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0. NOTATION

0.0.1 The Greek Alphabet

A,α alpha H, η eta N, ν nu T, τ tau
B, β beta Θ, θ theta Ξ, ξ xi Y, υ upsilon
Γ, γ gamma I, ι iota O, o omicron Φ, φ, ϕ phi
∆, δ delta K,κ kappa Π, π pi X,χ chi
E, � epsilon Λ, λ lambda P, ρ, ( rho Ψ, ψ psi
Z, ζ zeta M,μ mu Σ, σ, ς sigma Ω, ω omega

0.0.2 Set Theory and Functions

R the set of real numbers;
C the set of complex numbers;
Q the set of rational numbers – i.e. the fractions,
Z the set of integers – i.e. the whole numbers;
N the set of natural numbers – i.e. the non-negative whole numbers;
Rn n-dimensional real space – i.e. the set of all real n-tuples (x1, x2, . . . , xn);
R [x] the set of polynomials in x with real coefficients;
∈ is an element of – e.g.

√
2 ∈ R and π 6∈ Q;

⊂,⊆ is a subset of – e.g. N ⊆ Z ⊆ Q ⊆ R ⊆ C;
|X| the cardinality (size) of the set X;
X ∪ Y the union of two sets – read ‘cup’ – {s : s ∈ X or s ∈ Y };
X ∩ Y the intersection of two sets – read ‘cap’ – {s : s ∈ X and s ∈ Y };
X × Y the Cartesian product of X and Y – {(x, y) : x ∈ X and y ∈ Y };
X − Y or X\Y the complement of Y in X – {s : s ∈ X and s 6∈ Y } ;
∅ the empty set.
f : X → Y f is a function, map, mapping from a set X to a set Y ;

X is called the domain and Y is called the codomain;
f (X) or f [X] the image or range of the function f – i.e. the set {f (x) : x ∈ X};
g ◦ f the composition of the maps g and f — do f first then g;
f is injective or 1-1 if f (x) = f (y) then x = y;
f is surjective or onto for each y ∈ Y there exists x ∈ X such that f (x) = y;
f is bijective f is 1-1 and onto;
f is invertible there exists a function f−1 : Y → X s.t.f ◦ f−1 = idY and f−1 ◦ f = idX ;
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0.0.3 Logic

: or | or s.t. such that;
∀ for all;
∃ there exists;
=⇒ implies, is sufficient for, only if;
⇐= is implied by, is necessary for;
⇐⇒ if and only if, is logically equivalent to;
¬ negation, not;
∨ logical or, maximum;
∧ logical and, minimum;
¤ or QED found at the end of a proof;

0.0.4 Miscellaneous

(a, b) the real interval a < x < b;
[a, b] the real interval a ≤ x ≤ b;
nX

k=1

ak the sum a1 + a2 + · · ·+ an;

nY
k=1

ak the product a1a2 · · · an;

∇ grad, (also read as ‘del’ or ‘nabla’);
∂ partial differentiation;
⊕ direct sum;
± plus or minus;
n! n factorial – i.e. 1× 2× 3× · · · × n

6 NOTATION



1. COMPLEX NUMBERS

1.1 Their Algebra

1.1.1 The Need For Complex Numbers

All of you will know that the two roots of the quadratic equation ax2+bx+c = 0
are

x =
−b±

√
b2 − 4ac
2a

(1.1)

and solving quadratic equations is something that mathematicians have been
able to do since the time of the Babylonians. When b2−4ac > 0 then these two
roots are real and distinct; graphically they are where the curve y = ax2+bx+c
cuts the x-axis. When b2 − 4ac = 0 then we have one real root and the curve
just touches the x-axis here. But what happens when b2−4ac < 0? Then there
are no real solutions to the equation as no real squares to give the negative
b2 − 4ac. From the graphical point of view the curve y = ax2 + bx + c lies
entirely above or below the x-axis.

-1 1 2 3

-1

1

2

3

Distinct real roots
-1 1 2 3

1

2

3

4

Repeated real root
-1 1 2 3

0.5

1

1.5

2

2.5

3

3.5

4

Complex roots

It is only comparatively recently that mathematicians have been comfort-
able with these roots when b2−4ac < 0. During the Renaissance the quadratic
would have been considered unsolvable or its roots would have been called
imaginary. (The term ‘imaginary’ was first used by the French Mathemati-
cian René Descartes (1596-1650). Whilst he is known more as a philosopher,
Descartes made many important contributions to mathematics and helped
found co-ordinate geometry — hence the naming of Cartesian co-ordinates.)
If we imagine

√
−1 to exist, and that it behaves (adds and multiplies) much

the same as other numbers then the two roots of the quadratic can be written
in the form

x = A±B
√
−1 (1.2)

where

A = − b

2a
and B =

√
4ac− b2

2a
are real numbers.
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But what meaning can such roots have? It was this philosophical point
which pre-occupied mathematicians until the start of the 19th century when
these ‘imaginary’ numbers started proving so useful (especially in the work of
Cauchy and Gauss) that essentially the philosophical concerns just got forgot-
ten about.

Notation 1 We shall from now on write i for
√
−1, though many books, par-

ticularly those written for engineers and physicists use j instead. The notation
i was first introduced by the Swiss mathematician Leonhard Euler (1707-1783).
Much of our modern notation is due to him including e and π. Euler was a
giant in 18th century mathematics and the most prolific mathematician ever.
His most important contributions were in analysis (e.g. on infinite series, cal-
culus of variations). The study of topology arguably dates back to his solution
of the Königsberg Bridge Problem.

Definition 2 A complex number is a number of the form a+ bi where a and
b are real numbers. If z = a+ bi then a is known as the real part of z and b as
the imaginary part. We write a = Re z and b = Im z. Note that real numbers
are complex – a real number is simply a complex number with no imaginary
part. The term ‘complex number’ is due to the German mathematician Carl
Gauss (1777-1855). Gauss is considered by many the greatest mathematician
ever. He made major contributions to almost every area of mathematics from
number theory, to non-Euclidean geometry, to astronomy and magnetism. His
name precedes a wealth of theorems and definitions throughout mathematics.

Notation 3 We write C for the set of all complex numbers.

One of the first major results concerning complex numbers and which con-
clusively demonstrated their usefulness was proved by Gauss in 1799. From
the quadratic formula (1.1) we know that all quadratic equations can be solved
using complex numbers – what Gauss was the first to prove was the much
more general result:

Theorem 4 (FUNDAMENTAL THEOREM OF ALGEBRA). The roots of
any polynomial equation a0 + a1x + a2x

2 + · · · + anx
n = 0 with real (or com-

plex) coefficients ai are complex. That is there are n (not necessarily distinct)
complex numbers γ1, . . . , γn such that

a0 + a1x+ a2x
2 + · · ·+ anx

n = an (x− γ1) (x− γ2) · · · (x− γn) .

In particular the theorem shows that an n degree polynomial has, counting
multiplicities, n roots in C.

The proof of this theorem is far beyond the scope of this article. Note that the
theorem only guarantees the existence of the roots of a polynomial somewhere
in C unlike the quadratic formula which plainly gives us the roots. The theorem
gives no hints as to where in C these roots are to be found.

8 COMPLEX NUMBERS



1.1.2 Basic Operations

We add, subtract, multiply and divide complex numbers much as we would
expect. We add and subtract complex numbers by adding their real and imag-
inary parts:-

(a+ bi) + (c+ di) = (a+ c) + (b+ d) i,

(a+ bi)− (c+ di) = (a− c) + (b− d) i.

We can multiply complex numbers by expanding the brackets in the usual
fashion and using i2 = −1,

(a+ bi) (c+ di) = ac+ bci+ adi+ bdi2 = (ac− bd) + (ad+ bc) i.

To divide complex numbers we note firstly that (c+ di) (c− di) = c2 + d2 is
real. So

a+ bi

c+ di
=

a+ bi

c+ di
× c− di

c− di
=

µ
ac+ bd

c2 + d2

¶
+

µ
bc− ad

c2 + d2

¶
i.

The number c−di which we just used, as relating to c+di, has a special name
and some useful properties – see Proposition 11.

Definition 5 Let z = a+ bi. The conjugate of z is the number a− bi and this
is denoted as z̄ (or in some books as z∗).

• Note from equation (1.2) that when the real quadratic equation

ax2 + bx+ c = 0

has complex roots then these roots are conjugates of each other. Gener-
ally if z0 is a root of the polynomial anzn+an−1z

n−1+ · · ·+a0 = 0 where
the ai are real then so is its conjugate z0.

Problem 6 Calculate, in the form a+ bi, the following complex numbers:

(1 + 3i) + (2− 6i) , (1 + 3i)− (2− 6i) , (1 + 3i) (2− 6i) , 1 + 3i

2− 6i .

Solution.

(1 + 3i) + (2− 6i) = (1 + 2) + (3 + (−6)) i = 3− 3i;
(1 + 3i)− (2− 6i) = (1− 2) + (3− (−6)) i = −1 + 9i.
(1 + 3i) (2− 6i) = 2 + 6i− 6i− 18i2 = 2 + 18 = 20.

Division takes a little more care, and we need to remember to multiply through
by the conjugate of the denominator:

1 + 3i

2− 6i =
(1 + 3i) (2 + 6i)

(2− 6i) (2 + 6i) =
2 + 6i+ 6i+ 18i2

22 + 62
=
−16 + 12i

40
=
−2
5
+
3

10
i.
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We present the following problem because it is a common early misconcep-
tion involving complex numbers – if we need a new number i as the square
root of −1, then shouldn’t we need another one for the square root of i? But
z2 = i is just another polynomial equation, with complex coefficients, and two
(perhaps repeated) roots in C are guaranteed by the Fundamental Theorem of
Algebra. They are also quite easy to calculate.

Problem 7 Find all those z that satisfy z2 = i.

Solution. Suppose that z2 = i and z = a+ bi, where a and b are real. Then

i = (a+ bi)2 =
¡
a2 − b2

¢
+ 2abi.

Comparing the real and imaginary parts we see that

a2 − b2 = 0 and 2ab = 1.

So b = ±a from the first equation. Substituting b = a into the second equation
gives a = b = 1/

√
2 or a = b = −1/

√
2. Substituting b = −a into the second

equation of gives −2a2 = 1 which has no real solution in a.
So the two z which satisfy z2 = i, i.e. the two square roots of i, are

1 + i√
2

and
−1− i√

2
.

Notice, as with square roots of real numbers, that the two roots are negative
one another.

Problem 8 Use the quadratic formula to find the two solutions of

z2 − (3 + i) z + (2 + i) = 0.

Solution. We see that a = 1, b = −3− i, and c = 2 + i. So

b2 − 4ac = (−3− i)2 − 4× 1× (2 + i) = 9− 1 + 6i− 8− 4i = 2i.

Knowing
√
i = ±1 + i√

2

from the previous problem, we have

x =
−b±

√
b2 − 4ac
2a

=
(3 + i)±

√
2i

2
=
(3 + i)±

√
2
√
i

2

=
(3 + i)± (1 + i)

2
=
4 + 2i

2
or

2

2
= 2 + i or 1.

Note that the two roots are not conjugates of one another – this need not be
the case when the coefficients a, b, c are not all real.
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1.1.3 The Argand Diagram

The real numbers are often represented on the real line which increase as we
move from left to right

The real number line

The complex numbers, having two components, their real and imaginary parts,
can be represented as a plane; indeed C is sometimes referred to as the complex
plane, but more commonly when we represent C in this manner we call it an
Argand diagram. (After the Swiss mathematician Jean-Robert Argand (1768-
1822)). The point (a, b) represents the complex number a+bi so that the x-axis
contains all the real numbers, and so is termed the real axis, and the y-axis
contains all those complex numbers which are purely imaginary (i.e. have no
real part) and so is referred to as the imaginary axis.

-4 -2 2 4

-3

-2

-1

1

2 3 + 2 i

2 - 3 i

- 3 + i

An Argand diagram

We can think of z0 = a + bi as a point in an Argand diagram but it is
often useful to think of it as a vector as well. Adding z0 to another complex
number translates that number by the vector

¡
a
b

¢
. That is the map z 7→ z+ z0

represents a translation a units to the right and b units up in the complex
plane.

Note that the conjugate z̄ of a point z is its mirror image in the real axis. So,
z 7→ z̄ represents reflection in the real axis. We shall discuss in more detail the
geometry of the Argand diagram in § 1.3.

A complex number z in the complex plane can be represented by Cartesian
co-ordinates, its real and imaginary parts, but equally useful is the representa-
tion of z by polar co-ordinates. If we let r be the distance of z from the origin

THEIR ALGEBRA 11



and, if z 6= 0, we let θ be the angle that the line connecting z to the origin
makes with the positive real axis then we can write

z = x+ iy = r cos θ + ir sin θ. (1.3)

The relations between z’s Cartesian and polar co-ordinates are simple – we
see that

x = r cos θ and y = r sin θ,

r =
p
x2 + y2 and tan θ =

y

x
.

Definition 9 The number r is called the modulus of z and is written |z| . If
z = x+ iy then

|z| =
p
x2 + y2.

Definition 10 The number θ is called the argument of z and is written arg z.
If z = x+ iy then

sin arg z =
yp

x2 + y2
, cos arg z =

xp
x2 + y2

and tan arg z =
y

x
.

Note that the argument of 0 is undefined. Note also that arg z is defined only up
to multiples of 2π. For example, the argument of 1+ i could be π/4 or 9π/4 or
−7π/4 etc.. For simplicity we shall give all arguments in the range 0 ≤ θ < 2π,
so that π/4 would be the preferred choice here.

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2 zImz�2

Rez�3
arg�z�

�z�

A complex number’s Cartesian and polar co-ordinates
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We now prove some important formulae about properties of the modulus,
argument and conjugation:—

Proposition 11 The modulus, argument and conjugate functions satisfy the
following properties. Let z, w ∈ C. Then

|zw| = |z| |w| , (1.4)¯̄̄ z
w

¯̄̄
=

|z|
|w| if w 6= 0, (1.5)

z ± w = z ± w, (1.6)

zw = z w, (1.7)

arg (zw) = arg z + argw if z, w 6= 0, (1.8)

zz = |z|2 , (1.9)

arg
³ z
w

´
= arg z − argw if z, w 6= 0, (1.10)³ z

w

´
=

z

w
if w 6= 0, (1.11)

|z| = |z| , (1.12)

arg z = − arg z, (1.13)

|z + w| ≤ |z|+ |w| , (1.14)

||z|− |w|| ≤ |z − w| . (1.15)

Proof. Identity (1.4) |zw| = |z| |w| .
Let z = a+ bi and w = c+ di. Then zw = (ac− bd) + (bc+ ad) i so that

|zw| =
q
(ac− bd)2 + (bc+ ad)2

=
√
a2c2 + b2d2 + b2c2 + a2d2

=
p
(a2 + b2) (c2 + d2)

=
√
a2 + b2

√
c2 + d2 = |z| |w| .

Proof. Identity (1.8) arg (zw) = arg z + argw.
Let z = r (cos θ + i sin θ) and w = R (cosΘ+ i sinΘ) . Then

zw = rR (cos θ + i sin θ) (cosΘ+ i sinΘ)

= rR ((cos θ cosΘ− sin θ sinΘ) + i (sin θ cosΘ+ cos θ sinΘ))

= rR (cos (θ +Θ) + i sin (θ +Θ)) .

We can read off that |zw| = rR = |z| |w| , which is a second proof of the
previous part, and also that

arg (zw) = θ +Θ = arg z + argw, up to multiples of 2π.

THEIR ALGEBRA 13



Proof. Identity (1.7) zw = z w.
Let z = a+ bi and w = c+ di. Then

zw = (ac− bd) + (bc+ ad) i

= (ac− bd)− (bc+ ad) i

= (a− bi) (c− di) = z w.

Proof. Identity (1.14): the Triangle Inequality |z + w| ≤ |z| + |w|. A dia-
grammatic proof of this is simple and explains the inequality’s name:

0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0.5

1

z
w �as a vector�

w

z�w

Note that the shortest distance between 0 and z +w is the modulus of z +w.
This is shorter in length than the path which goes from 0 to z to z + w. The
total length of this second path is |z| + |w| . For an algebraic proof, note that
for any complex number

z + z̄ = 2Re z and Re z ≤ |z| .

So for z, w ∈ C,

zw̄ + z̄w

2
= Re (zw̄) ≤ |zw̄| = |z| |w̄| = |z| |w| .

Then

|z + w|2 = (z + w) (z + w)

= (z + w) (z̄ + w̄)

= zz̄ + zw̄ + z̄w + ww̄

≤ |z|2 + 2 |z| |w|+ |w|2 = (|z|+ |w|)2 ,

to give the required result.
The remaining identities are left to Exercise 9
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1.1.4 Roots Of Unity

Consider the complex number

z0 = cos θ + i sin θ

where θ is some real number in the range 0 6 θ < 2π. The modulus of z0 is 1
and the argument of z0 is θ.

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-1.5

-1

-0.5

0.5

1

1.5

Θ
Θ

Θ z0

z0
2

z0
3

Powers of z0

In Proposition 11 we proved for z, w 6= 0 that

|zw| = |z| |w| and arg (zw) = arg z + argw.

So for any integer n, and any z 6= 0, we have that

|zn| = |z|n and arg (zn) = n arg z.

Then the modulus of (z0)
n is 1, and the argument of (z0)

n is nθ up to multiples
of 2π. Putting this another way, we have the famous theorem due to De Moivre:

Theorem 12 (DE MOIVRE’S THEOREM) For a real number θ and integer
n we have that

cosnθ + i sinnθ = (cos θ + i sin θ)n .

(De Moivre (1667-1754), a French protestant who moved to England, is best
remembered for this formula but his major contributions were in probability
and appeared in his The Doctrine Of Chances (1718)).

We apply these ideas now to the following:

Example 13 Let n > 1 be a natural number. Find all those complex z such
that zn = 1.
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Solution. We know from the Fundamental Theorem of Algebra that there
are (counting multiplicities) n solutions – these are known as the nth roots of
unity. Let’s first solve zn = 1 directly for n = 2, 3, 4.

• When n = 2 we have

0 = z2 − 1 = (z − 1) (z + 1)

and so the square roots of 1 are ±1.

• When n = 3 we can factorise as follows

0 = z3 − 1 = (z − 1)
¡
z2 + z + 1

¢
.

So 1 is a root and completing the square we see

0 = z2 + z + 1 =

µ
z +

1

2

¶2
+
3

4

which has roots −1/2±
√
3i/2. So the cube roots of 1 are

1 and
−1
2
+

√
3

2
i and

−1
2
−
√
3

2
i.

• When n = 4 we can factorise as follows

0 = z4 − 1 =
¡
z2 − 1

¢ ¡
z2 + 1

¢
= (z − 1) (z + 1) (z − i) (z + i) ,

so that the fourth roots of 1 are 1,−1, i and −i.

Plotting these roots on Argand diagrams we can see a pattern developing
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Fourth Roots

Returning to the general case suppose that

z = r (cos θ + i sin θ) and satisfies zn = 1.

Then by the observations preceding De Moivre’s Theorem zn has modulus rn

and has argument nθ whilst 1 has modulus 1 and argument 0. Then comparing
their moduli

rn = 1 =⇒ r = 1.
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Comparing arguments we see nθ = 0 up to multiples of 2π. That is, nθ = 2kπ
for some integer k giving θ = 2kπ/n. So we see that if zn = 1 then z has the
form

z = cos

µ
2kπ

n

¶
+ i sin

µ
2kπ

n

¶
where k is an integer.

At first glance there seems to be an infinite number of roots but, as cos and
sin have period 2π, then these z repeat with period n.
Hence we have shown

Proposition 14 The nth roots of unity, that is the solutions of the equation
zn = 1, are

z = cos

µ
2kπ

n

¶
+ i sin

µ
2kπ

n

¶
where k = 0, 1, 2, . . . , n− 1.

Plotted on an Argand diagram these nth roots of unity form a regular n-gon
inscribed within the unit circle with a vertex at 1.

Problem 15 Find all the solutions of the cubic z3 = −2 + 2i.

Solution. If we write −2 + 2i in its polar form we have

−2 + 2i =
√
8

µ
cos

µ
3π

4

¶
+ i sin

µ
3π

4

¶¶
.

So if z3 = −2 + 2i and z has modulus r and argument θ then

r3 =
√
8 and 3θ =

3π

4
up to multiples of 2π,

which gives

r =
√
2 and θ =

π

4
+
2kπ

3
for some integer k.

As before we need only consider k = 0, 1, 2 (as other values of k lead to repeats)
and so the three roots are

√
2
³
cos
³π
4

´
+ i sin

³π
4

´´
= 1 + i,

√
2

µ
cos

µ
11π

12

¶
+ i sin

µ
11π

12

¶¶
=

Ã
−1
2
−
√
3

2

!
+ i

Ã√
3

2
− 1
2

!
,

√
2

µ
cos

µ
19π

12

¶
+ i sin

µ
19π

12

¶¶
=

Ã
−1
2
+

√
3

2

!
+ i

Ã
−
√
3

2
− 1
2

!
.
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1.2 Their Analysis

1.2.1 The Complex Exponential Function

The real exponential function ex (or expx) can be defined in several different
ways. One such definition is by power series

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

The above infinite sum converges for all real values of x. What this means, is
that for any real value of our input x, as we add more and more of the terms
from the infinite sum above we generate a list of numbers which get closer and
closer to some value – this value we denote ex. Different inputs will mean
the sum converges to different answers. As an example, let’s consider the case
when x = 2:

1 term: 1 = 1.0000 6 terms: 1 + · · ·+ 32
120

∼= 7.2667
2 terms: 1 + 2 = 3.0000 7 terms 1 + · · ·+ 64

720
∼= 7.3556

3 terms: 1 + 2 + 4
2

= 5.0000 8 terms 1 + · · ·+ 128
5040

∼= 7.3810
4 terms: 1 + · · ·+ 8

6
∼= 6.3333 9 terms 1 + · · ·+ 256

40320
∼= 7.3873

5 terms: 1 + · · ·+ 16
24

= 7.0000 ∞ terms e2 ∼= 7.3891

This idea of a power series defining a function should not be too alien – it is
likely that you have already seen that the infinite geometric progression

1 + x+ x2 + x3 + · · ·+ xn + · · ·

converges to (1− x)−1 , at least when |x| < 1. This is another example of a
power series defining a function.

Proposition 16 Let x be a real number. Then

1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

converges to a real value which we shall denote as ex. The function ex has the
following properties

(i)
d
dx

ex = ex, e0 = 1;

(ii) ex+y = exey for any real x, y;

(iii) ex > 0 for any real x.
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and a sketch of the exponential’s graph is given below.
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4
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6

7

The graph of y = ex.

That these properties hold true of ex is discussed in more detail in the
appendices at the end of this chapter.

• Property (i) uniquely characterises the exponential function. That is,
there is a unique real-valued function ex which differentiates to itself,
and which takes the value 1 at 0.

• Note that when x = 1 this gives us the identity

e = 1 + 1 +
1

2!
+
1

3!
+ · · ·+ 1

n!
+ · · · ∼= 2.718.

We can use either the power series definition, or one equivalent to property
(i), to define the complex exponential function.

Proposition 17 Let z be a complex number. Then

1 + z +
z2

2!
+

z3

3!
+ · · ·+ zn

n!
+ · · ·

converges to a complex value which we shall denote as ez. The function ez has
the following properties

(i)
d
dz

ez = ez, e0 = 1;

(ii) ez+w = ezew for any complex z, w;

(iii) ez 6= 0 for any complex z.

Analytically we can differentiate complex functions in much the same way as
we differentiate real functions. The product, quotient and chain rules apply in
the usual way, and zn has derivative nzn−1 for any integer n.
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By taking more and more terms in the series, we can calculate ez to greater
and greater degrees of accuracy as before. For example, to calculate e1+i we
see

1 term: 1 = 1.0000
2 terms: 1 + (1 + i) = 2.0000 + 1.0000i
3 terms: 1 + (1 + i) + 2i

2
= 2.0000 + 2.0000i

4 terms: 1 + · · ·+ −2+2i
6

∼= 1.6667 + 2.3333i
5 terms: 1 + · · ·+ −4

24
∼= 1.5000 + 2.3333i

6 terms: 1 + · · ·+ −4−4i
120

∼= 1.4667 + 2.3000i
7 terms: 1 + · · ·+ −8i

720
∼= 1.4667 + 2.2889i

8 terms: 1 + · · ·+ 8−8i
5040

∼= 1.4683 + 2.2873i
9 terms: 1 + · · ·+ 16

40320
∼= 1.4687 + 2.2873i

∞ terms: e1+i ∼= 1.4687 + 2.2874i

Their are two other important functions, known as hyperbolic functions,
which are closely related to the exponential function – namely hyperbolic co-
sine cosh z and hyperbolic sine sinh z.

Definition 18 Let z be a complex number. Then we define

cosh z =
ez + e−z

2
and sinh z =

ez − e−z

2
.

Corollary 19 Hyperbolic sine and hyperbolic cosine have the following proper-
ties (which can easily be derived from the properties of the exponential function
given in Proposition 17). For complex numbers z and w:

(i) cosh z = 1 +
z2

2!
+

z4

4!
+ · · ·+ z2n

(2n)!
+ · · ·

(ii) sinh z = z +
z3

3!
+

z5

5!
+ · · ·+ z2n+1

(2n+ 1)!
+ · · ·

(iii)
d
dz
cosh z = sinh z and

d
dz
sinh z = cosh z,

(iv) cosh (z + w) = cosh z coshw + sinh z sinhw,

(v) sinh (z + w) = sinh z coshw + cosh z sinhw,

(vi) cosh (−z) = cosh z and sinh (−z) = − sinh z.

and graphs of the sinh and cosh are sketched below for real values of x
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The graph of y = sinhx
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The graph of y = coshx
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1.2.2 The Complex Trigonometric Functions

The real functions sine and cosine can similarly be defined by power series and
other characterising properties. Note that these definitions give us the sine and
cosine of x radians.

Proposition 20 Let x be a real number. Then

1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n x2n

(2n)!
+ · · · , and

x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n x2n+1

(2n+ 1)!
+ · · ·

converge to real values which we shall denote as cosx and sinx. The functions
cosx and sinx have the following properties

(i)
d2

dx2
cosx = − cosx, cos 0 = 1, cos0 0 = 0,

(ii)
d2

dx2
sinx = − sinx, sin 0 = 0, sin0 0 = 1,

(iii)
d
dx
cosx = − sinx, and

d
dx
sinx = cosx,

(iv) −1 ≤ cosx ≤ 1 and − 1 ≤ sinx ≤ 1,
(v) cos (−x) = cosx and sin (−x) = − sinx.

• Property (i) above characterises cosx and property (ii) characterises sinx
– that is cosx and sinx are the unique real functions with these respec-
tive properties.
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The graph of y = sinx
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The graph of y = cosx

As before we can extend these power series to the complex numbers to define
the complex trigonometric functions.

Proposition 21 Let z be a complex number. Then the series

1− z2

2!
+

z4

4!
− z6

6!
+ · · ·+ (−1)n z2n

(2n)!
+ · · · , and

z − z3

3!
+

z5

5!
− z7

7!
+ · · ·+ (−1)n z2n+1

(2n+ 1)!
+ · · ·
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converge to complex values which we shall denote as cos z and sin z. The func-
tions cos and sin have the following properties

(i)
d2

dz2
cos z = − cos z, cos 0 = 1, cos0 0 = 0,

(ii)
d2

dz2
sin z = − sin z, sin 0 = 0, sin0 0 = 1,

(iii)
d
dz
cos z = − sin z, and

d
dz
sin z = cos z,

(iv) Neither sin nor cos is bounded on the complex plane,

(v) cos (−z) = cos z and sin (−z) = − sin z.
Example 22 Prove that cos2 z + sin2 z = 1 for all complex numbers z. (Note
that, as we are dealing with complex numbers, this does not imply that cos z
and sin z have modulus less than or equal to 1.)

Solution. Define
F (z) = sin2 z + cos2 z.

Differentiating F, using the previous proposition and the product rule we see

F 0 (z) = 2 sin z cos z + 2 cos z × (− sin z) = 0.
As the derivative F 0 = 0 then F must be constant. We note that

F (0) = sin2 0 + cos2 0 = 02 + 12 = 1

and hence F (z) = 1 for all z.

Contrast this with:

Example 23 Prove that cosh2− sinh2 z = 1 for all complex numbers z.
Solution. We could argue similarly to the above. Alternatively as

cosh z =
ez + e−z

2
and sinh z =

ez − e−z

2
.

and using eze−z = ez−z = e0 = 1 from Proposition 17 we see

cosh2 z − sinh2 z =

"
(ez)2 + 2eze−z + (ez)2

4

#
−
"
(ez)2 − 2eze−z + (e−z)2

4

#

=
4eze−z

4
= 1.

It is for these reasons that the functions cosh and sinh are called hyperbolic
functions and the functions sin and cos are often referred to as the circular
functions. From the first example above we see that the point (cos t, sin t) lies
on the circle x2+y2 = 1. As we vary t between 0 and 2π this point moves once
anti-clockwise around the unit circle. In contrast, the point (cosh t, sinh t) lies
on the curve x2−y2 = 1. This is the equation of a hyperbola. As t varies through
the reals then (cosh t, sinh t) maps out all of the right branch of the hyperbola.
We can obtain the left branch by varying the point (− cosh t, sinh t) .
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1.2.3 Identities

From looking at the graphs of expx, sinx, cosx for real values of x it seems
unlikely that all three functions can be related. The sinx and cosx are just
out-of-phase but the exponential is unbounded unlike the trigonometric func-
tions and has no periodicity. However, once viewed as functions of a complex
variable, it is relatively easy to demonstrate a fundamental identity connecting
the three. The following is due to Euler, dating from 1740.

Theorem 24 Let z be a complex number. Then

eiz = cos z + i sin z.

Proof. Note that the sequence in of powers of i goes 1, i,−1,−i, 1, i,−1,−i, . . .
repeating forever with period 4. So, recalling the power series definitions of the
exponential and trigonometric functions from Propositions 17 and 21, we see

eiz = 1 + iz +
(iz)2

2!
+
(iz)3

3!
+
(iz)4

4!
+
(iz)5

5!
+ · · ·

= 1 + iz − z2

2!
− iz3

3!
+

z4

4!
+

iz5

5!
+ · · ·

=

µ
1− z2

2!
+

z4

4!
− · · ·

¶
+ i

µ
z − z3

3!
+

z5

5!
− · · ·

¶
= cos z + i sin z.

• Note that cos z 6= Re eiz and sin z 6= Im eiz in general for complex z.

• When we put z = π into this proposition we find

eiπ = −1.
This is referred to as Euler’s Equation, and is often credited as being
the most beautiful equation in all of mathematics because it relates the
fundamental constants 1, i, π, e.

• Note that the complex exponential function has period 2πi. That is
ez+2πi = ez for all complex numbers z.

• More generally when θ is a real number we see that

eiθ = cos θ + i sin θ

and so the polar form of a complex number from equation (1.3) is often
written as

z = reiθ.

Moreover in these terms, De Moivre’s Theorem (see Theorem 12) is the
less surprising identity ¡

eiθ
¢n
= ei(nθ).
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• If z = x+ iy then

ez = ex+iy = exeiy = ex cos y + iex sin y

and so
|ez| = ex and arg ez = y.

As a corollary to the previous theorem we can now express cos z and sin z in
terms of the exponential. We note

Corollary 25 Let z be a complex number. Then

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i

and

cosh z = cos iz and i sinh z = sin iz

cos z = cosh iz and i sin z = sinh iz.

Proof. As cos is even and sin is odd then

eiz = cos z + i sin z and e−iz = cos z − i sin z.

Solving for cos z and sin z from these simultaneous equations we arrive at
the required expressions. The others are easily verified from our these new
expressions for cos and sin and our previous ones for cosh and sinh .

1.2.4 Applications

We can now turn these formula towards some applications and calculations.
The following demonstrates, for one specific case, how formulae for cosnz and
sinnz can be found in terms of powers of sin z and cos z. The second problem
demonstrates a specific case of the reverse process – writing powers of cos z
or sin z as combinations of cosnz and sinnz for various n.

Example 26 Show that

cos 5z = 16 cos5 z − 20 cos3 z + 5cos z.

Solution. Recall from De Moivre’s Theorem that

(cos z + i sin z)5 = cos 5z + i sin 5z.

Now if x and y are real then by the Binomial Theorem

(x+ iy)5 = x5 + 5ix4y − 10x3y2 − 10ix2y3 + 5xy4 + iy5.
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Hence

cos 5θ = Re (cos θ + i sin θ)5

= cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ
= cos5 θ − 10 cos3 θ

¡
1− cos2 θ

¢
+ 5 cos θ

¡
1− cos2 θ

¢2
= (1 + 10 + 5) cos5 θ + (−10− 10) cos3 θ + 5cos θ
= 16 cos5 θ − 20 cos3 θ + 5 cos θ.

This formula in fact holds true when θ is a general complex argument and not
necessarily real.

Example 27 Let z be a complex number. Prove that

sin4 z =
1

8
cos 4z − 1

2
cos 2z +

3

8
.

Hence find the power series for sin4 z.

Solution. We have that

sin z =
eiz − e−iz

2i
.

So

sin4 z =
1

(2i)4
¡
eiz − e−iz

¢4
=

1

16

¡
e4iz − 4e2iz + 6− 4e−2iz + e−4iz

¢
=

1

16

¡¡
e4iz + e−4iz

¢
− 4

¡
e2iz + e−2iz

¢
+ 6
¢

=
1

16
(2 cos 4z − 8 cos 2z + 6)

=
1

8
cos 4z − 1

2
cos 2z +

3

8
,

as required. Now sin4 z has only even powers of z2n in its power series. From
our earlier power series for cos z we see, when n > 0, the coefficient of z2n

equals

1

8
× (−1)n 42n

(2n)!
− 1
2
× (−1)n 22n

(2n)!
= (−1)n 2

4n−3 − 22n−1
(2n)!

z2n

which we note is zero when n = 1. Also when n = 0 we see that the constant
term is 1/8− 1/2 + 3/8 = 0. So the required power series is

sin4 z =
∞X
n=2

(−1)n 2
4n−3 − 22n−1
(2n)!

z2n.
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Example 28 Prove for any complex numbers z and w that

sin (z + w) = sin z cosw + cos z sinw.

Solution. Recalling the expressions for sin and cos from Corollary 25 we have

RHS =

µ
eiz − e−iz

2i

¶µ
eiw + e−iw

2

¶
+

µ
eiz + e−iz

2

¶µ
eiw − e−iw

2i

¶
=

2eizeiw − 2e−ize−iw
4i

=
ei(z+w) − e−i(z+w)

2i
= sin (z + w) = LHS.

Example 29 Prove that for complex z and w

sin (z + iw) = sin z coshw + i cos z sinhw.

Solution. Use the previous problem recalling that cos (iw) = coshw and
sin (iw) = i sinhw.

Example 30 Let x be a real number and n a natural number. Show that

nX
k=0

cos kx =
cos n

2
x sin n+1

2
x

sin 1
2
x

and
nX

k=0

sin kx =
sin n

2
x sin n+1

2
x

sin 1
2
x

Solution. As cos kx + i sin kx = (eix)
k then these sums are the real and

imaginary parts of a geometric series, with first term 1, common ration eix and
n+ 1 terms in total. So recalling

1 + r + r2 + · · ·+ rn =
rn+1 − 1
r − 1 ,

we have
nX

k=0

¡
eix
¢k

=
e(n+1)ix − 1
eix − 1

=
einx/2

¡
e(n+1)ix/2 − e−(n+1)ix/2

¢
eix/2 − e−ix/2

= einx/2
2i sin n+1

2
x

2i sin 1
2
x

=
³
cos

nx

2
+ i sin

nx

2

´ sin n+1
2
x

sin 1
2
x

.

The results follow by taking real and imaginary parts. Again this identity holds
for complex values of x as well.
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1.3 Their Geometry

1.3.1 Distance and Angles in the Complex Plane

Let z = z1 + iz2 and w = w1 + iw2 be two complex numbers. By Pythagoras’
Theorem the distance between z and w as points in the complex plane equals

distance =
q
(z1 − w1)

2 + (z2 − w2)
2

= |(z1 − w1) + i (z2 − w2)|
= |(z1 + iz2)− (w1 + iw2)|
= |z − w| .

Let a = a1 + ia2, b = b1 + ib2, and c = c1 + ic2 be three points in the complex
plane representing three points A, B and C. To calculate the angle ]BAC as
in the diagram we see

]BAC = arg (c− a)− arg (b− a) = arg

µ
c− a

b− a

¶
.

Note that if in the diagram B and C we switched then we get the larger angle

arg

µ
c− a

b− a

¶
= 2π −]BAC.

1 2 3 4 5 6

1

2

3

4

5

1+i

5+4i

4

3

The distance here is
√
32 + 42 = 5 The angle is arg

¡
1+3i
2+i

¢
= arg(1 + i) = 1

4
π

Problem 31 Find the smaller angle ]BAC where a = 1 + i, b = 3 + 2i, and
c = 4− 3i.

Solution. The angle ]BAC is given by

arg

µ
b− a

c− a

¶
= arg

µ
2 + i

3− 4i

¶
= arg

µ
2 + 11i

25

¶
= tan−1

µ
11

2

¶
.
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1.3.2 A Selection of Geometric Theory

When using complex numbers to prove geometric theorems it is prudent to
choose complex co-ordinates so as to make any calculations as simple as pos-
sible. If we put co-ordinates on the plane (which after all begins as featureless
and blank, like any blackboard or sheet of paper) we can choose

• where to put the origin;

• where the real and imaginary axes go;

• what unit length to use.

Practically this is not that surprising: any astronomical calculation involving
the sun and the earth might well begin by taking the sun as the origin and is
more likely to use miles or astronomical units than it is centimetres; modelling
a projectile shot from a gun would probably take time t from the moment
the gun is shot and z as the height above the ground and metres and seconds
are more likely to be employed rather than miles and years. Similarly in a
geometrical situation, if asked to prove a theorem about a circle then we could
take the centre of the circle as the origin. We could also choose our unit length
to be that of the radius of the circle. If we had labelled points on the circle to
consider then we can take one of the points to be the point 1; in this case these
choices (largely) use up all our degrees of freedom and any other points would
need to be treated generally. If we were considering a triangle, then we could
choose two of the vertices to be 0 and 1 but the other point (unless we know
something special about the triangle, say that it is equilateral or isosceles) we
need to treat as an arbitrary point z.

We now prove a selection of basic geometric facts. Here is a quick reminder of
some identities which will prove useful in their proofs.

Re z =
z + z

2
, zz = |z|2 , cos arg z =

Re z

|z| .

Theorem 32 (THE COSINE RULE). Let ABC be a triangle. Then

|BC|2 = |AB|2 + |AC|2 − 2 |AB| |AC| cos Â. (1.16)

Proof. We can choose our co-ordinates in the plane so that A is at the origin
and B is at 1. Let C be at the point z. So in terms of our co-ordinates:

|AB| = 1, |BC| = |z − 1| , |AC| = |z| , Â = arg z.
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A B

C=z

With co-ordinates added

So

RHS of (1.16) = |z|2 + 1− 2 |z| cos arg z

= zz + 1− 2 |z| × Re z|z|

= zz + 1− 2× (z + z)

2
= zz + 1− z − z

= (z − 1) (z − 1)
= |z − 1|2 = LHS of (1.16).

Theorem 33 The diameter of a circle subtends a right angle at the circum-
ference.

Proof. We can choose our co-ordinates in the plane so that the circle has unit
radius with its centre at the origin and with the diameter in question having
endpoints 1 and −1. Take an arbitrary point z in the complex plane – for the
moment we won’t assume z to be on the circumference.

From the diagrams we see that below the diameter we want to show

arg (−1− z)− arg (1− z) =
π

2
,

and above the diameter we wish to show that

arg(−1− z)− arg (1− z) =
3π

2
.
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Recalling that arg (z/w) = arg z − argw we see that we need to prove that

arg

µ
−1− z

1− z

¶
=

π

2
or

3π

2

or equivalently we wish to show that (−1− z) / (1− z) is purely imaginary –
i.e. it has no real part. To say that a complex number w is purely imaginary
is equivalent to saying that w = −w, i.e. thatµ

−1− z

1− z

¶
= −

µ
−1− z

1− z

¶
.

which is the same as saying

−1− z

1− z
=
1 + z̄

1− z̄
.

Multiplying up we see this is the same as

(−1− z) (1− z̄) = (1 + z̄) (1− z) .

Expanding this becomes

−1− z + z̄ + zz̄ = 1 + z̄ − z − zz̄.

A final rearranging gives zz̄ = 1, but as |z|2 = zz̄ we see we must have

|z| = 1.
We have proved the required theorem. In fact we’ve proved more than this
also demonstrating its converse: that the diameter subtends a right angle at a
point on the circumference and subtends right angles nowhere else.

1.3.3 Transformations of the Complex Plane

We now describe some transformations of the complex plane and show how
they can be written in terms of complex numbers.

• Translations: A translation of the plane is one which takes the point
(x, y) to the point (x+ a, y + b) where a and b are two real constants. In
terms of complex co-ordinates this is the map z 7→ z+z0 where z0 = a+ib.

• Rotations: Consider rotating the plane about the origin anti-clockwise
through an angle α. If we take an arbitrary point in polar form reiθ then
this will rotate to the point rei(θ+α) = reiθeiα. So this particular rotation,
about the origin, is represented in complex co-ordinates as the map

z 7→ zeiα.

More generally, any rotation of C, not necessarily about the origin has
the form z 7→ az + b where a, b ∈ C, with |a| = 1 and a 6= 1.
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• Reflections: We have already commented that z 7→ z denotes reflection
in the real axis.

More generally, any reflection about the origin has the form z 7→ az + b
where a, b ∈ C and |a| = 1.

What we have listed here are the three types of isometry of C. An isometry
of C is a map f : C→ C which preserves distance – that is for any two points
z and w in C the distance between f (z) and f (w) equals the distance between
a and b. Mathematically this means

|f (z)− f (w)| = |z − w|

for any complex numbers z and w. The following theorem, the proof of which
is omitted here, characterises the isometries of C.

Theorem 34 Let f : C→ C be an isometry. Then there exist complex num-
bers a and b with |a| = 1 such that

f (z) = az + b or f (z) = az + b

for each z ∈ C.

Example 35 Express in the form f (z) = az+b, reflection in the line x+y = 1.

Solution. Method One: Knowing from the theorem that the reflection has
the form f (z) = az + b we can find a and b by considering where two points
go to. As 1 and i both lie on the line of reflection then they are both fixed. So

a1 + b = a1 + b = 1,

−ai+ b = ai+ b = i.

Substituting b = 1− a into the second equation we find

a =
1− i

1 + i
= −i,

and b = 1 + i. Hence
f (z) = −iz + 1 + i.

Method Two: We introduce as alternative method here – the idea of chang-
ing co-ordinates. We take a second set of complex co-ordinates in which the
point z = 1 is the origin and for which the line of reflection is the real axis.
The second complex co-ordinate w is related to the first co-ordinate z by

w = (1 + i) (z − 1) .

For example when z = 1 then w = 0, when z = i then w = −2, when z = 2− i
then w = 2, when z = 2 + i then w = 2i. The real axis for the w co-ordinate
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has equation x+y = 1 and the imaginary axis has equation y = x−1 in terms
of our original co-ordinates.
The point to all this is that as w’s real axis is the line of reflection then the

transformation we’re interested in is given by w 7→ w in the new co-ordinates.
Take then a point with complex co-ordinate z in our original co-ordinates
system. Its w-co-ordinate is (1 + i) (z − 1) – note we haven’t moved the
point yet, we’ve just changed co-ordinates. Now if we reflect the point we
know the w-co-ordinate of the new point is (1 + i) (z − 1) = (1− i) (z − 1) .
Finally to get from the w-co-ordinate of the image point to the z-co-ordinate
we reverse the co-ordinate change to get

(1− i) (z − 1)
1 + i

+ 1 = −i (z − 1) + 1 = −iz + i+ 1

as required.

1.4 Appendices

1.4.1 Appendix 1 – Properties of the Exponential

In Proposition 17 we stated the following for any complex number z.

1 + z +
z2

2!
+

z3

3!
+ · · ·+ zn

n!
+ · · ·

converges to a complex value which we shall denote as ez. The function ez has
the following properties

(i)
d
dz

ez = ez, e0 = 1,

(ii) ez+w = ezew for any complex z, w,

(iii) ez 6= 0 for any complex z.

For the moment we shall leave aside any convergence issues.

To prove property (i) we assume that we can differentiate a power series term
by term. Then we have

d
dz

ez =
d
dz

µ
1 + z +

z2

2!
+

z3

3!
+ · · ·+ zn

n!
+ · · ·

¶
= 0 + 1 +

2z

2!
+
3z2

3!
+ · · ·+ nzn−1

n!
+ · · ·

= 1 + z +
z2

2!
+ · · ·+ zn−1

(n− 1)! + · · ·

= ez.
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We give two proofs of property (ii)

Proof. Method One: Let x be a complex variable and let y be a constant
(but arbitrary) complex number. Consider the function

F (x) = ey+xey−x.

If we differentiate F by the product and chain rules, and knowing that ex

differentiates to itself we have

F 0 (x) = ey+xey−x + ey+x
¡
−ey−x

¢
= 0

and so F is a constant function. But note that F (y) = e2ye0 = e2y. Hence we
have

ey+xey−x = e2y.

Now set
x =

1

2
(z − w) and y =

1

2
(z + w)

and we arrive at required identity: ezew = ez+w.

Method Two: If we multiply two convergent power series

∞X
n=0

ant
n and

∞X
n=0

bnt
n

we get another convergent power series

∞X
n=0

cnt
n where cn =

nX
k=0

akbn−k.

Consider

ezt =
∞X
n=0

zn

n!
tn so that an =

zn

n!
,

ewt =
∞X
n=0

wn

n!
tn so that bn =

wn

n!
.

Then

cn =
nX

k=0

zk

k!

wn−k

(n− k)!

=
1

n!

nX
k=0

n!

k! (n− k)!
zkwn−k

=
1

n!
(z + w)n ,
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by the binomial theorem. So

eztewt =
∞X
n=0

zn

n!
tn

∞X
n=0

wn

n!
tn =

∞X
n=0

(w + z)n

n!
tn = e(w+z)t.

If we set t = 1 then we have the required result.

Property (iii), that ez 6= 0 for all complex z, follows from the fact that
eze−z = 1.

1.4.2 Appendix 2 — Power Series

We have assumed many properties of power series throughout this chapter
which we state here, though it is beyond our aims to prove these facts rigorously.

As we have only been considering the power series of exponential, trigono-
metric and hyperbolic functions it would be reasonable, but incorrect, to think
that all power series converge everywhere. This is far from the case.

Given a power series
P∞

n=0 anz
n, where the coefficients an are complex,

there is a real or infinite number R in the range 0 ≤ R ≤ ∞ such that

∞X
n=0

anz
n converges to some complex value when |z| < R,

∞X
n=0

anz
n does not converge to a complex value when |z| > R.

What happens to the power series when |z| = R depends very much on the
individual power series.

The number R is called the radius of convergence of the power series.

For the exponential, trigonometric and hyperbolic power series we have
already seen that R =∞.

For the geometric progression
P∞

n=0 z
n this converges to (1− z)−1 when

|z| < 1 and does not converge when |z| ≥ 1. So for this power series R = 1.

An important fact that we assumed in the previous appendix is that a power
series can be differentiated term by term to give the derivative of the power
series. So the derivative of

P∞
n=0 anz

n equals
P∞

n=1 nanz
n−1 and this will have

the same radius of convergence as the original power series.
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1.5 Exercises

1.5.1 Basic Algebra

Exercise 1 Put each of the following numbers into the form a+ bi.

(1 + 2i)(3− i),
1 + 2i

3− i
, (1 + i)4.

Exercise 2 Let z1 = 1 + i and let z2 = 2− 3i. Put each of the following into
the form a+ bi.

z1 + z2, z1 − z2, z1z2, z1/z2, z̄1z̄2.

Exercise 3 Find the modulus and argument of each of the following numbers.

1 +
√
3i, (2 + i) (3− i) , (1 + i)5 ,

(1 + 2i)3

(2− i)3
.

Exercise 4 Let α be a real number in the range 0 < α < π/2. Find the modulus
and argument of the following numbers.

cosα− i sinα, sinα− i cosα, 1 + i tanα, 1 + cosα+ i sinα.

Exercise 5 Let z and w be two complex numbers such that zw = 0. Show
either z = 0 or w = 0.

Exercise 6 Suppose that the complex number α is a square root of z, that is
α2 = z. Show that the only other square root of z is −α. Suppose now that the
complex numbers z1 and z2 have square roots ±α1 and ±α2 respectively. Show
that the square roots of z1z2 are ±α1α2.

Exercise 7 Prove that every non-zero complex number has two square roots.

Exercise 8 Let ω be a cube root of unity (i.e. ω3 = 1) such that ω 6= 1. Show
that

1 + ω + ω2 = 0.

Hence determine the three cube roots of unity in the form a+ bi.

Exercise 9 Prove the remaining identities from Proposition 11.
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1.5.2 Polynomial Equations

Exercise 10 Which of the following quadratic equations require the use of
complex numbers to solve them?

3x2 + 2x− 1 = 0, 2x2 − 6x+ 9 = 0, − 4x2 + 7x− 9 = 0.

Exercise 11 Find the square roots of −5− 12i, and hence solve the quadratic
equation

z2 − (4 + i) z + (5 + 5i) = 0.

Exercise 12 Show that the complex number 1+i is a root of the cubic equation

z3 + z2 + (5− 7i) z − (10 + 2i) = 0,

and hence find the other two roots.

Exercise 13 Show that the complex number 2 + 3i is a root of the quartic
equation

z4 − 4z3 + 17z2 − 16z + 52 = 0,
and hence find the other three roots.

Exercise 14 On separate axes, sketch the graphs of the following cubics, being
sure to carefully label any turning points. In each case state how many of the
cubic’s roots are real.

y1 (x) = x3 − x2 − x+ 1;

y2 (x) = 3x3 + 5x2 + x+ 1;

y3 (x) = −2x3 + x2 − x+ 1.

Exercise 15 Let p and q be real numbers with p ≤ 0. Find the co-ordinates of
the turning points of the cubic y = x3 + px + q. Show that the cubic equation
x3 + px+ q = 0 has three real roots, with two or more repeated, precisely when

4p3 + 27q2 = 0.

Under what conditions on p and q does x3+px+q = 0 have (i) three distinct real
roots, (ii) just one real root? How many real roots does the equation x3+px+q =
0 have when p > 0?

Exercise 16 By making a substitution of the form X = x − α for a certain
choice of α, transform the equation X3 + aX2 + bX + c = 0 into one of the
form x3 + px+ q = 0. Hence find conditions under which the equation

X3 + aX2 + bX + c = 0

has (i) three distinct real roots, (ii) three real roots involving repetitions, (iii)
just one real root.

36 COMPLEX NUMBERS



Exercise 17 The cubic equation x3+ax2+ bx+ c = 0 has roots α, β, γ so that

x3 + ax2 + bx+ c = (x− α) (x− β) (x− γ) .

By equating the coefficients of powers of x in the previous equation, find ex-
pressions for a, b and c in terms of α, β and γ.
Given that α, β, γ are real, what can you deduce about their signs if (i)

c < 0, (ii) b < 0 and c < 0, (iii) b < 0 and c = 0.

Exercise 18 With a, b, c and α, β, γ as in the previous exercise, let Sn = αn+
βn + γn. Find expressions S0, S1 and S2 in terms of a, b and c. Show further
that

Sn+3 + aSn+2 + bSn+1 + cSn = 0

for n ≥ 0 and hence find expressions for S3 and S4 in terms of a, b and c.

Exercise 19 Consider the cubic equation z3+mz+n = 0 where m and n are
real numbers. Let ∆ be a square root of (n/2)2+(m/3)3. We then define t and
u by

t = −n/2 +∆ and u = n/2 +∆,

and let T and U respectively be cube roots of t and u. Show that tu is real, and
that if T and U are chosen appropriately, then z = T − U is a solution of the
original cubic equation.
Use this method to completely solve the equation z3 + 6z = 20. By making

a substitution of the form w = z − a for a suitable choice of a, find all three
roots of the equation 8w3 + 12w2 + 54w = 135.

1.5.3 De Moivre’s Theorem and Roots of Unity

Exercise 20 Use De Moivre’s Theorem to show that

cos 6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1,

and that
sin 5θ = 16 sin5 θ − 20 sin3 θ + 5 sin θ.

Exercise 21 Let z = cos θ + i sin θ and let n be an integer. Show that

2 cos θ = z +
1

z
and that 2i sin θ = z − 1

z
.

Find expressions for cosnθ and sinnθ in terms of z.

Exercise 22 Show that

cos5 θ =
1

16
(cos 5θ + 5cos 3θ + 10 cos θ)

and hence find
R π/2
0

cos5 θ dθ.
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Exercise 23 Let
ζ = cos

2π

5
+ i sin

2π

5
.

Show that ζ5 = 1, and deduce that 1 + ζ + ζ2 + ζ3 + ζ4 = 0.
Find the quadratic equation with roots ζ + ζ4 and ζ2 + ζ3. Hence show that

cos
2π

5
=

√
5− 1
4

.

Exercise 24 Determine the modulus and argument of the two complex num-
bers 1 + i and

√
3 + i. Also write the number

1 + i√
3 + i

in the form x+ iy. Deduce that

cos
π

12
=

√
3 + 1

2
√
2

and sin
π

12
=

√
3− 1
2
√
2

.

Exercise 25 By considering the seventh roots of −1 show that

cos
π

7
+ cos

3π

7
+ cos

5π

7
=
1

2
.

What is the value of

cos
2π

7
+ cos

4π

7
+ cos

6π

7
?

Exercise 26 Find all the roots of the equation z8 = −1. Hence, write z8 + 1
as the product of four quadratic factors.

Exercise 27 Show that

z7 − 1 = (z − 1)
¡
z2 − αz + 1

¢ ¡
z2 − βz + 1

¢ ¡
z2 − γz + 1

¢
where α, β, γ satisfy

(u− α) (u− β) (u− γ) = u3 + u2 − 2u− 1.

Exercise 28 Find all the roots of the following equations.

1. 1 + z2 + z4 + z6 = 0,

2. 1 + z3 + z6 = 0,

3. (1 + z)5 − z5 = 0,

4. (z + 1)9 + (z − 1)9 = 0.
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Exercise 29 Express tan 7θ in terms of tan θ and its powers. Hence solve the
equation

x6 − 21x4 + 35x2 − 7 = 0.

Exercise 30 Show for any complex number z, and any positive integer n, that

z2n − 1 =
¡
z2 − 1

¢ n−1Y
k=1

½
z2 − 2z cos kπ

n
+ 1

¾
.

By setting z = cos θ + i sin θ show that

sinnθ

sin θ
= 2n−1

n−1Y
k=1

½
cos θ − cos kπ

n

¾
.

1.5.4 Geometry and the Argand Diagram

Exercise 31 On separate Argand diagrams sketch the following sets:

1. |z| < 1;

2. Re z = 3;

3. |z − 1| = |z + i| ;

4. −π/4 < arg z < π/4;

5. Re (z + 1) = |z − 1| ;

6. arg (z − i) = π/2;

7. |z − 3− 4i| = 5;

8. Re ((1 + i) z) = 1.

9. Im (z3) > 0.

Exercise 32 Multiplication by i takes the point x + iy to the point −y + ix.
What transformation of the Argand diagram does this represent? What is the
effect of multiplying a complex number by (1 + i) /

√
2? [Hint: recall that this

is square root of i.]

Exercise 33 Let ABC be a triangle in C with vertices A = 1 + i, B = 2 +
3i, C = 5+ 2i. Write, in the form a+ bi, the images of the three vertices when
the plane is rotated about 0 through π/3 radians anti-clockwise.

Exercise 34 Let a, b ∈ C with |a| = 1. Show directly that the map f : C→ C
given by f (z) = az + b preserves distances and angles.

EXERCISES 39



Exercise 35 Write in the form z 7→ az + b the rotation through π/3 radians
anti-clockwise about the point 2 + i.

Exercise 36 Write in the form z 7→ az̄+b the reflection in the line 3x+2y = 6.

Exercise 37 Let f : C → C be given by f (z) = iz + 3 − i. Find a map
g : C→ C of the form g (z) = az + b where |a| = 1 such that

g (g (z)) = f (z) .

How many such maps g are there? Geometrically what transformations do
these maps g and the map f represent?

Exercise 38 Find two reflections h : C → C and k : C → C such that
k (h (z)) = iz for all z.

Exercise 39 What is the centre of rotation of the map z 7→ az + b where
|a| = 1, a 6= 1? What is the invariant line of the reflection z 7→ az̄ + b where
|a| = 1?

Exercise 40 Let t be a real number. Find expressions for

x = Re
1

2 + ti
, y = Im

1

2 + ti
.

Find an equation relating x and y by eliminating t. Deduce that the image of
the line Re z = 2 under the map z 7→ 1/z is contained in a circle. Is the image
of the line all of the circle?

Exercise 41 Find the image of the line Re z = 2 under the maps

z 7→ iz, z 7→ z2, z 7→ ez, z 7→ sin z, z 7→ 1

z − 1 .

Exercise 42 Draw the following parametrised curves in C.

z (t) = eit, (0 6 t 6 π) ;

z (t) = 3 + 4i+ 5eit, (0 6 t 6 2π) ;
z (t) = t+ i cosh t, (−1 6 t 6 1) ;
z (t) = cosh t+ i sinh t, (t ∈ R) ;

Exercise 43 Prove, using complex numbers, that the midpoints of the sides of
an arbitrary quadrilateral are the vertices of a parallelogram.

Exercise 44 Let z1 and z2 be two complex numbers. Show that

|z1 − z2|2 + |z1 + z2|2 = 2
¡
|z1|2 + |z2|2

¢
.

This fact is called the Parallelogram Law – how does this relate the lengths of
the diagonals and sides of the parallelogram? [Hint: consider the parallelogram
in C with vertices 0, z1, z2, z1 + z2.]
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Exercise 45 Consider a quadrilateral OABC in the complex plane whose ver-
tices are at the complex numbers 0, a, b, c. Show that the equation

|b|2 + |a− c|2 = |a|2 + |c|2 + |a− b|2 + |b− c|2

can be rearranged as
|b− a− c|2 = 0.

Hence show that the only quadrilaterals to satisfy the Parallelogram Law are
parallelograms.

Exercise 46 Let A = 1 + i and B = 1 − i. Find the two numbers C and
D such that ABC and ABD are equilateral triangles in the Argand diagram.
Show that if C < D then

A+ ωC + ω2B = 0 = A+ ωB + ω2D,

where ω =
¡
−1 +

√
3i
¢
/2 is a cube root of unity other than 1.

Exercise 47 Let ω = e2πi/3 =
¡
−1 +

√
3i
¢
/2. Show that a triangle ABC,

where the vertices are read anti-clockwise, is equilateral if and only if

A+ ωB + ω2C = 0.

Exercise 48 (Napoleon’s Theorem) Let ABC be an arbitrary triangle. Place
three equilateral triangles ABD,BCE,CAF, one on each face and pointing
outwards. Show that the centroids of these three new triangles define a fourth
equilateral triangle. [The centroid of a triangle whose vertices are represented
by the complex numbers a, b, c is the point represented by (a+ b+ c) /3.]

Exercise 49 Let A,C be real numbers and B be a complex number. Consider
the equation

Azz̄ + B̄z +Bz̄ + C = 0. (1.17)

Show that if A = 0, then equation (1.17) defines a line. Conversely show that
any line can be put in this form with A = 0.
Show that if A 6= 0 then equation (1.17) defines a circle, a single point or

has no solutions. Under what conditions on A,B,C do the solutions form a
circle and, assuming the condition holds, determine the radius and centre of
the circle.

Exercise 50 Determine the equation of the following circles and lines in the
form of (1.17):

1. The circle with centre 3 + 4i and radius 5.

2. The circle which passes through 1, 3 and i

3. The line through 1 + 3i and 2− i.

4. The line through 2 and making an angle θ with the real-axis.

Exercise 51 Find the image under the map z 7→ 1.z of the two circles and
two lines in the previous exercise. Ensure that your answers are all in the same
form as the equation (1.17).
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1.5.5 Analysis and Power Series

Exercise 52 Find the real and imaginary parts, and the magnitude and argu-
ment of the following.

e3+2i, sin (4 + 2i) , cosh (2− i) , tanh (1 + 2i) .

Exercise 53 Find all the solutions of the following questions.

ez = 1;

cosh z = −2;
sin z = 3.

Exercise 54 Let z ∈ C and t = tanh 1
2
z. Show that

sinh z =
2t

1− t2
, cosh z =

1 + t2

1− t2
, tanh z =

2t

1 + t2
.

Exercise 55 Show that

cos z = cos z̄, and sin z = sin z̄.

Show further that, if z = x+ iy, then

|sin z|2 =
1

2
(cosh 2y − cos 2x) ;

|cos z|2 =
1

2
(cosh 2y + cos 2x) .

Sketch the regions |sin z| 6 1 and |cos z| 6 1.

Exercise 56 Use the identities of the previous exercise to show that

|cos z|2 + |sin z|2 = 1

if and only if z is real.

Exercise 57 Let x, y be real numbers and assume that x > 1. Show that

cosh−1 x = ± ln
³
x+
√
x2 − 1

´
,

and
sinh−1 y = ln

³
y +

p
y2 + 1

´
.

Exercise 58 Show that

cosh2 z =
1

2
(1 + cosh 2z) ;

sinh3 z =
1

4
(sinh 3z − 3 sinh z) .

Hence find the power series of cosh2 z and sinh3 z.
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Exercise 59 Show that

sinh (x+ y) = sinhx cosh y + coshx sinh y

cosh (x+ y) = coshx cosh y + sinhx sinh y

and

tanh (x+ y) =
tanhx+ tanh y

1 + tanhx tanh y
.

Exercise 60 Let ω = e2πi/3 =
¡
−1 +

√
3
¢
/2 and let k be an integer Show

that

1 + ωk + ω2k = 1 + 2 cos
2πk

3
=

½
3 if k is a multiple of 3;
0 otherwise.

Deduce that
1

3

³
ez + eωz + ew

2z
´
=

∞X
n=0

z3n

(3n)!
.

Determine ∞X
n=0

8n

(3n)!

ensuring that your answer is in a form that is evidently a real number.

Exercise 61 Adapt the method of the previous exercise to determine

∞X
n=0

z5n

(5n)!
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2. INDUCTION AND RECURSION

Notation 36 The symbol N denotes the set of natural numbers {0, 1, 2, . . .} .
For n ∈ N the symbol n! read "n factorial” denotes the product 1×2×3×· · ·×n
when n > 1 and with the convention that 0! = 1.

2.1 Introduction

Mathematical statements can come in the form of a single proposition such as

3 < π or as 0 < x < y =⇒ x2 < y2,

but often they come as a family of statements such as

A ex > 0 for all real numbers x;

B 0 + 1 + 2 + · · ·+ n =
1

2
n (n+ 1) for n ∈ N;

C

Z π

0

sin2n θ dθ =
(2n)!

(n!)2
π

22n
for n ∈ N;

D 2n+ 4 can be written as the sum of two primes for all n ∈ N.

Induction, or more exactly mathematical induction, is a particularly useful
method of proof for dealing with families of statements which are indexed
by the natural numbers, such as the last three statements above. We shall
prove both statements B and C using induction (see below and Example 41).
Statement B (and likewise statement C) can be approached with induction
because in each case knowing that the nth statement is true helps enormously
in showing that the (n+ 1)th statement is true – this is the crucial idea behind
induction. Statement D, on the other hand, is a famous problem known as
Goldbach’s Conjecture (Christian Goldbach (1690—1764), who was a professor
of mathematics at St. Petersburg, made this conjecture in a letter to Euler in
1742.and it is still an open problem). If we let D (n) be the statement that
2n+4 can be written as the sum of two primes, then it is currently known that
D (n) is true for n < 4 × 1014. What makes statement D different, and more
intractable to induction, is that in trying to verify D (n+ 1) we can’t generally
make much use of knowledge of D (n) and so we can’t build towards a proof.
For example, we can verify D(17) and D (18) by noting that

38 = 7 + 31 = 19 + 19, and 40 = 3 + 37 = 11 + 29 = 17 + 23.
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Here, knowing that 38 can be written as a sum of two primes, is no help in
verifying that 40 can be, as none of the primes we might use for the latter was
previously used in splitting 38.

By way of an example we shall prove statement B by induction before
giving a formal definition of just what induction is. For any n ∈ N, let B (n)
be the statement

0 + 1 + 2 + · · ·+ n =
1

2
n (n+ 1) .

We shall prove two facts:
(i) B (0) is true, and
(ii) for any n ∈ N, if B (n) is true then B (n+ 1) is also true.

The first fact is the easy part as we just need to note that

LHS of B (0) = 0 =
1

2
× 0× 1 = RHS of B (0) .

To verify (ii) we need to prove for each n that B (n+ 1) is true assuming B (n)
to be true. Now

LHS of B (n+ 1) = 0 + 1 + · · ·+ n+ (n+ 1) .

But, assuming B (n) to be true, we know that the terms from 0 through to n
add up to n (n+ 1) /2 and so

LHS of B (n+ 1) =
1

2
n (n+ 1) + (n+ 1)

= (n+ 1)
³n
2
+ 1
´

=
1

2
(n+ 1) (n+ 2) = RHS of B (n+ 1) .

This verifies (ii).
Be sure that you understand the above calculation: it contains the impor-

tant steps common to any proof by induction. Note in the final step that we
have retrieved our original formula of n (n+ 1) /2, but with n+ 1 now replac-
ing n everywhere; this was the expression that we always had to be working
towards.
With induction we now know that B is true, i.e. that B (n) is true for any

n ∈ N. How does this work? Well, suppose we want to be sure B (2) is correct
– above we have just verified the following three statements:

B (0) is true;
if B (0) is true then B (1) is true;
if B (1) is true then B (2) is true;

and so putting the three together, we see that B (2) is true: the first statement
tells us that B (0) is true and the second two are stepping stones, first to the
truth about B (1) , and then on to proving B (2) .
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Formally then the Principle of Induction is as follows:

Theorem 37 (THE PRINCIPLE OF INDUCTION) Let P (n) be a family of
statements indexed by the natural numbers. Suppose that

P (0) is true, and

for any n ∈ N, if P (n) is true then P (n+ 1) is also true.

Then P (n) is true for all n ∈ N.

Proof. Let S denote the subset of N consisting of all those n for which P (n)
is false. We aim to show that S is empty, i.e. that no P (n) is false.
Suppose for a contradiction that S is non-empty. Any non-empty subset of

N has a minimum element; let’s write m for the minimum element of S. As
P (0) is true then 0 6∈ S, and so m is at least 1.
Consider now m − 1. As m ≥ 1 then m − 1 ∈ N and further, as m − 1 is

smaller than the minimum element of S, thenm−1 6∈ S, i.e. P (m− 1) is true.
But, as P (m− 1) is true, then induction tells us that P (m) is also true. This
means m 6∈ S, which contradicts m being the minimum element of S. This is
our required contradiction, an absurd conclusion. If S being non-empty leads
to a contradiction, the only alternative is that S is empty.
It is not hard to see how we might amend the hypotheses of the theorem

above to show

Corollary 38 Let N ∈ N and let P (n) be a family of statements for n =
N,N + 1, N + 2, . . . Suppose that

P (N) is true, and

for any n ≥ N, if P (n) is true then P (n+ 1) is also true.

Then P (n) is true for all n ≥ N.

This is really just induction again, but we have started the ball rolling at a
later stage. Here is another version of induction, which is usually referred to a
the Strong Form Of Induction:

Theorem 39 (STRONG FORM OF INDUCTION) Let P (n) be a family of
statements for n ∈ N. Suppose that

P (0) is true, and

for any n ∈ N, if P (0) , P (1) , . . . , P (n) are all true then so is P (n+ 1) .

Then P (n) is true for all n ∈ N.
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To reinforce the need for proof, and to show how patterns can at first
glance delude us, consider the following example. Take two points on the
circumference of a circle and take a line joining them; this line then divides the
circle’s interior into two regions. If we take three points on the perimeter then
the lines joining them will divide the disc into four regions. Four points can
result in a maximum of eight regions – surely then, we can confidently predict
that n points will maximally result in 2n−1 regions. Further investigation shows
our conjecture to be true for n = 5, but to our surprise, however we take six
points on the circle, the maximum number of regions attained is 31. Indeed the
maximum number of regions attained from n points on the perimeter is given
by the formula [2, p.18]

1

24

¡
n4 − 6n3 + 23n2 − 18n+ 24

¢
.

Our original guess was way out!
There are other well-known ‘patterns’ that go awry in mathematics: for

example, the number
n2 − n+ 41

is a prime number for n = 1, 2, 3, . . . , 40 (though this takes some tedious veri-
fying), but it is easy to see when n = 41 that n2−n+41 = 412 is not prime. A
more amazing example comes from the study of Pell’s equation x2 = py2+1 in
number theory, where p is a prime number and x and y are natural numbers.
If P (n) is the statement that

991n2 + 1 is not a perfect square (i.e. the square of a natural number),

then the first counter-example to P (n) is staggeringly found at [1, pp. 2—3]

n = 12, 055, 735, 790, 331, 359, 447, 442, 538, 767.

2.2 Examples

On a more positive note though, many of the patterns found in mathematics
won’t trip us at some later stage and here are some further examples of proof
by induction.

Example 40 Show that n lines in the plane, no two of which are parallel and
no three meeting in a point, divide the plane into n(n+ 1)/2 + 1 regions.

Proof. When we have no lines in the plane then clearly we have just one
region, as expected from putting n = 0 into the formula n (n+ 1) /2 + 1.
Suppose now that we have n lines dividing the plane into n (n+ 1) /2 + 1

regions and we will add a (n+ 1)th line. This extra line will meet each of the
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previous n lines because we have assumed it to be parallel with none of them.
Also, it meets each of these n lines in a distinct point, as we have assumed that
no three lines are concurrent.
These n points of intersection divide the new line into n+1 segments. For

each of these n + 1 segments there are now two regions, one on either side of
the segment, where previously there had been only one region. So by adding
this (n+ 1)th line we have created n+ 1 new regions. In total the number of
regions we now have is

n (n+ 1)

2
+ 1 + (n+ 1) =

(n+ 1) (n+ 2)

2
+ 1.

This is the correct formula when we replace n with n + 1, and so the result
follows by induction.

L1

L2

L3

L4

P

Q

R

An example when n = 3.

Here the four segments, ‘below P ’, PQ, QR and ‘above R’ on the fourth line
L4, divide what were four regions previously, into eight new ones.

Example 41 Prove for n ∈ N thatZ π

0

sin2n θ dθ =
(2n)!

(n!)2
π

22n
. (2.1)

Proof. Let’s denote the integral on the LHS of equation (2.1) as In. The value
of I0 is easy to calculate, because the integrand is just 1, and so I0 = π. We
also see

RHS (n = 0) =
0!

(0!)2
π

20
= π,

verifying the initial case.
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We now prove a reduction formula connecting In and In+1, so that we can
use this in our induction.

In+1 =

Z π

0

sin2(n+1) θ dθ

=

Z π

0

sin2n+1 θ × sin θ dθ

=
£
sin2n+1 θ × (− cos θ)

¤π
0
−
Z π

0

(2n+ 1) sin2n θ cos θ × (− cos θ) dθ

= 0 + (2n+ 1)

Z π

0

sin2n θ
¡
1− sin2 θ

¢
dθ

= (2n+ 1)

Z π

0

¡
sin2n θ − sin2(n+1) θ

¢
dθ

= (2n+ 1) (In − In+1) .

Rearranging gives

In+1 =
2n+ 1

2n+ 2
In.

Suppose now that equation (2.1) gives the right value of Ik for some natural
number k. Then, turning to equation (2.1) with n = k + 1, and using our
assumption and the reduction formula, we see:

LHS = Ik+1 =
2k + 1

2 (k + 1)
× Ik

=
2k + 1

2 (k + 1)
× (2k)!
(k!)2

× π

22k

=
2k + 2

2 (k + 1)
× 2k + 1

2 (k + 1)
× (2k)!
(k!)2

× π

22k

=
(2k + 2)!

((k + 1)!)2
× π

22(k+1)
,

which equals the RHS of equation (2.1) with n = k + 1. The result follows by
induction.

Example 42 Show for n = 1, 2, 3 . . . and k = 1, 2, 3, . . . that
nX

r=1

r(r + 1)(r + 2) · · · (r + k − 1) = n(n+ 1)(n+ 2) · · · (n+ k)

k + 1
. (2.2)

Remark 43 This problem differs from our earlier examples in that our family
of statements now involves two variables n and k, rather than just the one
variable. If we write P (n, k) for the statement in equation (2.2) then we can
use induction to prove all of the statements P (n, k) in various ways:

• we could prove P (1, 1) and show how P (n+ 1, k) and P (n, k + 1) both
follow from P (n, k) for n, k = 1, 2, 3, . . .;
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• we could prove P (1, k) for all k = 1, 2, 3, . . . and show how knowledge
of P (n, k) for all k, leads to proving P (n+ 1, k) for all k – effectively
this reduces the problem to one application of induction, but to a family
of statements at a time

• we could prove P (n, 1) for all n = 1, 2, 3, . . . and show how knowing
P (n, k) for all n, leads to proving P (n, k + 1) for all n – in a similar
fashion to the previous method, now inducting through k and treating n
as arbitrary.

What these different approaches rely on, is that all the possible pairs (n, k) are
somehow linked to our initial pair (or pairs). Let

S = {(n, k) : n, k ≥ 1}
be the set of all possible pairs (n, k) .

The first method of proof uses the fact that the only subset T of S satisfying
the properties

(1, 1) ∈ T,

if (n, k) ∈ T then (n, k + 1) ∈ T,

if (n, k) ∈ T then (n+ 1, k) ∈ T,

is S itself. Starting from the truth of P (1, 1) , and deducing further truths as
the second and third properties allow, then every P (n, k) must be true. The
second and third methods of proof rely on the fact that the whole of S is the
only subset having similar properties.

Proof. In this case the second method of proof seems easiest, that is we will
prove that P (1, k) holds for each k = 1, 2, 3, . . . and show that assuming the
statements P (N, k) , for a particular N and all k, is sufficient to prove the
statements P (N + 1, k) for all k. Firstly we note

LHS of P (1, k) = 1× 2× 3× · · · × k, and

RHS of P (1, k) =
1× 2× 3× · · · × (k + 1)

k + 1
= 1× 2× 3× · · · × k,

are equal, proving P (1, k) for all k ≥ 1. Then assuming P (N, k) for k > 1 we
have

LHS of P (N + 1, k) =
N+1X
r=1

r(r + 1)(r + 2) · · · (r + k − 1)

=
N (N + 1) . . . (N + k)

k + 1
+ (N + 1) (N + 2) · · · (N + k)

= (N + 1) (N + 2) · · · (N + k)

µ
N

k + 1
+ 1

¶
=

(N + 1) (N + 2) · · · (N + k) (N + k + 1)

k + 1
= RHS of P (N + 1, k) ,
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proving P (N + 1, k) simultaneously for each k. This verifies all that is required
for the second method.

We end with one example which makes use of the Strong Form of Induction.

Recall that a natural number n ≥ 2 is called prime if the only natural
numbers which divide it are 1 and n. (Note that 1 is not considered prime.)
The list of prime numbers begins 2, 3, 5, 7, 11, 13, . . . and has been known to be
infinite since the time of Euclid. (Euclid was an Alexandrian Greek living c.
300 B.C. His most famous work is The Elements, thirteen books which present
much of the mathematics discovered by the ancient Greeks, and which was a
hugely influential text on the teaching of mathematics even into the twentieth
century. The work presents its results in a rigorous fashion, laying down basic
assumptions, called axioms, and carefully proving his theorems from these
axioms.) The prime numbers are in a sense the atoms of the natural numbers
under multiplication, as every natural number n ≥ 2 can be written as a
product of primes in what is essentially a unique way – this fact is known as
the Fundamental Theorem of Arithmetic. Here we just prove the existence of
such a product.

Example 44 Every natural number n ≥ 2 can be written as a product of prime
numbers.

Proof. We begin at n = 2 which is prime.
As our inductive hypothesis we assume that every number 2 ≤ k ≤ N is

a prime number or can be written as a product of prime numbers. Consider
then N +1; we need to show this is a prime number, or else a product of prime
numbers. Either N + 1 is prime or it is not. If N + 1 is prime then we are
done. If N +1 is not prime, then it has a factor m in the range 2 ≤ m < N +1
which divides N + 1. Note that m ≤ N and (N + 1) /m ≤ N, as m is at least
2. So, by our inductive hypothesis, we knowm and (N + 1) /m are both either
prime or the product of prime numbers. Hence we can write

m = p1 × p2 × · · · × pk, and
N + 1

m
= P1 × P2 × · · · × PK,

where p1, . . . , pk and P1, . . . , PK are prime numbers. Finally we have that

N + 1 = m× N + 1

m
= p1 × p2 × · · · × pk × P1 × P2 × · · · × PK,

showing N + 1 to be a product of primes. The result follows using the strong
form of induction.
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2.3 The Binomial Theorem

All of you will have met the identity

(x+ y)2 = x2 + 2xy + y2

and may even have met identities like

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

It may even have been pointed out to you that these coefficients 1, 2, 1 and
1, 3, 3, 1 are simply the numbers that appear in Pascal’s Triangle. This is the
infinite triangle of numbers that has 1s down both sides and a number internal
to some row of the triangle is calculated by adding the two numbers above it
in the previous row. So the triangle grows as follows:

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

From the triangle we could say read off the identity

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

Of course we haven’t proved this identity yet – these identities, for general
n other than just n = 6, are the subject of the Binomial Theorem. We intro-
duce now the binomial coefficients; their connection with Pascal’s triangle will
become clear soon.

Definition 45 The (n, k)th binomial coefficient is the numberµ
n

k

¶
=

n!

k! (n− k)!

where n = 0, 1, 2, 3, . . . and 0 ≤ k ≤ n. It is read as ‘n choose k’ and in some
books is denoted as nCk. As a convention we set

¡
n
k

¢
to be zero when n < 0 or

when k < 0 or k > n.

Note some basic identities concerning the binomial coefficientsµ
n

k

¶
=

µ
n

n− k

¶
,
µ
n

0

¶
=

µ
n

n

¶
= 1,

µ
n

1

¶
=

µ
n

n− 1

¶
= n.

The following lemma demonstrates that the binomial coefficients are pre-
cisely the numbers that appear in Pascal’s triangle.
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Lemma 46 Let n ∈ N and 1 ≤ k ≤ n. Thenµ
n

k − 1

¶
+

µ
n

k

¶
=

µ
n+ 1

k

¶
.

Proof. Putting the LHS over a common denominator

LHS =
n!

(k − 1)! (n− k + 1)!
+

n!

k! (n− k)!

=
n!

k! (n− k + 1)!
{k + (n− k + 1)}

=
n!× (n+ 1)
k! (n− k + 1)!

=
(n+ 1)!

k! (n+ 1− k)!

=

µ
n+ 1

k

¶
= RHS.

Corollary 47 The kth number in the nth row of Pascal’s triangle is
¡
n
k

¢
(re-

membering to count from n = 0 and k = 0). In particular the binomial coeffi-
cients are whole numbers.

Proof. We shall prove this by induction. Note that
¡
0
0

¢
= 1 gives the 1 at the

apex of Pascal’s triangle, proving the initial step.
Suppose now that the numbers

¡
N
k

¢
are the numbers that appear in the

Nth row of Pascal’s triangle. The first and last entries of the next, (N + 1)th,
row (associated with k = 0 and k = N + 1) are

1 =

µ
N + 1

0

¶
and 1 =

µ
N + 1

N + 1

¶
as required. For 1 ≤ k ≤ N , then the kth entry on the (N + 1)th row is formed
by adding the (k − 1)th and kth entries from the Nth row. By our hypothesis
about the Nth row their sum isµ

N

k − 1

¶
+

µ
N

k

¶
=

µ
N + 1

k

¶
,

using the previous lemma, and this verifies that the (N + 1)th row also consists
of binomial coefficients. So the (N + 1)th row checks out, and the result follows
by induction.
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Finally, we come to the binomial theorem:

Theorem 48 (THE BINOMIAL THEOREM): Let n ∈ N and x, y be real
numbers. Then

(x+ y)n =
nX

k=0

µ
n

k

¶
xkyn−k.

Proof. Let’s check the binomial theorem first for n = 0.We can verify this by
noting

LHS = (x+ y)0 = 1, RHS =
µ
0

0

¶
x0y0 = 1.

We aim now to show the theorem holds for n = N + 1 assuming it to be true
for n = N . In this case

LHS = (x+ y)N+1 = (x+ y) (x+ y)N = (x+ y)

Ã
NX
k=0

µ
N

k

¶
xkyN−k

!

writing in our assumed expression for (x+ y)N . Expanding the brackets gives

NX
k=0

µ
N

k

¶
xk+1yN−k +

NX
k=0

µ
N

k

¶
xkyN+1−k,

which we can rearrange to

xN+1 +
N−1X
k=0

µ
N

k

¶
xk+1yN−k +

NX
k=1

µ
N

k

¶
xkyN+1−k + yN+1

by taking out the last term from the first sum and the first term from the second
sum. In the first sum we now make a change of variable. We set k = l − 1,
noting that as k ranges over 0, 1, ..., N −1, then l ranges over 1, 2, ..., N. So the
above equals

xN+1 +
NX
l=1

µ
N

l − 1

¶
xlyN+1−l +

NX
k=1

µ
N

k

¶
xkyN+1−k + yN+1.

We may combine the sums as they are over the same range, obtaining

xN+1 +
NX
k=1

½µ
N

k − 1

¶
+

µ
N

k

¶¾
xkyN+1−k + yN+1

which, using Lemma 46, equals

xN+1 +
NX
k=1

µ
N + 1

k

¶
xkyN+1−k + yN+1 =

N+1X
k=0

µ
N + 1

k

¶
xkyN+1−k = RHS.

The result follows by induction.
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There is good reason why
¡
n
k

¢
is read as ‘n choose k’ – there are

¡
n
k

¢
ways

of choosing k elements from the set {1, 2, . . . , n} (when showing no interest in
the order that the k elements are to be chosen). Put another way, there are¡
n
k

¢
subsets of {1, 2, . . . , n} with k elements in them. To show this, let’s think

about how we might go about choosing k elements.
For our ‘first’ element we can choose any of the n elements, but once this

has been chosen it can’t be put into the subset again. So for our second element
any of the remaining n − 1 elements may be chosen, for our third any of the
n−2 that are left, and so on. So choosing a set of k elements from {1, 2, . . . , n}
in a particular order can be done in

n× (n− 1)× (n− 2)× · · · × (n− k + 1) =
n!

(n− k)!
ways.

But there are lots of different orders of choice that could have produced
this same subset. Given a set of k elements there are k! ways of ordering them
– that is to say, for each subset with k elements there are k! different orders
of choice that will each lead to that same subset. So the number n!/ (n− k)!
is an ‘overcount’ by a factor of k!. Hence the number of subsets of size k equals

n!

k! (n− k)!

as required.

Remark 49 There is a Trinomial Theorem and further generalisations of the
binomial theorem to greater numbers of variables. Given three real numbers
x, y, z and a natural number n we can apply the binomial theorem twice to
obtain

(x+ y + z)n =
nX

k=0

n!

k! (n− k)!
xk (y + z)n−k

=
nX

k=0

n!

k! (n− k)!

n−kX
l=0

(n− k)!

l! (n− k − l)!
xkylzn−k−l

=
nX

k=0

n−kX
l=0

n!

k!l! (n− k − l)!
xkylzn−k−l.

This is a somewhat cumbersome expression; it’s easier on the eye, and has a
nicer symmetry, if we write m = n− k − l and then we can rewrite the above
as

(x+ y + z)n =
X

k+l+m=n
k,l,m≥0

n!

k! l!m!
xk yl zm.

Again the number n!/ (k! l!m!) , where k + l +m = n and k, l,m ≥ 0, is the
number of ways that n elements can be apportioned into three subsets associated
with the numbers x, y and z.
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2.4 Difference Equations

This final section on induction is mainly concerned with solving linear difference
equations with constant coefficients – that is finding an expression for numbers
xn defined recursively by a relation such as

xn+2 = 2xn+1 − xn + 2 for n ≥ 0, with x0 = 1, x1 = 1.

We see that the xn can be determined by applying this relation sufficiently
many times from our initial values of x0 = 1 and x1 = 1. So for example to
find x7 we’d calculate

x2 = 2x1 − x0 + 1 = 2− 1 + 2 = 3;
x3 = 2x2 − x1 + 1 = 6− 1 + 2 = 7;
x4 = 2x3 − x2 + 1 = 14− 3 + 2 = 13;
x5 = 2x4 − x3 + 1 = 26− 7 + 2 = 21;
x6 = 2x5 − x4 + 1 = 42− 13 + 2 = 31;
x7 = 2x6 − x5 + 1 = 62− 21 + 2 = 43.

If this was the first time we had seen such a problem, then we might try
pattern spotting or qualitatively analysing the sequence’s behaviour, in order
to make a guess at a general formula for xn. Simply looking at the sequence
xn above no obvious pattern is emerging. However we can see that the xn are
growing, roughly at the same speed as n2 grows. We might note further that
the differences between the numbers 0, 2, 4, 6, 8, 10, 12, . . . are going up linearly.
Even if we didn’t know how to sum an arithmetic progression, it would seem
reasonable to try a solution of the form

xn = an2 + bn+ c, (2.3)

where a, b, c are constants, as yet undetermined. If a solution of the form (2.3)
exists, we can find a, b, c using the first three cases, so that

x0 = 1 = a02 + b0 + c and so c = 1;

x1 = 1 = a12 + b1 + 1 and so a+ b = 0;

x2 = 3 = a22 − a2 + 1 and so a = 1.

So the only expression of the form (2.3) which gives the right answer in the
n = 0, 1, 2 cases is

xn = n2 − n+ 1. (2.4)

If we put n = 3, 4, 5, 6, 7 into (2.4) then we get the correct values of xn calcu-
lated above. This is, of course, not a proof, but we could prove this formula to
be correct for all values of n ≥ 0 using induction as follows. We have already
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checked that the formula (2.3) is correct for n = 0 and n = 1. As our inductive
hypothesis let’s suppose it was also true for n = k and n = k + 1. Then

xk+2 = 2xk+1 − xk + 2

= 2
©
(k + 1)2 − (k + 1) + 1

ª
−
©
k2 − k + 1

ª
+ 2

= k2 + 3k + 3

= (k + 2)2 − (k + 2) + 1

which is the correct formula with n = k + 2. Note how at each stage we relied
on the formula to hold for two consecutive values of n to be able to move on
to the next value.
Alternatively having noted the differences go up as 0, 2, 4, 6, 8, . . . we can

write, using statement B from the start of this chapter,

xn = 1 + 0 + 2 + 4 + · · ·+ (2n− 2)

= 1 +
n−1X
k=0

2k

= 1 + 2
1

2
(n− 1)n

= n2 − n+ 1.

To make this proof water-tight we need to check that the pattern 0, 2, 4, 6, 8, . . .
of the differences carries on forever, and that it wasn’t just a fluke. But this
follows if we note

xn+2 − xn+1 = xn+1 − xn + 2

and so the difference between consecutive terms is increasing by 2 each time.

Of course if a pattern to xn is difficult to spot then the above methods
won’t apply. We will show now how to solve a difference equation of the form

axn+2 + bxn+1 + cxn = 0

where a, b, c are real or complex constants. The theory extends to linear con-
stant coefficient difference equations of any order. We will later treat some
inhomogeneous examples where the RHS is non-zero. (As with constant coef-
ficient linear differential equations in the later Differential Equations chapter,
this involves solving the corresponding homogeneous difference equation and
finding a particular solution of the inhomogeneous equation. The reason for
the similarity in their solution is because the underlying linear algebra of the
two problems is the same.)
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Theorem 50 Suppose that the sequence xn satisfies the difference equation

axn+2 + bxn+1 + cxn = 0 for n ≥ 0, (2.5)

where a 6= 0, and that α and β be the roots of the auxiliary equation

aλ2 + bλ+ c = 0.

The general solution of (2.5) has the form

xn = Aαn +Bβn (n ≥ 0) ,

when α and β are distinct, and has the form

xn = (An+B)αn (n ≥ 0) ,

when α = β 6= 0. In each case the values of A and B are uniquely determined
by the values of x0 and x1.

Proof. Firstly we note that the sequence xn defined in (2.5) is uniquely de-
termined by the initial values x0 and x1. Knowing these values (2.5) gives us
x2, knowing x1 and x2 gives us x3 etc. So if we can find a solution to (2.5) for
certain initial values then we have the unique solution; if we can find a solution
for arbitrary initial values then we have the general solution.

Note that if α 6= β then putting xn = Aαn + Bβn into the LHS of (2.5)
gives

axn+2 + bxn+1 + cxn

= a
¡
Aαn+2 +Bβn+2

¢
+ b

¡
Aαn+1 +Bβn+1

¢
+ c (Aαn +Bβn)

= Aαn
¡
aα2 + bα+ c

¢
+Bβn

¡
aβ2 + bβ + c

¢
= 0

as α and β are both roots of the auxiliary equation.

Similarly if α = β then putting xn = (An+B)αn into the LHS of (2.5)
gives

axn+2 + bxn+1 + cxn

= a (A (n+ 2) +B)αn+2 + b (A (n+ 1) +B)αn+1 + c (An+B)αn

= Aαn
¡
n
¡
aα2 + bα+ c

¢
+ (2aα+ b)α

¢
+Bαn

¡
aα2 + bα+ c

¢
= 0

because α is a root of the auxiliary equation and also of the derivative of
the auxiliary equation, being a repeated root (or, if you prefer, you can show
that 2aα + b = 0 by remembering that ax2 + bx + c = a (x− α)2 , comparing
coefficients and eliminating c).
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So in either case we see that we have a set of solutions. But further the
initial equations

A+B = x0, Aα+Bβ = x1,

are uniquely solvable for A and B when α 6= β, whatever the values of x0 and
x1. Similarly when α = β 6= 0 then the initial equations

B = x0, (A+B)α = x1,

also have a unique solution in A and B whatever the values of x0 and x1. So
in each case our solutions encompassed the general solution.

Remark 51 When α = β = 0 then (2.5) clearly has solution xn given by

x0, x1, 0, 0, 0, 0, . . .

Probably the most famous sequence defined by such a difference equation
is the sequence of Fibonacci numbers. The Fibonacci numbers Fn are defined
recursively

Fn+2 = Fn+1 + Fn, for n ≥ 0,
with initial values F0 = 0 and F1 = 1. So the sequence begins as

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

and continues to grow, always producing whole numbers and increasing by a
factor of roughly 1.618 each time.
This sequence was first studied by Leonardo of Pisa (c.1170—c.1250), who

called himself Fibonacci. (the meaning of the name ‘Fibonacci’ is somewhat
uncertain; it may have meant ‘son of Bonaccio’ or may have been a nickname
meaning ‘lucky son’.) The numbers were based on a model of rabbit repro-
duction: the model assumes that we begin with a pair of rabbits in the first
month, which every month produces a new pair of rabbits, which in turn be-
gin producing when they are one month old. If the rabbits never die, find a
formula for Fn, the number of rabbit pairs there are after n months. If we
look at the Fn pairs we have at the start of the nth month, then these consist
of Fn−1 − Fn−2 pairs which have just become mature but were immature the
previous month, and Fn−2 pairs which were already mature and their new Fn−2
pairs of offspring. In other words

Fn = (Fn−1 − Fn−2) + 2Fn−2

which rearranges to the recursion above.

Proposition 52 For every integer n ≥ 0,

Fn =
αn − βn√

5
(2.6)

where

α =
1 +
√
5

2
and β =

1−
√
5

2
.
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Proof. From our previous theorem we know that

Fn = Aαn +Bβn for n ≥ 0,

where α and β are the roots of the auxiliary equation

x2 − x− 1 = 0,

that is the α and β given in the statement of the proposition, and where A and
B are constants uniquely determined by the equations

A+B = 0,

Aα+Bβ = 1.

So

A = −B = 1

α− β
=

1√
5
,

concluding the proof.

The following relation between the Fibonacci numbers follows easily with
induction. Note again that we are faced with an identity indexed by two natural
numbers m and n.

Proposition 53 For m,n ∈ N

Fn+m+1 = FnFm + Fn+1Fm+1. (2.7)

Proof. For n ∈ N, we shall take P (n) to be the statement that:

equation (2.7) holds true for all m ∈ N in the cases k = n and k = n+ 1.

So we are using induction to progress through n and dealing with m simulta-
neously at each stage. To verify P (0) , we note that

Fm+1 = F0Fm + F1Fm+1,

Fm+2 = F1Fm + F2Fm+1

for all m, as F0 = 0, F1 = F2 = 1. For the inductive step we assume P (n), i.e.
that for all m ∈ N,

Fn+m+1 = FnFm + Fn+1Fm+1,

Fn+m+2 = Fn+1Fm + Fn+2Fm+1.

To prove P (n+ 1) it remains to show that for all m ∈ N,

Fn+m+3 = Fn+2Fm + Fn+3Fm+1. (2.8)
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From our P (n) assumptions and the definition of the Fibonacci numbers,

LHS of (2.8) = Fn+m+3

= Fn+m+2 + Fn+m+1

= FnFm + Fn+1Fm+1 + Fn+1Fm + Fn+2Fm+1

= (Fn + Fn+1)Fm + (Fn+1 + Fn+2)Fm+1

= Fn+2Fm + Fn+3Fm+1

= RHS of (2.8).

We end with two examples of inhomogeneous difference equations.

Example 54 Find the solution of the following difference equation

xn+2 − 4xn+1 + 4xn = 2n + n, (2.9)

with initial values x0 = 1 and x1 = −1.

Solution. The auxiliary equation

λ2 − 4λ+ 4 = 0
has repeated roots λ = 2, 2. So the general solution of the homogeneous equa-
tion

xn+2 − 4xn+1 + 4xn = 0 (2.10)

we know, from Theorem 50 to be xn = (An+B) 2n where A and B are unde-
termined constants.
In order to find a particular solution of the recurrence relation (2.9) we will

try various educated guesses xn = f (n) , looking for a solution f (n) which is in
similar in nature to 2n+n.We can deal with the n on the RHS by contributing
a term an + b to f (n) — what the values of a and b are will become evident
later. But trying to deal with the 2n on the RHS with contributions to f (n)
that consist of some multiple of 2n or n2n would be useless as 2n and n2n are
both solutions of the homogeneous equation (2.10), and so trying them would
just yield a zero on the RHS – rather we need to try instead a multiple of
n22n to deal with the 2n. So let’s try a particular solution of the form

xn = an+ b+ cn22n,

where a, b, c are constants, as yet undetermined. Putting this expression for xn
into the LHS of (2.9) we get

a (n+ 2) + b+ c (n+ 2)2 2n+2

−4a (n+ 1)− 4b− 4c (n+ 1)2 2n+1

+4an+ 4b+ 4cn22n

= a (n+ 2− 4n− 4 + 4n)
+b (1− 4 + 4)
+c2n

¡
4n2 + 16n+ 16− 8n2 − 16n− 8 + 4n2

¢
= an+ (b− 2a) + 8c2n.
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This expression we need to equal 2n+n and so we see that a = 1, b = 2, c = 1/8.
Hence a particular solution is

xn = n+ 2 +
n2

8
2n,

and the general solution of (2.9) is

xn = (An+B) 2n + n+ 2 +
n2

8
2n.

Recalling the initial conditions x0 = 1 and x1 = −1 we see

n = 0 : B + 2 = 1;

n = 1 : 2 (A+B) + 1 + 2 +
1

4
= −1.

The first line gives us B = −1 and the second that A = −9/8. Finally then
the unique solution of (2.9) is

xn = n+ 2 +
1

8

¡
n2 − 9n− 8

¢
2n.

Example 55 Find the solution of the difference equation

xn+3 = 2xn − xn+2 + 1,

with initial values x0 = x1 = x2 = 0.

Solution. The auxiliary equation here is

λ3 + λ2 − 2 = 0,

which factorises as

λ3 + λ2 − 2 = (λ− 1)
¡
λ2 + 2λ+ 2

¢
= 0

and so has roots
λ = 1,−1 + i,−1− i.

So the general solution of the homogeneous difference equation is

xn = A+B (−1 + i)n + C (−1− i)n .

At this point we know need to find a particular solution of the inhomogeneous
equation. Because constant sequences are solutions of the homogeneous equa-
tion there is no point trying these as particular solutions; instead we try one
of the form xn = kn. Putting this into the difference equation we obtain

k (n+ 3) = 2kn− k (n+ 2) + 1 which simplifies to 3k = −2k + 1
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and so k = 1
5
. The general solution of the inhomogeneous difference equation

has the form
xn =

n

5
+A+B (−1 + i)n + C (−1− i)n .

At first glance this solution does not necessarily look like it will be a real
sequence, and indeed B and C will need to be complex constants for this to be
the case. But if we remember that

(−1 + i)n =
³√
2ei3π/4

´n
= 2n/2

µ
cos

3nπ

4
+ i sin

3nπ

4

¶
(−1− i)n =

³√
2ei5π/4

´n
= 2n/2

µ
cos

5nπ

4
+ i sin

5nπ

4

¶
we can rearrange our solution in terms of overtly real sequences. To calculate
A,B and C then we use the initial conditions. We see that

n = 0 : A+B + C = 0;

n = 1 : A+B (−1 + i) + C (−1− i) = −1/5;
n = 2 : A+B (−2i) + C (2i) = −2/5.

Substituting in A = −B − C from the first equation we have

B (−2 + i) + C (−2− i) =
−1
5
;

B (−1− 2i) + C (−1 + 2i) =
−2
5
,

and solving these gives

B =
4− 3i
50

and C =
4 + 3i

50
, and A = −B − C =

−8
50

.

Hence the unique solution is

xn =
n

5
+
−8
50
+
4− 3i
50

(−1 + i)n +
4 + 3i

50
(−1− i)n

=
1

50
(10n− 8 + (4− 3i) (−1 + i)n + (4 + 3i) (−1− i)n) .

The last two terms are conjugates of one another and so, recalling that

z + z = 2Re z

we have

xn =
1

50
(10n− 8 + 2Re [(4− 3i) (−1 + i)n])

=
1

50

µ
10n− 8 + 2× 2n/2Re

∙
(4− 3i)

µ
cos

3nπ

4
+ i sin

3nπ

4

¶¸¶
=

1

50

µ
10n− 8 + 2n/2+1

µ
4 cos

3nπ

4
+ 3 sin

3nπ

4

¶¶
=

1

25

µ
5n− 4 + 2n/2

µ
4 cos

3nπ

4
+ 3 sin

3nπ

4

¶¶
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2.5 Exercises

2.5.1 Application to Series

Exercise 62 Let a and r be real numbers with r 6= 1. Prove by induction, that

a+ ar + ar2 + ar3 + · · ·+ arn−1 =
a (rn − 1)
r − 1 for n = 1, 2, 3 . . .

Exercise 63 Prove that
2n−1X
r=n

2r + 1 = 3n2 for n = 1, 2, 3 . . .

Exercise 64 Prove for n ∈ N, that

√
n ≤

nX
k=1

1√
k
≤ 2
√
n− 1.

Exercise 65 Show that
nX

r=1

1

r2
≤ 2− 1

n
for n = 1, 2, 3, . . .

Exercise 66 Use the formula from statement B to show that the sum of an
arithmetic progression with initial value a, common difference d and n terms,
is

n

2
{2a+ (n− 1) d} .

Exercise 67 Prove for n ≥ 2 that,
nX

r=2

1

r2 − 1 =
(n− 1) (3n+ 2)
4n (n+ 1)

.

Exercise 68 Let

S (n) =
nX

r=0

r2 for n ∈ N.

Show that there is a unique cubic f (n) = an3+ bn2+ cn+d, whose coefficients
a, b, c, d you should determine, such that f (n) = S (n) for n = 0, 1, 2, 3. Prove
by induction that f (n) = S (n) for n ∈ N.

Exercise 69 Show that

n+ 3
nX

r=1

r + 3
nX

r=1

r2 =
nX

r=1

©
(r + 1)3 − r3

ª
= (n+ 1)3 − 1.

Hence, using the formula from statement B, find an expression for
Pn

r=1 r
2.
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Exercise 70 Extend the method of Exercise 69 to find expressions for
Pn

r=1 r
3

and
Pn

r=1 r
4.

Exercise 71 Use induction to show that
nX

k=1

cos (2k − 1)x = sin 2nx

2 sinx
.

Exercise 72 Use induction to show that
nX

k=1

sin kx =
sin
©
1
2
(n+ 1)x

ª
sin
©
1
2
nx
ª

sin
©
1
2
x
ª .

Exercise 73 Let k be a natural number. Deduce from Example 42 that

nX
r=1

rk =
nk+1

k + 1
+Ek(n) (2.11)

where Ek(n) is a polynomial in n of degree at most k.

Exercise 74 Use the method of Exercise 69 and the binomial theorem to find
an alternative proof of equation (2.11).

2.5.2 Miscellaneous Examples

Exercise 75 Prove Bernoulli’s Inequality which states that

(1 + x)n ≥ 1 + nx for x ≥ −1 and n ∈ N.

Exercise 76 Show by induction that n2 + n ≥ 42 when n ≥ 6 and n ≤ −7.

Exercise 77 Show by induction that there are n! ways of ordering a set with
n elements.

Exercise 78 Show that there are 2n subsets of the set {1, 2, ..., n} . [Be sure to
include the empty set.]

Exercise 79 Show for n ≥ 1 and 0 ≤ k ≤ n that

n!

k! (n− k)!
< 2n.

[Hint: you may find it useful to note the symmetry in the LHS which takes the
same value at k = k0 as it does at k = n− k0.]
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Exercise 80 Bertrand’s Postulate states that for n ≥ 3 there is prime number
p satisfying

n

2
< p < n.

Use this postulate and the strong form of induction to show that every positive
integer can be written as a sum of prime numbers, all of which are distinct.
(For the purposes of this exercise you will need to regard 1 as prime number.)

Exercise 81 Assuming only the product rule of differentiation, show that

d
dx
(xn) = nxn−1 for n = 1, 2, 3, . . .

Exercise 82 Show that every natural number n ≥ 1 can be written in the form
n = 2kl where k, l are natural numbers and l is odd.

Exercise 83 Show that every integer n can be written as a sum 3a+5b where
a and b are integers.

Exercise 84 Show that 33n + 54n+2 is divisible by 13 for all natural numbers
n.

Exercise 85 (a) Show that 7m+3 − 7m and 11m+3 − 11m are both divisible by
19 for all m ≥ 0.
(b) Calculate the remainder when 7m − 11n is divided by 19, for the cases

0 ≤ m ≤ 2 and 0 ≤ n ≤ 2.
(c) Deduce that 7m−11n is divisible by 19, precisely whenm+n is a multiple

of 3.

Exercise 86 By setting up an identity between In and In−2 show that

In =

Z π

0

sinnx

sinx
dx

equals π when n is odd. What value does In take when n is even?

Exercise 87 Show thatZ π/2

0

cos2n+1 x dx =
22n (n!)2

(2n+ 1)!
.

Exercise 88 Euler’s Gamma function Γ (a) is defined for all a > 0 by the
integral

Γ (a) =

Z ∞

0

xa−1e−x dx.

Show that Γ (a+ 1) = aΓ (a) for a > 0, and deduce that

Γ (n+ 1) = n! for n ∈ N.
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Exercise 89 Euler’s Beta function B (a, b) is defined for all positive a, b by
the integral

B (a, b) =

Z 1

0

xa−1 (1− x)b−1 dx.

Set up a reduction formula involving B, and deduce that if m and n are natural
numbers then

B (m+ 1, n+ 1) =
m!n!

(m+ n+ 1)!
.

Exercise 90 The Hermite polynomials Hn (x) for n = 0, 1, 2, . . . are defined
recursively as

Hn+1 (x) = 2xHn (x)− 2nHn−1 (x) for n ≥ 1,

with H0 (x) = 1 and H1 (x) = 2x.
(a) Calculate Hn (x) for n = 2, 3, 4, 5.
(b) Show by induction that

H2k (0) = (−1)k
(2k)!

k!
and H2k+1 (0) = 0.

(c) Show by induction that

dHn

dx
= 2nHn−1.

(d) Deduce the Hn (x) is a solution of the differential equation

d2y
dx2
− 2xdy

dx
+ 2ny = 0.

(e) Use Leibniz’s rule for differentiating a product (see Example 101) to show
that the polynomials

(−1)n ex2 d
n

dxn

³
e−x

2
´

satisfy the same recursion as Hn (x) with the same initial conditions and deduce
that

Hn (x) = (−1)n ex
2 dn

dxn

³
e−x

2
´
for n = 0, 1, 2, . . .

Exercise 91 What is wrong with the following ‘proof’ that all people are of
the same height?
"Let P (n) be the statement that n persons must be of the same height.

Clearly P (1) is true as a person is the same height as him/herself. Suppose
now that P (k) is true for some natural number k and we shall prove that
P (k + 1) is also true. If we have a crowd of k + 1 people then we can invite
one person to briefly leave so that k remain – from P (k) we know that these
people must all be equally tall. If we invite back the missing person and someone
else leaves, then these k persons are also of the same height. Hence the k + 1
persons were all of equal height and so P (k + 1) follows. By induction everyone
is of the same height."
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Exercise 92 Below are certain families of statements P (n) (indexed by n ∈
N), which satisfy rules that are similar (but not identical) to the hypotheses
required for induction. In each case say for which n ∈ N the truth of P (n)
must follow from the given rules.
(a) P (0) is true; for n ∈ N if P (n) is true then P (n+ 2) is true;
(b) P (1) is true; for n ∈ N if P (n) is true then P (2n) is true;
(c) P (0) and P (1) are true; for n ∈ N if P (n) is true then P (n+ 2) is

true;
(d) P (0) and P (1) are true; for n ∈ N if P (n) and P (n+ 1) are true then

P (n+ 2) is true;
(e) P (0) is true; for n ∈ N if P (n) is true then P (n+ 2) and P (n+ 3)

are both true;
(f) P (0) is true; for n ≥ 1 if P (n) is true then P (n+ 1) is true.

2.5.3 Binomial Theorem

Exercise 93 Show that Lemma 46 holds true for general integers n and k,
remembering the convention that

¡
n
k

¢
is zero when n < 0 or k < 0 or k > n.

Exercise 94 Interpret Lemma 46 in terms of subsets of {1, 2, . . . , n} and sub-
sets of {1, 2, . . . , n+ 1} to give a new proof of the lemma. [Hint: consider
subsets of {1, 2, . . . , n+ 1} containing k elements, and whether they do, or do
not, contain the final element n+ 1.]

Exercise 95 Let n be a natural number. Show that

(a)
µ
n

0

¶
+

µ
n

1

¶
+

µ
n

2

¶
+ · · ·+

µ
n

n

¶
= 2n;

(b)
µ
n

0

¶
+

µ
n

2

¶
+

µ
n

4

¶
+ · · · =

µ
n

1

¶
+

µ
n

3

¶
+

µ
n

5

¶
+ · · · = 2n−1.

Interpret part (a) in terms of the subsets of {1, 2, . . . , n} . [Note that the sums
above are not infinite as the binomial coefficients

¡
n
k

¢
eventually become zero

once k becomes sufficiently large.]

Exercise 96 Let n be a positive integer. Simplify the expression (1 + i)2n .
Use the binomial theorem to show thatµ
2n

0

¶
−
µ
2n

2

¶
+

µ
2n

4

¶
−
µ
2n

6

¶
+· · ·+(−1)n

µ
2n

2n

¶
=

½
(−1)n/2 2n if n is even;

0 if n is odd.

Show that the right-hand side is equal to 2n cos (nπ/2) . Similarly, find the value
of µ

2n

1

¶
−
µ
2n

3

¶
+

µ
2n

5

¶
−
µ
2n

7

¶
+ · · ·+ (−1)n−1

µ
2n

2n− 1

¶
.
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Exercise 97 Let n be a natural number. Show thatµ
2n

0

¶
+

µ
2n

4

¶
+

µ
2n

8

¶
+ · · · =

½
22n−2 + (−1)n/2 2n−1 if n is even;

22n−2 if n is odd.

Distinguishing cases, find the value ofµ
2n

1

¶
+

µ
2n

5

¶
+

µ
2n

9

¶
+ · · ·

Exercise 98 Use the identity (1 + x)2n = (1 + x)n (1 + x)n to show that

nX
k=0

µ
n

k

¶2
=

µ
2n

n

¶
.

Exercise 99 By differentiating the binomial theorem, show that
nX

k=1

k

µ
n

k

¶
= n2n−1.

Exercise 100 Show that
nX

k=0

1

k + 1

µ
n

k

¶
=
2n+1 − 1
n+ 1

.

Exercise 101 Use induction to prove Leibniz’s rule for the differentiation of
a product – this says that for functions u (x) and v (x) of a variable x, and
n ∈ N, then

dn

dxn
(u (x) v (x)) =

nX
k=0

µ
n

k

¶
dku
dxk

dn−kv
dxn−k

.

2.5.4 Fibonacci and Lucas Numbers

Exercise 102 Use Proposition 53 to show that

F2n+1 = (Fn+1)
2 + (Fn)

2 (n ∈ N) .

Deduce that
F2n = (Fn+1)

2 − (Fn−1)
2 (n = 1, 2, 3...) .

Exercise 103 Prove by induction the following identities involving the Fi-
bonacci numbers

(a) F1 + F3 + F5 + · · ·+ F2n+1 = F2n+2,

(b) F2 + F4 + F6 + · · ·+ F2n = F2n+1 − 1,
(c) (F1)

2 + (F2)
2 + · · ·+ (Fn)

2 = FnFn+1.
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Exercise 104 (a) The Lucas numbers Ln (n ∈ N) are defined by

Ln = Ln−1 + Ln−2 for n ≥ 2,

and by L0 = 2 and L1 = 1. Prove that

Ln = 2Fn−1 + Fn for n ≥ 1.

More generally, show that if a sequence of numbers Gn, for n ∈ N, is defined
by Gn = Gn−1 + Gn−2 for n ≥ 2,and by G0 = a and G1 = b, show that
Gn = aFn−1 + bFn for n ≥ 1.

Exercise 105 Show that F2n = FnLn for n ∈ N, where Ln denotes the nth
Lucas number, described in the previous exercise. Deduce the identity

F2n = L2L4L8 · · ·L2n−1.

Exercise 106 Show, for 0 ≤ k ≤ n, with k even, that

Fn−k + Fn+k = LkFn.

Can you find, and prove, a similar expression for Fn−k + Fn+k when k is odd?

Exercise 107 Use Lemma 46 to prove by induction that

Fn+1 =

µ
n

0

¶
+

µ
n− 1
1

¶
+

µ
n− 2
2

¶
+ · · · for n ∈ N.

[Note that the series is not infinite as the terms in the sum will eventually
become zero.]

Exercise 108 Use Proposition 53 to show that

F(m+1)k = Fmk+1Fk + Fk−1Fmk

and deduce that if k divides n then Fk divides Fn.

Exercise 109 Let α =
¡
1 +
√
5
¢
/2 and β =

¡
1−
√
5
¢
/2. Show that α and β

are roots of 1 + x = x2. Use the identity from Proposition 52 and the binomial
theorem to show that

nX
k=0

µ
n

k

¶
Fk = F2n.

Exercise 110 Prove for m,n ∈ N that
nX

k=0

µ
m+ k

m

¶
=

µ
n+m+ 1

m+ 1

¶
.
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Exercise 111 By considering the identity (1 + x)m+n = (1 + x)m (1 + x)n , or
otherwise, prove thatµ

m+ n

r

¶
=

µ
m

0

¶µ
n

r

¶
+

µ
m

1

¶µ
n

r − 1

¶
+ · · ·+

µ
m

r

¶µ
n

0

¶
for m,n, r ∈ N.

Exercise 112 Show that for n = 1, 2, 3, . . .

nX
k=1

k

µ
n

k

¶2
=

(2n− 1)!
{(n− 1)!}2

.

Exercise 113 Show that
nX

i=m

Fi = Fn+2 − Fm+1 for m,n ∈ N.

Exercise 114 Show that

Fi+j+k = Fi+1Fj+1Fk+1 + FiFjFk − Fi−1Fj−1Fk−1 for i, j, k = 1, 2, 3, . . .

Exercise 115 Show by induction that α =
¡
1 +
√
5
¢
/2 and β =

¡
1−
√
5
¢
/2

are roots of the equation
Fm−1 + Fmx = xm

for m = 1, 2, 3, . . . . Hence generalise the result of Exercise 109 to show that

nX
k=0

µ
n

k

¶
(Fm)

k (Fm−1)
n−k Fk = Fmn.

Exercise 116 (For those with some knowledge of infinite geometric progres-
sions). Use Proposition 52 to show that

∞X
k=0

Fkx
k =

x

1− x− x2
.

This is the generating function of the Fibonacci numbers. For what values of
x does the infinite series above converge?

2.5.5 Difference Equations

Exercise 117 The sequence of numbers xn is defined recursively by

xn = xn−1 + 2xn−2 for n ≥ 2,

and by x0 = 1, and x1 = −1. Calculate xn for n ≤ 6, and make an estimate for
the value of xn for general n. Use induction to prove your estimate correct.
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Exercise 118 The sequence of numbers xn is defined recursively by

xn = 2xn−1 − xn−2 for n ≥ 2,

and by x0 = a and x1 = b. Calculate xn for n ≤ 6, and make an estimate for
the value of xn for general n. Use induction to prove your estimate correct.

Exercise 119 The sequence of numbers xn is defined recursively by

xn = 3xn−2 + 2xn−3 for n ≥ 3,

and by x0 = 1, x1 = 3, x2 = 5. Show by induction that

2n < xn < 2
n+1 for n ≥ 1

and that
xn+1 = 2xn + (−1)n .

Exercise 120 The sequence x0, x1, x2, x3, ... is defined recursively by

x0 = 0, x1 = 0.8, xn = 1.2xn−1 − xn−2 for n ≥ 2.

With the aid of a calculator list the values of xi for 0 ≤ i ≤ 10. Prove further,
by induction, that

xn = Im {(0.6 + 0.8i)n}
for each n = 0, 1, 2, .... Deduce that |xn| ≤ 1 for all n. Show also that xn cannot
have the same sign for more than three consecutive n.

Exercise 121 The sequences un and vn are defined recursively by

un+1 = un + 2vn and vn+1 = un + vn,

with initial values u1 = v1 = 1. Show that

(un)
2 − 2 (vn)2 =

½
1 if n is even,
−1 if n is odd.

Show further, for n ≥ 1, that

un =

¡
1 +
√
2
¢n
+
¡
1−
√
2
¢n

2
and vn =

¡
1 +
√
2
¢n − ¡1−√2¢n
2
√
2

.

Exercise 122 Solve the initial-value difference equation

3xn+2 − 2xn+1 − xn = 0, x0 = 2, x1 = 1.

Show that xn → 5/4 as n→∞.
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Exercise 123 Obtain particular solutions to the difference equation

xn+2 + 2xn+1 − 3xn = f (n)

when (i) f (n) = 2n; (ii) f (n) = n; (iii) f (n) = n (−3)n .

Exercise 124 Find the general solution of

xn+1 = xn + sinn.

Exercise 125 Show that xn = n! is a solution of the second-order difference
equation

xn+2 = (n+ 2) (n+ 1) xn.

By making the substitution xn = n!un find a second independent solution.
Now find the unique solution for xn given that x0 = 1 and x1 = 3.
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3. VECTORS AND MATRICES

3.1 Vectors

A vector can be thought of in two different ways. Let’s for the moment con-
centrate on vectors in R2, the xy-plane.

• From one point of view a vector is just an ordered pair of numbers (x, y).
We can associate this vector with the point in R2 which has co-ordinates
x and y. We call this vector the position vector of the point.

• From the second point of view a vector is a ‘movement’ or translation.
For example, to get from the point (3, 4) to the point (4, 5) we need to
move ‘one to the right and one up’; this is the same movement as is
required to move from (−2,−3) to (−1,−2) or from (1,−2) to (2,−1) .
Thinking about vectors from this second point of view, all three of these
movements are the same vector, because the same translation ‘one right,
one up’ achieves each of them, even though the ‘start’ and ‘finish’ are
different in each case. We would write this vector as (1, 1) . Vectors from
this second point of view are sometimes called translation vectors.

(1, 1) as a position vector (1, 1) as a translation

Likewise in three (or higher) dimensions the triple (x, y, z) can be thought
of as the point in R3, which is x units along the x-axis, y units along the y-axis
and z units along the z-axis, or it can represent the translation which would
take the origin to that point.

Notation 56 For ease of notation vectors are often denoted by a single letter,
but to show that this is a vector quantity, rather than just a single number, the
letter is either underlined such as v or written in bold as v.
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3.1.1 Algebra of Vectors

Again we return to xy-plane. Given two vectors u = (u1, u2) and v = (v1, v2)
we can add them, much as you would expect, by adding their co-ordinates.
That is:

u+ v = (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) .

This is easiest to see from a diagram:

0.5 1 1.5 2
x

-2

-1.5

-1

-0.5

0.5

1

y

u��1,1�

u�v

u

v��1,�2�

v

A geometric interpretation of the vector sum

The sum is also easiest to interpret when we consider the vectors as translations.
The translation (u1 + v1, u2 + v2) is the composition of doing the translation
(u1, u2) first and then doing the translation (v1, v2) or it can be achieved by
doing the translations in the other order – that is, vector addition is commu-
tative: u+ v = v + u. Note that it makes sense to add two vectors in R2, or
two vectors from R3 etc., but that we can make no obvious sense of adding a
vector in R2 to one from R3 – they both need to be of the same type.

Given a vector v = (v1, v2) and a real number (a scalar) k then the scalar
multiple kv is defined as

kv = (kv1, kv2) .

When k is a positive integer then we can think of kv as the translation achieved
when we translate by v k times. Note that the points kv, as k varies, make up
the line which passes through the origin and the point v.
We write −v for (−1)v = (−v1,−v2) and this is the inverse operation of

translating by v. And the difference of two vectors v = (v1, v2) and w =
(w1, w2) is defined as

v−w = v+(−w) = (v1 − w1, v2 − w2) .

Put another way v − w is the vector that translates the point with position
vector w to the point with position vector v.
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Note that there is also a special vector 0 = (0, 0) which may be viewed either
as a special point the origin, where the axes cross, or as the null translation,
the translation that doesn’t move anything.

The vectors (1, 0) and (0, 1) form the standard or canonical basis for R2.
They are denoted by the symbols i and j respectively. Note that any vector
v = (x, y) can be written uniquely as a linear combination of i and j: that is

(x, y) = xi+yj

and this is the only way to write (x, y) as a sum of scalar multiples of i and j.
Likewise the vectors (1, 0, 0) , (0, 1, 0) , (0, 0, 1) form the canonical basis for R3
and are respectively denoted as i, j and k.

Proposition 57 Vector addition and scalar multiplication satisfy the following
properties. These properties verify that R2 is a real vector space (cf. Michael-
mas Linear Algebra). Let u,v,w ∈ R2 and λ, μ ∈ R. Then

u+ 0 = u u+ v = v + u 0u = 0
u+ (− u) = 0 (u+ v) +w = u+ (v +w) 1u = u
(λ+ μ)u = λu+μu λ(u+ v) = λu+λv λ(μu) = (λμ)u

Everything above generalises in an obvious way to the case of Rn and from
now on we will discuss this general case.

3.1.2 Geometry of Vectors

As vectors represent geometric ideas like points and translations, they have
important geometric properties as well as algebraic ones. The length of a
vector v = (v1, v2, . . . , vn), which is written |v|, is defined to be

|v| =

vuut nX
i=1

(vi)
2.

This is exactly what you’d expect it to be: from Pythagoras’ Theorem we see
this is the distance of the point v from the origin, or equivalently the distance
a point moves when it is translated by v. So if p and q are the position vectors
of two points in the plane, then the vector that will translate p to q is q− p,
and the distance between them is |q− p| (or equally |p− q|).

Note that |v| ≥ 0 and that |v| = 0 if and only if v = 0. Also |λv| = |λ| |v|
for any λ ∈ R.
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Proposition 58 (Triangle Inequality)
Let u = (u1, u2, . . . , un) ,v = (v1, v2, . . . , vn) ∈ Rn. Then

|u+ v| ≤ |u|+ |v|
with equality when u = λv where λ > 0 or one of u,v is 0.

0.5 1 1.5 2
x

-1

-0.5

0.5

1

y

u��1,1�

u�v

v��1,�2�

Geometric interpretation of the Triangle Inequality
Proof. Assume u 6= 0. Note that for t ∈ R

0 ≤ |u+ tv|2 =
nX
i=1

(ui + tvi)
2 = |u|2 + 2t

nX
i=1

uivi + t2 |v|2 .

The RHS of the above inequality is a quadratic in t which is always non-negative
and so has non-positive discriminant (i.e. b2 ≤ 4ac). Hence

4

Ã
nX
i=1

uivi

!2
≤ 4 |u|2 |v|2

and so ¯̄̄̄
¯

nX
i=1

uivi

¯̄̄̄
¯ ≤ |u| |v| . (3.1)

Hence

|u+ v|2 = |u|2 + 2
nX
i=1

uivi + |v|2 ≤ |u|2 + 2 |u| |v|+ |v|2 = (|u|+ |v|)2

to give the required result. The inequality (3.1) is known as the Cauchy-
Schwarz Inequality.
Note that we have equality in b2 ≤ 4ac if and only if the quadratic |u+ tv|2 =

0 has a unique real solution, say t = t0. So u+ t0v = 0 and we see that u and
v are multiples of one another. This is for equality to occur in (3.1). With
u = −t0v, then equality in

u · v = −t0 |u|2 ≤ t0 |u|2

occurs when t0 is non-positive.
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3.1.3 The Scalar Product

Given two vectors u = (u1, u2, . . . , un) ,v = (v1, v2, . . . , vn) ∈ Rn, the scalar
product u · v, also known as the dot product or Euclidean inner product, is
given by

u · v = u1v1 + u2v2 + · · ·+ unvn.

The following properties of the scalar product are easy to verify and are
left as exercises. (Note (v) has already been proven in the previous section).

Proposition 59 Let u,v,w ∈ Rn and λ ∈ R. Then
(i) u · v = v · u;
(ii) (λu) · v = λ(u · v);
(iii) (u+ v) ·w = u ·w + v ·w;
(iv) u · u = |u|2 ≥ 0 and u · u = 0 if and only if u = 0;
(v) (Cauchy-Schwarz Inequality)

|u · v| ≤ |u| |v|

with equality when u and v are multiples of one another.

We see that the length of a vector u can be written in terms of the scalar
product, namely

|u| =
√
u · u

We can also define angle using the scalar product in terms of their scalar
product.

Definition 60 Given two non-zero vectors u,v ∈ Rn the angle between them
is given by the expression

cos−1
µ
u · v
|u| |v|

¶
.

Note that the formula makes sense as

−1 ≤ u · v/ (|u| |v|) ≤ 1

from the Cauchy-Schwarz Inequality. If we take the principles values of cos−1

to be in the range 0 ≤ θ ≤ π then this formula measures the smaller angle
between the vectors. Note that two vectors u and v are perpendicular precisely
when u · v = 0.
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3.2 Matrices

At its simplest amatrix is just a two-dimensional array of numbers: for example

µ
1 2 −3√
2 π 0

¶
,

⎛⎝ 1
−1.2
−1

⎞⎠ ,

µ
0 0
0 0

¶

are all matrices. The examples above are respectively a 2× 3 matrix, a 3× 1
matrix and a 2 × 2 matrix (read ‘2 by 3’ etc.); the first figure refers to the
number of rows and the second to the number of columns. So vectors like
(x, y) and (x, y, z) are also matrices, respectively 1× 2 and 1× 3 matrices.
The 3× 1 matrix above could just as easily be thought of as a vector – it

is after all just a list of three numbers, but written down rather than across.
This is an example of a column vector. When we need to differentiate between
the two, the vectors we have already met like (x, y) and (x, y, z) are called row
vectors.

Notation 61 The set of 1 × n row vectors (or n-tuples) is written as Rn.
When we need to differentiate between row and column vectors we write (Rn)0

or (Rn)∗ for the set of n× 1 column vectors. If there is no chance of confusion
between the two (because we are only using row vectors, or only column vectors)
then Rn can denote either set.

Notation 62 If you are presented with an m × n matrix A = (aij) then the
notation here simply means that aij is the (i, j)th entry. That is, the entry in
the ith row and jth column is aij. Note that i can vary between 1 and m, and
that j can vary between 1 and n. So

ith row = (ai1, . . . , ain) and jth column =

⎛⎜⎝ a1j
...

amj

⎞⎟⎠ .

Notation 63 As with vectors there is a zero m×n matrix, whose every entry
is 0, which we denote by 0 unless we need to specify its size.

Notation 64 For each n there is another important matrix, the identity ma-
trix In. Each diagonal entry of In is 1 and all other entries are 0. That is

aij = δij =

½
1 if i = j;
0 if i 6= j.

The notation δij is referred to as the Kronecker Delta.
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3.2.1 Algebra of Matrices

We shall see though that a matrix is much more than simply an array of
numbers. Where vectors can be thought of as points in space, we shall see
that a matrix is really a map between spaces: specifically a m× n matrix can
be thought of as a map from (Rn)0 to (Rm)0 . To see this we need to first talk
about how matrices add and multiply.

1. Addition: Let A be an m × n matrix (recall: m rows and n columns)
and B be an p × q matrix. We would like to add them (as we added
vectors) by adding their corresponding entries. So to add them the two
matrices have to be the same size, that is m = p and n = q. In which
case we have

(A+B)ij = aij + bij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

2. Scalar Multiplication: Let A be an m×n matrix and k be a constant
(a scalar). Then the matrix kA has as its (i, j)th entry

(kA)ij = kaij for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

That is, we multiply each of the entries of A by k to get the new matrix
kA.

3. Matrix Multiplication: Based on how we added matrices then you
might think that we multiply matrices in a similar fashion, namely mul-
tiplying corresponding entries, but we do not. At first glance the rule
for multiplying matrices is going to seem rather odd, but we will soon
discover why we multiply them as we do.

The rule is this: we can multiply an m×n matrix A with an p×q matrix
B if n = p and we produce an m× q matrix AB with (i, j)th entry

(AB)ij =
nX

k=1

aikbkj for 1 ≤ i ≤ m and 1 ≤ j ≤ q. (3.2)

It may help a little to write the rows of A as r1, . . . , rm and the columns
of B as c1, . . . , cq and the above rule says that

(AB)ij = ri · cj for 1 ≤ i ≤ m and 1 ≤ j ≤ q.

We dot the rows of A with the columns of B.

N.B. Here are two important rules of matrix algebra. Let A be an m× n
matrix. Then

A0np = 0mp and 0lmA = 0ln
and

AIn = A and ImA = A.

This formula for multiplication will, I am sure, seem pretty bizarre, let
alone easy to remember – so here are some examples.
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Example 65 Show that 2 (A+B) = 2A+ 2B for the following matrices:

A =

µ
1 2
3 4

¶
, B =

µ
0 −2
5 1

¶
.

Solution. Here we are checking the distributive law in a specific example.
Generally it is the case that c (A+B) = cA+ cB. But to check it here we note
that

A+B =

µ
1 0
8 5

¶
, and so 2 (A+B) =

µ
2 0
16 10

¶
;

2A =

µ
2 4
6 8

¶
, and 2B =

µ
0 −4
10 2

¶
, so 2A+ 2B =

µ
2 0
16 10

¶
.

Example 66 Where possible, calculate pairwise the products of the following
matrices.

A =

µ
1 2
−1 0

¶
| {z }

2×2

, B =

µ
1 2 3
3 2 1

¶
| {z }

2×3

, C =

µ
1 −1
1 −1

¶
| {z }

2×2

.

Solution. First up, the products we can form are: AA,AB,AC,CA,CB,CC.
Let’s slowly go through the product AC.µ

1 2
−1 0

¶µ
1 −1
1 −1

¶
=

µ
1× 1 + 2× 1 ??
?? ??

¶
=

µ
3 ??
?? ??

¶
.

This is how we calculate the (1, 1)th entry of AC. We the first row of A and
the first column of C and we dot them together. We complete the remainder
of the product as follows:µ

1 2
−1 0

¶µ
1 −1
1 −1

¶
=

µ
2 1× (−1) + 2×−1
?? ??

¶
=

µ
3 −3
?? ??

¶
;µ

1 2
−1 0

¶µ
1 −1
1 −1

¶
=

µ
2 4
−1× 1 + 0× 1 ??

¶
=

µ
3 −3
−1 ??

¶
;µ

1 2
−1 0

¶µ
1 −1
1 −1

¶
=

µ
2 4
0 −1×−1 + 0×−1

¶
=

µ
3 −3
−1 1

¶
.

So finally µ
1 2
−1 0

¶µ
1 −1
1 −1

¶
=

µ
3 −3
−1 1

¶
.
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We complete the remaining examples more quickly but still leaving a middle
stage in the calculation to help see the process:

AA =

µ
1 2
−1 0

¶µ
1 2
−1 0

¶
=

µ
1− 2 2 + 0
−1 + 0 −2 + 0

¶
=

µ
−1 2
−1 −2

¶
;

AB =

µ
1 2
−1 0

¶µ
1 2 3
3 2 1

¶
=

µ
1 + 2 2 + 4 3 + 6
−1 + 0 −2 + 0 −3 + 0

¶
=

µ
2 4 6
−1 −2 −3

¶
;

CA =

µ
1 −1
1 −1

¶µ
1 2
−1 0

¶
=

µ
1 + 1 2− 0
1 + 1 2− 0

¶
=

µ
2 2
2 2

¶
;

CB =

µ
1 −1
1 −1

¶µ
1 2 3
3 2 1

¶
=

µ
1− 3 2− 2 3− 1
1− 3 2− 2 3− 1

¶
=

µ
−2 0 2
−2 0 2

¶
;

CC =

µ
1 −1
1 −1

¶µ
1 −1
1 −1

¶
=

µ
1− 1 1− 1
1− 1 1− 1

¶
=

µ
0 0
0 0

¶
.

N.B. There are certain important things to note here, which make matrix
algebra different from the algebra of numbers.

1. Note the AC 6= CA. That is, matrix multiplication is not generally com-
mutative.

2. It is, though, associative, which means that

(AB)C = A (BC)

whenever this product makes sense. So we can write down a product like
A1A2 . . . An without having to specify how we go about multiplying all
these matrices or needing to worry about bracketing, but we do have to
keep the order in mind.

3. Note that CC = 0 even though C is non-zero – not something that
happens with numbers.

4. The distributive laws also hold for matrix multiplication, namely

A (B + C) = AB +AC and (A+B)C = AC +BC

whenever these products make sense.

Notation 67 We write A2 for the product AA and similarly we write An for
the product AA · · ·A| {z }

n times

. Note that A must be a square matrix (same number of

rows and columns) for this to make sense.
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3.3 Matrices as Maps

We have seen then how we can multiply anm×n matrix A and an n×p matrix
B to form a product AB which is anm×p matrix. Now given the co-ordinates
of a point in n-dimensional space, we can put them in a column to form a n×1
column vector, an element v ∈ (Rn)0 . If we premultiply this vector v by the
m× n matrix A we get a m× 1 column vector Av ∈ (Rm)0.

So premultiplying by the matrix A gives a map: (Rn)0 → (Rm)0 : v→ Av.

Why have we started using column vectors all of a sudden? This is really just
a matter of choice: we could just as easily take row vectors and postmultiply
by matrices on the right, and this is the convention some books choose. But,
as we are used to writing functions on the left, we will use column vectors and
premultiply by matrices.

Importantly though, we can now answer the question of why we choose to
multiply matrices as we do. Take an m × n matrix A and an n × p matrix
B. We have two maps associated with premultiplication by A and B; let’s call
them α, given by:

α : (Rn)0 → (Rm)0 : v 7→ Av

and β, given by

β : (Rp)0 → (Rn)0 : v 7→ Bv.

We also have their composition α ◦ β, that is we do β first and then α, given
by

α ◦ β : (Rp)0 → (Rm)0 : v 7→ A (Bv) .

But we have already commented that matrix multiplication is associative, so
that

A (Bv) = (AB)v.

That is,

the composition α ◦ β is premultiplication by the product AB.

So if we think of matrices more as maps, rather than just simple arrays of
numbers, matrix multiplication is quite natural and simply represents the com-
position of the corresponding maps.
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3.3.1 Linear Maps

Let A be an m× n matrix and consider the associated map

α : (Rn)0 → (Rm)0 : v 7→ Av

which is just pre-multiplication by A. Because of the distributive laws that
hold for matrices, given column vectors v1,v2 ∈ (Rn)0 and scalars c1, c2 ∈ R
then

α (c1v1 + c2v2) = A (c1v1 + c2v2)

= c1Av1 + c2Av2

= c1α (v1) + c2α (v2) .

This means α is what is called a linear map – multiplication by a matrix leads
to a linear map. The important thing is that the converse also holds true –
any linear map (Rn)0 → (Rm)0 has an associated matrix.
To see this most clearly we return to 2× 2 matrices. Let α : (R2)0 → (R2)0

be a linear map – we’ll try to work out what its associated matrix is. Let’s
suppose we’re right and α is just premultiplication by some 2× 2 matrix; let’s
write it as µ

a b
c d

¶
.

Note that if we multiply the canonical basis vectors

i =

µ
1
0

¶
and j =

µ
0
1

¶
by this matrix we getµ

a b
c d

¶µ
1
0

¶
=

µ
a
c

¶
, and

µ
a b
c d

¶µ
0
1

¶
=

µ
b
d

¶
.

So, if this matrix exists, the first column is α (i) and the second is α (j) . But
if we remember that α is linear then we see now that we have the right matrix,
let’s call it

A =
¡
α (i) α (j)

¢
.

Then

A

µ
x
y

¶
= xα (i) + yα (j)

= α (xi+yj) [as α is linear]

= α

µ
x
y

¶
.

We shall make use of this later when we calculate the matrices of some standard
maps.
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The calculations we performed above work just as well generally: if α :
(Rn)0 → (Rm)0 is a linear map then it is the same as premultiplying by an
m × n matrix. In the columns of this matrix are the images of the canonical
basis of Rn under α.

3.3.2 Geometric Aspects

The following are all examples of linear maps of the xy-plane:

• Rotation Rθ anti-clockwise by θ about the origin;

• Reflection in a line through the origin;

• A stretch with an invariant line through the origin;

• A shear with an invariant line through the origin;
though this list is far from comprehensive.

We concentrate on the first example Rθ. Remember to find the matrix for
Rθ we need to find the images Rθ (i) and Rθ (j) . We note from the diagrams

that

Rθ (i) =

µ
cos θ
sin θ

¶
and Rθ (j) =

µ
− sin θ
cos θ

¶
.

So, with a little abuse of notation, we can write

Rθ =

µ
cos θ − sin θ
sin θ cos θ

¶
.

• RθRφ = Rθ+φ – rotating by θ and then by φ is the same as rotating
by θ + φ. This is one way of calculating the cos (θ + φ) and sin (θ + φ)
formulas:

RθRφ =

µ
cos θ − sin θ
sin θ cos θ

¶µ
cosφ − sinφ
sinφ cosφ

¶
=

µ
cos θ cosφ− sin θ sinφ − cos θ sinφ− sin θ cosφ
cos θ sinφ+ sin θ cosφ cos θ cosφ− sin θ sinφ

¶
;
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• the inverse map of Rθ is R−θ – rotating by −θ undoes the effect of
rotating by θ – note that this means RθR−θ = I2 = R−θRθ.

• Rθ (v) ·Rθ (w) = v ·w for any two 2× 1 vectors v and w. This perhaps
is surprising: this equation says that Rθ is an orthogonal matrix (cf.
Michaelmas Geometry I course). One consequence of this equation is
that Rθ preserves distances and angles.

Definition 68 An n×n matrix A is said to be orthogonal if ATA = In = AAT .

3.4 2 Simultaneous Equations in 2 Variables

Example 69 Suppose we are given two linear equations in two variables x and
y. These might have the form

2x+ 3y = 1 (3.3)

and
3x+ 2y = 2. (3.4)

Solution. To have solved these in the past, you might have argued along the
lines:

eliminate x by using 3× (3.3)− 2× (3.4) : (6x+ 9y)− (6x+ 4y) = 3− 4;
simplify: 5y = −1;

so : y = −0.2;
substitute back in (3.3) : 2x− 0.6 = 1;

solving : x = 0.8.

So we see we have a unique solution: x = 0.8, y = −0.2.
You may even have seen how this situation could be solved graphically by

drawing the lines with equations (3.3) and (3.4); the solution then is their
unique intersection.

-1 -0.5 0.5 1 1.5 2
x

-2

-1

1

2

y

�0.8,�0.2�

2x+ 3y = 1 and 3x+ 2y = 2
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We can though, put the two equations (3.3) and (3.4) into matrix form. We
do this by writing µ

2 3
3 2

¶µ
x
y

¶
=

µ
1
2

¶
.

The two simultaneous equations in the scalar variables x and y have now been
replaced by a single equation in vector quantities – we have in this vector
equation two 2 × 1 vectors (one on each side of the equation), and for the
vector equation to be true both co-ordinates of the two vectors must agree.
We know that it is possible to undo this equation to obtain the solutionµ

x
y

¶
=

µ
0.8
−0.2

¶
because we have already solved this system of equations. In fact, there is a
very natural way of unravelling these equations using matrices.

Definition 70 Let A be a n× n matrix. We say that B is an inverse of A if

BA = AB =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1

⎞⎟⎟⎟⎠ = In.

• Recall that the matrix In is called the identity matrix – or more specif-
ically it is the n× n identity matrix.

• The identity matrices have the property that

AIn = A = InA

for any n× n matrix A.

• If an inverse B for A exists then it is unique. This is easy to show:
suppose B and C were two inverses then note that

C = InC = (BA)C = B (AC) = BIn = B.

• We write A−1 for the inverse of A if an inverse exists.

• If BA = In then, in fact, it will follow that AB = In. The converse is
also true. We will not prove this here.

Proposition 71 The matrix

A =

µ
a b
c d

¶
has an inverse precisely when ad− bc 6= 0. If ad− bc 6= 0 then

A−1 =
1

ad− bc

µ
d −b
−c a

¶
.
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Proof. Note for any values of a, b, c, d, thatµ
d −b
−c a

¶µ
a b
c d

¶
=

µ
ad− bc 0
0 ad− bc

¶
= (ad− bc) I2.

So if ad − bc 6= 0 then we can divide by this scalar and we have found our
inverse.
But if ad− bc = 0 then we have found a matrix

B =

µ
d −b
−c a

¶
such that

BA = 02

the 2× 2 zero matrix. Now if an inverse C for A existed, we’d have that

02 = 02C = (BA)C = B (AC) = BI2 = B.

So each of a, b, c and d must be zero. So A = 02 which makes it impossible
for AC to be I2 – multiplying any C by the 02 will always lead to 02, not the
identity.
Let’s return now to a pair of simultaneous equations. Say they have the

form

ax+ by = k1,

cx+ dy = k2.

Then these can be rewritten as a single vector equation:

A

µ
x
y

¶
=

µ
a b
c d

¶µ
x
y

¶
=

µ
k1
k2

¶
.

If the matrix A has an inverse A−1 then we can premultiply both sides by this
and we find µ

x
y

¶
= I2

µ
x
y

¶
= A−1A

µ
x
y

¶
= A−1

µ
k1
k2

¶
and we have found our unique solution.
What happens though if A doesn’t have an inverse? In this case ad = bc,

or equally that a : c = b : d and we see that

ax+ by and cx+ dy

are multiples of one another.
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• If the two equations are entirely multiples of one another, i.e.

a : c = b : d = k1 : k2

then we essentially just have the one equation and there are infinitely
many solutions.

• If the two equations aren’t entirely multiples of one another, just the left
hand sides i.e.

a : c = b : d 6= k1 : k2

then we have two contradictory equations and there are no solutions.

Geometrically these three cases correspond to the two lines

ax+ by = k1 and cx+ dy = k2

being non-parallel and intersecting once, parallel and concurrent, or parallel
and distinct as shown below.

Unique solution

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

Infinite solutions

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

1.5

No solutions

Solution. (Contd.) Returning to our previous linear system of equationsµ
2 3
3 2

¶µ
x
y

¶
=

µ
1
2

¶
,

we see that the matrix on the left has inverse

1

2× 2− 3× 3

µ
2 −3
−3 2

¶
=

µ
−0.4 0.6
0.6 −0.4

¶
.

Hence the system’s unique solution isµ
−0.4 0.6
0.6 −0.4

¶µ
1
2

¶
=

µ
−0.4 + 1.2
0.6− 0.8

¶
=

µ
0.8
−0.2

¶
,

as we previously calculated.
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3.5 The General Case and EROs

In the general case of a linear system of m equations in n variables such as

a11x1+ a12x2+ · · ·+ a1nxn = c1, · · · · · · · · · , am1x1+ am2x2+ · · ·+ amnxn = cm,

then this can be replaced by a single vector equation

Ax = c

where A = (aij) is anm×n matrix, x = (x1, . . . , xn)
T is an n×1 column vector

and c = (c1, . . . , cm)
T is an m×1 column vector. This system of equations can

be reduced using elementary row operations (EROs) as described below. These
are nothing more sophisticated than the type of manipulations we performed
previously in our example of solving two simultaneous equations; we simply
aim to be more systematic now in our approach to solving these systems.
Given these m equations in n variables, there are three types of ERO that

we can perform on the system:

1. Swapping two equations.

2. Multiplying an equation by a non-zero constant: note that the
constant has to be non-zero, as multiplying by 0 would effectively lose an
equation.

3. Adding a multiple of one equation to another.

It is important to note that performing any of these EROs to the system
preserves the system’s set of solutions. The theorem that justifies the merit of
this approach, which we shall not prove here, is the following:

Theorem 72 Given a linear system of equations Ax = c then it is possible,
by means of EROs, to reduce this system to an equivalent system

A0x = c0

where A0 is in row-reduced echelon (RRE) form. To say that a matrix M is in
RRE form means that

• all the zero rows of M appear at the bottom of the matrix;

• in any non-zero row, the first non-zero entry is a 1;

• such a leading 1 is the only non-zero entry in its column;

• the leading 1 of a row is to the left of leading 1s in successive rows.
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Once a system has been put into RRE form, a general solution can be ob-
tained by assigning a parameter to each variable whose column has no leading 1
and immediately reading off the values of the other variables in terms of these
parameters.

The application of this theorem is something that is very much better ex-
plain with examples and practice than as given above; the important point
to note is that this is simply a systematic approach to solving linear systems
based on the type of manipulation that we have already been doing.

Example 73 Find the general solution of the following system of equations in
variables x1, x2, x3, x4:

x1 + x2 − x3 + 3x4 = 2;

2x1 + x2 − x3 + 2x4 = 4;

4x1 + 3x2 − 3x3 + 8x4 = 8.

Solution. We will first write this system as an augmented matrix⎛⎝ 1 1 −1 3 2
2 1 −1 2 4
4 3 −3 8 8

⎞⎠ ,

which is simply a more compact presentation of the coefficients in the equations.
We can use a type 3 ERO to add a multiple of one row to another. As the first
row has a leading 1 this seems a good equation to subtract from the others:
let’s subtract it twice from the second row, and four times from the third row.
This, strictly speaking is doing two EROs at once, but that’s ok, and once you
become au fait with EROs you’ll get used to doing several in one step. The
point to what we’re doing is to ‘clear out’ the first column apart from that top
1. The system becomes ⎛⎝ 1 1 −1 3 2

0 −1 1 −4 0
0 −1 1 −4 0

⎞⎠ .

Note now that the third and second rows are the same. If we subtract the
second from the third we will gain a zero row. Why has this happened? Because
there was some redundancy in the system; at least one of the equations was
telling us something we could have deduced from the other two. Looking back
at the original equations, we can spot that the third equation is twice the
first one plus the second, and so wasn’t necessary – the system really only
contained two genuine constraints. The system has now become⎛⎝ 1 1 −1 3 2

0 −1 1 −4 0
0 0 0 0 0

⎞⎠ .
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Finally it seems sensible to multiply the second row by −1 to get a leading 1.
The only thing that remains is to clear out the second column apart from that
leading 1; we can do this by taking the new second row from the first row.⎛⎝ 1 0 0 −1 2

0 1 −1 4 0
0 0 0 0 0

⎞⎠ .

What we have manipulated our system to is the pair of equations

x1 − x4 = 2 and x2 − x3 + 4x4 = 0,

which look much more palatable than the original system. As the theo-
rem says, to find the general solution we assign a parameter to each of the
columns/variables without a leading 1; in this case these are the third and
fourth columns. If we set x3 = λ and x4 = μ then we can read off x1 and x2 as

x1 = 2 + μ and x2 = λ− 4μ.

So we see that
(x1, x2, x3, x4) = (2 + μ, λ− 4μ, λ, μ) .

As we let the parameters λ and μ vary over all possible real numbers then
we obtain all the system’s solutions. The above is the general solution of the
equations.

Example 74 Find all the solutions of the equations

x1 + x2 − x3 + 3x4 = 2;

2x1 + x2 − x3 + 2x4 = 4;

4x1 + 3x2 − 3x3 + 8x4 = 9.

Solution. With this very similar set of equations, going through the first three
EROs as above we would arrive at⎛⎝ 1 1 −1 3 2

2 1 −1 2 4
4 3 −3 8 9

⎞⎠ →

⎛⎝ 1 1 −1 3 2
0 −1 1 −4 0
0 −1 1 −4 1

⎞⎠
→

⎛⎝ 1 1 −1 3 2
0 −1 1 −4 0
0 0 0 0 1

⎞⎠ .

Whilst the system is still not in RRE form, we might as well stop now because
of the third row of the system. This no represents the equation 0 = 1. There
are clearly no solutions to this, let alone any that also satisfy the other two
equations. Hence this system is ‘inconsistent’, there are no solutions. An
inconsistent linear system of equations will always yield a row¡

0 0 · · · 0 1
¢

when row-reduced.
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EROs have a further useful application in the determining of invertibility
and inverses. Given a linear system, represented by an augmented matrix¡

A c
¢
,

then the effect of any ERO is the same as that of pre-multiplying by a certain
elementary matrix to get ¡

EA Ec
¢
.

For example, if we had four equations then premultiplying the system with the
following matrices

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1

⎞⎟⎟⎠ ,

would have the effect of swapping the first two rows, adding the third row to the
first, and multiplying the third row by 5, respectively. This process generalises
naturally to n equations. There is no neat expression for the inverse of an n×n
matrix in general, though the following method shows how to determine if an
n× n matrix is invertible, and in such cases to find the inverse.

Algorithm 75 Let A be an n × n matrix. Place this side by side with In in
an augmented matrix ¡

A In
¢
.

Repeatedly perform EROs on this augmented matrix until A has been row-
reduced. Let’s say these EROs are equivalent to premultiplication by elementary
matrices E1, E2, . . . , Ek, so that the system has become¡

EkEk−1 · · ·E1A EkEk−1 · · ·E1
¢
.

If A is not invertible then there is some redundancy in the rows of A and the
left-hand matrix will contain a zero row. Otherwise A will have reduced to In
The matrix that has performed this is Ek · · ·E1 and this is what we have on
the right-hand side of our augmented matrix.

Example 76 Calculate the inverse of the following matrix⎛⎝ 1 2 1
2 1 0
1 3 1

⎞⎠ .
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Solution. Quickly applying a sequence of EROs to the following augmented
matrix we see⎛⎝ 1 2 1 1 0 0

2 1 0 0 1 0
1 3 1 0 0 1

⎞⎠ →

⎛⎝ 1 2 1 1 0 0
0 −3 −2 −2 1 0
0 1 0 −1 0 1

⎞⎠
→

⎛⎝ 1 0 1 3 0 −2
0 0 −2 −5 1 3
0 1 0 −1 0 1

⎞⎠
→

⎛⎝ 1 0 1 3 0 −2
0 1 0 −1 0 1
0 0 −2 −5 1 3

⎞⎠
→

⎛⎝ 1 0 1 3 0 −2
0 1 0 −1 0 1
0 0 1 2.5 −0.5 −1.5

⎞⎠
→

⎛⎝ 1 0 0 0.5 0.5 −0.5
0 1 0 −1 0 1
0 0 1 2.5 −0.5 −1.5

⎞⎠ .

Hence ⎛⎝ 1 2 1
2 1 0
1 3 1

⎞⎠−1 =
⎛⎝ 0.5 0.5 −0.5
−1 0 1
2.5 −0.5 −1.5

⎞⎠ .

3.6 Determinants

The determinant of a square n× n matrix is a number which reflects the way
a matrix (or rather its associated map α) stretches space. We will define this
only for 2× 2 matrices.

Definition 77 Given a 2× 2 matrix

A =

µ
a b
c d

¶
.

Then
detA = ad− bc.

We have already seen that A has an inverse precisely when detA 6= 0. More
generally |detA| is an area-scaling factor for α. So if R is a region of the plane,
then

area (α (R)) = |detA| × area (R) .
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The sign of detA is also important (whether it is positive or negative). If detA
is positive then α will preserve a sense of orientation (such as a rotation does)
but if detA is negative then the sense of orientation will be reversed (such as a
reflection does). If detA = 0 then α collapses space: under α then the xy-plane
will map to a line (or a single point in the case of A = 02). Viewed from this
geometric point the following multiplicative property of determinants should
not seem too surprising, if we recall that AB represents the composition of the
maps represented by B then A.

Proposition 78 Let A and B be two 2× 2 matrices. Then

det (AB) = detAdetB.

Proof. Let

A =

µ
a b
c d

¶
and B =

µ
e f
g h

¶
.

Then

det (AB) = det

µ
ae+ bg af + bh
ce+ dg cf + dh

¶
= (ae+ bg) (cf + dh)− (af + bh) (ce+ dg)

= bgcf + aedh− bhce− afdg [after cancelling]

= (ad− bc) (eh− fg)

= detAdetB.

Example 79 Recall that the matrix for Rθ, which denoted rotation by θ anti-
clockwise about the origin was

Rθ =

µ
cos θ − sin θ
sin θ cos θ

¶
.

Note that detRθ = +1, unsurprisingly, as such a rotation preserves area and
it preserves a sense of orientation.
Reflection in the line y = x tan θ is given by the matrixµ

cos 2θ sin 2θ
sin 2θ − cos 2θ

¶
.

Again we see that the determinant has modulus 1 (reflections are area-preserving)
but that the determinant is negative as reflections reverse orientation.

96 VECTORS AND MATRICES



3.7 Exercises

3.7.1 Algebra of Vectors

Exercise 126 Given a subset S = {v1,v2, . . . ,vk} ⊆ Rn the span of S is
defined to be

hSi = {α1v1 + · · ·+ αkvk : αi ∈ R} .

Let S = {(1, 0, 2) , (0, 3, 1)} ⊆ R3.Show that

(x, y, z) ∈ hSi⇔ 6x+ y − 3z = 0.

Let Π denote the plane 3x + y + 2z = 0 in R3. Find two vectors v1,v2 ∈ R3
such thath{v1,v2}i = Π.

Exercise 127 A non-empty subset W ⊆ Rn is called a subspace if

α1w1 + α2w2 ∈W whenever α1, α2 ∈ R and w1,w2 ∈W.

Which of the following subsets of R4 are subspaces? Justify your answers.
(i) W = {x ∈ R4 : x1 + x2 = x3 + x4} ;
(ii) W = {x ∈ R4 : x1 = 1} ;
(iii) W = {x ∈ R4 : x1 = x3 = 0} ;
(iv) W =

©
x ∈ R4 : x1 = (x2)2

ª
.

Exercise 128 For which of the following sets Si is it true that hSii = R4?
S1 = {(1, 1, 0, 0) , (1, 0, 1, 0) , (1, 0, 0, 1) , (0, 1, 1, 0) , (0, 1, 0, 1) , (0, 0, 1, 1)} ;
S2 = {(1, 1, 1, 1) , (0, 0, 1, 1) , (1, 1, 0, 0)} ;
S3 = {(0, 1, 2, 3) , (1, 2, 3, 0) , (3, 0, 1, 2) , (1, 2, 3, 0)} ;
S4 = {(0, 2, 3, 1) , (3, 1, 0, 2)} .

3.7.2 Geometry of Vectors

Exercise 129 Verify properties (i)-(iv) of the scalar product given in Propo-
sition 59.

Exercise 130 Find the lengths of the vectors

u = (1, 0, 1) and v = (3, 2, 1) ∈ R3

and the angle between the two vectors. Find all those vectors in R3 which are
perpendicular to both u and v.
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Exercise 131 Show that the following three vectors u, v, w ∈ R3 are each of
unit length and are mutually perpendicular:

u =
1√
2
(1,−1, 0) , v = 1√

3
(1, 1, 1) , w =

1√
6
(1, 1,−2) .

Show that (x, y, z) can be written as a linear combination of u and v, i.e. as
λu+ μv, if and only if x+ y = 2z.

Exercise 132 A particle P has position vector

r (t) = (cos t, sin t, t) ∈ R3

which varies with time t. Find the velocity vector dr/dt and acceleration vector
d2r/dt2 of the particle.
The helix’s unit tangent vector t is the unit vector in the direction dr/dt.

Find t and show that t · k is constant. [This show that the particle’s path is a
helix.]
Show that the particle is closest to the point (−1, 0, 0) at t = 0.

Exercise 133 The two vectors e and f in R2 are given by

e = (cos θ, sin θ) and f = (− sin θ, cos θ)

where θ is a function of time t. Show that

ė = θ̇f and ḟ = −θ̇e.

Let r = re. Show that

ṙ = ṙe+ rθ̇f and r̈ =
³
r̈ − rθ̇

2
´
e+
1

r

d
dt

³
r2θ̇
´
f .

Exercise 134 Deduce from the triangle inequality that¯̄̄̄
¯

nX
k=1

vk

¯̄̄̄
¯ ≤

nX
k=1

|vk|

for n vectors v1, . . .vn ∈ R2. By choosing appropriate vk show that

nX
k=1

√
k2 + 1 ≥ 1

2
n
√
n2 + 2n+ 5.
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3.7.3 Algebra of Matrices

Exercise 135 Consider the following matrices, A,B,C,D. Where it makes
sense to do so, calculate their sums and products.

A =

µ
1 2
0 3

¶
, B =

⎛⎝ 0 1
3 2
1 0

⎞⎠ ,

C =

µ
−1 2 3
−2 1 0

¶
D =

µ
−1 12
6 0

¶
.

Exercise 136 Let

A =

µ
1 2 0
0 1 1

¶
, B =

⎛⎝ −1 0
0 3
−1 0

⎞⎠ , C =

µ
2 1
0 −1

¶
. (3.5)

Calculate the products AB,BA,CA,BC.

Exercise 137 Given that

A =

µ
1 3 0
2 1 1

¶
, B =

⎛⎝ 1 0
2 1
−1 −1

⎞⎠ , C =

⎛⎝ 2 1
−1 1
−0 1

⎞⎠ , (3.6)

verify the distributive law A(B + C) = AB +AC for the three matrices.

Exercise 138 Let

A =

µ
4 2
2 1

¶
, B =

µ
−2 −1
4 2

¶
. (3.7)

Show that AB = 0, but that BA 6= 0.

Exercise 139 Use the product formula in equation (3.2) to show that matrix
multiplication is associative – that is, for an k× l matrix A, an l×m matrix
B,and and m× n matrix C:

A (BC) = (AB)C.

Exercise 140 Let

A =

⎛⎝ 1 0 0
a −1 0
b c 1

⎞⎠ .

Find A2. Under what condition on a, b and c is A2 = I (the identity matrix)?
Given this condition holds find the inverse matrix of A. [Hint: Think first
before calculating anything!]
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Exercise 141 A square matrix A = (aij) is said to be upper triangular if
aij = 0 when i > j. Let A,B be n × n upper triangular matrices. Show that
A+B,AB and A−1, if it exists, are all upper triangular.

Exercise 142 Let A and B be be k×m and m×n matrices respectively. Show
that (AB)T = BTAT .

Exercise 143 The trace of k × k matrix equals the sum of its diagonal ele-
ments. Let A and B be 2× 2 matrices. Show that

trace (AB) = trace (BA) .

This result applies generally when A is an m×n matrix and B a n×m matrix.

Exercise 144 Let

A =

µ
1 0
0 0

¶
and B =

µ
0 1
0 0

¶
.

Find all those 2× 2 matrices X which commute with A – i.e. those satisfying
XA = AX.
Find all those 2× 2 matrices Y which commute with B – i.e. those satis-

fying Y B = BY.
Hence show that the only 2 × 2 matrices, which commute with all other

2 × 2 matrices, are scalar multiples of the identity matrix. [This result holds
generally for n× n matrices.]

Exercise 145 Given a non-zero complex number z = x+ iy, we can associate
with z a matrix

Z =

µ
x y
−y x

¶
.

Show that if z and w are complex numbers with associated matrices Z and W,
then the matrices associated with z + w, zw and 1/z are Z +W,ZW and Z−1

respectively. Hence, for each of the following matrix equations, find a matrix
Z which is a solution.

Z2 =

µ
0 1
−1 0

¶
,

Z2 + 2Z =

µ
−5 0
0 −5

¶
,

Z2 +

µ
−3 1
1 −3

¶
Z =

µ
−2 −1
1 −2

¶
,

Z5 =

µ
1 1
−1 1

¶
.
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Exercise 146 Let A denote the 2× 2 matrixµ
a b
c d

¶
.

Show that
A2 − (traceA)A+ (detA)I = 0 (3.8)

where traceA = a+d is the trace of A, that is the sum of the diagonal elements,
detA = ad− bc is the determinant of A, and I is the 2× 2 identity matrix.
Suppose now that An = 0 for some n ≥ 2. Prove that detA = 0. Deduce

using equation (3.8) that A2 = 0.

Exercise 147 Let

A =

µ
5 −1
4 1

¶
.

Show that

An = 3n−1
µ
2n+ 3 −n
4n 3− 2n

¶
for n = 1, 2, 3, . . .. Can you find a matrix B such that B2 = A?

3.7.4 Simultaneous Equations. Inverses.

Exercise 148 What are the possible numbers of solutions of three linear equa-
tions in two variables? What about of two linear equations in three variables?

Exercise 149 Find the solutions (if any) of the following systems of equations:

x1 + 2x2 − 3x3 = 4,

x1 + 3x2 + x3 = 11,

2x1 + 5x2 − 4x3 = 13,

2x1 + 6x2 + 2x3 = 22,

and

2x1 + x2 − 2x3 + 3x4 = 1,

3x1 + 2x2 − x3 + 2x4 = 4,

3x1 + 3x2 + 3x3 − 3x4 = 5.

Exercise 150 Solve the linear system

x1 + 2x2 − 3x4 + x5 = 2,

x1 + 2x2 + x3 − 3x4 + x5 + 2x6 = 3,

x1 + 2x2 − 3x4 + 2x5 + x6 = 4,

3x1 + 6x2 + x3 − 9x4 + 4x5 + 3x6 = 9,

expressing the solutions in terms of parameters.
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Exercise 151 For what values of a do the simultaneous equations

x+ 2y + a2z = 0,

x+ ay + z = 0,

x+ ay + a2z = 0,

have a solution other than x = y = z = 0. For each such a find the general
solution of the above equations.

Exercise 152 Find all values of a for which the system

x1 + x2 + x3 = a,

ax1 + x2 + 2x3 = 2,

x1 + ax2 + x3 = 4,

has (a) a unique solution, (b) no solution, (c) infinitely many solutions.

Exercise 153 For which values of a is the system

x− y + z − t = a2,

2x+ y + 5z + 4t = a,

x+ 2z + t = 2,

consistent? For each such a, find the general solution of the system.

Exercise 154 Consider the system of equations in x, y, z,

x + z = 1
2x + αy + 4z = 1

− x − αy + αz = β

where α and β are constants. Determine for which values of α and β the system
has: (a) exactly one solution and (b) more than one solution.

Exercise 155 Let m and n be natural numbers with 1 ≤ m < n. Prove that
the linear system of m homogeneous equations in n variables

a11x1 + a12x2 + · · ·+ a1nxn = 0, · · · · · · · · · am1x1 + am2x2 + · · ·+ amnxn = 0,

has infinitely many solutions.

Exercise 156 (See Exercise 126 for the definition of the span of a set.) Find
the general solution of the equations

x1 + x2 = x3 + x4 = x5 + x6.

Hence find four vectors v1,v2,v3,v4 ∈ R6 such that

h{v1,v2,v3,v4}i =
©
x ∈ R6 : x1 + x2 = x3 + x4 = x5 + x6

ª
.
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Exercise 157 (See Exercise 126 for the definition of the span of a set.) Let

S = {(1, 2, 3, 0, 0, 1} , (2, 0, 1, 0, 1, 1), (1, 0, 3, 0, 2, 1)} ⊆ R6.

Find three homogeneous linear equations in x1, . . . , x6 the set of solutions of
which is hSi.

Exercise 158 Let A and B be invertible n×n matrices. Show that (AB)−1 =
B−1A−1. Give an example to show that (A+B)−1 6= A−1 +B−1 in general.

Exercise 159 Determine whether the following matrices are invertible and
find those inverses that do exist.µ

2 3
3 4

¶
,

⎛⎝ 2 1 3
1 0 2
4 5 4

⎞⎠ ,

⎛⎝ −1 1 1
2 0 1
1 3 5

⎞⎠ ,

⎛⎝ 1 1 2
1 2 1
2 1 1

⎞⎠ .

Exercise 160 Calculate A−1 when A is⎛⎝ 1 −3 0
1 −2 4
2 −5 5

⎞⎠ .

Express your answer as a product of elementary matrices.

Exercise 161 Find two different right inverses for

A =

µ
1 2 0
0 1 1

¶
;

i.e. two different 3× 2 matrices M1 and M2 such that AM1 = I2 = AM2.

Exercise 162 Show that an n × n matrix is orthogonal if and only if its
columns are of unit length and mutually orthogonal to one another.

Exercise 163 Show there are 2n upper triangular orthogonal n× n matrices.

Exercise 164 Show that a linear map α : Rn → Rn preserves the scalar prod-
uct i.e.

Ax ·Ay = x · y for all x,y ∈ Rn,

if and only if its matrix is orthogonal.

Exercise 165 We say that two n × n matrices A and B are similar if there
exists an invertible n× n matrix P such that A = P−1BP.
(i) Show that if A and B are similar matrices then so are A2 and B2 (with

the same choice of P ).
(ii) Show that if A and B are similar matrices then detA = detB and

traceA =traceB.
Show that if A and B are similar matrices then so are AT and BT (with

generally a different choice of P ).
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Exercise 166 Let

A =

µ
2 1
1 2

¶
and P =

µ
1 1
−1 1

¶
.

Show that P−1AP is diagonal.
Use the identity (P−1AP )n = P−1AnP to calculate a general formula for

An where n ∈ Z. Hence find a matrix E such that E2 = A.

Exercise 167 (a) Show that if A is inevitable then so is AT and
¡
AT
¢−1

=

(A−1)
T
.

(b) Show that if A and B are symmetric then so are A + B and AB and
A−1 (provided A is invertible).
(c) Show that if A and B are orthogonal then so are A−1 and AB.

Exercise 168 Let v1,v2, . . . ,vn be the rows of an n× n matrix A. Show that
A is invertible if and only if

h{v1,v2, . . . ,vn}i = Rn.

3.7.5 Matrices as Maps

Exercise 169 What transformations of the xy-plane do the following matrices
represent:µ

1 0
0 −1

¶
,

µ
2 0
0 1

¶
,

µ
1/2 1/2
1/2 1/2

¶
,

µ
cos θ − sin θ
sin θ cos θ

¶
.

Which, if any, of these transformations are invertible?

Exercise 170 Find all the linear maps α : R2 → R2 which map the x-axis back
onto itself. Find all those that satisfy α2 = id. What do these map represent
geometrically?

Exercise 171 (i) Write down the 2× 2 matrix A which represents reflection
in the x-axis.
(ii) Write down the 2×2 matrix B which represents reflection in the y = x

line.
Find a 2× 2 invertible matrix P such that A = P−1BP.

Exercise 172 In Exercise 145 a matrix Z was sought such that

Z2 =

µ
0 1
−1 0

¶
.

By considering which map of R2 the matrix on the RHS represents, show that
there are infinitely many matrices Z which satisfy this equation.
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Exercise 173 Let f : R2 → R2 be given by

f

µ
x1
x2

¶
= A

µ
x1
x2

¶
where

A =

µ
a b
c d

¶
is a 2 × 2 matrix. For what values of the coefficients a, b, c, d of A is f (a)
injective? (b) surjective?
What are the corresponding answers f : R2 → R3 is defined by multiplying

by a 3× 2 matrix A, or if f : R3 → R2 is defined using a 2× 3 matrix A?

Exercise 174 Show that the matrix

A =

µ
cos 2θ sin 2θ
sin 2θ − cos 2θ

¶
is orthogonal. Find the position vector (x, y)T all points which are fixed by A.
What map of the xy-plane does A represent geometrically?

Exercise 175 Let

A =

µ
a b
c d

¶
and let AT =

µ
a c
b d

¶
be a 2× 2 matrix and its transpose. Suppose that detA = 1 and

ATA =

µ
1 0
0 1

¶
.

Show that a2 + c2 = 1, and hence that a and c can be written as

a = cos θ and c = sin θ.

for some θ in the range 0 ≤ θ < 2π. Deduce that A has the form

A =

µ
cos θ − sin θ
sin θ cos θ

¶
.

3.7.6 Determinants

Exercise 176 The determinant of a 3× 3 matrix (aij) equals

a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

Write down 3 × 3 matrices E1, E2, E3, which represent the three types of
elementary row operation that may be performed on a 3×3 matrix, and calculate
their determinants.
Verify that det (EiA) = detEi detA in each case.
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Exercise 177 Prove that detAT = detA for 3× 3 matrices.

Exercise 178 Let

A =

⎛⎝ 1 0 2
0 1 3
2 0 1

⎞⎠ , and B =

⎛⎝ 0 0 1
0 1 −1
2 0 3

⎞⎠ .

Calculate detA and detB. Further calculate AB and BA and verify

detAB = detA× detB = detBA.

Exercise 179 Given two vectors u = (u1, u2, u3) and v = (v1, v2, v3) ∈ R3
their cross product is given by

u× v = det

⎛⎝ i j k
u1 u2 u3
v1 v2 v3

⎞⎠ .

Show that u× v = −v× u. Show also that u× v is perpendicular to both u
and v.

Exercise 180 Show for any u,v,w ∈ R3 that

u× (v×w) = (u · v)w− (u ·w)v.

Exercise 181 Do 2× 2 matrices exist which exhibit the following properties?
Either find such matrices or show that no such exist.
(i) A such that A5 = I and Ai 6= I for 1 ≤ i ≤ 4;
(ii) A such that An 6= I for all positive integers n;
(iii) A and B such that AB 6= BA;
(iv) A and B such that AB is invertible and BA is singular (i.e. not

invertible);
(v) A such that A5 = I and A11 = 0.
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4. DIFFERENTIAL EQUATIONS

4.1 Introduction

The study of ordinary differential equations (DEs) is as old as The Calculus it-
self and dates back to the time of Newton (1643-1727) and Leibniz (1646-1716).
At that time most of the interest in DEs came from applications in physics and
astronomy – one of Newton’s greatest achievements, in his Principia Mathe-
matica (1687), was to show that a force between a planet and the sun, which
is inversely proportional to the square of the distance between them, would
lead to an elliptical orbit. The study of differential equations grew as increas-
ingly varied mathematical and physical situations led to differential equations,
and as more and more sophisticated techniques were found to solve them –
besides astronomy, DEs began appearing naturally in applied areas such as
fluid dynamics, heat flow, waves on strings, and equally in pure mathematics,
in determining the curve a chain between two points will make under its own
weight, the shortest path between two points on a surface, the surface across
a given boundary of smallest area (i.e. the shape of a soap film), the largest
area a rope of fixed length can bound, etc. (We will be studying here or-
dinary differential equations (ODEs) rather than partial differential equations
(PDEs). This means that the DEs in question will involve full derivatives, such
as dy/dx, rather than partial derivatives, such as ∂y/∂x. The latter notation is
a measure of how a function y changes with x whilst all other variables (which
y depends on) are kept constant.)

We give here, and solve, a simple example which involves some of the key
ideas of DEs – the example here is the movement of a particle P under gravity,
in one vertical dimension. Suppose that we write h (t) for the height (in metres,
say) of P over the ground; if the heights involved are small enough then we
can reasonably assume that the gravity acting (denoted as g) is constant, and
so

d2h
dt2

= −g. (4.1)

The velocity of the particle is the quantity dh/dt – the rate of change of
distance (here, height) with time. The rate of change of velocity with time
is called acceleration and is the quantity d2h/dt2 on the LHS of the above
equation. The acceleration here is entirely due to gravity. Note the need for a
minus sign here as gravity is acting downwards.
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Equation (4.1) is not a difficult DE to solve; we can integrate first once,

dh
dt
= −gt+K1 (4.2)

and then again

h (t) =
−1
2
gt2 +K1t+K2 (4.3)

where K1 and K2 are constants. Currently we don’t know enough about the
specific case of the particle P to be able to say anything more about these
constants. Note though that whatever the values of K1 and K2 the graph of h
against t is a parabola.

Remark 80 Equation (4.1) is a second order DE. A derivative of the form
dky/dxk is said to be of order k and we say that a DE has order k if it involves
derivatives of order k and less. In some sense solving a DE of order k involves
integrating k times, though not usually in such an obvious fashion as in the DE
above. So we would expect the solution of an order k DE to have k undetermined
constants in it, and this will be the case in most of the simple examples that
we look at here. However this is not generally the case and we will see other
examples where more, or fewer, than k constants are present in the solution.

So the general solution (4.3) for h (t) is not unique, but rather depends on
two constants. And this isn’t unreasonable as the particle P could follow many
a path; at the moment we don’t have enough information to characterise the
path uniquely. One way of filling in the missing info would be to say how high
P was at t = 0 and how fast it was going at that point. For example, suppose
P started at a height of 100m and we threw it up into the air at a speed of
10ms−1 – that is

h (0) = 100 and
dh
dt
(0) = 10. (4.4)

Then putting these values into equations (4.2) and (4.3) we’d get

10 =
dh
dt
(0) = −g × 0 +K1 giving K1 = 10,

and

100 = h (0) =
−1
2
g × 02 +K1 × 0 +K2 giving K2 = 100.

So the height of P at time t has been uniquely determined and is given by

h (t) = 100 + 10t− 1
2
gt2.

The extra bits of information given in equation (4.4) are called initial conditions
– particles like P can travel along infinitely many paths, but we need extra
information to identify this path exactly.
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Having solved the DE and found an equation for h then we could easily
answer other questions about P ’s behaviour such as

• what is the greatest height P achieves? The maximum height will be a
stationary value for h (t) and so we need to solve the equation h0 (0) = 0,
which has solution t = 10/g. At this time the height is

h (10/g) = 100 +
100

g
− 100g
2g2

= 100 +
50

g
.

• what time does P hit the ground? To solve this we see that

0 = h (t) = 100 + 10t− 1
2
gt2

has solutions

t =
−10±

√
100 + 200g

−g .

One of these times is meaningless (being negative, and so before our
experiment began) and so we take the other (positive) solution and see
that P hits the ground at

t =
10 + 10

√
1 + 2g

g
.

We end this section with an example by way of warning of doing anything
too cavalier with DEs.

Example 81 Find the general solution of the DEµ
dy
dx

¶2
= 4y. (4.5)

Solution. Given this equation we might argue as follows – taking square
roots we get

dy
dx
= 2
√
y, (4.6)

which we would recognise as a separable DE. This means we can separate
the variables on to either side of the DE to get

dy
2
√
y
= dx, (4.7)

not worrying too much about what this formally means, and then we can
integrate this to get

√
y =

Z
dy
2
√
y
=

Z
dx = x+K,
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where K is a constant. Squaring this, we might think that the general solution
has the form

y = (x+K)2 .

What, if anything, could have gone wrong with this argument? We could have
been more careful to include positive and negative square roots at the (4.6)
stage, but actually we don’t lose any solutions by this oversight. Thinking a
little more, we might realise that we have missed the most obvious of solutions:
the zero function, y = 0, which isn’t present in our ‘general’ solution. At this
point we might scold ourselves for committing the crime of dividing by zero at
stage (4.7), rather than treating y = 0 as a separate case. But we have lost
many more than just one solution at this point here by being careless. The
general solution of (4.5) is in fact

y (x) =

⎧⎨⎩ (x− a)2 x ≤ a
0 a ≤ x ≤ b

(x− b)2 b ≤ x

where a and b are constants satisfying −∞ ≤ a ≤ b ≤ ∞. We missed whole
families of solutions by being careless – note also that the general solution
requires two constants in its description even though the DE is only first order.

-2 -1 1 2 3

1

2

3

4

A missed solution with a = 0 and b = 1

One DE which we can approach rigorously is the following.

Example 82 Show that the general solution of

dy
dx
= ky

is y (x) = Aekx where A is a constant.

Solution. We make a substitution z (x) = y (x) e−kx first. From the product
rule

dz
dx
=
d
dx

¡
ye−kx

¢
= e−kx

µ
dy
dx
− ky

¶
= 0.

The only functions with zero derivative are the constant functions and so
z (x) = A for some A and hence y (x) = Aekx.
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4.2 Linear Differential Equations

A homogeneous linear differential equation is a DE with the following proper-
ties

• if y1 and y2 are solutions of the DE then so is y1 + y2;

• if y is a solution of the DE and c is a constant then cy is also a solution.

So, the following are examples of linear DEs

dy
dx
+ y = 0,

x2
d2y
dx2

+ x
dy
dx
+
¡
x2 − 1

¢
y = 0,

whilst the following two are not

dy
dx
+ y = 1, (4.8)

dy
dx
+ y2 = 0. (4.9)

Note that it is easy to check the first two DEs are linear even though
solving the second equation is no routine matter. To see that the second two
DEs aren’t linear we could note that:

• 1 and e−x+1 are solutions of equation (4.8) though their sum e−x+2 is
not a solution.

• x−1 is a solution of equation (4.9) though 2x−1 is not a solution.

A homogeneous linear DE, of order k, involving a function y of a single
variable x has, as its most general form

fk (x)
dky
dxk

+ fk−1 (x)
dk−1y
dxk−1

+ · · ·+ f1 (x)
dy
dx
+ f0 (x) y = 0. (4.10)

The word ‘homogeneous’ here refers to the fact that there is a zero on the
RHS of the above equation. An inhomogeneous linear DE of order k, involving
a function y of a single variable x is one of the form

fk (x)
dky
dxk

+ fk−1 (x)
dk−1y
dxk−1

+ · · ·+ f1 (x)
dy
dx
+ f0 (x) y = g (x) . (4.11)
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Remark 83 Solving the two equations are very closely linked because of the
linear algebra behind their solution. The solutions of equation (4.10) form a
real vector space, (cf. first term linear algebra course) the dimension of which
is the number of independent constants present in the general solution of the
equation. The solutions of equation (4.11) form a real affine space of the same
dimension, and its vector space of translations is just the solution space of
(4.10).
What all this technical verbiage means is that the general solution of the

inhomogeneous equation (4.11) is Y (x) + y (x) where Y (x) is one particular
solution of (4.11) and y (x) is the general solution of the homogeneous equation
(4.10). (From a geometrical point of view the solution spaces of (4.10) and
(4.11) are parallel; we just need some point Y (x) in the second solution space
and from there we move around just as before.) The meaning of this remark
will become clearer as we go through some examples.

4.2.1 Homogeneous Equations with Constant Coefficients

We begin by considering homogeneous linear DEs where the functions fi (x)
are all constant.

Theorem 84 Consider the DE

d2y
dx2

+A
dy
dx
+By = 0

with auxiliary equation (AE)

m2 +Am+B = 0.

The general solution to the DE is:

1. in the case when the AE has two distinct real solutions α and β:

Aeαx +Beβx;

2. in the case when the AE has a repeated real solution α:

(Ax+B) eαx;

3. in the case when the AE has a complex conjugate roots α+ iβ and α− iβ:

eαx (A cosβx+B sinβx) .
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Proof. Let’s call the roots of the AE λ and μ, at the moment allowing for any
of the above cases to hold. We can rewrite the original DE as

d2y
dx2
− (λ+ μ)

dy
dx
+ λμy = 0.

We will make the substitution

z (x) = y (x) e−μx,

noting that
dy
dx
=
d
dx
(zeμx) =

dz
dx

eμx + μzeμx,

and
d2y
dx2

=
d2z
dx2

eμx + 2μ
dz
dx

eμx + μ2zeμx.

Hence our original DE, as an new DE involving z (x) , has becomeµ
d2z
dx2

eμx + 2μ
dz
dx

eμx + μ2zeμx
¶
− (λ+ μ)

µ
dz
dx

eμx + μzeμx
¶
+ λμzeμx = 0,

which simplifies toµ
d2z
dx2

eμx + 2μ
dz
dx

eμx
¶
− (λ+ μ)

dz
dx

eμx = 0.

Dividing through by eμx gives

d2z
dx2

+ (μ− λ)
dz
dx

,

and we can simplify this further by substituting

w (x) =
dz
dx

to get
dw
dx

= (λ− μ)w. (4.12)

We now have two cases to consider: when λ = μ and when λ 6= μ.
In the case when the roots are equal then (4.12) leads to the following line

of argument

w (x) =
dz
dx
= A (a constant),

z (x) = Ax+B (A and B constants),

y (x) = z (x) eμx = (Ax+B) eμx,

as we stated in case 2 of the theorem.
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In the case when the roots are distinct (either real or complex) then (4.12)
has solution from Example 82

w (x) =
dz
dx
= c1e

(λ−μ)x

(where c1 is a constant) and so integrating gives

z (x) =
c1

λ− μ
e(λ−μ)x + c2

(where c2 is a second constant) to finally find

y (x) = z (x) eμx =
c1

λ− μ
eλx + c2e

μx.

When λ and μ are real then this solution is in the required form for case 1 of
the theorem. When λ = α + iβ and μ = α − iβ are complex conjugates then
this solution is in the correct form for case 3 of the theorem once we remember
that

e(α±iβ)x = eαx (cosβx± i sinβx) .

Example 85 Solve the equation

d2y
dx2
− 3dy

dx
+ 2y = 0,

with initial conditions
y (0) = 1, y0 (0) = 0.

Solution. This has auxiliary equation

0 = m2 − 3m+ 2 = (m− 1) (m− 2)

which has roots m = 1 and m = 2. So the general solution of the equation is

y (x) = Aex +Be2x.

Now the initial conditions imply

1 = y (0) = A+B,

0 = y0 (0) = A+ 2B.

Hence
A = 2 and B = −1.

So the unique solution of this DE with initial solutions is

y (x) = 2ex − e2x.

The theory behind the solving of homogeneous linear DEs with constant
coefficients extends to all orders, and not to second order DEs, provided suitable
adjustments are made.
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Example 86 Write down the general solution of the following DE

d6y
dx6

+ 2
d5y
dx5

+
d4y
dx4
− 4d

3y

dx3
− 4d

2y

dx2
+ 4y = 0

Solution. This has auxiliary equation

m6 + 2m5 +m4 − 4m3 − 4m2 + 4 = 0.

With can see (with a little effort) that this factorises as

(m− 1)2
¡
m2 + 2m+ 2

¢2
= 0

which has roots 1,−1 + i and −1− i, all of which are repeated roots. So the
general solution of the DE is

y (x) = (Ax+B) ex + (Cx+D) e−x cosx+ (Ex+ F ) e−x sinx.

4.2.2 Inhomogeneous Equations

The examples we discussed in the previous subsection were homogeneous –
that is, they had the form

d2y
dx2

+A (x)
dy
dx
+B (x) y = 0, (4.13)

and we concentrated on examples where the functions A (x) and B (x)
were constants. Here we shall look at inhomogeneous examples of second order
linear DEs with constant coefficients: that is those of the form

d2y
dx2

+A (x)
dy
dx
+B (x) y = f (x) . (4.14)

As commented in Remark (83) we have done much of the work already –
what remains is just to find a particular solution of (4.14).

Proposition 87 If Y (x) is a solution of the inhomogeneous equation (4.14)
and y(x) is a solution of the homogeneous equation (4.13) then Y (x) + y (x)
is also a solution of the inhomogeneous equation. Indeed every solution of the
inhomogeneous equation is of the form

Y (x) + y (x)

as y (x) varies over all the solutions of the homogeneous equation.
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So we see that once we have solved (4.13) then solving (4.14) reduces to
finding a single solution y (x) of (4.14); such a solution is usually referred to as
a particular solution. Finding these solutions is usually a matter of trial and
error accompanied with educated guess-work – this usually involves looking
for a particular solution that is roughly in the same form as the function f (x) .
To explain here are some examples.

Example 88 Find the general solution of

d2y
dx2
− 3dy

dx
+ 2y = x. (4.15)

Solution. As the function on the right is f (x) = x then it would seem sensible
to try a function of the form

Y (x) = Ax+B,

where A and B are, as yet, undetermined constants. There is no presumption
that such a solution exists, but this seems a sensible range of functions where
we may well find a particular solution. Note that

dY
dx

= A and
d2Y
dx2

= 0.

So if Y (x) is a solution of (4.15) then substituting it in gives

0− 3A+ 2 (Ax+B) = x

and this is an equation which must hold for all values of x. So comparing the
coefficients of x on both sides, and the constant coefficients, gives

2A = 1 giving A =
1

2
,

−3A+ 2B = 0 giving B =
3

4
.

What this means is that

Y (x) =
x

2
+
3

4

is a particular solution of (4.15). Having already found the complementary
function – that is the general solution of the corresponding homogeneous DE
in Example (85) then the above proposition tells us that the general solution
of (4.15) is

y (x) = Aex +Be2x +
x

2
+
3

4
,

for constants A and B.
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Example 89 Find particular solutions of the following DE

d2y
dx2
− 3dy

dx
+ 2y = f (x)

where

• f (x) = sinx– Simply trying Y (x) = A sinx would do no good as Y 0 (x)
would contain cosx terms whilst Y (x) and Y 00 (x) would contain sinx
terms. Instead we need to try the more general Y (x) = A sinx+B cosx;

• f (x) = e3x – This causes few problems and, as we would expect, we can
find a solution of the form Y (x) = Ae3x;

• f (x) = ex – This is different to the previous case because we know Aex

is part of the general solution to the corresponding homogeneous DE,
and simply substituting in Y (x) = Aex will yield 0. Instead we can
successfully try a solution of the form Y (x) = Axex.

• f (x) = xe2x – Again Ae2x is part of the solution to the homogeneous
DE. Also from the previous example we can see that Axe2x would only
help us with a e2x term on the RHS. So we need to ‘move up’ a further
power and try a solution of the form Y (x) = (Ax2 +Bx) e2x.

• f (x) = ex sinx – Though this may look somewhat more complicated
a particular solution of the form Y (x) = ex (A sinx+B cosx) can be
found.

• f (x) = sin2 x – Making use of the identity sin2 x = (1 − cos 2x)/2 we
can see that a solution of the form Y (x) = A + B sin 2x + C cos 2x will
work.

4.3 Integrating Factors

The method of integrating factors can be used with first order DEs of the form

P (x)
dy
dx
+Q (x) y = R (x) . (4.16)

The idea behind the method is to rewrite the LHS as the derivative of a product
A (x) y. In general, the LHS of (4.16) isn’t expressible as such, but if we multiply
both sides of the DE by an appropriate integrating factor I (x) then we can
turn the LHS into the derivative of a product.
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Let’s first of all simplify the equation by dividing through by P (x) , and
thenmultiplying by an integrating factor I (x) (which we have yet to determine)
to get

I (x)
dy
dx
+ I (x)

Q (x)

P (x)
y = I (x)

R (x)

P (x)
. (4.17)

We would like the LHS to be the derivative of a product A (x) y, which equals

A (x)
dy
dx
+A0 (x) y. (4.18)

So equating the coefficients of y and y0 in (4.17) and (4.18), we have

A (x) = I (x) and A0 (x) =
I (x)Q (x)

P (x)
.

Rearranging this gives
I 0 (x)

I (x)
=

Q (x)

P (x)
.

The LHS is the derivative of log I (x) and so we see

I (x) = exp

Z
Q (x)

P (x)
dx.

For such an integrating factor I (x) then (4.17) now reads as

d
dx
(I (x) y) =

I (x)R (x)

P (x)

which has the general solution

y (x) =
1

I (x)

Z
I (x)R (x)

P (x)
dx.

Example 90 Find the general solution of the DE

x
dy
dx
+ (x− 1) y = x2.

Solution. If we divide through by x we get

dy
dx
+

µ
1− 1

x

¶
y = x

and we see that the integrating factor is

I (x) = exp

Z µ
1− 1

x

¶
dx

= exp (x− log x)

=
1

x
ex.
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Multiplying through by the integrating factor gives

1

x
ex
dy
dx
+

µ
1

x
− 1

x2

¶
exy = ex,

which, by construction rearranges to

d
dx

µ
1

x
exy

¶
= ex.

Integrating gives
1

x
exy = ex +K

where K is a constant, and rearranging gives

y (x) = x+Kxe−x

as our general solution.

Example 91 Solve the initial value problem

dy
dx
+ 2xy = 1, y (0) = 0.

Solution. The integrating factor here is

I (x) = exp

Z
2x dx = exp

¡
x2
¢
.

Multiplying through we get

d
dx

³
ex

2

y
´
= ex

2 dy
dx
+ 2xex

2

y = ex
2

.

Noting that y (0) = 0, when we integrate this we arrive at

ex
2

y =

Z x

0

et
2

dt,

(this can’t be expressed in a closed form involving elementary equations) and
rearranging gives

y (x) = e−x
2

Z x

0

et
2

dt.
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4.4 Homogeneous Polar Equations

By a homogeneous polar differential equation we will mean one of the form

dy
dx
= f

³y
x

´
. (4.19)

These can be solved with a substitution of the form

y (x) = v (x)x (4.20)

to get a new equation in terms of v, x and dv/dx. Note that the product rule
of differentiation

dy
dx
= v + x

dv
dx

and so making the substitution (4.20) into the DE (4.19) gives us the new DE

x
dv
dx
+ v = f (v) ,

which is a separable DE.

Example 92 Find the general solution of the DE

dy
dx
=

x− y

x+ y
.

Solution. At first glance this may not look like a homogeneous polar DE, but
dividing the numerator and denominator in the RHS will quickly dissuade us
of this. If we make the substitution y (x) = xv (x) then we have

v + x
dv
dx
=

x− vx

x+ vx
=
1− v

1 + v
.

Rearranging this gives

x
dv
dx
=
1− v

1 + v
− v =

1− 2v + v2

1 + v

and so, separating the variables, we findZ
1 + v

(1− v)2
dv =

Z
dx
x
.

Using partial fractions gives

− log |1− v|+ 2

1− v
=

Z µ
−1
1− v

+
2

(1− v)2

¶
dv = log x+ const.

and resubstituting v = y/x leads us to the general solution

− log
¯̄̄
1− y

x

¯̄̄
+

2x

x− y
= log x+ const.
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Example 93 Solve the initial value problem

dy
dx
=

y

x+ y + 2
y (0) = 1. (4.21)

Solution. This DE is not homogeneous polar, but it can easily be made into
such a DE with a suitable change of variables. We introduce new variables

X = x+ a and Y = y + b.

If we make these substitutions then the RHS becomes

Y − b

X + Y + 2− a− b

which is homogeneous if b = 0 and a = 2.With these values of a and b, noting
that

dY
dX

=
d (y)

d (x+ 2)
=
dy
dx

and that the initial condition has become Y (X = 2) = Y (x = 0) = y (x = 0) =
1, our initial value problem now reads as

dY
dX

=
Y

X + Y
, Y (2) = 1.

Substituting in Y = V X gives us

V +X
dV
dX

=
V X

X + V X
=

V

1 + V
, V (2) =

1

2
.

Rearranging the equation gives us

X
dV
dX

=
V

1 + V
− V =

−V 2

1 + V
,

and separating variables gives

1

V
− log V =

Z µ
− 1

V 2
− 1

V

¶
dV =

Z
dX
X

= logX +K.

Substituting in our initial condition we see

2− log
µ
1

2

¶
= log 2 +K and hence K = 2.

So
1

V
− log V = logX + 2,

becomes, when we remember V = Y/X,

X

Y
− log

µ
Y

X

¶
= logX + 2,
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which simplifies to
X − Y log Y = 2Y.

Further, as X = x + 2 and Y = y, our solution to the initial value problem
(4.21) has become

x+ 2 = 2y + y log y.

4.5 Exercises

Exercise 182 Find the general solutions of the following separable differential
equations.

dy
dx
=

x2

y
,

dy
dx
=
cos2 x

cos2 2y
,

dy
dx
= ex+2y.

Exercise 183 Find all solutions of the following separable differential equa-
tions:

dy
dx

=
y − xy

xy − x
,

dy
dx

=
sin−1 x

y2
√
1− x2

, y (0) = 0.

d2y
dx2

=
¡
1 + 3x2

¢µdy
dx

¶2
where y (1) = 0 and y0 (1) =

−1
2
.

Exercise 184 Find all the solutions (if any) of the following boundary-value
problems

d2y
dx2

= y, y (0) = 1, y (π) = −1;

d2y
dx2

= −y, y (0) = 1, y (π) = −1;

d2y
dx2

= −y, y (0) = 1, y (π) = 1.

Exercise 185 By means of a substitution transform the following into a sep-
arable equation and find its general solution:

dy
dx
= cos (x+ y) .

Exercise 186 Solve the initial value problem

dy
dx
= 1− |y| , for x > 0

when (i) y (0) = 2, (ii) y (0) = 1/2, (iii) y (0) = −2.
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Exercise 187 Find the solution of the following initial value problems. On
separate axes sketch the solution to each problem.

dy
dx

=
1− 2x

y
, y (1) = −2,

dy
dx

=
x (x2 + 1)

4y3
, y (0) =

−1√
2
,

dy
dx

=
1 + y2

1 + x2
where y (0) = 1.

Exercise 188 The equation for Simple Harmonic Motion, with constant fre-
quency ω, is

d2x
dt2

= −ω2x.

Show that
d2x
dt2

= v
dv
dx

where v =dx/dt denotes velocity. Find and solve a separable differential equa-
tion in v and x given that x = a when v = 0. Hence show that

x (t) = a sin (ωt+ ε)

for some constant ε.

Exercise 189 Show that the solution of the differential equation

d2x
dt2

+ ω2x = cosΩt

are bounded when Ω 6= ω, but become unbounded when Ω = ω.

Exercise 190 Find the most general solution of the following homogeneous
constant coefficient differential equations:

d2y
dx2
− y = 0,

d2y
dx2

+ 4y = 0, where y (0) = y0 (0) = 1,

d2y
dx2

+ 3
dy
dx
+ 2y = 0,

d2y
dx2
− 4dy

dx
+ 4y = 0, where y (0) = y0 (0) = 1.
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Exercise 191 Find the most general solution of the following higher order
homogeneous constant coefficient differential equations:

d4y
dx4
− y = 0,

d3y
dx3
− y = 0,

d3y
dx3

+
d2y
dx2

+
dy
dx
+ y = 0,

d4y
dx4

+
d2y
dx2

= 0.

Exercise 192 By means of the substitution z = lnx find the general solution
of the differential equation

x2
d2y
dx2

+ x
dy
dx
+ y = 0.

Exercise 193 Write the left hand side of the differential equation

(2x+ y) + (x+ 2y)
dy
dx
= 0,

in the form
d
dx
(F (x, y)) = 0,

where F (x, y) is a polynomial in x and y. Hence find the general solution of
the equation.

Exercise 194 Use the method of the previous exercise to solve

(y cosx+ 2xey) +
¡
sinx+ x2ey − 1

¢ dy
dx
= 0.

Exercise 195 Use the method of integrating factors to solve the following
equations with initial conditions

dy
dx
+ xy = x where y (0) = 0,

2x3
dy
dx
− 3x2y = 1 where y (1) = 0,

dy
dx
− y tanx = 1 where y (0) = 1.
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Exercise 196 Find the most general solution of the following inhomogeneous
constant coefficient differential equations:

d2y
dx2

+ 3
dy
dx
+ 2y = x,

d2y
dx2

+ 3
dy
dx
+ 2y = sinx,

d2y
dx2

+ 3
dy
dx
+ 2y = ex,

d2y
dx2

+ 3
dy
dx
+ 2y = e−x.

Exercise 197 Write down a family of trial functions y (x) which will contain
a particular solution of

d2y
dx2

+ 2
dy
dx
+ y = f (x) ,

for each of the following different choices of f (x):

• f (x) = x2

• f (x) = xex

• f (x) = xe−x

• f (x) = x2 sinx

• f (x) = sin3 x.

Exercise 198 By making the substitution y (x) = xv (x) in the following ho-
mogeneous polar equations, convert them into separable differential equations
involving v and x, which you should then solve

dy
dx

=
x2 + y2

xy
,

x
dy
dx

= y +
p
x2 + y2.

Exercise 199 Make substitutions of the form x = X + a, y = Y + b, to turn
the differential equation

dy
dx
=

x+ y − 3
x− y − 1

into a homogeneous polar differential equation in X and Y . Hence find the
general solution of the above equation.
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Exercise 200 Show that the differential equation

dy
dx
=

x+ y − 1
2x+ 2y − 1

cannot be transformed into a homogeneous polar differential equation by means
of substitutions x = X + a, y = Y + b. By means of the substitution z = x+ y
find the general solution of the equation.

Exercise 201 A particle P moves in the xy-plane. Its co-ordinates x (t) and
y (t) satisfy the equations

dy
dt
= x+ y and

dx
dt
= x− y,

and at time t = 0 the particle is at (1, 0) . Find, and solve, a homogeneous polar
equation relating x and y.
By changing to polar co-ordinates (r2 = x2 + y2, tan θ = y/x) , sketch the

particle’s journey for t ≥ 0.

Exercise 202 Show that the function y (x) given by the power series

y (x) = a0 + a1x+ a2x
2 + · · ·

satisfies the initial value problem

dy
dx
= y, y (0) = 1,

if a0 = 1 and nan = an−1 for n > 1. Determine an for each n and hence find
y (x) .

Exercise 203 Use the power series approach of the previous exercise to solve
the following initial value problem:

d2y
dx2

+ y = 0, y (0) = 1, y0 (0) = 0.

Exercise 204 Suppose that y = u (x) is a solution of the differential equation

d2y
dx2

+ P (x)
dy
dx
+Q (x) y = 0.

Show that the substitution y = u (x) v (x) reduces the above equation into a first
order differential equation in dv/dx.

Exercise 205 Show that u (x) = x is a solution of

x
d2y
dx2
− (x+ 1) dy

dx
+ 2y = 0.

Use the substitution v (x) = y/x2 to find the equation’s general solution.
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5. TECHNIQUES OF INTEGRATION

Remark 94 We will demonstrate each of the techniques here by way of ex-
amples, but concentrating each time on what general aspects are present. Inte-
gration, though, is not something that should be learnt as a table of formulae,
for at least two reasons: one is that most of the formula would be far from
memorable, and the second is that each technique is more flexible and general
than any memorised formula ever could be. If you can approach an integral
with a range of techniques at hand you will find the subject less confusing and
not be fazed by new and different functions.

Remark 95 When it comes to checking your answer there are various quick
rules you can apply. If you have been asked to calculate an indefinite integral
then, if it’s not too complicated, you can always differentiate your answer to
see if you get the original integrand back. With a definite integral it is also
possible to apply some simple estimation rules: if your integrand is positive
(or negative) then so should your answer be; if your integrand is less than a
well-known function, then its integral will be less than the integral of the well-
known function. These can be useful checks to quickly apply at the end of the
calculation.

5.1 Integration by Parts

Integration by parts (IBP) can be used to tackle products of functions, but not
just any product. Suppose we have an integralZ

f (x) g (x) dx

in mind. This will be approachable with IBP if one of these functions integrates,
or differentiates, perhaps repeatedly, to something simpler, whilst the other
function differentiates and integrates to something of the same kind. Typically
then f (x) might be a polynomial which, after differentiating enough times,
will become a constant; g (x) on the other hand could be something like ex,
sinx, cosx, sinhx, coshx, all of which are functions which continually integrate
to something similar. This remark reflects the nature of the formula for IBP
which is:

Proposition 96 (Integration by Parts) Let F and G be functions with deriv-
atives f and g. ThenZ

F (x) g (x) dx = F (x)G (x)−
Z

f (x)G (x) dx.
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IBP takes the integral of a product and leaves us with another integral of
a product – but as we commented above, the point is that f (x) should be
a simpler function than F (x) was whilst G (x) should be no worse a function
than g (x) was.

Proof. The proof is simple – we just integrate the product rule of differenti-
ation below, and rearrange.

d
dx
(F (x)G (x)) = F (x) g (x) + f (x)G (x)

Example 97 DetermineZ
x2 sinx dx and

Z 1

0

x3e2x dx.

Solution. Clearly x2 will be the function that we need to differentiate down,
and sinx is the function that will integrate in house. So we have, with two
applications of IBP:Z

x2 sinx dx = x2 (− cosx)−
Z
2x (− cosx) dx [IBP]

= −x2 cosx+
Z
2x cosx dx [Rearranging]

= −x2 cosx+ 2x sinx−
Z
2 sinx dx [IBP]

= −x2 cosx+ 2x sinx− 2 (− cosx) + const.
=

¡
2− x2

¢
cosx+ 2x sinx+ const. [Rearranging]

Solution. In a similar fashionZ 1

0

x3e2x dx =

∙
x3
e2x

2

¸1
0

−
Z 1

0

3x2
e2x

2
dx [IBP]

=
e2

2
−
Ã∙
3x2

e2x

4

¸1
0

−
Z 1

0

6x
e2x

4
dx

!
[IBP]

=
e2

2
− 3e

2

4
+

∙
6x

e2x

8

¸1
0

−
Z 1

0

6
e2x

8
dx [IBP]

=
−e2
4
+
3e2

4
−
∙
6e2x

16

¸1
0

=
e2

8
+
3

8
.
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This is by far the main use of IBP, the idea of eventually differentiating out
one of the two functions. There are other important uses of IBP which don’t
quite fit into this type. These next two examples fall into the original class,
but are a little unusual : in these cases we choose to integrate the polynomial
factor instead as it is easier to differentiate the other factor. This is the case
when we have a logarithm or an inverse trigonometric function as the second
factor.

Example 98 EvaluateZ
(2x− 1) ln

¡
x2 + 1

¢
dx and

Z ¡
x2 − 4

¢
tan−1 x dx.

Solution. In both cases integrating the second factor looks rather daunting,
certainly to integrate, but each factor differentiates nicely; recall that

d
dx
lnx =

1

x
and that

d
dx
tan−1 x =

1

1 + x2
.

So if we apply IBP to the above examples then we getZ
(2x− 1) ln

¡
x2 + 1

¢
dx =

¡
x2 − x

¢
ln
¡
x2 + 1

¢
−
Z ¡

x2 − x
¢ 2x

x2 + 1
dx,

andZ ¡
3x2 − 4

¢
tan−1 x dx =

¡
x3 − 4x

¢
tan−1 x−

Z ¡
x3 − 4x

¢ 1

x2 + 1
dx.

Here we will stop for the moment – we will see how to determine these inte-
grals, the integrands of which are known as rational functions, in section 5.3.

In the same vein as this we can use IBP to integrate functions which, at
first glance, don’t seem to be a product – this is done by treating a function
F (x) as the product F (x)× 1.

Example 99 Evaluate Z
lnx dx and

Z
tan−1 x dx.

Solution. With IBP we see (integrating the 1 and differentiating the lnx)Z
lnx dx =

Z
1× lnx dx

= x lnx−
Z

x
1

x
dx

= x lnx−
Z
dx

= x lnx− x+ const.
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and similarlyZ
tan−1 x dx =

Z
1× tan−1 x dx

= x tan−1 x−
Z

x
1

1 + x2
dx

= x tan−1 x− 1
2
ln
¡
1 + x2

¢
+ const.

spotting this by inspection or by using substitution (see the next section).

Sometimes both functions remain in house, but we eventually return to our
original integrand.

Example 100 Determine Z
ex sinx dx.

Solution. Both of these functions now remain in house, but if we apply IBP
twice, integrating the ex and differentiating the sinx, then we seeZ

ex sinx dx = ex sinx−
Z

ex cosx dx [IBP]

= ex sinx−
µ
ex cosx−

Z
ex (− sinx) dx

¶
= ex (sinx− cosx)−

Z
ex sinx dx.

We see that we have returned to our original integral, and so we can rearrange
this equality to getZ

ex sinx dx =
1

2
ex (sinx− cosx) + const.

5.2 Substitution

In many ways the hardest aspect of integration to teach, a technique that can
become almost an art form, is substitution. Substitution is such a varied and
flexible approach that it is impossible to classify (and hence limit) its uses, and
quite difficult even to find general themes within. We shall discuss later some
standard trigonometric substitutions useful in integrating rational functions.
For now we will simply state what substitution involves and highlight one
difficulty than can occur (and cause errors) unless substitution is done carefully.
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Proposition 101 Let g : [c, d] → [a, b] be an increasing function, such that
g (c) = a and g (d) = b, and which has derivative g0. ThenZ b

a

f (x) dx =
Z d

c

f (g (t)) g0 (t) dt.

Similarly if g : [c, d] → [a, b] is a decreasing function, such that g (c) = b and
g (d) = a, then Z b

a

f (x) dx =
Z c

d

f (g (t)) g0 (t) dt.

The important point here is that the function g be increasing or decreasing
so that it is a bijection from [c, d] to [a, b] – what this technical term simply
means is that to each value of x in the range [a, b] there should be exactly one
value of t in the range [c, d] such that g (t) = x, and as we vary x over [a, b]
each t ∈ [c, d] appears in this way. Here is an example of what might go wrong
if substitution is incorrectly applied.

Example 102 Evaluate Z 2

−1
x2 dx.

Solution. This is not a difficult integral and we would typically not think of
using substitution to do this; we would just proceed and findZ 2

−1
x2 dx =

∙
x3

3

¸2
−1
=
1

3

¡
23 − (−1)3

¢
=
9

3
= 3.

But suppose that we’d tried to use (in a less than rigorous fashion) the substi-
tution u = x2 here. We’d see that

du = 2xdx = 2
√
udx so that dx =

du
2
√
u

and when x = −1, u = 1 and when x = 2, u = 4.

So surely we’d findZ 2

−1
x2 dx =

Z 4

1

u
du
2
√
u
=
1

2

Z 4

1

√
u du =

1

2

∙
2

3
u3/2

¸4
1

=
1

3
(8− 1) = 7

3
.

What’s gone wrong is that the assignment u = x2 doesn’t provide a bijection
between [−1, 2] and [1, 4] as the values in [−1, 0] square to the same values as
those in [0, 1] . The missing 2/3 error in the answer is in fact the integral

R 1
−1 x

2

dx. If we’d particularly wished to use this substitution then it could have been
correctly made by splitting our integral asZ 2

−1
x2 dx =

Z 0

−1
x2 dx+

Z 2

0

x2 dx
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and using the substitution u = x2 separately on each integral; this would work
because u = x2 gives a bijection between [−1, 0] and [0, 1] , and between [0, 2]
and [0, 4] .
Here are some examples where substitution can be applied, provided some

care is taken.

Example 103 Evaluate the following integrals

Z 1

0

1

1 + ex
dx,

Z π

−π/2

sinx

1 + cosx
dx.

Solution. In the first integral a substitution that might suggest itself is u =
1 + ex or u = ex; let’s try the first of these u = 1 + ex. As x varies from x = 0
to x = 1 then u varies from u = 2 to u = 1 + e. Moreover u is increasing with
x so that the rule u = 1 + ex is a bijection from the x-values in [0, 1] to the
u-values in the range [2, 1 + e] . We also have that

du = exdx = (u− 1)dx.

So Z 1

0

1

1 + ex
dx =

Z 1+e

2

1

u

du
u− 1 [substitution]

=

Z 1+e

2

µ
1

u− 1 −
1

u

¶
du [using partial fractions]

= [ln |u− 1|− ln |u|]1+e2

= ln (e)− ln (1 + e)− ln 1 + ln 2

= 1 + ln

µ
2

1 + e

¶
.

For the second integral, it would seem sensible to use u = 2+cosx or u = cosx
here. Let’s try the second one: u = cosx. Firstly note that u is not a bijection
on the range [−π/2, π] , it takes the same values in the range [−π/2, 0] as it does
in the range [0, π/2] . In fact the integrand is odd (that is f (−x) = −f (x))
and so its integral between x = −π/2 and π/2 will be zero automatically. So
we can writeZ π

−π/2

sinx

2 + cosx
dx =

Z π/2

−π/2

sinx

2 + cosx
dx+

Z π

π/2

sinx

2 + cosx
dx

=

Z π

π/2

sinx

2 + cosx
dx.
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Now we can use the substitution u = cosx noticing that du = − sinx dx, when
x = π/2, u = 0 and when x = π, u = −1, so thatZ π

−π/2

sinx

2 + cosx
dx =

Z −1

0

−du
2 + u

= − [ln |2 + u|]−10
= −(ln 1− ln 2)
= ln 2.

5.3 Rational Functions

A rational function is one of the form

amx
m + am−1x

m−1 + · · ·+ a0
bnxn + bn−1xn−1 + · · ·+ b0

,

where the ai and bi are constants – that is, the quotient of two polynomials.
In principle, (because of the Fundamental Theorem of Algebra which says that
the roots of the denominator can all be found in the complex numbers), it is
possible to rewrite the denominator as

bnx
n + bn−1x

n−1 + · · ·+ b0 = p1 (x) p2 (x) · · · pk (x)

where the polynomials pi (x) are either linear factors (of the form Ax+B) or
quadratic factors (Ax2+Bx+C) with B2 < 4AC and complex conjugates for
roots. From here we can use partial fractions to simplify the function.

5.3.1 Partial Fractions

Given a rational function

amx
m + am−1x

m−1 + · · ·+ a0
p1 (x) p2 (x) · · · pk (x)

where the factors in the denominator are linear or quadratic terms, we follow
several simple steps to put it into a form we can integrate.

1. if the numerator has greater degree than the denominator, then we divide
the denominator into the numerator (using polynomial long division) till
we have an expression of the form

P (x) +
Aix

i +Ai−1x
i−1 + · · ·+A0

p1 (x) p2 (x) · · · pk (x)
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where P (x) is a polynomial, and the numerator Aix
i+Ai−1x

i−1+· · ·+A0
now has a strictly smaller degree than the denominator p1 (x) · · · pk (x) .
Of course, integrating the polynomial part P (x) will not cause us any
difficulty so we will ignore it from now on.

2. Let’s suppose, for now, that none of the factors in the denominator are
the same. In this case we can use partial fractions to rewrite this new
rational function as

Aix
i +Ai−1x

i−1 + · · ·+A0
p1 (x) p2 (x) · · · pk (x)

=
α1 (x)

p1 (x)
+

α2 (x)

p2 (x)
+ · · ·+ αk (x)

pk (x)

where each polynomial αi (x) is of smaller degree than pi (x) . This means
that we have rewritten the rational function in terms of rational functions
of the form

A

Bx+ C
and

Ax+B

Cx2 +Dx+E
which we will see how to integrate in the next subsection.

3. If however a factor, say p1 (x) , is repeated N times say, then rather than
the α1 (x) /p1 (x) term in the equation above, the best we can do with
partial fractions is to reduce it to an expression of the form

β1 (x)

p1 (x)
+

β2 (x)

(p1 (x))
2 + · · ·+

βN (x)

(p1 (x))
N

where the polynomials βi (x) have smaller degree than p1 (x) . This means
the final expression may include functions of the form

A

(Bx+ C)n
and

Ax+B

(Cx2 +Dx+E)n
where D2 < 4CE.

Example 104 Use the method of partial fractions to write the following ratio-
nal function in simpler form

x5

(x− 1)2 (x2 + 1)
.

Solution. The numerator has degree 5 whilst the denominator has degree
4, so we will need to divide the denominator into the numerator first. The
denominator expands out to

(x− 1)2
¡
x2 + 1

¢
= x4 − 2x3 + 2x2 − 2x+ 1.

Using polynomial long-division we see that

x +2
x4 − 2x3 + 2x2 − 2x+ 1 x5 +0x4 +0x3 +0x2 +0x +0

x5 −2x4 +2x3 −2x2 +x
2x4 −2x3 +2x2 −x +0
2x4 −4x3 +4x2 −4x +2

2x3 −2x2 +3x −2
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So we have that

x5

(x− 1)2 (x2 + 1)
≡ x+ 2 +

2x3 − 2x2 + 3x− 2
(x− 1)2 (x2 + 1)

,

which leaves us to find the constants A,B,C,D, in the identity

2x3 − 2x2 + 3x− 2
(x− 1)2 (x2 + 1)

≡ A

x− 1 +
B

(x− 1)2
+

Cx+D

x2 + 1
.

Multiplying through by the denominator, we find

2x3 − 2x2 + 3x− 2 ≡ A (x− 1)
¡
x2 + 1

¢
+B

¡
x2 + 1

¢
+ (Cx+D) (x− 1)2 .

As this holds for all values of x, then we can set x = 1 to deduce

2− 2 + 3− 2 = 1 = 2B and so B =
1

2
.

If we set x = 0 then we also get that

−2 = −A+ 1
2
+D. (5.1)

Other things we can do are to compare the coefficients of x3 on either side
which gives

2 = A+ C (5.2)

and to compare the coefficients of x which gives

3 = A+ C − 2D. (5.3)

Substituting (5.2) into (5.3) yields 3 = 2−2D and soD = −1/2. From equation
(5.1) this means that A = 2 and so C = 0. Finally then we have

2x3 − 2x2 + 3x− 2
(x− 1)2 (x2 + 1)

≡ 2

x− 1 +
1/2

(x− 1)2
− 1/2

x2 + 1

and
x5

(x− 1)2 (x2 + 1)
≡ x+ 2 +

2

x− 1 +
1/2

(x− 1)2
− 1/2

x2 + 1
.

5.3.2 Trigonometric Substitutions

Solution. (Contd.) If we look now at the function we are faced with, namely

x+ 2 +
2

x− 1 +
1/2

(x− 1)2
− 1/2

x2 + 1
,
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then only the final term is something that would cause trouble from an inte-
grating point. To deal with such functions we recall the trigonometric identities

sin2 θ + cos2 θ = 1, 1 + tan2 θ = sec2 θ, 1 + cot2 θ = csc2 θ. (5.4)

So a substitution of the form x = tan θ into an expression like 1+x2 simplifies
it to sec2 θ. Noting

dx = sec2 θ dθ

we find Z
dx

1 + x2
=

Z
sec2 θ dθ
1 + tan2 θ

=

Z
sec2 θ dθ
sec2 θ

=

Z
dθ

= θ + const.

= tan−1 x+ const.

So returning to our example we seeZ
x5 dx

(x− 1)2 (x2 + 1)
≡

Z µ
x+ 2 +

2

x− 1 +
1/2

(x− 1)2
− 1/2

x2 + 1

¶
dx

=
x2

2
+ 2x+ 2 ln |x− 1|− 1/2

x− 1 −
1

2
tan−1 x+ const.

Returning to the most general form of a rational function, we were able to
reduce (using partial fractions) the problem to integrands of the form

A

(Bx+ C)n
and

Ax+B

(Cx2 +Dx+E)n
where D2 < 4CE.

Integrating functions of the first type causes us no difficulty asZ
A dx

(Bx+ C)n
=

½
A

B(1−n) (Bx+ C)1−n + const. n 6= 1;
A
B
ln |Bx+ C|+ const. n = 1.

The second integrand can be simplified, firstly by completing the square and
then with a trigonometric substitution. Note that

Cx2 +Dx+E = C

µ
x+

D

2C

¶2
+

µ
E − D2

4C

¶
.

If we make a substitution of the form u = x+D/2C then we can simplify this
integral to something of the formZ

(au+ b) du
(u2 + k2)n

for new constants a, b and k > 0.
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Part of this we can integrate directly:

Z
u du

(u2 + k2)n
=

(
1

2(1−n) (u
2 + k2)

1−n
+ const. n 6= 1;

1
2
ln (u2 + k2) + const. n = 1.

The other integral Z
du

(u2 + k2)n

can be simplified with a trigonometric substitution u = k tan θ, the integral
becoming Z

du
(u2 + k2)n

=

Z
k sec2 θ dθ

(k2 tan2 θ + k2)
n

=
1

k2n−1

Z
sec2 θ dθ
(sec2 θ)n

=
1

k2n−1

Z
cos2n−2 θ dθ.

The n = 0, 1, 2 cases can all easily be integrated. We will see in the next section
on Reduction Formulae how to deal generally with integrals of this form. For
now we will simply give an example where n = 2.

Example 105 Determine

I =

Z
dx

(3x2 + 2x+ 1)2

Solution. Remember that the first step is to complete the square:

I =

Z
dx

(3x2 + 2x+ 1)2

=
1

9

Z
dx¡

x2 + 2
3
x+ 1

3

¢2
=

1

9

Z
dx³¡

x+ 1
3

¢2
+ 2

9

´2
Our first substitution is simply a translation – let u = x + 1/3 noting that
du =dx :

I =
1

9

Z
dx³¡

x+ 1
3

¢2
+ 2

9

´2 = 1

9

Z
du

(u2 + 2/9)2
.
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Then we set u =
√
2
3
tan θ to further simplify the integral. So

I =
1

9

Z ¡
2/
√
3
¢
sec2 θ dθ

(2 sec2 θ/9)2

=
1

9
× 2√

3
×
µ
9

2

¶2 Z
cos2 θ dθ

=
9

2
√
3

Z
1

2
(1 + cos 2θ) dθ [using cos 2θ = 2 cos2 θ − 1]

=
9

4
√
3

µ
θ +

1

2
sin 2θ

¶
+ const.

=
9

4
√
3
(θ + sin θ cos θ) + const. [using sin 2θ = 2 sin θ cos θ]

=
9

4
√
3

µ
tan−1

3u√
2
+ sin tan−1

3u√
2
cos tan−1

3u√
2

¶
+ const.

by undoing the substitution u =
√
2
3
tan θ. From the right-angled triangle

x

��������������
1 � x2

1

tan�1x

we see that

sin tan−1 x =
x√
1 + x2

and cos tan−1 x =
1√
1 + x2

.

So

I =
9

4
√
3

Ã
tan−1

3u√
2
+

3u/
√
2p

1 + 9u2/2
× 1p

1 + 9u2/2

!
+ const.

=
9

4
√
3

µ
tan−1

3u√
2
+

6u√
2 (2 + 9u2)

¶
+ const.

=
9

4
√
3

µ
tan−1

µ
3√
2

µ
x+

1

3

¶¶
+

6x+ 2√
2 (9x2 + 6x+ 3)

¶
+ const.

=
9

4
√
3

µ
tan−1

µ
3x+ 1√

2

¶
+

2(3x+ 1)

3
√
2 (3x2 + 2x+ 1)

¶
+ const.

This example surely demonstrates the importance of remembering the method
and not the formula!
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5.3.3 Further Trigonometric Substitutions

The trigonometric identities in equation (5.4) can be applied in more general
cases than those above used for integrating rational functions above. A similar
standard trigonometric integral isZ

dx√
1− x2

= sin−1 x+ const.

This can be deduced in exactly the same way: this time we make use of the
trigonometric identity

1− sin2 θ = cos2 θ

and make a substitution x = sin θ to begin this calculation. Likewise the
integral Z

dx√
3x2 + 2x+ 1

could be tackled with the substitutions we used in the previous example.

Multiple angle trigonometric identities can also be very useful: we have
already made use of the formula

cos 2θ = 2 cos2 θ − 1

to determine the integral of cos2 θ. Likewise, in principle ,we could integrate
cosn θ by first writing it in terms of cos kθ (for various k); alternatively, as in
the next section, we can approach this integral using reduction formulae.

We close this section with a look at the t-substitution, which makes use of
the half-angle tangent formulas. Faced with the integralZ π

0

dθ
2 + cos θ

,

we make a substitution of the form

t = tan
θ

2
.

Each of the trigonometric functions sin, cos, tan can be written in terms of t.
The formulae are

sin θ =
2t

1 + t2
, cos θ =

1− t2

1 + t2
, tan θ =

2t

1− t2
.
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An easy way to remember these formulae is probably by means of the right-
angled triangle:

2t
1+t2

1- t2

q=2tan - 1t

If we make this substitution in the above integral then firstly we need to note
that t = tan (θ/2) is a bijection from the range [0, π) to the range [0,∞). Also

dθ = d
¡
2 tan−1 t

¢
=
2 dt
1 + t2

.

So Z π

0

dθ
2 + cos θ

=

Z ∞

0

1

2 + 1−t2
1+t2

2 dt
1 + t2

=

Z ∞

0

2 dt
2 + 2t2 + 1− t2

=

Z ∞

0

2 dt
3 + t2

=

∙
2√
3
tan−1

t√
3

¸∞
0

=
2√
3

³π
2
− 0
´

=
π√
3
.

5.4 Reduction Formulae

In the previous section on integrating rational functions we were left with the
problem of calculating

In =

Z
cosn θ dθ,

and we will approach such integrals using reduction formulae. The idea is to
write In in terms of other Ik where k < n, eventually reducing the problem to
calculating I0, or I1 say, which are simple integrals.
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Using IBP we see

In =

Z
cosn−1 θ × cos θ dθ

= cosn−1 θ sin θ −
Z
(n− 1) cosn−2 θ (− sin θ) sin θ dθ

= cosn−1 θ sin θ + (n− 1)
Z
cosn−2 θ

¡
1− cos2 θ

¢
dθ

= cosn−1 θ sin θ + (n− 1) (In−2 − In) .

Rearranging this we see

In =
cosn−1 θ sin θ

n
+

n− 1
n

In−2.

With this reduction formula In can be rewritten in terms of simpler and simpler
integrals until we are left only needing to calculate I0, if n is even, or I1, if n
is odd – both these integrals are easy to calculate.

Example 106 Calculate

I7 =

Z
cos7 θ dθ.

Solution. Using the reduction formula above

I7 =
cos6 θ sin θ

7
+
6

7
I5

=
cos6 θ sin θ

7
+
6

7

µ
cos4 θ sin θ

5
+
4

5
I3

¶
=

cos6 θ sin θ

7
+
6 cos4 θ sin θ

35
+
24

35

µ
cos2 θ sin θ

3
+
2

3
I1

¶
=

cos6 θ sin θ

7
+
6 cos4 θ sin θ

35
+
24 cos2 θ sin θ

105
+
48

105
sin θ + const.

Example 107 Calculate Z 1

0

x3e2x dx

Solution. This is an integral we previously calculated in Example 97. We can
approach this in a simpler, yet more general, fashion by setting up a reduction
formula. For a natural number n, let

Jn =

Z 1

0

xne2x dx.
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We can use then integration by parts to show

Jn =

∙
xn

e2x

2

¸1
0

−
Z 1

0

nxn−1
e2x

2
dx

=
e2

2
− n

2
Jn−1 if n ≥ 1.

and so the calculation in Example 97 simplifies enormously (at least on the
eye). We first note

J0 =

Z 1

0

e2x dx =
∙
e2x

2

¸1
0

=
e2 − 1
2

,

and then applying the reduction formula:

J3 =
e2

2
− 3
2
J2

=
e2

2
− 3
2

µ
e2

2
− 2
2
J1

¶
=

e2

2
− 3e

2

4
+
3

2

µ
e2

2
− 1
2
J0

¶
=

e2

8
+
3

8
.

Some integrands may involve two variables, such as:

Example 108 Calculate for positive integers m,n the integral

B (m,n) =

Z 1

0

xm−1 (1− x)n−1 dx.

Solution. Calculating either B (m, 1) or B (1, n) is easy; for example

B (m, 1) =

Z 1

0

xm−1 dx =
1

m
. (5.5)

So it would seem best to find a reduction formula that moves us towards either
of these integrals. Using integration by parts, if n ≥ 2 we have

B (m,n) =

∙
xm

m
(1− x)n−1

¸1
0

−
Z 1

0

xm

m
× (n− 1)× (−1) (1− x)n−2 dx

= 0 +
n− 1
m

Z 1

0

xm (1− x)n−2 dx

=
n− 1
m

B (m+ 1, n− 1) .
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So if n ≥ 2 we can apply this to see

B (m,n) =
n− 1
m

B (m+ 1, n− 1)

=
n− 1
m

× n− 2
m+ 1

B (m+ 2, n− 2)

=

µ
n− 1
m

¶µ
n− 2
m+ 1

¶
· · ·
µ

1

m+ n− 2

¶
B (m+ n− 1, 1)

=

µ
n− 1
m

¶µ
n− 2
m+ 1

¶
· · ·
µ

1

m+ n− 2

¶
1

m+ n− 1

=
(n− 1)!

(m+ n− 1)!/ (m− 1)!

=
(m− 1)! (n− 1)!
(m+ n− 1)! .

Equation (5.5) shows this formula also holds for n = 1.

5.5 Numerical Methods

Of course it’s not always possible to calculate integrals exactly and there are
numerical rules that will provide approximate values for integrals – approx-
imate values, which by ‘sampling’ the function more and more times, can be
made better and better.
Suppose that f : [a, b]→ R is the function we are wishing to integrate. Our

idea will be to sample the function at n+ 1 evenly spread points through the
interval:

xk = a+ k

µ
b− a

n

¶
for k = 0, 1, 2, . . . , n,

so that x0 = a and xn = b. The corresponding y-value we will denote as

yk = f (xk) .

For ease of notation the width between each sample we will denote as

h =
b− a

n
.

There are various rules for making an estimate for the integrals of the func-
tion based on this data. We will consider the Trapezium Rule and Simpson’s
Rule.

NUMERICAL METHODS 143



• Trapezium Rule. This estimates the area as:

h
³y0
2
+ y1 + y2 + · · ·+ yn−1 +

yn
2

´
.

This estimate is arrived at (as you might guess from the name) by ap-
proximating the area under the graph with trapezia. We presume that
the graph behaves linearly between (xk, yk) and (xk+1, yk+1) and take the
area under the line segment connecting these points as our contribution.

• Simpson’s Rule. This requires that n be even and estimates the area as:

h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn) .

The more sophisticated Simpson’s Rule works on the presumption that
between the three points (xk, yk) , (xk+1, yk+1) , (xk+2, yk+2) (where k is
even) the function f will change quadratically and it calculates the area
contributed beneath each of these quadratic curves.

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

Trapezium Rule: n = 4
0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

Simpson’s Rule: n = 4

The above two graphs show applications of the trapezium rule and Simpson’s
rule in calculating Z π/2

0

sin
¡
x2
¢
dx

with n = 4 subintervals.

Example 109 Estimate the integralZ 1

0

x3 dx

using both the trapezium rule and Simpson’s rule using 2n intervals.
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Solution. This is, of course, an integral we can calculate exactly as 1/4. The
two rules above give us:

Trapezium Approxn =
1

2n

Ã
03

2
+

µ
1

2n

¶3
+ · · ·+

µ
2n− 1
2n

¶3
+
13

2

!

=
1

2n

Ã
1

8n3

2n−1X
k=1

k3 +
1

2

!

=
1

2n

µ
1

8n3
× 1
4
(2n− 1)2 (2n)2 + 1

2

¶
=

4n2 + 1

16n2

=
1

4
+

1

16n2
.

and we also have

Simpson’s Approxn =
1

6n

Ã
03 + 4

µ
1

2n

¶3
+ 2

µ
2

2n

¶3
+ · · ·+ 13

!

=
1

6n

Ã
0 +

4

(2n)3

2n−1X
k=1

k3 − 2

(2n)3

n−1X
k=1

(2k)3 + 1

!

=
1

6n

µ
4

8n3
1

4
(2n− 1)2 (2n)2 − 2

8n3
8

4
(n− 1)2 n2 + 1

¶
=

3n2

12n2

=
1

4
.

Remark 110 Note in these calculations we make use of the formula

nX
k=1

k3 =
1

4
n2 (n+ 1)2 .

We see then that the error from the Trapezium Rule is 1/ (16n2) and so de-
creases very quickly. Amazingly Simpson’s Rule does even better here and
gets the answer spot on – the overestimates and underestimates of area from
under these quadratics actually cancel out. In general Simpson’s Rule is an
improvement on the Trapezium Rule with the two errors (associated with 2n
intervals) being given by:

|ETrapezium| ≤
(b− a)3

48n2
max {|f 00 (x)| : a ≤ x ≤ b} ,
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and Simpson’s Rule with 2n steps

|ESimpson| ≤
(b− a)5

2880n4
max

©¯̄
f (4) (x)

¯̄
: a ≤ x ≤ b

ª
.

Note that the error is O (n−4) for the Simpson Rule but only O (n−2) for the
Trapezium Rule.

5.6 Exercises

Exercise 206 EvaluateZ
lnx

x
dx,

Z
x sec2 x dx,

Z
dx

4 cosx+ 3 sinx

Exercise 207 EvaluateZ
x6 lnx dx,

Z
dx

1 +
√
x
,

Z
dx
sinhx

.

Exercise 208 Let

I1 =

Z
sinx dx

sinx+ cosx
, I2 =

Z
cosx dx

sinx+ cosx
.

By considering I1 + I2 and I2 − I1 find I1 and I2. Generalize your method to
calculate Z

sinx dx
a sinx+ b cosx

, and
Z

cosx dx
a sinx+ b cosx

.

Exercise 209 EvaluateZ ∞

3

dx
(x− 1)(x− 2) ,

Z π/2

0

cosx
√
sinxdx,

Z 1

0

tan−1 x dx.

Exercise 210 Z ∞

2

1

x
√
x− 1

,

Z 1

0

lnx dx,
Z 1

0

dx
ex + 1

.

Exercise 211 For what values of α does the integralZ 1

ε

xα dx

remain bounded as ε becomes arbitrarily small? For what values of β does the
integral Z R

1

xβ dx

remain bounded as R becomes arbitrarily large?
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Exercise 212 Determine Z
x5

x3 − 1 dx.

Exercise 213 Evaluate, using trigonometric and/or hyperbolic substitutions,Z
dx

x2 + 1
,

Z 2

1

dx√
x2 − 1

,

Z
dx√
4− x2

,

Z ∞

2

dx

(x2 − 1)3/2

Exercise 214 By completing the square in the denominator, and using the
substitution

x =

√
2

3
tan θ − 1

3

evaluate Z
dx

3x2 + 2x+ 1
..

Exercise 215 EvaluateZ
dx√

x2 + 2x+ 5
,

Z ∞

0

dx
4x2 + 4x+ 5

.

Exercise 216 Let t = tan 1
2
θ. Show that

sin θ =
2t

1 + t2
, cos θ =

1− t2

1 + t2
, tan θ =

2t

1− t2

and that

dθ =
2 dt
1 + t2

.

Use the substitution t = tan 1
2
θ to evaluateZ π/2

0

dθ

(1 + sin θ)2
.

Exercise 217 Let

In =

Z π/2

0

xn sinx dx.

Evaluate I0 and I1.
Show, using integration by parts, that

In = n
³π
2

´n−1
− n (n− 1) In−2.

Hence, evaluate I5 and I6.
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Exercise 218 Let
In =

Z ∞

0

xne−x
2

dx.

Show that
In =

n− 1
2

In−2

for n > 2. Find I5. Given that I0 =
√
π/2, calculate I6.

Exercise 219 Show thatZ
cos5 x dx =

5

8
sinx+

5

48
sin 3x+

1

80
sin 5x+ const.

= sinx− 2
3
sin3 x+

1

5
sin5 x+ const.

Exercise 220 Show that, for any polynomial P (x) ,Z
P (x) eax dx =

eax

a

mX
k=0

(−1)k P
(k) (x)

ak
+ const.

Exercise 221 Show thatZ
xn (lnx)m dx =

xn+1 (lnx)m

n+ 1
− m

n+ 1

Z
xn (lnx)m−1 dx.

Hence find
R
x3 (lnx)2 dx.

Exercise 222 Estimate Z 1

0

sin
¡
x2
¢
dx

with four steps.

Exercise 223 Find an upper bound for the error in calculating the integral in
the previous exercise with the n-step Trapezium Rule. How large does n need
to be to guarantee that the estimate is accurate to within 10−4?

Exercise 224 Calculate Z 1

0

ex dx

using Trapezium Rule and Simpson’s Rule, both with 2n steps.
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