

ψxx(0, y) =
1

a
, ψxy(0, y) = ψyy(0, y) = 0 for all |y| < R

2
.

For β ∈ [0, β
(v∞)
s ), it can be directly checked from the results in §3.5.1 that Theorem 6.1 applies

to ψ near ΓO
sonic. Then the admissible solution ϕ satisfies statements (b)–(c) of Theorem 2.33.

3. Proof of statement (d) in Theorem 2.33. By Lemma 3.21(d), Γshock ∩ DN
ε̄ is represented as

the graph of y = f̂N ,sh(x) for 0 ≤ x ≤ ε̄, where DN
ε̄ is defined by (4.1.2).

Let {y(1)m } be a sequence satisfying 0 < y
(1)
m < f̂N ,sh(0) for eachm ∈ N, and lim

m→∞
y(1)m = f̂N ,sh(0).

By (2.5.30), (2.5.32), and Theorem 2.33(c), we can choose a sequence {x(1)m } such that {(x(1)m , y
(1)
m )} ⊂

Ω, x
(1)
m ∈ (0, 1

m ), and

∣∣ψxx(x(1)m , y(1)m )− 1

γ + 1

∣∣ < 1

m
for each m ∈ N.

By Lemma 3.21(d), 0 < y
(1)
m < f̂N ,sh(0) < f̂N ,sh(x

(1)
m ) for each m ∈ N. Therefore, we have

(6.2) lim
m→∞

(x(1)m , y(1)m ) = (0, f̂N ,sh(0)), lim
m→∞

ψxx(x
(1)
m , y(1)m ) =

1

γ + 1
.

By properties (a) and (c) of Lemma 3.23, and Proposition 3.26, there exists ε ∈ (0, ε̄] such that,
on Γshock ∩ DN

ε , the boundary condition (3.4.23) can be rewritten as

(6.3) ψx + b1ψy + b0ψ = 0 on Γshock ∩ DN
ε

for (b0, b1) = (b0, b1)(ψx, ψy, ψ, x, f̂N ,sh(x)). Let ω > 0 be from Lemma 3.21(d). Then

{(x, f̂N ,sh(x)−
ω

10
x) : 0 < x < ε} ⊂ Ω.

Denote F(x) := ψx(x, f̂N ,sh(x)− ω
10x). By (6.3), we have

F(x) = ψx(x, f̂N ,sh(x)) −
ω

10
x

∫ 1

0

ψxy(x, f̂N ,sh(x) −
tω

10
x) dt

= −(b1ψy + b0ψ)(x, f̂N ,sh(x))−
ω

10
x

∫ 1

0

ψxy(x, f̂N ,sh(x)−
tω

10
x) dt for 0 < x < ε.

From the last equality and Proposition 3.26, we obtain that F(0) = 0, F ∈ C([0, ε]) ∩ C1((0, ε)),

and limx→0+
F(x)
x = 0. Then, by the mean value theorem, there exists a sequence {x(2)m } ⊂ (0, ε)

such that

(6.4) lim
m→∞

x(2)m = 0, F ′(x(2)m ) = 0.

For each m ∈ N, define y
(2)
m := f̂N ,sh(x

(2)
m ) − ω

10x
(2)
m so that {(x(2)m , y

(2)
m )} ⊂ Ω. By the definition of

F and (6.4), we have

lim
m→∞

ψxx(x
(2)
m , y(2)m ) = lim

m→∞
F ′(x(2)m )− lim

m→∞
(f̂ ′

N ,sh(x
(2)
m )− ω

10
)ψxy(x

(2)
m , y(2)m )

= − lim
m→∞

(f̂ ′
N ,sh(x

(2)
m )− ω

10
)ψxy(x

(2)
m , y(2)m ).

(6.5)
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Since lim
m→∞

(x(2)m , y(2)m ) = (0, f̂N ,sh(0)), we combine (6.5) with Proposition 3.26 to obtain

(6.6) lim
m→∞

ψxx(x
(2)
m , y(2)m ) = 0.

In (6.2) and (6.6), we have shown that there are two sequences, {(x(1)m , y
(1)
m )} and {(x(2)m , y

(2)
m )}, in

Ω such that the limits of both sequences are (0, f̂N ,sh(0)). On the other hand,

lim
m→∞

ψxx(x
(1)
m , y(2)m ) 6= lim

m→∞
ψxx(x

(1)
m , y(2)m ).

For β ∈ (0, β
(v∞)
s ), we can repeat the argument above by using Lemma 3.28(d) and Propositions

3.30 and 3.32 to show that there are two sequences, {(x̃(1)m , ỹ
(1)
m )} and {(x̃(2)m , ỹ

(2)
m )}, in Ω such that

the limits of both sequences are (0, f̂O,sh(0)), but it can similarly be shown that

lim
m→∞

ψxx(x̃
(1)
m , ỹ(1)m ) =

1

γ + 1
6= 0 = lim

m→∞
ψxx(x̃

(2)
m , ỹ(2)m ),

where f̂O,sh is from Lemma 3.28. This proves statement (d) of Theorem 2.33.

3. Proof of statement (e) of Theorem 2.33. By Lemma 3.20(e), SN is represented as the graph

of y = f̂N ,0(x) near point P2 in the (x, y)–coordinates given by (3.4.18). We extend the definition

of f̂N ,sh into (−ε̄, ε̄) by

(6.7) f̂N ,sh(x) = f̂N ,0(x) for x ∈ (−ε̄, 0].

By Proposition 3.26, f̂N ,sh satisfies

(6.8) (f̂N ,sh − f̂N ,0)(0) = (f̂N ,sh − f̂N ,0)
′(0) = 0,

so that curve Γshock ∪ SN ,seg is C1,1, including at point P2.
Define

φN∞ := ϕ∞ − ϕN .

Since φN∞(x, f̂N ,0(x)) = 0 and (ϕ∞ − ϕ)(x, f̂sh(x)) = 0, ψ satisfies

(6.9) φN∞(x, f̂N ,0(x)) − φN∞(x, f̂N ,sh(x)) = ψ(x, f̂sh(x)) for 0 < x < ε̄.

A direct computation yields that

d2φN∞(x, f̂N ,0(x))

dx2
= f̂ ′′

N ,0(x)∂yφ
N
∞(x, f̂N ,0(x)) +

2∑

k=0

ak(f̂
′
N ,0(x))

k∂2−kx ∂kyφ
N
∞(x, f̂N ,0(x)),

d2φN∞(x, f̂N ,sh(x))

dx2
= f̂ ′′

N ,sh(x)∂yφ
N
∞(x, f̂N ,sh(x)) +

2∑

k=0

ak(f̂
′
N ,sh(x))

k∂2−kx ∂kyφ
N
∞(x, f̂N ,sh(x)),

(6.10)

with (a0, a1, a2) = (1, 2, 1).
We differentiate (6.9) with respect to x twice and use (6.10) to obtain the following expression:

(6.11) (f̂N ,sh − f̂N ,0)
′′(x) =

A1(x) +A2(x) +A3(x)

∂yφN∞(x, f̂N ,sh(x))
,
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where

A1(x) =

2∑

k=0

ak

(
(f̂ ′

N ,0(x))
k∂2−kx ∂kyφ

N
∞(x, f̂N ,0(x)) − (f̂ ′

N ,sh(x))
k∂2−kx ∂kyφ

N
∞(x, f̂N ,sh(x))

)
,

A2(x) =
(
∂yφ

N
∞(x, f̂N ,0(x)) − ∂yφ

N
∞(x, f̂N ,sh(x))

)
f̂ ′′
N ,0(x),

A3(x) = −
(
f̂ ′′
N ,sh(x)ψy(x, f̂N ,sh(x)) +

2∑

k=0

ak(f̂
′
N ,sh(x))

k∂2−kx ∂kyψ(x, f̂N ,sh(x))
)
.

By (6.8), we have

(6.12) A1(0) = A2(0) = 0.

We differentiate the boundary condition (3.4.23) in the tangential direction along Γshock, and apply
Lemma 3.23(a)–(c) and Proposition 3.26 to obtain that there exists a constant C > 0 such that

|ψxx(x, f̂N ,sh(x))|
≤ C

(
|ψ(x, f̂N ,sh(x))| + |D(x,y)ψ(x, f̂N ,sh(x))| + |D(x,y)ψy(x, f̂N ,sh(x))|

)
on Γshock ∩ DN

ε̄ .

From this estimate and Proposition 3.26, we see that lim
x→0+

ψxx(x, f̂N ,sh(x)) = 0, which implies that

(6.13) lim
x→0+

A3(x) = 0.

By Lemma 3.20(c), ∂yφ
N
∞(x, f̂N ,sh(x)) 6= 0 on Γshock ∩ DN

ε̄ . Then we conclude from (6.11)–(6.13)
that

(f̂N ,sh − f̂N ,0)
′′(0) = 0.

This implies that the extension of f̂N ,sh given by (6.7) is in C2([−ε̄, ε̄]). Furthermore, we conclude

from (6.11) and Proposition 3.26 that the extension of f̂N ,sh given by (6.7) is in C2,α((−ε̄, ε̄)) for

any α ∈ (0, 1). This implies that Γshock ∪ SN ,seg is C2,α for any α ∈ (0, 1), including at point

P2 = (0, f̂N ,sh(0)). For β ∈ (0, β
(v∞)
s ), it can similarly be checked that SO,seg ∪ Γshock is C2,α

for any α ∈ (0, 1), including at point P1 = (0, f̂O,sh(0)) for f̂O,sh from Lemma 3.28. Therefore,
statement (e) of Theorem 2.33 is proved.



APPENDIX A

The Shock Polar for Steady Potential Flow

According to [22], for any given uniform supersonic state, a shock polar curve for the two-
dimensional steady full Euler system should exist and be convex. In this appendix, we show the
same for the potential flow. The convexity of the shock polar curve leads to Lemma A.4, which
is the key ingredient for proving the existence of admissible solutions in the sense of Definition

2.14 for (u∞, u0) ∈ Pweak with u0 ≤ u
(ρ∞,u∞)
s , and the non-existence of admissible solutions for

(u∞, u0) ∈ Pstrong. The existence of convex shock polar curves for potential flow is proved by
combining the results from [24, 33].

The two-dimensional steady potential flow for an ideal polytropic gas is governed by the equa-
tions: 




(ρu)x1 + (ρv)x2 = 0,

ux2 − vx1 = 0,

1
2 (u

2 + v2) + i(ρ) = B0 (Bernoulli’s law)

for a constant B0 > 0, where i(ρ) is given by

i(ρ) =

{
ργ−1−1
γ−1 for γ > 1,

ln ρ for γ = 1.

Lemma A.1. Fix γ ≥ 1 and the incoming constant state (ρ∞,u∞) = (ρ∞, (u∞, 0)), with u∞ >

ρ
(γ−1)/2
∞ > 0. Denote M∞ := u∞

ρ
(γ−1)/2
∞

> 1 as the Mach number of the incoming supersonic flow.

For each β ∈ [0, cos−1( 1
M∞

)), there exists a unique u = (uO, vO) ∈ (R+)
2 \ {u∞} such that

ρOu · n = ρ∞u∞ · n,(A.1)

(u∞ − u) · t = 0,(A.2)

1

2
(u · n)2 + i(ρO) =

1

2
(u∞ · n)2 + i(ρ∞)(A.3)

for n = (cos β,− sinβ) and t = (sin β, cosβ), where ρO is given by

(A.4) ρO = i−1(i(ρ∞) +
1

2
(u2∞ − |u|2)).

In other words, u becomes the downstream velocity behind a straight oblique shock SO of angle π
2 −β

from the horizontal axis. Moreover, the collection of such u = (uO, vO) for β ∈ [0, cos−1( 1
M∞

))

forms a concave curve on the (u, v)–plane.

Proof. The existence of the curve for (uO, vO) is verified by following the proof of [33, Propo-
sition 2.1], and the convexity of this curve can be checked by adjusting the proof of [24, Theorem
1]. We prove the lemma for the case that γ > 1. The case that γ = 1 can be treated in the same
way. The proof is divided into two steps.
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1. Existence of shock polar . Fix constants γ > 1, ρ∞ > 0, and u∞ with u∞ > ρ
(γ−1)/2
∞ .

Let SO be a straight oblique shock with angle π
2 − β from the horizontal ground, and let ρO and

u = (uO, vO) be the density and the velocity behind shock SO. By (A.2), the angle between vector
u− u∞ and the horizontal axis in Fig. A.1 is β. By the expression of {n, t}, we have

u

v

u∞

(uO, vO)

β

qO

Figure A.1. The shock polar for potential flow

u∞ · n = u∞ cosβ, u∞ · t = u∞ sinβ,

u · n = uO cosβ − vO sinβ, u · t = uO sinβ + vO cosβ.
(A.5)

Denote M∞,n = u∞·n
ρ
(γ−1)/2
∞

. For each β ∈ [0, π2 ), M∞,n is fixed and M∞,n > 0 holds. It has been

shown in the proof of Lemma 2.17 that there exists a unique Mn with Mn 6=M∞,n as a solution of
the equation:

(A.6) g(Mn) = g(M∞,n)

for g(M) = (M2 + 2
γ−1)M

− 2(γ−1)
γ+1 , unless M∞,n = 1. Substitute u · n = Mnρ

γ−1
2

O into (A.3) and

solve the resultant equation for ρO to obtain

ργ−1
O =

(u∞ · n)2 + 2i(ρ∞) + 2
γ−1

M2
n + 2

γ−1

.

By the entropy condition, shock SO is admissible only if ρ∞ < ρO, which is equivalent to saying that
0 < Mn < 1 < M∞,n. Since M∞,n = M∞ cosβ for M∞ = u∞

ρ
(γ−1)/2
∞

, we restrict our consideration

only to the case that β ∈ [0, cos−1( 1
M∞

)). Then (A.2) and (A.5) yield that

(
uO
vO

)
=

(
cosβ sinβ
− sinβ cosβ

)(
Mnρ

γ−1
2

O
u∞ sinβ

)
.

Therefore, curve (uO, vO)(β) is given for β ∈ [0, cos−1( 1
M∞

)) in the (u, v)–plane; see Fig. A.1.
Since limβ→cos−1( 1

M∞
)Mn = 1 = limβ→cos−1( 1

M∞
)M∞,n, the shock polar curve is extended up

to β = cos−1( 1
M∞

) by (uO, vO) = (u∞, 0).

This curve (u, v) = (uO, vO)(β) for β ∈ [0, cos−1( 1
M∞

)] is called a shock polar for potential flow.
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2. Convexity of shock polar . Let u = (u, v) denote each point on the shock polar curve. By
(A.1)–(A.2), each point u on the shock polar satisfies the equation:

(A.7) g(u) =
(
ρ(|u|2)u− ρ∞u∞

)
· u∞ − u

|u∞ − u| = 0

for u∞ = (u∞, 0), where ρ(|u|2) is given by (A.4) so that Duρ = − u
c2 ρ for c2(|u|2) = ργ−1(|u|2).

Combining this with (A.7) gives that

gu · n = ρ
(
1−

(u · n
c

)2)
, gu · t = −(u∞ · t)

(
ρu · n
c2

+
ρ− ρ∞
|u∞ − u|

)
.(A.8)

By the entropy condition, we have

(A.9) gu · n > 0.

Define

q :=
gu

gu · n ,

and express q as q = n+ gu·t
gu·nt.

Claim: q× dq
dβ < 0 for all β ∈ (0, cos−1( 1

M∞
)).

Denote A := − gu·t
gu·n . Then

dq
dβ = −(1 + dA

dβ )t− An, which implies that

(A.10) q× dq

dβ
= −

(
1 +A2 +

dA

dβ

)
.

By (A.1), (A.5), and (A.8), we can rewrite A as A = u∞ sin β
1−M2

n
(Mn

c + 1
u∞ cosβ ) for Mn := u·n

c .

Differentiate (A.6) with respect to β to obtain

dMn

dβ
= −g′(M∞,n)

g′(Mn)

u∞ sinβ

ρ
(γ−1)/2
∞

> 0 for β ∈ (0, cos−1(
1

M∞
)).

From ρ
γ+1
2 Mn = ρ

γ+1
2∞ M∞,n = ρ∞u∞ cosβ and dMn

dβ > 0, we see that dρ
dβ < 0 so that dA

dβ ≥ 0 holds

for all β ∈ (0, cos−1( 1
M∞

)). Combining this with (A.10), we have

q× dq

dβ
≤ −1 for β ∈ (0, cos−1( 1

M∞
)).

The claim is verified.

The inequality above gives the useful property:

(A.11)
q

|q| ×
d

dβ

( q

|q|
)
=

q× dq
dβ

|q|2 ≤ − 1

|q|2 < 0

at each point on the shock polar curve.
Fix a point u0 = (u0, v0) on the shock polar {u = (u, v) : g(u) = 0}, and define n0 = u0−u∞

|u0−u∞| .

We introduce a new coordinate system (s, t) so that the following properties hold in the new (s, t)–
coordinates:

(i) u0 = (0, 0), n0 = (0, 1);

(ii) If τ0 is the unit vector perpendicular to n0 and oriented to satisfy u∞ · τ0 > 0, then
τ0 = (1, 0).
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Define a function G(s, t) by
G(s(u), t(u)) = g(u),

where (s(u), t(u)) is the (s, t)–coordinates of u on the shock polar. Since the value of gu · n for
n = u∞−u

|u∞−u| is invariant under the rotation, Gt(0, 0) = −(gu · n)(u0) < 0. By the implicit function

theorem, there exists a function fu0 : (−ε0, ε0) → R for some small constant ε0 > 0 so that the
shock polar curve is represented by t = fu0(s) near u0 in the (s, t)–coordinates. Such a function
fu0 satisfies the relation:

f ′′
u0
(0)√

1 + (f ′
u0
(0))2

=
q

|q| ×
d

dβ

( q

|q|
)∣∣∣

u=u0

≤ − 1

|q(u0)|2
< 0.

Therefore, we conclude that the shock polar for potential flow is concave. �

Remark A.2. Fix γ ≥ 1 and (ρ∞, u∞) with u∞ > ρ
(γ−1)/2
∞ > 0. Let Υ(ρ∞,u∞) be the shock

polar curve lying in the first quadrant in the (u, v)–plane for the steady potential flow with the
incoming supersonic state (ρ∞, u∞). Owing to the concavity of the shock polar, there exists a

unique θ
(ρ∞,u∞)
d ∈ (0, π2 ) such that the following properties hold:

(i) If 0 ≤ θw < θ
(ρ∞,u∞)
d , then line v

u = tan θw intersects with Υ(ρ∞,u∞) at two distinct points;

(ii) Line v
u = tan θ

(ρ∞,u∞)
d and Υ(ρ∞,u∞) have a unique intersection point so that v

u =

tan θ
(ρ∞,u∞)
d is tangential to Υ(ρ∞,u∞) at the intersection point;

(iii) If θ
(ρ∞,u∞)
d < θw < π

2 , then line v
u = tan θw never intersects with Υ(ρ∞,u∞).

Lemma A.3. Fix γ ≥ 1. For each (ρ∞, u∞) with u∞ > ρ
(γ−1)/2
∞ > 0, there exist a unique con-

stant û
(ρ∞,u∞)
0 =: û0 ∈ (0, u∞) and a unique smooth function fpolar ∈ C0([û0, u∞])∩C∞((û0, u∞))

such that

(A.12) Υ(ρ∞,u∞) = {(u, fpolar(u)) : u ∈ [û0, u∞]}.
Furthermore, the following properties hold:

(a) Let θ
(ρ∞,u∞)
s be from Lemma 2.4(c). Then there exist unique ud, us ∈ (û0, u∞) such that

(A.13)
fpolar(us)

us
= tan θ(ρ∞,u∞)

s ,
fpolar(ud)

ud
= tan θ

(ρ∞,u∞)
d .

Moreover, ud < us holds, and (ud, us) vary continuously on (ρ∞, u∞).

(b) Denote by fpolar(·, ρ∞, u∞) the shock polar function fpolar(·) for the incoming flow (ρ∞, u∞).
Then fpolar as a function of (u, ρ∞, u∞) is C∞ on the domain:

{(u, ρ∞, u∞) : ρ∞ > 0, u∞ > ρ(γ−1)/2
∞ , u ∈ (û(ρ∞,u∞), u∞)}.

Proof. The proof is divided into four steps.

1. For each β ∈ [0, cos−1( 1
M∞

)], let (ρO, uO, vO) be from Lemma A.1, and let qO :=
√
u2O + v2O.

Since (ρO, uO, vO) is uniquely determined for β ∈ [0, cos−1( 1
M∞

)], qO is considered as a function of

β. Substituting (A.5) into (A.1)–(A.2), we obtain

(uO, vO) = u∞(1− (1− ρ∞
ρO

) cos2 β, (1− ρ∞
ρO

) cos β sinβ),
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so that

(A.14) cos2 β =
1− ( qOu∞

)2

1 − (ρ∞ρO )2
=: h(qO).

It follows from (A.4) and (A.14) that

h′(qO) =:
2qO

(1− ρ2∞
ρ2O

)2ρ2Oc
2
Ou

2∞
I(qO)

for I(qO) satisfying I(u∞) = 0 and I ′(qO) = (γ+1)qO(ρ2O −ρ2∞). Inequality ρO > ρ∞ holds, owing
to the entropy condition for the admissible shock so that I ′(qO) > 0 and I(qO) < I(u∞) = 0 for
0 < qO < u∞, which implies that h′(qO) < 0 for 0 < qO < u∞. Then (A.14) yields that

(A.15)
dqO
dβ

= −2 cosβ sinβ

h′(qO)
> 0 for all β ∈ (0, cos−1 1

M∞
).

2. Let g(u),n, and t be given by (A.7). Then (A.8) implies

∂vg(u) = −(gu · n) sinβ + (gu · t) cosβ < 0

for any interior point u = (u, v) in Υ(ρ∞,u∞). By the implicit function theorem, there exists a
unique function fpolar : [û0, u∞] → [0,∞) so that (A.12) holds, where û0 = qO(β)|β=0 for qO
defined through (A.14). The smoothness of mapping (u, ρ∞, u∞) 7→ fpolar(u, ρ∞, u∞) follows from
the implicit function theorem and the smooth dependence of g(u) on (ρ∞, u∞).

3. The existence and uniqueness of ud ∈ (û0, u∞) result directly from the concavity of the
shock polar curve Υ(ρ∞,u∞). Since point (û0, 0) on the shock polar Υ(ρ∞,u∞) corresponds to a

normal shock, (û0, 0) is subsonic; that is, ργ−1
O − q2O > 0 holds at β = 0. At β = cos−1( 1

M∞
),

ργ−1
O − q2O < 0, because (ρO, qO)|β=cos−1( 1

M∞
) = (ρ∞, u∞). From (A.15) and Bernoulli’s law that

1
2q

2
O + ρ∞(ρO) = B0, we have

d(ργ−1
O − q2O)
dβ

< 0 for all β ∈ (0, cos−1(
1

M∞
)).

Therefore, there exists a unique us ∈ (û0, u∞) such that
fpolar(us)

us
= tan θ

(ρ∞,u∞)
s holds. Further-

more, Lemma 2.4(c) and the concavity of Υ(ρ∞,uO) imply that ud < us.

4. By Bernoulli’s law and the concavity of Υ(ρ∞,u∞), (A.13) is equivalent to

u2s + f2
polar(us, ρ∞, u∞) =

2(γ − 1)

γ + 1

(1
2
u2∞ +

ργ−1
∞
γ − 1

)
,

fpolar(ud, ρ∞, u∞)− udf
′
polar(ud, ρ∞, u∞) = 0

(A.16)

for each (ρ∞, u∞) with u∞ > ρ
(γ−1)/2
∞ > 0.

For each k ∈ N, let a sequence {(ρ(k)∞ , u
(k)
∞ )} satisfy u

(k)
∞ > (ρ

(k)
∞ )(γ−1)/2 > 0. Also, suppose

that {(ρ(k)∞ , u
(k)
∞ )} converges to (ρ∗∞, u

∗
∞) with u∗∞ > (ρ∗∞)(γ−1)/2 > 0. Let (u

(k)
d , u

(k)
s ) and (u∗d, u

∗
s )

be the values of (ud, us) corresponding to (ρ
(k)
∞ , u

(k)
∞ ) and (ρ∗∞, u

∗
∞), respectively. Note that

(u
(k)
d , ρ(k)∞ , u(k)∞ ), (u(k)s , ρ(k)∞ , u(k)∞ ) ∈ {(u, ρ∞, u∞) : ρ∞ > 0, u∞ > ρ(γ−1)/2

∞ , u ∈ (û(ρ∞,u∞), u∞)}
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for each k ∈ N and that û0 varies continuously on (ρ∞, u∞) so that {(u(k)d , u
(k)
s )} is bounded in

(R+)2. Therefore, there exist a convergent subsequence {(u(kj)d , u
(kj)
s )} and states (u♯d, u

♯
s) such that

limj→∞(u
(kj)
d , u

(kj)
s ) = (u♯d, u

♯
s). Then assertion (b) (proved in Step 2) and (A.16) yield

(u♯s)
2 + f2

polar(u
♯
s, ρ

∗
∞, u

∗
∞) =

2(γ − 1)

γ + 1

(
1

2
(u∗∞)2 +

(ρ∗∞)γ−1

γ − 1

)
,

fpolar(u
♯
d, ρ

∗
∞, u

∗
∞)− u♯df

′
polar(u

♯
d, ρ

∗
∞, u

∗
∞) = 0.

This implies that (u♯d, u
♯
s) = (u∗d, u

∗
s ), since it has been shown in Step 3 that (ud, us) satisfying

(A.13) for (ρ∗∞, u
∗
∞) uniquely exists. Therefore, we conclude that (ud, us) varies continuously on

(ρ∞, u∞). �

In Lemma 2.19, the one-to-one correspondence between parameter sets P and R is established.
For each (u∞, u0) ∈ P, there exists a unique θw ∈ (0, π2 ) such that v∞ is given by (2.4.23), where
(v∞, β) ∈ R corresponds to (u∞, u0). The convexity of the shock polar obtained in Lemma A.3
yields the following property:

Lemma A.4. Fix γ ≥ 1 and v∞ > 0. For each β ∈ (0, π2 ), let ϕ∞, ϕO, ρO, and Pβ be defined by

(2.4.1), (2.4.4), (2.4.5), (2.5.3), respectively. Denote G(p, z, ξ) = gsh(p, z, ξ) for gsh(p, z, ξ) defined

by (3.4.13). Then there exists β
(v∞)
d ∈ (0, π2 ) depending only on (v∞, γ) such that G(p, z, ξ) satisfies

(A.17) Gp1(DϕO, ϕ∞, Pβ)





< 0 for β ∈ (0, β
(v∞)
d ),

= 0 for β = β
(v∞)
d ,

> 0 for β ∈ (β
(v∞)
d , π2 ).

Proof. The following facts are useful to compute Gq1(DϕO, ϕ∞, Pβ):

(i) The unit normal vector nO to SO towards the downstream is nO = Dϕ∞−DϕO

|Dϕ∞−DϕO| =

(sinβ,− cosβ) so that (ρODϕO −Dϕ∞) · (1, 0) = (ρO − 1)(uO − ξ1) cos
2 β, where DϕO

and Dϕ∞ are evaluated at ξ = (ξ1, ξ2) ∈ R
2.

(ii) It is shown from a direct computation that, if G(p, z, ξ) = 0, then

(A.18) Gp(p, z, ξ) =
1

ργ−2

(
c2
Dϕ∞ − p

|Dϕ∞ − p| −
(
p · Dϕ∞ − p

|Dϕ∞ − p|
)
p

)
− ρp−Dϕ∞

|Dϕ∞ − p|
for ρ = ρ(p, z).

It follows from (i)–(ii) that

Gp1 (DϕO, ϕ∞, Pβ) =
(
c2O − (uO − ξ

Pβ

1 )2
) sinβ

ργ−1
O

− (ρO − 1)(uO − ξ
Pβ

1 ) cos2 β√
u2O + v2∞

(A.19)

for cO = ρ
(γ−1)/2
O . Denote qO := DϕO(Pβ) ·nO. Then uO − ξ

Pβ

1 = qO cscβ, where Pβ is denoted as

Pβ = (ξ
Pβ

1 , 0). Also, ξm2 in the proof of Lemma 2.22 can be written as ξm2 = qO cosβ. Substituting

these two expressions into (A.19) and using the relations that uO = −v∞ tanβ and (ρO−1)qO
v∞ sec β = 1

obtained from (2.4.1), (2.4.3), and (2.4.29), we have

Gp1(DϕO, ϕ∞, Pβ) = ρO(1−M2
O) sinβ − (ξm2 )2

ργ−2
O

cscβ − cosβ

tanβ
,
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whereMO is defined by (2.4.6) with c = cO. Then it can be directly checked that
dGp1(DϕO,ϕ∞,Pβ)

dβ >

0 for all 0 < β < π
2 .

It follows from lim
β→0+

(ρO, ξm2 ) = (ρN , ξN2 ) that limβ→0+Gp1(DϕO, ϕ∞, Pβ) = −∞.

Relations (2.4.11) and (2.4.35) yield ξm2 = qO cosβ, which gives that

Gp1(DϕO, ϕ∞, Pβ) = ρO
(
(1 −M2

O) sinβ −M2
O cosβ2 cscβ

)
− cosβ

tanβ
.

It is shown in the proof of Lemma 2.22 that limβ→π
2 − cO = ∞ and dMO

dβ < 0 for all 0 < β < π
2 .

This implies that limβ→π
2 −Gp1(DϕO, ϕ∞, Pβ) = ∞. Therefore, there exists a unique β

(v∞)
d ∈ (0, π2 )

satisfying (A.17). �





APPENDIX B

Non-Existence of Self-Similar Strong Shock Solutions

For the completeness of this monograph, we include the proof of the non-existence of admissible
solutions corresponding to (v∞, β) ∈ Rstrong in the sense of Definition 2.24, or equivalently, the non-
existence of admissible solutions corresponding to (u∞, u0) ∈ Pstrong in the sense of Definition 2.14.
The non-existence of self-similar strong shock solutions was first studied in Elling [25]. In this
appendix, we combine the convexity of the shock polar shown in Lemma A.1 for steady potential
flow with the result from [25] to show the non-existence of admissible solutions corresponding to
(v∞, β) ∈ Rstrong.

Proposition (Non-existence of admissible solutions with a strong shock). For each γ ≥ 1,
there is no admissible solution corresponding to (v∞, β) ∈ Rstrong in the sense of Definition 2.24.
Equivalently, there is no admissible solution corresponding to (u∞, u0) ∈ Pstrong.

Proof. The proof is divided into six steps.

1. On the contrary, suppose that there is an admissible solution ϕ for some (v∞, β) ∈ Rstrong

in the sense of Definition 2.24. Then ψ := ϕ− ϕO ∈ C3(Ω \ (ΓO
sonic ∪ ΓN

sonic) ∩ C1(Ω) satisfies

(c2 − ϕ2
ξ1)ψξ1ξ1 − 2ϕξ1ϕξ2ψξ1ξ2 + (c2 − ϕ2

ξ2)ψξ2ξ2 = 0 in Ω,(B.1)

ψ = ϕ∞ − ϕO, g(Dψ,ψ, ξ) = 0 on Γshock,(B.2)

ψ = |Dψ| = 0 on ΓO
sonic, ψ = ϕN − ϕO on ΓN

sonic,(B.3)

∂ξ2ψ = 0 on Γwedge(B.4)

for c2 = c2(|Dϕ|2, ϕ) and ΓO
sonic = {Pβ} by (2.5.6), where

g(q, z, ξ) := G(DϕO(ξ) + q, ϕO(ξ) + z, ξ),

G(q, z, ξ) :=
(
ρ(q, z)q−Dϕ∞(ξ)

)
· Dϕ∞(ξ)− q

|Dϕ∞(ξ)− q| ,

ρ(q, z) :=





(
1 + (γ − 1)(12v

2
∞ − 1

2 |q|2 − z)
) 1

γ−1 for γ > 1,

exp
( v2∞

2 − 1
2 |q|2 − z

)
for γ = 1,

c2(|q|2, z) = ργ−1(|q|2, z),

(B.5)

for q ∈ R
2, z ∈ R, and ξ ∈ Ω.

2. Claim: ψ attains its minimum at Pβ .

Since (B.3), combined with Remark 2.35, implies that ψ is not a constant in Ω, then the
minimum of ψ over Ω is attained on ∂Ω by the strong maximum principle. Also, ψ cannot attain
its minimum over Ω on Γwedge by Hopf’s lemma. The proof of Proposition 3.4 applies to ϕ such that
Γshock lies strictly below SO, and ψ > 0 on Γshock. Therefore, we conclude that minΩ ψ = ψ(Pβ) = 0.

201
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3. Divide equation (B.1) by c2(|Dϕ|2, ϕ) to rewrite (B.1) as

Lψ :=
(
1− |DϕO(Pβ)|2

c2O
+O11(ξ)

)
ψξ1ξ1 + 2O12(ξ)ψξ1ξ2 +

(
1 +O22(ξ)

)
ψξ2ξ2 = 0 in Ω

for ξ = (ξ1, ξ2) ∈ Ω, where each Oij = Oij(Dϕ,ϕ) satisfies that limξ→Pβ
|Oij(ξ)| = 0 for i, j = 1, 2.

Define k := 1√
1−|DϕO(Pβ)|2/c2O

and ξ̃1 := k(ξ1 − ξ
Pβ

1 ). Let (r, θ) be the polar coordinates of (ξ̃1, ξ2)

centered at Pβ . Then Ω ⊂ {r > 0, 0 < θ < β̃} for tan β̃ = tan β
k .

Next, define

(B.6) Ψ(r, θ) := εr cos(ω0θ)

for constants ε, ω0 > 0 to be determined later. As in [25], choose ε > 0 small and ω0 ∈ (0, 1) close
to 1. A direct computation by using the definition of (r, θ) shows that

(B.7) LΨ =
ε

r
(1 − ω2

0)
(
cos(ω0θ) +O(polar)

1 (r, θ)
)

in Ω,

with limr→0+ |O(polar)
1 (r, θ)| = 0.

A direct computation by using (A.18) and Lemma A.4 gives that

gq(0, 0, Pβ) · (cos β, sinβ) < 0 < gq(0, 0, Pβ) · (1, 0).
Therefore, there exists θ0 ∈ (−π

2 ,−π
2 + β) satisfying that

gq(0,0,Pβ)
|gq(0,0,Pβ)| = (cos θ0, sin θ0). Then it can

be directly checked that

(B.8) gq(0, 0, Pβ) ·DξΨ(r, θ) = ε
(
k cos θ0 cos((1 − ω0)θ) +O(polar)

2 (θ)
)
,

where |O(polar)
2 (θ)| ≤ C♯|1− ω0| for all θ ∈ [0, β̃] with a constant C♯ > 0 chosen independently of ε

and r.

4. Claim: There exist ω∗ ∈ (0, 1) and R2 > 0 such that, whenever ω0 ∈ [ω∗, 1) in (B.6)

and R ≤ R2, the minimum of ψ − Ψ over Ω ∩BR(Pβ) cannot be attained on Γshock ∩ BR(Pβ).
Furthermore, ω∗ and R2 can be chosen independently of ε.

Suppose that (ψ −Ψ)(P∗) = min
Ω∩∂BR(Pβ)

(ψ −Ψ) for P∗ ∈ Γshock ∩ ∂ΩR(Pβ) for some R > 0.

Since ψ−Ψ = 0 at Pβ , ψ−Ψ ≤ 0 at P∗. Let νsh be the unit normal vector to Γshock at P∗ oriented
towards the interior of Ω, and let τsh be a unit tangent vector to Γshock at P∗. Then ψ−Ψ satisfies

(B.9) ∂τsh
(ψ −Ψ)(P∗) = 0, ∂νsh

(ψ −Ψ)(P∗) ≥ 0.

Let PβP
′
∗ be the projection of PβP∗ onto SO. Since (ϕ∞ −ϕO)(P ′

∗) = 0, it follows from (2.4.1) and
(2.4.3)–(2.4.4) that

ε|P∗ − Pβ | ≥ Ψ(P∗)−Ψ(Pβ) ≥ ψ(P∗) = [(ϕ∞ − ϕO)(ξ)]
P∗
ξ=P ′

∗
≥ v∞ sec β |P∗ − P ′

∗|,
which yields that

(B.10) |P∗ − P ′
∗| ≤

ε

v∞ secβ
|P∗ − Pβ |.

From (B.9), we have

(B.11) Dψ(P∗) = DΨ(P ′
∗) +

(
DΨ(P∗)−DΨ(P ′

∗)
)
+ |D(ψ −Ψ)(P∗)|νsh.

Since |D(ϕ∞ − ϕ) · νsh| > 0 on Γshock, there exist constants ε̂, δ > 0 such that ϕ satisfies
|D(ϕ∞ − ϕ)| ≥ δ on the open ε̂–neighborhood Nε̂(Γshock) of Γshock. Since ψ = ϕ∞ − ϕO on Γshock,
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g(Dψ,ψ, ξ) = g(Dψ,ϕ∞ − ϕO, ξ) on Γshock. Define g♯(q, ξ) := g(q, (ϕ∞ − ϕO)(ξ), ξ). Choose
constants σ0, R1 > 0 small so that

(i) g♯(q, ξ) is well defined in Uσ0,R1 = {(q, ξ) : |q| ≤ 2σ0, |ξ − Pβ | ≤ 2R1};
(ii) There is a constant Cg > 0 such that

‖g♯‖C1(Uσ0,R1)
≤ Cg,

∂qg♯(q, ξ) ·
Dϕ∞(ξ′)− q′

|Dϕ∞(ξ′)− q′| ≥ C−1
g for (q, ξ), (q′, ξ′) ∈ Uσ0,R1 .

(B.12)

Such a constant Cg can be chosen independently of (ε, ω0).

Owing to |Dψ(Pβ)| = 0, there exists R1 > 0 small, depending on σ0, such that (Dψ(ξ), ξ) ∈
Rσ0,R1 for all ξ ∈ Ω ∩BR1(Pβ).

If P∗ ∈ Ω ∩BR1/2(Pβ) and ε
v∞ secβ ≤ 1

4 , then (B.10) implies that P ′
∗ ∈ B3R1/4(Pβ). Choose

ε1 ∈ (0, v∞ sec β
4 ] so that, whenever ε ∈ (0, ε1], (∇Ψ(P ′

∗), P
′
∗) ∈ Uσ0,R1 . Note that ε1 can be chosen

depending only on σ0. Then

0 = g♯(Dψ(P∗), P∗)− g♯(0, P
′
∗)

=
(
g♯(Dψ(P∗), P∗)− g♯(Dψ(P∗), P

′
∗)
)
+
(
g♯(Dψ(P∗), P

′
∗)− g♯(0, P

′
∗)
)

=: J1 + J2.

By (B.10) and (B.12), J1 is estimated as

(B.13) |J1| ≤
Cgε

v∞ sec β
|P∗ − Pβ |.

J2 is estimated more carefully by using (B.8) and (B.10)–(B.12) as follows:

J2 =
(
DΨ(P ′

∗) + (DΨ(P∗)−DΨ(P ′
∗)) + |D(ψ −Ψ)(P∗)|νsh

)
·
∫ 1

0

∂qg♯(tDψ(P∗), P
′
∗) dt

≥
(
DΨ(P ′

∗) + (DΨ(P∗)−DΨ(P ′
∗))
)
·
∫ 1

0

∂qg♯(tDψ(P∗), P
′
∗) dt.

Let C♯ be from Step 3. By (B.8) and (B.12),

DΨ(P ′
∗) ·
∫ 1

0

∂qg♯(tDψ(P∗), P
′
∗) dt

≥ ε
(
k cos θ0 cos((1− ω0)β) − C♯|1− ω0| − C|P∗ − Pβ |α

)

for some C > 0 depending on Cg and ‖ψ‖C1,α(Ω). By (B.6), (B.10), and (B.12),

(DΨ(P∗)−DΨ(P ′
∗)) ·

∫ 1

0

∂qg♯(tDψ(P∗), P
′
∗)dt ≥ Cε2|P∗ − Pβ |

for some C > 0 depending on Cg. Therefore, J2 is estimated as

J2 ≥ ε
(
k cos θ0 cos((1 − ω0)β)− C♯|1− ω0| − Ch(|P − Pβ |)

)

for a non-increasing continuous function h(r) that tends to 0 as r tends to 0, where C♯ and C are
chosen, independent of P∗ and ω0. Combine this estimate with (B.13) to obtain

(B.14) ε
(
k cos θ0 cos((1 − ω0)β)− C♯|1− ω0| − C(h(|P∗ − Pβ |) + |P∗ − Pβ |)

)
≤ 0.
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Choose ω∗ ∈ (0, 1) close to 1 and R2 ∈ (0, R1] small, so that

k cos θ0 cos((1 − ω∗)β) − C♯|1− ω∗| − C(h(R2) +R2) ≥
ε

2
k cos θ0.

Under such choices of (ω∗, R2), we arrive at a contradiction whenever ω0 ∈ [ω∗, 1) and P∗ ∈
Γshock∩BR2(Pβ). Thus, ψ−Ψ cannot attain its minimum on Γshock∩BR(Pβ) whenever ω0 ∈ [ω∗, 1)
and R ≤ R2.

5. Claim: Let ω∗ and R2 be from Step 4. There exist ε > 0, ω0 ∈ [ω∗, 1), and R ∈ (0, R2] such
that, for Ψ defined by (B.6), ψ −Ψ attains its minimum over ΩR(Pβ) := Ω ∩BR(Pβ) at Pβ.

By (B.7), there exists a small constant R3 ∈ (0, R2] so that L is uniformly elliptic in ΩR3(Pβ)
and

L(ψ −Ψ) ≤ − ε

2R3
(1− ω2

0) cos(ω0β̃) in ΩR3(Pβ).

By the strong maximum principle and Hopf’s lemma, the minimum of ψ − Ψ over ΩR(Pβ) must
be attained on ∂ΩR3(Pβ) \ Γwedge. It is shown in Step 4 that ψ −Ψ cannot attain its minimum on
Γshock ∩BR3(Pβ).

Denote m := infΩ∩∂BR3 (Pβ) ψ. The claim in Step 2 implies that m > 0. Choose ε > 0

small, depending only on R3, so that ψ − Ψ > 0 on Ω ∩ ∂BR3(Pβ). For such a choice of ε, since
(ψ −Ψ)(Pβ) = 0, we conclude that

min
ΩR3 (Pβ)

(ψ −Ψ) = (ψ −Ψ)(Pβ) = 0.

6. In Steps 4–5, it is shown that we can choose (ε, ω0) in (B.6) so that, if R > 0 is sufficiently
small, the minimum of ψ − Ψ over ΩR(Pβ) must be attained at Pβ , provided that there is an
admissible solution ϕ corresponding to some (v∞, β) ∈ Rstrong, and that ψ is given by ψ = ϕ−ϕO .

By the definition of Ψ with ω0 ∈ (0, 1) and (B.3), and by the C1–regularity of ϕ up to Pβ , there
exists a small constant δ > 0 so that ∂r(ψ−Ψ) < − ε

2 in Ωδ(Pβ). However, this contradicts the fact
that

(ψ −Ψ)(Pβ) = min
ΩR(Pβ)

(ψ −Ψ).

Therefore, we conclude that there exists no admissible solution corresponding to (v∞, β) ∈ Rstrong

in the sense of Definition 2.24. �



APPENDIX C

Quasilinear Elliptic Equations in Two Variables

For the completeness of this work, this appendix includes several properties of quasilinear
elliptic equations, which are used to prove Theorem 2.31. We refer the reader to [11] for the proofs
of these properties as stated below.

C.1. Ellipticity Principle for Self-Similar Potential Flow

The following lemma is an extension of the ellipticity principle of Elling-Liu [26]:

Lemma C.1 (Theorem 5.2.1, [11]). Fix γ ≥ 1 and v∞ > 0. In a bounded domain Ω ⊂ R
2, let

ϕ ∈ C3(Ω) satisfy the equation:

(C.1.1) div
(
ρ(|Dϕ|2, ϕ)Dϕ

)
+ 2ρ(|Dϕ|2, ϕ) = 0

for ρ(|Dϕ|2, ϕ) given by (2.4.2). Denote the pseudo-Mach number asM := |Dϕ|
c(|Dϕ|2,ϕ) for c(|Dϕ|2, ϕ) =

ρ
(γ−1)

2 (|Dϕ|2, ϕ). Let ϕ satisfy that ρ > 0 and M ≤ 1 in Ω. Then the following properties hold:

(a) Either M ≡ 0 holds in Ω or M does not attain its maximum in Ω;

(b) Suppose that diam(Ω) ≤ d for some constant d > 0. Then there exists a constant C0 > 0
depending only on (v∞, γ, d) such that, for any given δ ≥ 0, ĉ ≥ 1, and b ∈ C2(Ω) with

|Db|+ ĉ|D2b| ≤ δ
ĉ in Ω, if c(|Dϕ|2, ϕ) ≤ ĉ holds in Ω, then either M2 ≤ C0δ holds in Ω

or M2 + b does not attain its maximum in Ω.

Lemma C.2 (Theorem 5.3.1, [11]). In a bounded domain Ω ⊂ R
2 with a relatively open flat

segment Γ ⊂ ∂Ω, let ϕ ∈ C3(Ω ∪ Γ) satisfy (C.1.1) in Ω and

∂νϕ = 0 on Γ

for the unit normal vector ν to Γ towards the interior of Ω. Assume that ρ > 0 and M ≤ 1 in

Ω ∪ Γ. Then the following properties hold:

(a) Either M ≡ 0 holds in Ω ∪ Γ or M does not attain its maximum in Ω ∪ Γ;

(b) Let diam(Ω) ≤ d for some constant d > 0. Then there exists a constant C0 > 0 depending

only on (v∞, γ, d) such that, for any given δ ≥ 0, ĉ ≥ 1, and b ∈ C2(Ω) with |Db|+ĉ|D2b| ≤
δ
ĉ in Ω and ∂νb = 0 on Γ, if c(|Dϕ|2, ϕ) ≤ ĉ holds in Ω ∪ Γ, then either M2 ≤ C0δ holds

in Ω ∪ Γ or M2 + b does not attain its maximum in Ω ∪ Γ.

C.2. Uniformly Elliptic Equations Away From the Corners

Consider a quasilinear elliptic equation of the form:

(C.2.1) N (u) = f(x) in Ω,
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with

N (u) :=

2∑

i,j=1

Aij(Du, u,x)Diju+A(Du, u,x),

where

(C.2.2) Aij(p, z,x) = Aji(p, z,x), A(0, 0,x) = 0 for all (p, z,x) ∈ R
2 ×R×Ω and i, j = 1, 2.

Suppose that there exist λ > 0 and α ∈ (0, 1) such that

λ|µ|2 ≤
2∑

i,j=1

Aij(Du(x), u(x),x)µiµj ≤ λ−1|µ|2 for all x ∈ Ω and µ = (µ1, µ2) ∈ R
2,(C.2.3)

‖(Aij , A)(p, z, ·)‖0,α,Ω ≤ λ−1 for all (p, z) ∈ R
2 × R,(C.2.4)

‖D(p,z)(Aij , A)‖0,R2×R×Ω ≤ λ−1.(C.2.5)

For r > 0, let Br denote a ball of radius r in R
2.

Theorem C.3 (Theorem 4.2.1, [11]). For Ω = B2, if u ∈ C2,α(B2) is a solution of (C.2.1)
with

‖u‖0,B2 + ‖f‖0,α,B2 ≤M,

then there exists a constant C > 0 depending only on (λ,M,α) such that

‖u‖2,α,B1 ≤ C
(
‖u‖0,B2 + ‖f‖0,α,B2

)
.

Applying Theorem C.3 to v(x) = 1
ru(rx), we have the following corollary:

Corollary C.4. If u ∈ C2,α(B2r) is a solution of (C.2.1) for r ∈ (0, 1] with

‖u‖0,B2r + ‖f‖0,α,B2r ≤M,

then there exists a constant C > 0 depending only on (λ,M,α) such that

‖u‖2,α,Br ≤ C

r2+α
(
‖u‖0,B2r + r2‖f‖0,α,B2r

)
.

Theorem C.5 (Theorem 4.2.3, [11]). For λ ∈ (0, 1), let Φ ∈ C1(R) satisfy

‖Φ‖1,R ≤ λ−1, Φ(0) = 0.

For R > 0, denote

ΩR := BR(0) ∩ {x2 > εΦ(x1)}, ΓR := BR(0) ∩ {x2 = εΦ(x1)}.
In addition to assumptions (C.2.2)–(C.2.5) with Ω = Ω2r, let W (p2, z, x) satisfy

W (0, 0,x) = 0 on Γ2r,

|∂p2W (p2, z,x)| ≤ ε for all (p2, z,x) ∈ R× R× Γ2r,

‖D(p2,z)W (p2, z, ·)‖1,Γ2r ≤ λ−1 for all (p2, z) ∈ R× R.

Then there exist constants ε, β ∈ (0, 1) and C > 0 depending only on λ such that, for u ∈ C2(Ω2r)∩
C1,β(Ω2r ∪ Γ2r) satisfying (C.2.1) with f = 0 in Ω2r and

(C.2.6) ux1 =W (ux2 , u,x) on Γ2r,

we have

‖u‖1,β,Ω9r/5
≤ C

r1+β
‖u‖0,Ω2r .
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Theorem C.6 (Theorem 4.2.8, [11]). In addition to the assumptions of Theorem C.5, for

α ∈ (0, 1), assume that

‖Φ‖1,α,R ≤ λ−1,

‖D(p2,z)W (p2, z, ·)‖1,α,Γ2r ≤ λ−1 for all (p2, z) ∈ R× R,

‖D2
(p2,z)

W‖1,0,R×R×Γ2r ≤ λ−1.

Then there exist ε ∈ (0, 1) and C > 0 depending only on (λ, α, ‖u‖0,Ω2r ) such that, for u ∈
C2,α(Ω2r ∪ Γ2r) satisfying (C.2.1) with f = 0 in Ω2r and (C.2.6) on Γ2r,

‖u‖2,α,Ω9r/5
≤ C

r2+α
‖u‖0,Ω2r .

Theorem C.7 (Theorem 4.2.10, [11]). For λ ∈ (0, 1) and α ∈ (0, 1), let Φ ∈ C2,α(R) satisfy

‖Φ‖2,α,R ≤ λ−1, Φ(0) = Φ′(0) = 0,

and denote

ΩR := BR(0) ∩ {x2 > Φ(x1)}, ΓR := ∂ΩR ∩ {x2 = Φ(x1)} for R ∈ (0, 2).

Let u ∈ C2,α(ΩR ∪ ΓR) satisfy (C.2.1) in ΩR and

ω ·Du+ b0u = h on ΓR.

Assume that ω = (ω1, ω2)(x) and b0 = b0(x) satisfy the following conditions:

ω · ν ≥ λ on ΓR, ‖(ω, b0)‖1,α,ΓR ≤ λ−1,

where ν represents the unit normal vector to ΓR towards the interior of ΩR. If u satisfies

‖u‖0,ΩR + ‖f‖0,α,ΩR + ‖h‖1,α,ΓR ≤M,

then there exists a constant C > 0 depending only on (λ, α) such that

‖u‖2,α,ΩR/2
≤ C

R2+α

(
‖u‖0,ΩR +R2‖f‖0,α,ΩR +R‖h‖1,α,ΓR

)
.

In addition, there exist β ∈ (0, 1) and Ĉ > 0 depending only on λ such that

‖u‖1,β,ΩR/2
≤ Ĉ

R1+β

(
‖u‖0,ΩR +R2‖f‖0,α,ΩR +R‖h‖0,β,ΓR

)
.

Note that β is independent of α.

Theorem C.8 (Theorem 4.3.2, [11]). Let R > 0, λ ∈ (0, 1), γ ∈ (0, 1), and K > 0. Let

Φ ∈ C1(R) satisfy

‖Φ‖0,1,R ≤ λ−1, Φ(0) = 0.

Let ΩR and ΓR be as in Theorem C.7 for R > 0. Define

d(x) := dist(x,ΓR) for x ∈ ΩR.

Assume that u ∈ C3(ΩR) ∩ C1(ΩR) is a solution of (C.2.1) with f = 0 in ΩR and the boundary

condition:

B(Du, u,x) = 0 on ΓR.

Assume that Aij(p, z,x), i, j = 1, 2, and A(p, z,x) satisfy (C.2.3)–(C.2.5) and the additional prop-

erty:

d(x)γ |Dx(Aij , A)(p, z,x)| ≤ λ−1 for all x ∈ ΩR and |p|+ |z| ≤ 2K,
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and that B(p, z,x) satisfies

|DpB(Du(x), u(x),x)| ≥ λ for all x ∈ ΩR, ‖B‖2,{|p|+|z|≤2K,x∈ΩR} ≤ λ−1.(C.2.7)

Assume that u satisfies

|u|+ |Du| ≤ K on ΩR ∪ ΓR.

Then there exist both β ∈ (0, 1] depending only on (λ,K, γ) and C > 0 depending only on (R, λ,K, γ)
such that

‖u‖1,β,ΩR/2
≤ C, ‖u‖(−1−β),ΓR/2

2,β,ΩR/2
≤ C.

Theorem C.9 (Theorem 4.3.4, [11]). Let the assumptions of Theorem C.8 be satisfied with

γ = 0. In addition, for α, σ ∈ (0, 1), assume that

‖Φ‖C1,σ(R) ≤ λ−1, Φ(0) = 0,

‖(Aij , A)‖C1,α({|p|+|z|≤2K,x∈ΩR}) + ‖B‖C2,α({|p|+|z|≤2K,x∈ΩR}) ≤ λ−1 for j = 1, 2.

Then

‖u‖2,σ,ΩR/4
≤ C,

where C depends only on (λ,K, α, σ,R).

Corollary C.10 (Corollary 4.3.5, [11]). Let the assumptions of Theorem C.8 be satisfied with
γ = 0. In addition, for α ∈ (0, 1) and k ∈ N, assume that

‖Φ‖k,α,R ≤ λ−1, Φ(0) = 0,

‖(Aij , A)‖Ck,α({|p|+|z|≤2K,x∈ΩR}) + ‖B‖Ck+1,α({|p|+|z|≤2K,x∈ΩR}) ≤ λ−1 for j = 1, 2.

Then
‖u‖k+1,α,ΩR/2

≤ C,

where C depends only on (λ,K, k, α,R).

C.3. Quasilinear Degenerate Elliptic Equations

Consider a domain U ⊂ R
2 of the form:

U = {x = (x1, x2) : x1 > 0, x2 ∈ (0, f(x1))},
where f ∈ C1(R+) and f > 0 on R+. For a constant r > 0, denote

Ur = U ∩ {x1 < r},
Γn,r = ∂U ∩ {(x1, 0) : 0 < x1 < r},
Γf,r = ∂U ∩ {(x1, f(x2)) : 0 < x1 < r}.

Consider a boundary value problem of the form:

2∑

i,j=1

Aij(Du, u,x)∂xixju+

2∑

i=1

Ai(Du, u,x)∂xiu = 0 in Ur,

B(Du, u,x) = 0 on Γf,r,

∂x2u = 0 on Γn,r,

u = 0 on Γ0 = ∂U ∩ {x1 = 0}.

(C.3.1)

Theorem C.11 (Theorem 4.7.4, [11]). Given constants r > 0, M ≥ 1, and l, λ ∈ (0, 1), assume

that the following conditions are satisfied:
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(i) Conditions for Γf,r: f is in C1,β([0, r]) for some β ∈ (0, 1) and satisfies

‖f‖(−1−β),{0}
2,β,(0,r) ≤M, f ≥ l on R+.

(ii) Conditions for (Aij , Ai): For any (p, z,x) ∈ R
2 × R× Ur and κ = (κ1, κ2) ∈ R

2,

λ|κ|2 ≤
2∑

i,j=1

Aij(p, z,x)
κiκj

x
2− i+j

2
1

≤ λ−1|κ|2.

In addition, (Aij , Ai) satisfy the following estimates:

‖(A11, A12)‖0,1,R2×R×Ur
≤M,

|∂x2A11(p, z,x)| ≤Mx
1/2
1 in R

2 × R× Ur,

‖(A22, A1, A2)‖0,R2×R×Ur
+ ‖D(p,z)(A22, A1, A2)‖0,R2×R×Ur

≤M,

sup
(p,z)∈R2×R,x∈Ur

|(x1∂x1 , x
1/2
1 ∂x2)(A22, A1, A2)(p, z,x)| ≤M.

(iii) Conditions for B: For any (p, z,x) ∈ R
2 × R× Γf,r,

(C.3.2) ∂p1B(p, z,x) ≤ −M−1.

In addition, B satisfies the following estimates:

‖B‖3,R2×R×Γf,r
≤M, B(0, 0,x) = 0 on Γf,r.

Let u ∈ C(Ur) ∩ C2(Ur \ Γ0) be a solution of the boundary value problem (C.3.1) satisfying that

|u(x)| ≤Mx21 in Ur.

Then, for any α ∈ (0, 1), there exist constants r0 ∈ (0, 1] and C > 0 depending only on (M,λ, α)
such that, for ε := min{ r2 , r0, l2},

‖u‖(2),(par)2,α,Uε
≤ C.

C.4. Estimates at a Corner for the Oblique Derivative Boundary Value Problems

Proposition C.12 (Proposition 4.3.7, [11]). Let R > 0, β ∈ (0, 1), γ ∈ [0, 1), λ > 0, and
K,M ≥ 1. Let Ω ⊂ R

2 be a domain with x0 ∈ ∂Ω and ∂Ω∩BR(x0) = Γ1 ∪ Γ2, where Γk, k = 1, 2,
are two Lipschitz curves intersecting only at x0 and contained within x0 + {x = (x1, x2) ∈ R

2 :
x2 > τ |x1|} for some τ > 0. Denote

ΩR := Ω ∩BR(x0).

Assume that Γ2 is C1,σ up to the endpoints for some σ ∈ (0, 1) with ‖Γ2‖C1,σ ≤ M in the sense
that there exist c(2) > 0 and f (2) ∈ C1,σ([0, c(2)]) such that, in an appropriate basis in R

2,

ΩR ⊂ {x : x2 > f (2)(x1), 0 < x1 < c(2)}, Γ2 = {x2 = f (2)(x1) : 0 < x1 < c(2)}.

Let u ∈ C1(ΩR) ∩ C2(ΩR ∪ Γ2) ∩ C3(ΩR) satisfy

(C.4.1) ‖u‖C0,1(ΩR) ≤ K.
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Assume that u is a solution of
2∑

i,j=1

aij(Du, u,x)Diju+ a(Du, u,x) = 0 in ΩR,(C.4.2)

b(1)(Du, u,x) = h(x) on Γ1,(C.4.3)

b(2)(Du, u,x) = 0 on Γ2,(C.4.4)

where (aij , a, b
(k)) are defined in V = {(p, z,x) ∈ R

2 × R × Ω : |p| + |z| ≤ 2K}. Assume that

(aij , a) ∈ C(V ) ∩ C1(V \ {x = x0}), b(1) ∈ C2(V ), b(2) ∈ C1(V ), and h ∈ C(Γ1) with

‖(aij , a)‖C0(V ) + ‖D(p,z)(aij , a)‖C0(V ) ≤M,(C.4.5)

|Dx(aij , a)(p, z,x)| ≤M |x− x0|−γ for all (p, z,x) ∈ V ,(C.4.6)

‖b(1)‖C2(V ) + ‖b(2)‖C1(V ) ≤M,(C.4.7)

|h(x)− h(x0)| ≤
λ−1

Rβ
|x− x0|β for all x ∈ Γ1.(C.4.8)

In addition to the conditions stated above, assume that the following properties hold:

(i) For any x ∈ ΩR and κ = (κ1, κ2) ∈ R
2,

λ|κ|2 ≤
2∑

i,j=1

aij(Du(x), u(x),x)κiκj ≤ λ−1|κ|2;

(ii) For any x ∈ Γ1, |Dpb
(1)(Du(x), u(x),x)| ≥ λ;

(iii) For any x ∈ Γ2, Dpb
(2)(Du(x), u(x),x) · ν ≥ λ, where ν is the inner unit normal vector

to Γ2;

(iv) b(1) and b(2) are independent for u on Γ2 in the sense that, for any x ∈ Γ2,
∣∣∣∣det

(
Dpb

(1)(Du(x), u(x),x)

Dpb
(2)(Du(x), u(x),x)

)∣∣∣∣ ≥ λ for any x ∈ Γ2.

Then there exist α ∈ (0, β] and C depending only on (λ,K,M), and R′ ∈ (0, R] depending only on
(λ, γ,K,M,α) so that, for any x ∈ ΩR′ ,

|b(1)(Du(x), u(x),x) − b(1)(Du(x0), u(x0),x0)| ≤ C|x− x0|α.
Proposition C.13 (Proposition 4.3.9, [11]). In addition to the assumptions of Proposition

C.12, assume that

(C.4.9) |b(k)(p, z,x)− b(k)(p̃, z̃, x̃)| ≤M |(p, z,x)− (p̃, z̃, x̃)| for k = 1, 2,

for all (p, z,x), (p̃, z̃, x̃) ∈ V . Moreover, denoting h(k)(p) = b(k)(p, u(x0),x0), k = 1, 2, and

noting that functions h(k) are defined in BK(Du(x0)), assume that h(k) ∈ C1,α(BK(Du(x0))) with
‖h(k)‖

C1,α(BK/2(Du(x0)))
≤M for some α ∈ (0, 1), and

(C.4.10)

∣∣∣∣det
(
Dph

(1)(Du(x0))
Dph

(2)(Du(x0))

)∣∣∣∣ ≥ λ.

Let W ⊂ ΩR satisfy

(C.4.11) x0 ∈W, ∅ 6=W ∩ ∂Br(x0) ⊂W ∩Br(x0) for all r ∈ (0, R).
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For each k = 1, 2, let

(C.4.12) |b(k)(Du(x), u(x),x) − b(k)(Du(x0), u(x0),x0)| ≤M |x− x0|α for all x ∈ W.

Then there exists a constant C > 0 depending only on (K,M,R, α) such that, for all x ∈W ,

|Du(x)−Du(x0)| ≤ C|x− x0|α.
Proposition C.14 (Proposition 4.3.11, [11]). Let R, λ > 0, α ∈ (0, 1], γ ∈ [0, 1), and M ≥ 1.

(a) Let ΩR be as in Proposition C.12. Assume that Γ1 and Γ2 satisfy that, for each k = 1, 2,

(i) Γk ∈ C1 with ‖Γk‖C0,1 ≤M ,

(ii) B d(x)
M

(x) ∩ ∂ΩR = B d(x)
M

∩ Γk for all x ∈ Γk ∩B 3R
4
(x0), for d(x) := |x− x0|.

Let u ∈ C1(ΩR)∩C3(ΩR) be a solution of (C.4.2)–(C.4.4) with h ≡ 0, where (aij , a)(p, z,x) satisfy
all the conditions stated in Proposition C.12. In addition, assume that, for each k = 1, 2,

‖b(k)‖C2(V ) ≤M,

|Dpb
(k)(Du(x), u(x),x)| ≥ λ for all x ∈ ΩR.

Moreover, assume that u satisfies

(C.4.13) |Du(x) −Du(x0)| ≤M |x− x0|α for all ΩR.

Then there exist β ∈ (0, α] depending only on (λ,K,M,α) and C > 0 depending on (λ,K,M,R, α)
such that u ∈ C1,β(ΩR/2) with

‖u‖C1,β(ΩR/2)
≤ C.

(b) In addition to the previous assumptions, if ‖Γk‖C1,σ ≤ M , k = 1, 2, for some σ ∈ (0, 1), if
(aij , a) satisfy

‖(aij , a)(0, 0, ·), Dm
(p,z)(aij , a)(p, z, ·)‖

(−δ),{x0}
1,δ,ΩR

≤M

for any (p, z) satisfying |p|+ |z| ≤ 2K and for m = 1, 2, and if each b(k) satisfies

‖b(k)‖C2,δ(V ) ≤M for k = 1, 2,

for some δ ∈ (0, 1), then there exists a constant C > 0 depending only on (λ,K,M,R, α, σ, δ) such
that u satisfies

‖u‖(−1−α),{x0}
2,σ,ΩR/2

≤ C.

C.5. Well-Posedness of a Nonlinear Boundary Value Problem

For a constant h > 0 and a function fbd : [0, h] → R+, Denote a bounded domain Ω ⊂ R
2 as

(C.5.1) Ω := {x = (x1, x2) ∈ R
2 : x1 ∈ (0, h), x2 ∈ (0, fbd(x1))},

where fbd satisfies that, for constants t0 ≥ 0, t1 > 0, t2 > 0, th > 0, α ∈ (0, 1), and M > 0,

fbd ∈ C1([0, h]), fbd(0) = t0, fbd(h) = th,

fbd(x1) ≥ min{t1x1 + t0, t2},
‖fbd‖(−1−α),{0,h}

2,α,(0,h) ≤M.

(C.5.2)
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We denote the boundary vertices and segments as follows:

P1 = (0, t0), P2 = (h, th), P3 = (h, 0), P4 = (0, 0),

Γl = ∂Ω ∩ {x1 = 0}, Γr = ∂Ω ∩ {x1 = h},
Γt = ∂Ω ∩ {x2 = fbd(x1)}, Γb = ∂Ω ∩ {x2 = 0};

(C.5.3)

and Γl, Γr, Γt, and Γb are the relative interiors of the segments defined above.
Let φ0(x) be a piecewise smooth function defined in R

2 such that

• φ0 ∈ C∞({x1 ≤ h
3}) ∩C∞({x1 ≥ 2h

3 }) with ‖φ0‖C3(Ω\{ h
3<x1<

2h
3 }) ≤ Cφ0 ,

• φ0 ≡ 0 in {x1 ≤ h
4 },

• φ0 is linear in {x1 ≥ 3h
4 },

• ∂x2φ0 = 0 on Γb.

Consider a nonlinear boundary value problem:

2∑

i,j=1

Aij(Du,x)Diju+

2∑

i=1

Ai(Du,x)Diu = 0 in Ω,

u = φ0 on Γl ∪ Γr,

B(Du, u,x) = 0 on Γt,

∂x2u = 0 on Γb.

(C.5.4)

Assume that (C.5.4) satisfies that, for constants λ ∈ (0, 1), M < ∞, α ∈ (0, 1), β ∈ [ 12 , 1),

σ ∈ (0, 1), and ε ∈ (0, h10 ), the following properties holds:

(i) For any x ∈ Ω, and p,κ = (κ1, κ2) ∈ R
2,

λdist(x,Γl ∪ Γr)|κ|2 ≤
2∑

i,j=1

Aij(p,x)κiκj ≤ λ−1|κ|2.

(ii) For any x ∈ Ω \ { ε2 < x1 < h− ε
2} and p,κ = (κ1, κ2) ∈ R

2,

λ|κ|2 ≤
2∑

i,j=1

Aij(p,x)κiκj

(min{x1, h− x1, δ})2−
i+j
2

≤ λ−1|κ|2.

(iii) (Aij , Ai)(p,x) are independent of p on Ω ∩ {ε ≤ x1 ≤ h− ε} with

‖Aij‖L∞(Ω∩{ε≤x1≤h−ε}) + ‖(Aij , Ai)‖C1,α(Ω∩{ε≤x≤h−ε}) ≤M.

(iv) For any p ∈ R
2,

‖(Aij , Ai)(p, ·)‖Cβ(Ω\{2ε<x1<h−2ε}) + ‖(DpAij , DpAi)(p, ·)‖L∞(Ω\{2ε<x1<h−2ε}) ≤M.

(v) (Aij , Ai) ∈ C1,α(R2 × (Ω \ Γl ∪ Γr)) and

‖(Aij , Ai)‖C1,α(R2×(Ω∩{s≤x1≤h−s})) ≤M
(h
s

)M
for all s ∈ (0,

h

4
).

(vi) For each (p,x) ∈ R
2 × Ω \ {h4 ≤ x1 ≤ 3h

4 }, define
p̂ = p−Dφ0(x), (aij , ai)(p̂,x) = (Aij , Ai)(p,x).
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For each (p, (x1, 0)) ∈ R
2 × (Γb \ {ε ≤ x1 ≤ h− ε}),

(a11, a22, a1)((p̂1,−p̂2), (x1, 0)) = (a11, a22, a1)((p̂1, p̂2), (x1, 0)),

and, for all (p,x) ∈ R
2 × (Ω \ {ε ≤ x1 ≤ h− ε}), i = 1, 2,

|aii(p, (x1, x2))− aii(Dφ0(0, x2), (0, x2))| ≤M |x1|β when x1 < ε,

|aii(p, (x1, x2))− aii(Dφ0(h, x2), (0, x2))| ≤M |x1 − h|β when x1 > h− ε.

In Ω \ {ε ≤ x1 < h− ε}, φ0 satisfies

2∑

i,j=1

Aij(Du,x)Dijφ0 +

2∑

i=1

Ai(Du,x)Diφ0 = 0,

so that the equation for u in (C.5.4) is written as an equation for û = u− φ0 in the form:

2∑

i,j=1

aij(Dû,x)Dij û+

2∑

i=1

ai(Dû,x)Diû = 0.

(vii) For any p ∈ R
2 and x ∈ Γl ∪ Γr, (A12, A21)(p,x) = 0.

(viii) For any p ∈ R
2 and x ∈ Ω \ { ε2 ≤ x1 ≤ h− ε

2}, A1(p,x) ≤ −λ.
(ix) For any (p, z,x) ∈ R

2 × R × Γt, DpB(p, z,x) · ν(1)(x) ≥ λ, where ν(1) is the inner unit
normal vector to Γt towards the interior of Ω;

(x) For any (p, z) ∈ R
2 × R,

‖(B(Dφ0, φ0, ·)‖C3(Ω\{h
3<x1<

2h
3 }) + ‖Dk

(p,z)(p, z, ·))‖C3(Ω) ≤M for k = 1, 2, 3,

‖DpB(p, z, ·)‖C0(Ω) ≤ λ−1,

DzB(p, z,x) ≤ −λ for all x ∈ Γt,

Dp1B(p, z,x) ≤ −λ for all Γt \ {ε ≤ x1 ≤ h− ε}.

(xi) There exist v ∈ C3(Γt) and a nonhomogeneous linear operator:

L(p, z,x) = b(1)(x) · p+ b
(1)
0 (x)z + g1(x),

defined for x ∈ Γt and (p, z) ∈ R
2 × R, satisfying

‖v‖C3(Ω) + ‖(b(1), b
(1)
0 , g1)‖C3(Γt)

≤M

such that, for all (p, z,x) ∈ R
2 × R× Γt,

|B(p, z,x)− L(p, z,x)| ≤ σ
(
|p−Dv(x)|+ |z − v(x)|

)
,

|DpB(p, z,x)− b(1)(x)|+ |DzB(p, z,x)− b
(1)
0 (x)| ≤ σ.

From [11, Propositions 4.7.2 and 4.8.7], the following two propositions are obtained:

Proposition C.15. For fixed constants λ > 0, M < ∞, α ∈ (0, 1), β ∈ [ 12 , 1), and ε ∈ (0, h10 ),

there exist constants α1 ∈ (0, 12 ), σ ∈ (0, 1), and δ0 > 0 with α1 depending only on λ, and (σ, δ0)
depending only on (λ,M,Cφ0 , α, β, ε) such that the following statement holds: let domain Ω be
defined by (C.5.1), and let the nonlinear boundary value problem (C.5.4) satisfy all the conditions
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stated above with h, th, t1, t2, t0 ≥ 0, ε ∈ (0, h10 ), and δ ∈ [0, δ0). Then the boundary value problem

(C.5.4) has a unique solution u ∈ C(Ω) ∩ C1(Ω \ (Γl ∪ Γr)) ∩ C2(Ω). Moreover, u satisfies

(C.5.5) ‖u‖C0(Ω) ≤ C, |u(x)− φ0(x)| ≤ Cmin{x1, h− x1} in Ω

with a constant C > 0 depending only on (λ,M,Cφ0 , ε). Furthermore, u is in C(Ω)∩C2,α1 (Ω\Γl∪Γr)
and satisfies

(C.5.6) ‖u‖C2,α1(Ω∩{s<x1<h−s}) ≤ Cs

for each s ∈ (0, h10 ) with a constant Cs > 0 depending only on (λ,M,Cφ0 , α, β, ε, s).

Proposition C.16. For fixed constants λ > 0, δ > 0, M < ∞, α ∈ (0, 1), β ∈ [ 12 , 1), and

ε ∈ (0, h10 ), there exist constants α1 ∈ (0, 12 ), σ ∈ (0, 1) with α1 depending only on (λ, δ), and σ > 0
depending only on (λ, δ,M,Cφ0 , α, β, ε) such that the following statement holds: let domain Ω be
of the structure of (C.5.1)–(C.5.3) with h > 0, th > 0, t1 ≥ 0, t2 ≥ 0, and t0 = 0, that is,

P1 = P4 = (0, 0), Γl = {(0, 0)},
and let the nonlinear boundary value problem (C.5.4) satisfy conditions (iii), (v), and (ix)–(xi)
above, and the following modified conditions:

(i*) For any x ∈ Ω and p,κ = (κ1, κ2) ∈ R
2,

min{λdist(x,Γl) + δ, λdist(x,Γr)}|κ|2 ≤
2∑

i,j=1

Aij(p,x)κiκj ≤ λ−1|κ|2,

‖(Aij , Ai)(Dφ0, ·), Dm
p (Aij , Ai)(p, ·)‖(−α),{P1}

1,α,Ω∩{x1<2ε} ≤M for m = 1, 2.

(ii*) Condition (ii) holds for any x ∈ Ω ∩ {dist(x,Γr) <
ε
2} and p,κ ∈ R

2.

(iv*) For any p ∈ R
2,

‖(Aij , Ai)(p, ·)‖Cβ(Ω∩{x1≥h−2ε}) + ‖(DpAij , DpAi)(p, ·)‖L∞(Ω∩{x1>h−2ε}) ≤M.

(vi*) For each (p, (x1, 0)) ∈ R
2 × (Γb ∩ {x1 > h− ε}),

(a11, a22, a1)((p̂1,−p̂2), (x1, 0)) = (a11, a22, a1)((p̂1, p̂2), (x1, 0)),

and, for all (p,x) ∈ R
2 × (Ω ∩ {x1 > h− ε}),

|aii(p, (x1, x2))− aii(Dφ0(h, x2), (0, x2))| ≤M |x1 − h|β , i = 1, 2.

(vii*) Condition (vii) holds for all p ∈ R
2 and x ∈ Γr.

(viii*) Condition (viii) holds for all p ∈ R
2 and x ∈ Ω ∩ {x1 > h− ε

2}.
Then the boundary value problem (C.5.4) has a unique solution u ∈ C(Ω)∩C1(Ω\(Γl∪Γr))∩C2(Ω).
Moreover, solution u is in C(Ω)∩C2,α1(Ω\(Γl∪Γr)) and satisfies (C.5.5)–(C.5.6) for C > 0 in (C.5.5)
depending only on (λ, δ,M,Cφ0 , ε), and Cs > 0 depending on (λ, δ,M,Cφ0 , ε, s). Furthermore, u
satisfies

‖u‖(−1−α1),{P1}
2,α1,Ω∩{x1<

h
4 }

≤ Ĉ

for constant Ĉ > 0 depending only on (δ, λ,M, α, ε).
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