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1. Brief outline

We shall describe the classical Merton optimal investment problem and its solution via
stochastic control and dynamic programming methods, involving the Hamilton-Jacobi-
Bellman (HJB) equation.

We shall then describe the so-called dual approach (or martingale approach, or convex
duality approach) to solving utility maximisation problems, which is an alternative to
dynamic programming and the HJB equation, and which works for systems which do
not necessarily have Markovian dynamics. We give the main ideas in a complete market
(the incomplete market case is considerably more difficult).

We shall then distinguish partial and full information models. In the former, the
value of the drift process of the underlying stock price is not known, because the agent
is not assumed to observe the Brownian motion driving the stock price. That is, the
agent does not have access to the Brownian filtration F, and only has access to the stock

price filtration pF, the so-called observation filtration. We shall use the theory of linear
filtering, in particular the celebrated Kalman-Bucy filter, to re-write the model under
the observation filtration, and we shall then use the convex duality method developed

earlier to solve the Merton optimal investment problem under pF.
If time allows we shall then describe a simple example of an incomplete market,

sometimes called a basis risk model, in which a claim on a non-traded asset is hedged
using a correlated traded asset. Because the market is incomplete, the risk from selling
the claim cannot be completely eliminated, so any valuation and hedging scheme has
to take into account the risk preferences of the agent, and we shall do this via the
exponential utility function. We shall describe the method of utility-based valuation
and hedging of the claim, derive closed form expressions for the claim value and the
optimal hedging strategy, and finally we shall describe the dual approach to optimal
investment with the random endowment of the claim payoff, and revisit the basis risk
model via duality methods.

2. The Merton problems

A stochastic optimal control problem involves a system whose state, X, is a stochastic
process which, as well as having inherent deterministic and random time evolution,
can also have its evolution affected by an agent exerting some influence, or control, to
optimise some performance criterion.

The classical financial example is the so-called Merton problem to maximise expected
utility of terminal wealth and intermediate consumption, which we shall now describe
briefly, by way of introduction. In Section 3 shall describe the technique of dynamic
programming to handle control problems subject to Markovian state dynamics, and
apply this approach to the Merton problems.

In continuous time, suppose a stock price S “ pStqtě0, on a probability space pΩ,F ,Pq
equipped with a filtration F “ pFtqtě0, evolves according to the classical Black-Scholes-
Merton (BSM) model. The stochastic differential equation (SDE) for the stock price
is

dSt “ µSt dt` σSt dWt, µ P R, σ P R`,
where W is an F-Brownian motion (BM), and µ P R, σ ą 0 are known constants. There
is a constant interest rate r ě 0. We can take the filtration F to be the P-augmentation
of the natural filtration of the Brownian motion W (so augmented with the null sets of
F , and then the filtration F satisfies the so-called usual conditions of right-continuity
and completeness).

An agent with initial capital x ą 0 trades the stock and cash, and may also consume
wealth, using a non-negative F-adapted consumption rate process c “ pctqtě0. Denote
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by X “ pXtqtě0 the wealth process of a self-financing portfolio containing Ht shares of
stock at t ě 0. The cash in the portfolio at time t is Xt´HtSt, so the wealth dynamics
are

dXt “ Ht dSt ` rpXt ´HtStq dt´ ct dt

“ rXt dt` σπtpλ dt` dWtq ´ ct dt,(2.1)

where πt :“ HtSt is an F-adapted strategy describing the wealth held in the stock, and
λ :“ pµ´ rq{σ is the market price of risk of the stock.

The agent chooses a consumption-investment strategy pπ, cq from some admissible set
Apxq given initial wealth x. The agent has an objective to maximise the expected utility
from consumption and investment, over some given horizon r0, T s. We define his value
function u by

(2.2) upxq :“ sup
pπ,cqPApxq

E
„
ż T

0
e´δtU1pctq dt` U2pXT q



,

where Ui, i “ 1, 2 are increasing concave utility functions, encapsulating the agent’s
preferences, and δ ą 0 is some subjective discount rate for consumption (and measures
impatience, the desire to spend sooner rather than later).

Remark 2.1 (Notation). We shall use the symbol u for the value function of a variety of
problems, so be aware that u will represent different quantities as we proceed through
these lectures.

The stochastic control problem is to find an optimal strategy pπ˚, c˚q achieving the
supremum in (2.2). The state variable is the wealth process X, and the control process
is pπ, cq.

The problem (2.2) is known as the finite horizon Merton problem for utility from
consumption and terminal wealth. There are some natural variations to this objective:

‚ The finite horizon problem for utility from terminal wealth only, which has value
function (for some utility function Up¨q)

(2.3) upxq :“ sup
πPApxq

E rUpXT qs ,

where we do not consume any wealth, so the wealth dynamics are those in (2.1)
but with c ” 0:

dXt “ rXt dt` σπtpλ dt` dWtq.

One can in fact include possible consumption in these dynamics, and then show
(the intuitively clear fact) that, since the objective in (2.3) features no utility
from consumption, the optimal consumption process is indeed null. We won’t
show this, and just take consumption to be zero from the outset in the terminal
wealth problem.

‚ The finite horizon problem for utility from consumption only, which has value
function

(2.4) upxq :“ sup
pπ,cqPApxq

E
„
ż T

0
e´δtUpctqdt



,

where the wealth dynamics are again those in (2.1).
‚ The infinite horizon problem for utility from consumption only, which has value

function

(2.5) upxq :“ sup
pπ,cqPApxq

E
„
ż 8

0
e´δtUpctq dt



,

where the wealth dynamics are again those in (2.1).
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In these lectures we shall focus on terminal wealth problems of the type in (2.3).

2.1. Utility functions and convex conjugates.

Definition 2.2 (Utility function). A utility function will be a continuous, strictly
increasing, strictly concave, differentiable function U : p0,8q Ñ R (or sometimes
U : RÑ R) with

U 1p8q :“ lim
xÑ8

U 1pxq “ 0, U 1p0`q :“ lim
xÓ0

U 1pxq “ 8,

and in the case that U is defined over all of R, the second condition is replaced by

U 1p´8q :“ lim
xÑ´8

U 1pxq “ 8.

The classical utility functions are:

Logarithmic utility:

Upxq “ log x, x P R`,

Power utility:

Upxq “
xp

p
, p ă 1, p ‰ 0, x P R`,

Exponential utility:

Upxq “ ´ expp´αxq, α ą 0, x P R.

The coefficient of absolute risk aversion associated with a utility function is

RApxq :“ ´
U2pxq

U 1pxq
,

and the coefficient of relative risk aversion is

RRpxq :“ ´
xU2pxq

U 1pxq
.

For the power and logarithmic utilities we have that RApxq is proportional to 1{x, so
these are sometimes called Hyperbolic Absolute Risk Aversion (HARA) utilities. The
relative risk aversion for these utility functions is constant. For the exponential utility
the absolute risk aversion is the constant α ą 0. For this reason the exponential utility
function is sometimes referred to as a Constant Absolute Risk Aversion (CARA) utility.

For a utility function U we shall denote by I the inverse of the marginal utility U 1,
satisfying

U 1pIpyqq “ IpU 1pyqq “ y, for any y ą 0.

Both U 1 and I are continuous, strictly decreasing, and map p0,8q onto itself with
Ip0`q “ U 1p0`q “ 8, and Ip8q “ U 1p8q “ 0.

Definition 2.3 (Convex conjugate of a utility function). The convex dual (or convex
conjugate) V : R` Ñ R of U is defined by

(2.6) V pyq :“ sup
xPdompUq

rUpxq ´ xys “ UpIpyqq ´ yIpyq, y ą 0.

The conjugate function V is a convex, decreasing function, continuously differentiable
on p0,8q, satisfying

(2.7) V pyq ě Upxq ´ xy, with equality if and only if x “ Ipyq,

as well as

(2.8) V 1pyq “ ´Ipyq,
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and the bi-dual relation

(2.9) Upxq “ inf
yPR`

rV pyq ` xys “ V pU 1pxqq ` xU 1pxq, x P dompUq.

For the utility functions listed above, the inverse of marginal utility and convex con-
jugate are as follows:

Logarithmic utility:

Upxq “ log x, x P R`, Ipyq “
1

y
, V pyq “ ´p1` log yq, y ą 0.

Power utility:

Upxq “
xp

p
, p P p´8, 1qzt0u, x P R`, Ipyq “ y´p1´qq, V pyq “ ´

yq

q
, y ą 0.

where
1

p
`

1

q
“ 1.

Exponential utility: For x P R and y ą 0, we have

Upxq “ ´ expp´αxq, α ą 0, Ipyq “ ´
1

α
log

´ y

α

¯

, V pyq “
y

α

´

log
´ y

α

¯

´ 1
¯

.

2.2. Merton terminal wealth problem: direct solution. In this subsection, let us
assume that the agent does not consume any wealth: c ” 0, and let us work on a finite
horizon r0, T s. The portfolio wealth process follows

(2.10) dXt “ rXt dt` σπtpλ dt` dWtq.

The portfolio optimisation problem is to choose a trading strategy π :“ pπtq0ďtďT from
some admissible set Apxq of trading strategies to maximise expected utility of terminal
wealth at time T . We write X ” Xx,π ” Xx ” Xπ whenever we need to emphasise
dependence of the wealth on the initial wealth X0 “ x and/or the trading strategy. The
value function starting from time zero is

(2.11) upxq :“ sup
πPApxq

ErUpXπ
T q|X

π
0 “ xs,

where Up¨q is an increasing concave utility function.
We shall first solve problems of the form (2.11) using a direct approach (which works

because the parameters are constant and the model is one-dimensional). In later sections
we shall obtain the same results via dynamic programming.

2.2.1. Direct solution of logarithmic utility Merton problem. Take Upxq “ log x, x P R`.
Let the class Apxq of admissible strategies given X0 “ x be those with non-negative
wealth process. In anticipation of our final result, define

θt :“
πt
Xt
, 0 ď t ď T,

the fraction of wealth in the risky asset. In terms of θ the wealth dynamics are

dXt “ Xtrpr ` σλθtq dt` σθt dWts.

Given X0 “ x this implies

(2.12) logXt “ log x` rt` σ

ż t

0
θs

ˆ

λ´
1

2
σθs

˙

ds` σ

ż t

0
θs dWs, 0 ď t ď T.

Equivalently,

(2.13) Xt “ x exp

ˆ

rt` σ

ż t

0
θs

ˆ

λ´
1

2
σθs

˙

ds` σ

ż t

0
θs dWs

˙

, 0 ď t ď T.
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Assume the stochastic integral in (2.12) is a martingale. We can (at least formally) solve
the utility maximisation problem (2.11) for Upxq “ log x directly. From (2.12) we have

(2.14) ErlogXT s “ log x` rT ` σE
„
ż T

0
θt

ˆ

λ´
1

2
σθt

˙

dt



.

This is maximised if we maximise the integrand on the right-hand-side. So we choose
θ “ θ˚, given by

(2.15) θ˚t “
λ

σ
, 0 ď t ď T,

which is constant. The optimal strategy to maximise expected logarithmic utility of
terminal wealth is to keep a constant proportion of wealth in the risky asset. Note that
this requires continuous portfolio rebalancing.

The maximum utility in (2.11) is then

upxq “ ErlogX˚T |X0 “ xs,

where X˚ denotes the wealth process with optimal strategy θ˚. This gives, using (2.14),

(2.16) upxq “ log x`

ˆ

r `
1

2
λ2

˙

T.

Remark 2.4. Notice that if we define the Radon-Nikodym derivative of the unique equiv-
alent martingale measure Q by

dQ
dP

” ZT :“ Ep´λW qT “ exp

ˆ

´λWT ´
1

2
λ2T

˙

,

as well as the deflator (or state price density) at time T , YT :“ expp´rT qZT , then the
value function in (2.16) can be written as

(2.17) upxq “ log x` rT ´ ErlogZT s “ log x´ ErlogpYT qs.

The quantity ´ErlogZT s is called the reverse relative entropy between Q and P. The
reason for the structure in (2.17) is to do with the dual problem to the utility maximi-
sation problem (2.11), as we shall explore in Section 5.

Exercise 2.5. Repeat the above calculation with Upxq “ xp{p, p ă 0, p ‰ 1, to show that
the optimal trading strategy θ˚ is given by

(2.18) θ˚t “
λ

σp1´ pq
, 0 ď t ď T,

and so keeps a constant proportion of wealth in stock at all times. Note that this the
result for logarithmic utility is the p Ñ 0 limit of this result. Show that the maximum
utility is given by

(2.19) upxq “
xp

p
exp

„ˆ

rp`
1

2

ˆ

p

1´ p

˙

λ2

˙

T



.

[Hint: use (2.13) to compute ErXp
T {ps.]

Exercise 2.6. Repeat the above calculation with Upxq “ ´ expp´αxq, α ą 0, to show
that the optimal trading strategy is described in terms of the process π, the wealth in
the risky asset, and the optimal such strategy is π˚, given by

(2.20) π˚t “ e´rpT´tq
λ

ασ
, 0 ď t ď T.

Show that the maximum utility is given by

(2.21) upxq “ ´ exp

ˆ

´αxerT ´
1

2
λ2T

˙

.
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[Hint: use (2.10) to find the SDE for e´rtXt and hence solve for pXtq0ďtďT . Then
compute Er´ expp´αXT q|X0 “ xs, assuming π “ pπtq0ďtďT is deterministic. You should
find that the solution to (2.10) in terms of π is

Xt “ ert
„

x` σλ

ż t

0
e´rsπs ds` σ

ż t

0
e´rsπs dWs



.

Assume the stochastic integral is a martingale.]

3. Dynamic programming and the HJB equation

Consider a controlled diffusion process with state X “ pXsqsě0, for Xs P Rn, satisfying

(3.1) dXs “ bpXs, αsq ds` σpXs, αsq dWs.

Here, W is d-dimensional BM on a filtered probability space pΩ,F ,F :“ pFtqtě0,Pq, the
control is α “ pαsqsě0, an F-adapted process, with αs P A Ă Rm, and the coefficient
functions are b : Rn ˆAÑ Rn and σ : Rn ˆAÑ Rnˆd.

3.1. Finite horizon problem. Fix T P p0,8q. Let Apxq denote the set of admissible
controls given X0 “ x. We are interested in the problem

(3.2) upxq :“ sup
αPApxq

E
„
ż T

0
fps,Xs, αsq ds` F pXT q

ˇ

ˇ

ˇ

ˇ

X0 “ x



.

The method of dynamic programming tackles this problem by considering a starting
state pt, xq P r0, T s ˆ Rn. Let Apt, xq denote the set of admissible controls given this

starting state. We will often write pXt,x
s qsPrt,T s to denote the solution to (3.1) starting

at Xt “ x, for any t P r0, T s. Define the objective functional

Jpt, x;αq :“ E
„
ż T

t
fps,Xt,x

s , αsqds` F pXt,x
T q



.

The value function is
upt, xq :“ sup

αPApt,xq
Jpt, x;αq

Thus, with this notation, the time zero value function in (3.2) is upxq ” up0, xq.
Given an initial state pt, xq P r0, T sˆRn, we say that α˚ P Apt, xq is an optimal control

if upt, xq “ Jpt, x;α˚q.

A control process of the form αs “ aps,Xt,x
s q for s P rt, T s and some function a :

r0, T s ˆRn Ñ A is called a Markov control, or feedback control. We shall always assume
that the controls are of this type.

3.1.1. Dynamic programming principle. Compare two strategies:

I: Using the optimal control pα˚s qsPrt,T s over the interval rt, T s, versus:
II: using an arbitrary control pαsqsPrt,t`hq over the interval rt, t ` hq (where h

represents a small time interval) and then using the optimal control pα˚s qsPrt`h,T s
over the interval rt` h, T s.

Strategy I is at least as good as strategy II, leading to

(3.3) upt, xq ě E
„
ż t`h

t
fps,Xt,x

s , αsq ds` upt` h,Xt,x
t`hq



.

We suppose we get equality if we maximise the RHS over α, leading to the Bellman
equation

upt, xq “ sup
pαsqsPrt,t`hq

E
„
ż t`h

t
fps,Xt,x

s , αsqds` upt` h,Xt,x
t`hq



.
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Assuming that u is smooth enough, we apply Itô to write

upt` h,Xt,x
t`hq “ upt, xq `

ż t`h

t

ˆ

Bu

Bt
` Lαu

˙

ps,Xt,x
s qds` local martingale,

where Lα denotes the generator of the diffusion (3.1). Assuming the local martingale
is a martingale, dividing by h and letting h Ñ 0 in the Bellman equation leads us to
expect that the value function solves the Hamilton-Jacobi-Bellman (HJB) equation

(3.4)
Bu

Bt
pt, xq ` sup

αPA
rLαupt, xq ` fpt, x, αqs “ 0, upT, xq “ F pxq.

3.1.2. Martingale optimality principle. Another way to state the dynamic programming
principle and so arrive at the HJB equation is to invoke the idea that:

Principle 3.1 (Martingale principle of dynamic programming). The process
ˆ
ż t

0
fps,Xs, αsqds` upt,Xtq

˙

tPr0,T s

is a super-martingale for any admissible control α, and a martingale for the optimal
control α˚.

We can formalise this in the following theorem.

Theorem 3.2 (Davis-Varaiya martingale principle of optimal control). Suppose the
objective is (3.2). Suppose there exists a function u : r0, T s ˆ Rn Ñ R which is C1,2,
such that upT, xq “ F pxq for x P Rn. Suppose also that for any α P Apxq the process
R “ pRtqtPr0,T s defined by

(3.5) Rt :“

ż t

0
fps,Xs, αsqds` upt,Xtq, 0 ď t ď T,

is a super-martingale, and that for some α˚ P Apxq the process R is a martingale. Then
α˚ is the optimal control, and the value of the problem starting at time zero with initial
state X0 “ x ą 0 is upxq ” up0, xq.

Proof. From the super-martingale property of R we have, for any α P Apxq,

(3.6) R0 “ up0, xq ě ErRT s “ E
„
ż T

0
fpt,Xt, αtq dt` F pXT q



,

on using the boundary condition that upT, xq “ F pxq. Thus, for any admissible control,
the value of the objective is less than or equal to up0, xq. If we use the control α˚, then
the value of the objective becomes equal to up0, xq, since the super-martingale inequality
in (3.6) becomes an equality, and this is the highest achievable expected value of the
objective. Hence α˚ is optimal.

�

Let us show how the martingale optimality principle leads to the HJB equation.
Perform an Itô expansion of the process R in (3.5), assuming that u possesses sufficient
regularity:

dRt “

ˆ

fpt,Xt, αtq `

ˆ

Bu

Bt
` Lα

˙

pt,Xtq

˙

dt` local martingale.

For this to be a super-martingale we must have

fpt, x, αq `
Bu

Bt
pt, xq ` Lαpt, xq ď 0
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for any admissible control α. If we maximise the differential operator on the LHS over
α P A we get a martingale corresponding to the optimal control α˚, so we are once more
led to the HJB equation (3.4).

3.1.3. Verification theorem. The HJB equation gives a necessary condition for optimal-
ity: if u is sufficiently smooth and if α˚ is the optimal control, then u satisfies the HJB
equation and α˚pt, xq realises the supremum in the HJB equation. The HJB equation
also acts as a sufficient condition for optimality by virtue of the following verification
theorem. Its content is that if one finds a candidate (and hence sufficiently smooth)
solution of the HJB equation and an optimiser of the relevant differential operator in
the HJB equation, then one has found the value function and optimal Markov control
α˚pt, xq.1 The optimal control process is then α˚s ” α˚ps,X˚s q, for s P rt, T s and starting
state pt, xq P r0, T s ˆ Rn, where X˚ ” X˚,t,x is the optimal state process given starting
state pt, xq P r0, T s ˆ Rn.

Theorem 3.3 (Finite horizon verification theorem). Let w P C1,2pr0, T sˆRnqXC0pr0, T sˆ
Rnq. Suppose that wpT, xq “ F pxq and that there exists a function α˚ : r0, T s ˆRn Ñ A
such that

Bw

Bt
pt, xq ` sup

αPA
rLαwpt, xq ` fpt, x, αqs “ Bw

Bt
pt, xq ` Lα˚wpt, xq ` fpt, x, pαq “ 0.

Suppose further that the SDE

dXs “ bpXs, α
˚ps,Xsqqds` σpXs, α

˚ps,XsqqdWs, Xt “ x

admits a unique solution pX˚s qsPrt,T s ” p
pX˚,t,xs qsPrt,T s, and that the process ppαps, pX˚,t,xs qqsPrt,T s

lies in Apt, xq. Then

w “ u on r0, T s ˆ Rn,

α˚pt, xq is the optimal Markov control, pα˚ps, pX˚,t,xs qqsPrt,T s is the optimal control process

over rt, T s, and p pX˚,t,xs qsPrt,T s is the optimal state process.

Proof. Choose an arbitrary feedback control α P Apt, xq and a starting state pt, xq P
r0, T s ˆ Rn. Using Itô we have

wpT,Xt,x
T q `

ż T

t
fps,Xt,x

s , αsq ds “ wpt, xq

`

ż T

t

ˆ

fps,Xt,x
s , αsq `

ˆ

Bw

Bt
` Lαw

˙

ps,Xt,x
s q

˙

ds` local martingale,

where we write αs ” αps,Xt,x
s q for brevity.

Since w satisfies the HJB equation, fpt, x, αq `
`

Bw
Bt ` Lαw

˘

ps,Xt,x
s q ď 0 for any

admissible feedback control law. Using this, the boundary condition wpT, xq “ F pxq
and taking the expectation (and assuming the local martingale is a martingale) we get

Jpt, x;αq “ E
„
ż T

t
fps,Xt,x

s , αsq ds` F pXt,x
T q



ď wpt, xq.

Since the chosen control was arbitrary, we have

wpt, xq ě sup
αPApt,xq

Jpt, x;αq “ upt, xq.

1We are abusing notation and using the same symbol α˚ for the optimal control process as well as
the optimal feedback control function.
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To obtain the reverse inequality, repeat the above arguments, this time choosing the
control law α˚pt, xq which by assumption achieves the supremum in the HJB equation,
to obtain

(3.7) wpt, xq “ Jpt, x;α˚q.

We also have the trivial inequality

(3.8) upt, xq ě Jpt, x;α˚q,

so combining (3.7) and (3.8) we obtain

wpt, xq “ upt, xq “ Jpt, x;α˚q.

�

4. Dynamic programming solution to the Merton problem

4.1. Merton terminal wealth problem. The wealth process X “ Xπ follows

(4.1) dXt “ rXt dt` σπtpλ dt` dWtq,

and the value function is

upt, xq “ sup
πPApt,xq

ErUpXT q|Xt “ xs, 0 ď t ď T,

for some utility function U : R` Ñ R and admissible strategies π P Apt, xq such that
the wealth process is almost surely non-negative.

The HJB equation is

(4.2) sup
π

„

utpt, xq ` prx` σλπquxpt, xq `
1

2
σ2π2uxxpt, xq



“ 0, upT, xq “ Upxq,

where subscripts denote partial derivatives.
Performing the maximisation over π gives the optimal feedback control function

π˚pt, xq:

(4.3) π˚pt, xq “ ´
λ

σ

uxpt, xq

uxxpt, xq
.

The optimal control process π˚ “ pπ˚t q0ďtďT is given by π˚t ” π˚pt, pX˚t q, where X˚ ”

Xπ˚ is the wealth process in (4.1) with πt “ π˚t .2

Insert (4.3) into (4.2), converting the HJB equation to

(4.4) utpt, xq ` rxux ´
1

2
λ2 u

2
xpt, xq

uxxpt, xq
“ 0, upT, xq “ Upxq.

Example 4.1 (Logarithmic utility). Take Upxq “ log x. Seek a separable solution to
(4.4) of the form

(4.5) upt, xq “ log x` fptq,

for some function fptq. Using (4.5) in (4.3) and (4.4) gives

π˚pt, xq “
λ

σ
x,

and

f 1ptq ` r `
1

2
λ2 “ 0, fpT q “ 0,

2We abuse notation and use the same symbol, π˚ for the optimal feedback control function π˚pt, xq

as for the optimal control process π˚.
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implying

fptq “

ˆ

r `
1

2
λ2

˙

pT ´ tq.

Hence, the value function is

upt, xq “ log x`

ˆ

r `
1

2
λ2

˙

pT ´ tq,

in agreement with our earlier result (2.16).
The optimal trading strategy is

π˚t “
λ

σ
X˚t , t P r0, T s,

so that the optimal fraction of wealth in the risky asset is

(4.6) θ˚t :“
π˚t
X˚t

“
λ

σ
, 0 ď t ď T,

reproducing our earlier result (2.15).

Exercise 4.2. Repeat the above calculation with Upxq “ xp{p, 0 ă p ă 1, to reproduce
the results in (2.18) and (2.19).

[Hint: seek a solution to the HJB equation of the form upt, xq “ pxp{pqfptq, for some
function fptq.]

Exercise 4.3. Repeat the above calculation with Upxq “ ´ expp´αxq, α ą 0, to repro-
duce the results in (2.20) and (2.21).

[Hint: seek a solution to the HJB equation of the form upt, xq “ ´ expp´αxqfptq, for
some function fptq.]

Example 4.4. Two stock prices Spiq :“ pS
piq
t q0ďtďT , i “ 1, 2 follow

dS
piq
t “ µiS

piq
t dt` σiS

piq
t dW

piq
t , i “ 1, 2,

with µ1, µ2, σ1, σ2 constant, and W p1q,W p2q independent Brownian motions. Stock Sp2q

is riskier, with µ2 ą µ1 and σ2 ą σ1. An agent decides which fraction θ :“ pθtq0ďtďT of
his wealth X to place in the riskier stock. There is no risk-free asset.

The wealth process is X ” Xpθq given by

dXt “ Xt

”

pµ1p1´ θtq ` µ2θtq dt` σ1p1´ θtqdW
p1q
t ` σ2θt dW

p2q
t

ı

.

Suppose the agent wishes to maximise expected utility of wealth at time T , with power
utility. The value function is

upt, xq :“ sup
θPApt,xq

E
”´

X
pθq
T

¯pˇ
ˇ

ˇ
X
pθq
t “ x

ı

,

where 0 ă p ă 1, with the set Apt, xq of admissible strategies such that Xpθq ě 0 almost
surely. The HJB equation is then

ut ` sup
θ

„

pµ1p1´ θq ` µ2θqxux `
1

2

`

σ2
1p1´ θq

2 ` σ2
2θ

2
˘

x2uxx



“ 0,

the maximisation being performed over a scalar variable θ. Performing the maximisation
over θ, the optimal control is to choose the optimal weight θ˚t to be constant for all
t P r0, T s, and given by

θ˚t “

ˆ

σ2
1 `

µ2 ´ µ1

1´ p

˙

1

σ2
1 ` σ

2
2

, 0 ď t ď T.

(To obtain this, suppose u is separable: upt, xq “ pxp{pqfptq.)
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4.2. Merton problem with consumption and terminal wealth. The wealth dy-
namics are

dXt “ rXt dt` σπtpλ dt` dWtq ´ ct dt.

The value function is

upt, xq :“ sup
pπ,cqPApt,xq

E
„
ż T

t
e´δsU1pcsq ds` U2pXT q

ˇ

ˇ

ˇ

ˇ

Xt “ x



,

where Ui, i “ 1, 2 are increasing concave utility functions, and δ ą 0. The HJB equation
is

ut `max
pπ,cq

”

e´δtU1pcq ` Lpπ,cqu
ı

“ 0, upT, xq “ U2pxq,

where Lpπ,cq denotes the generator of X when using control pπ, cq.

Example 4.5 (Logarithmic utilities). Take U1pcq “ log c, U2pxq “ log x. Performing
the maximisation over pπ, cq in the HJB equation gives the optimal feedback control
functions

c˚pt, xq “
e´δt

uxpt, xq
, π˚pt, xq “ ´

λ

σ

uxpt, xq

uxxpt, xq
.

Inserting the optimal feedback controls into the HJB equation converts it to

´e´δtp1` δt` logpuxpt, xqqq`utpt, xq` rxuxpt, xq´
1

2
λ2 u

2
xpt, xq

uxxpt, xq
“ 0, upT, xq “ log x.

This equation can be solved by looking for a solution of the form

upt, xq “ fptq log

ˆ

x

fptq

˙

` gptq,

for functions fptq and gptq satisfying fpT q “ 1 and gpT q “ 0 respectively. Then one
finds that f and g must satisfy

f 1ptq “ ´e´δt, g1ptq “ δte´δt ´

ˆ

r `
1

2
λ2

˙

fptq.

Solving these equations gives

fptq “ 1`
1

δ
pe´δt ´ e´δT q,

gptq “

ˆ

T `
1

δ

˙

e´δT ´

ˆ

t`
1

δ

˙

e´δt

`

ˆ

r `
1

2
λ2

˙„

1

δ2

´

e´δt ´ e´δT
¯

`

ˆ

1´
1

δ
e´δT

˙

pT ´ tq



.

The optimal consumption and investment feedback control functions become

c˚pt, xq “
e´δt

fptq
x, π˚pt, xq “

λ

σ
x,

so that the agent places a constant proportion of wealth in the stock at all times, and
consumes at a rate that, as a fraction of current wealth, is a deterministic function of
time.

5. The dual approach to optimal investment

We now describe the dual approach to solving portfolio problems, which exploits the
martingale properties of the wealth process. This approach works even in non-Markovian
models, so we shall illustrate it in a fairly general continuous-time market.
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5.1. Multi-dimensional complete Itô process market. Consider a complete multi-
dimensional Itô process market. We have a complete filtered probability space pΩ,F ,F “
pFtqtě0,Pq, supporting a d-dimensional Brownian motion W , for some d P Z`.

There is a cash asset associated with non-negative adapted interest rate process r “
prtqtě0 and d stocks, with non-negative price processes Si, i “ 1 . . . , d, evolving according
to

(5.1) dSit “ Sit

˜

µit dt`
d
ÿ

j“1

σijt dW j
t

¸

, i “ 1, . . . , d.

We can condense these equations into a single vector equation:

(5.2) dSt “ diagdpStqpµt dt` σt dWtq,

where diagdpSq denotes the dˆ d diagonal matrix with S1, . . . , Sd along the diagonal.
The appreciation rates µi and the entries σij (i, j “ 1, . . . , d) of the invertible d ˆ d

volatility matrix σ are F-adapted processes satisfying

ż T

0
}µt}dt ă 8,

d
ÿ

i“1

d
ÿ

j“1

ż T

0

´

σijt

¯2
dt ă 8, a.s.

Here } ¨ } denotes the Euclidean norm, so that for instance,

}µt}
2 “

`

µ1
t

˘2
` ¨ ¨ ¨ `

´

µdt

¯2
.

The Rd-valued adapted market price of risk (MPR) process λ is defined by

λ :“ σ´1pµ´ r1dq.

Associated with this MPR process is the deflator Y , defined by

(5.3) Yt :“ exp

ˆ

´

ż t

0
rs ds

˙

Ep´λ ¨W qt, t ě 0.

Here, λ ¨W ”
ş¨

0 λ
tr
s dWs denotes the stochastic integral, with λtr the transpose of the

vector λ, and Ep¨q denotes the stochastic exponential, so that

Ep´λ ¨W qt “ exp

ˆ

´

ż t

0
λtr
s dWs ´

1

2

ż t

0
}λ2
s}ds

˙

, t ě 0.

The deflator thus satisfies

dYt “ ´Ytprt dt` λtr
t dWtq, Y0 “ 1.

Note that since Z :“ Ep´λ ¨W q is a positive local martingale, Y is a positive super-
martingale.

A small investor with initial wealth x ą 0 invests in the stocks and cash, generating
self-financing wealth process X “ pXtqtě0 satisfying

dXt “

d
ÿ

i“1

H i
t dSit ` rt

˜

Xt ´

d
ÿ

i“1

H i
tS

i
t

¸

dt

“ rtXt dt`
d
ÿ

i“1

πit

˜

pµit ´ rtqdt`
d
ÿ

j“1

σijt dW j
t

¸

“ rtXt dt` πtr
t rpµt ´ rt1dqdt` σt dWts , X0 “ x ą 0,(5.4)
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where H i is the process for the number of shares held of stock i P t1, . . . , du and πi “
H iSi is the wealth held in stock i, with associated vector π :“ pπ1, . . . , πdqtr, which
forms the trading strategy, satisfying, for any T ą 0,

ż T

0

`

}πtr
t σt}

2 ` |πtrpµt ´ rt1dq|
˘

dt ă 8, a.s.

For a given x ą 0 and π as above, the process X ” Xx,π of (5.4) is called the wealth
process corresponding to initial capital x and portfolio π.

We can, when the wealth process is strictly positive, parametrise the portfolio in terms
of the stock proportion process θ :“ π{X and then we will sometimes write X ” Xx,θ.

Recalling the deflator Y defined in (5.3), if we compute the dynamics of the deflated
wealth process XY , we obtain that

(5.5) XtYt “ x`

ż t

0
Yspπ

tr
s σs ´Xsλ

tr
s q dWs, t ě 0.

If the wealth process is positive we can recast this in terms of the proportion of wealth
process θ :“ π{X, to write

(5.6) XtYt “ x`

ż t

0
XsYspθ

tr
s σs ´ λ

tr
s q dWs, t ě 0.

We see that the deflated wealth is a local martingale.

Remark 5.1 (Including consumption). If the agent also consumes wealth at a non-
negative consumption rate c “ pctqtě0 then the wealth dynamics (5.4) are altered to

dXt “ prtXt ´ ctqdt` πtr
t rpµt ´ rt1dqdt` σt dWts , X0 “ x ą 0,

and the deflated wealth equation (5.6) is altered to

(5.7) XtYt `

ż t

0
csYs ds “ x`

ż t

0
XsYspθ

tr
s σs ´ λ

tr
s qdWs, t ě 0.

Thus, in this case, the deflated wealth plus cumulative deflated consumption is a local
martingale.

For the most part, we shall restrict our attention to non-negative wealth processes,
which motivates the following definition.

Definition 5.2 (Admissible strategies). The class of portfolio strategies π (or portfolio-
consumption strategies pπ, cq if including consumption), starting with initial capital
x ą 0, such that the associated wealth process X satisfies

Xt ě 0, t ě 0, a.s., X0 “ x,

will be called admissible, and denoted by Apxq.

If π P Apxq, then the process in (5.6) (or (5.7) if including consumption) is a non-
negative P-local martingale and hence a supermartingale, so satisfies

(5.8) E rXTYT s ď x,

or

(5.9) E
„

XTYT `

ż T

0
ctYt dt



ď x,

if including consumption.
These conditions will be used as constraints on allowable wealth processes in what

follows.
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5.2. Utility maximisation from terminal wealth. We consider the following prob-
lem. With zero consumption, maximise over admissible θ P Apxq the functional Jpx; θq
representing expected utility of terminal wealth:

Jpx; θq :“ E rUpXT qs .

Denote the value function of this problem by

upxq :“ sup
θPApxq

Jpx; θq.

With zero consumption, the wealth dynamics are characterised according to (5.6):

(5.10) XtYt “ x`

ż t

0
XsYspθ

tr
s σs ´ λ

tr
s qdWs, 0 ď t ď T,

and the budget constraint is (5.8):

(5.11) E rXTYT s ď x.

We introduce a Lagrange multiplier y ą 0 whose role is to enforce this constraint and
consider, for any θ P Apxq, and any x, y ą 0, the Lagrangian

LpXT , yq :“ E rUpXT qs ` y px´ ErXTYT sq “ ErUpXT q ´ yXTYT s ` xy.

We can now maximise this pointwise over XT and y. The first order conditions for an
optimum give the optimal terminal wealth X˚T as satisfying

(5.12) U 1pX˚T q “ yYT ðñ X˚T “ IpyYT q,

and optimising over the Lagrange multiplier yields that X˚T also satisfies

(5.13) ErX˚TYT s “ x.

That is, at the optimum, the process X˚Y is a martingale. This condition can be used in
(5.12) to fix the value of the Lagrange multiplier, thus giving a complete characterisation
of the optimal terminal wealth. Using (5.12) in (5.13) gives

X pyq :“ E rYT IpyYT qs “ x.

Denote the inverse of X p¨q by Yp¨q, so that

X pyq “ x ðñ y “ Ypxq.

Thus, the optimal terminal wealth can be expressed as

(5.14) X˚T pxq “ IpYpxqYT q.

Then the optimal wealth process is obtained from the fact that X˚Y is a martingale:

X˚t “
1

Yt
E rX˚TYT |Fts , 0 ď t ď T,

and the optimal strategy θ˚ is obtained from (5.10) with X “ X˚:

(5.15) X˚t Yt “ x`

ż t

0
X˚s Yspθ

˚tr
s σs ´ λ

tr
s qdWs, 0 ď t ď T.

These ideas have been written down in abstract form. They come to life if we consider
an example.

Example 5.3 (Logarithmic utility of terminal wealth). Take Upxq “ log x. This is the
simplest case. Then we have U 1pxq “ 1{x, Ipyq “ 1{y, and hence

X˚T “
1

yYT
.
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Then y is determined by the constraint ErYTX˚T s “ x, giving y “ 1{x. Hence

X˚T “
x

YT
,

and the optimal wealth process is given by

X˚t “
1

Yt
E rYtX˚T |Fts “

x

Yt
, 0 ď t ď T.

Comparing with (5.15), we see that the optimal strategy is given by

θ˚t “ pσ
tr
t q
´1λt, 0 ď t ď T.

The primal value function can be directly computed using upxq “ ErlogX˚T s to give

upxq “ log x´ E rlog YT s .

6. Full versus partial information models

In classical models of financial mathematics, one usually specifies a probability space
pΩ,F ,Pq equipped with a filtration F “ pFtq0ďtďT , and then writes down some stochastic
process S “ pStq0ďtďT for an asset price, such that S is adapted to the filtration F. A
typical example would be the Black-Scholes (BS) model of a stock price, following the
geometric Brownian motion (in the case of zero interest rate)

(6.1) dSt “ σStpλ dt` dWtq,

where W is a pP,Fq-Brownian motion and the volatility σ ą 0 and the Sharpe ratio λ
are assumed to be known constants. Implicit in this set-up is the strong assumption
that a financial agent is able to observe the Brownian motion process W , as well as the
stock price process S. We refer to this as a full information scenario. In this case, an
agent uses F-adapted trading strategies in S, which is an F-adapted process with known
drift and diffusion coefficients.

We wish to relax the full information assumption. Suppose we now assume that
the agent can only observe the stock price process, and not the Brownian motion W .
Hence, the values of the parameters σ, λ are not known with certainty. Moreover, we
wish to insist that the agent’s trading strategies be adapted to the observation filtration
pF :“ p pFtq0ďtďT generated by S. We refer to this as a partial information scenario.

In this case, the parameter λ would be regarded as an unknown constant whose value
needs to be determined from price data. In principle, one would also have to apply
this philosophy to the volatility σ, but we shall make the approximation that price
observations are continuous, so that σ can be computed from the quadratic variation
rSs of the stock price, since we have

rSst “ σ2S2
t t, t P r0, T s.

One way to model the uncertainty in our knowledge of the value of the (supposed
constant) parameter λ is to take a so-called Bayesian approach. This means we consider
λ to be an F0-measurable random variable with a given initial distribution (the prior

distribution) conditional on pF0. The prior distribution initialises the probability law

of λ conditional on pF0, and this is updated in the light of new price information, that

is, as the observation filtration pF evolves. (In the case that λ is some unknown process
pλtq0ďtďT (as opposed to an unknown constant), then we would consider it to be some F-
adapted process such that its starting value λ0 has a given prior distribution conditional

on pF0.)
This is an example of a filtering problem: to compute the best estimate of a random

process given observations up to time t P r0, T s, and hence given the σ-algebra pFt, t P
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r0, T s. In the case of the BS model (6.1), where we model λ as an F0-measurable random
variable, we are interested in computing the conditional expectation

pλt :“ Erλ| pFts, t P r0, T s.

We shall see (though we shall not give a proof here of the underlying filtering theorem)
that the effect of filtering is that the model (6.1) may be replaced by a model specified

on the filtered probability space pΩ, pFT , pF,Pq and written as

dSt “ σStppλt dt` dxWtq,

where xW is a pP, pFq-Brownian motion. This model may now be treated as a full infor-

mation model, since both xW and pλ are pF-adapted processes. The price to be paid for
restoring a full information scenario is that the constant parameter λ has been replaced

by a random process pλ. The procedure by which a partial information model is replaced
with a tractable full information model under the observation filtration is typically only
achievable in special circumstances, such as Gaussian prior distributions and certain
linearity properties in the relation between the observable and unobservable processes,
as we shall see in the next section.

6.1. Drift parameter uncertainty. How severe is the aforementioned issue of drift
parameter uncertainty (equivalent to uncertainty in the MPR process λ if the volatility
is assumed known) in the BS model (6.1)? The short answer is: extremely severe. This
point has been well made by Rogers [23, 24] and by Monoyios [18] (the latter from which
the following arguments are taken).

Consider an agent in the BS model (6.1) with zero interest rate (so λ “ µ{σ, where
µ is the stock price drift) who attempts to infer the value of λ from observations of the
share price. Assume (unrealistically, of course) for simplicity that the agent observes
the stock returns continuously, and that the volatility σ is known. The agent records
the normalised returns

dSt
σSt

“ λ dt` dWt,

and uses these to estimate λ. Using observations over a time interval r0, ts, the best
estimate of λ is λ̄ptq given by

(6.2) λ̄ptq “
1

t

ż t

0

dSs
σSs

“ λ`
Wt

t
.

The estimator is normally distributed, λ̄ptq „ Npλ, 1{tq, so pλ̄ptq ´ λq{p1{
?
tq is a stan-

dard normal random variable. Hence, a 95% confidence interval for λ is
„

λ̄ptq ´
1.96
?
t
, λ̄ptq `

1.96
?
t



.

Suppose that the true parameter values are µ “ 20% per annum and σ “ 20% per
annum, so that λ “ 1. We ask, for how long do we have to observe the share price to
be 95% certain that we know the value of λ to within 5% of its true value? That is, we
require |λ̄ptq ´ λ| ď 0.05. This implies that

λ̄ptq `
1.96
?
t
´

ˆ

λ̄ptq ´
1.96
?
t

˙

“ 0.1,

which gives t « 1537 years! This gives a measure of the severity of drift parameter
uncertainty in lognormal models, and it is remarkable that (to the best of our knowledge)
the above calculation does not appear in any of the standard financial mathematics texts
(which the exception of the recent book by Rogers [24]).
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7. Filtering theory

Filtering problems concern estimating something about an unobserved stochastic pro-
cess X given observations of a related process Y . In particular, one seeks the conditional

expectation ErXt| pFts, 0 ď t ď T , where pF :“ p pFtq0ďtďT is the filtration generated by
Y . This problem was solved for linear systems in continuous time by Kalman and Bucy
[12]. Subsequent work sought generalisations to systems with nonlinear dynamics, see
Zakai [26] for instance. Kailath [10] developed the so-called innovations approach to
linear filtering, which formulated the problem in the context of martingale theory. This
approach to nonlinear filtering was given a definitive treatment by Fujisaki, Kallianpur
and Kunita [8]. Textbook treatments can be found in Bain and Crisan [1], Kallianpur
[11], Lipster and Shiryaev [15, 16] and Rogers and Williams [25], Chapter VI.8 (which
follows the program of Fujisaki, Kallianpur and Kunita [8]).

The setting is a probability space pΩ,F ,Pq equipped with a filtration F “ pFtq0ďtďT .
All processes are assumed to be F-adapted. Note that F is not the observation filtration.
Let us call F the background filtration. We consider two processes, both taken to be one-
dimensional (for simplicity):

‚ a signal process X “ pXtq0ďtďT which is not directly observable;
‚ an observation process Y “ pYtq0ďtďT , which is observable and somehow corre-

lated withX, so that by observing Y we can say something about the distribution
of X.

Let pF :“ p pFtq0ďtďT denote the observation filtration generated by Y . That is,

pFt :“ σpYs; 0 ď s ď tq, 0 ď t ď T.

The filtering problem is to compute the conditional distribution of the signal Xt, t P
r0, T s, given observations up to that time. Or, equivalently, to compute the conditional
expectation

ErfpXtq| pFts, 0 ď t ď T,

where f : RÑ R is some test function.
To proceed further, we need to specify some particular model for the observation and

signal processes. We shall specialise to the case where both signal and observations
follow linear SDEs, and where the initial distribution of the signal is Gaussian. This
leads to the celebrated Kalman-Bucy filter. See for instance Bain and Crisan [1] for a
proof.

7.1. Linear observations and linear signal. Suppose that the signal process has
a Gaussian initial distribution and, for deterministic functions Ap¨q, Cp¨q, Gp¨q, assume
that the signal and observation processes follow

dXt “ AptqXt dt` Cptq dBt, X0 „ Npµ, vq,

dYt “ GptqXt dt` dWt, Y0 “ 0,

with B,W correlated BMs with constant correlation ρ, with X0 independent of B and
of W , and where Npµ, vq denotes the normal probability law with mean µ and variance
v. The two-dimensional process pX,Y q is then Gaussian, so the conditional distribution

of the signal X given the observation filtration pF (generated by the observation process
Y ) will also be normal (so, in particular, is completely characterised by its mean and
variance), with conditional mean

pXt :“ ErXt| pFts, t ě 0,

and conditional variance

Vt :“ varrXt| pFts “ ErpXt ´ pXtq
2| pFts “ xX2

t ´ p
pXtq

2, t ě 0.
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Observe that the initial values are

pX0 “ ErX0| pF0s “ ErX0s “ µ,

and
V0 “ ErpX0 ´ pX0q

2| pF0s “ ErpX0 ´ µq
2s “ varpX0q “ v.

The problem then boils down to finding an algorithm for computing the sufficient sta-

tistics pXt, Vt from their initial values pX0 “ µ, V0 “ v.

Theorem 7.1 (One-dimensional Kalman-Bucy filter). On a filtered probability space
pΩ,F ,F,Pq, with F “ pFtq0ďtďT , let X “ pXtq0ďtďT be an F-adapted signal process
satisfying

dXt “ AptqXt dt` CptqdBt,

and let Y “ pYtq0ďtďT be an F-adapted observation process satisfying

dYt “ GptqXt dt` dWt, Y0 “ 0,

where B,W are F-Brownian motions with correlation ρ, and the coefficients Ap¨q, Cp¨q,
Gp¨q are deterministic functions satisfying

ż T

0

`

|Aptq| ` C2ptq `G2ptq
˘

dt ă 8.

Define the observation filtration pF :“ p pFtq0ďtďT by

pFt :“ σpYs; 0 ď s ď tq.

Suppose X0 is an F0-measurable random variable, and that the distribution of X0 is
Gaussian with mean µ and variance v, independent of B and W . Then the conditional

expectation pXt :“ ErXt| pFts for 0 ď t ď T satisfies

d pXt “ Aptq pXt dt` rGptqVt ` ρCptqs dNt, pX0 “ µ,

where N “ pNtq0ďtďT is the innovations process, an pF-Brownian motion satisfying the
defining relation

dNt :“ dYt ´Gptq pXt dt,

and Vt :“ varrXt| pFts, for 0 ď t ď T , is the conditional variance, which is independent

of pFt and satisfies the deterministic Riccati equation

dVt
dt

“ p1´ ρ2qC2ptq ` 2 rAptq ´ ρCptqGptqsVt ´G
2ptqV 2

t , V0 “ v.

A multi-dimensional version of the Kalman-Bucy filter can be derived along similar
lines to the one-dimensional case. See Theorem V9.2 in Fleming and Rishel [7], for
instance.

Theorem 7.2 (Multi-dimensional Kalman-Bucy filter). Consider a filtered probability
space pΩ,F ,F,Pq, with F “ pFq0ďtďT , and two F-adapted processes X,Y as given below.

Let X “ pXtq0ďtďT be an n-dimensional signal process satisfying

(7.1) dXt “ AptqXt dt` CptqdBt, X0 „ Npµ, vq, (linear signal),

where X0 „ Npµ, vq denotes an n-dimensional F0-measurable Gaussian vector with mean
µ P Rn and covariance matrix v P RnˆRn, independent of the d-dimensional Brownian
motion B, and where Aptq P Rn ˆ Rn, Cptq P Rn ˆ Rd.

Let Y “ pYtq0ďtďT be an m-dimensional observation process satisfying

dYt “ GptqXt dt`DptqdWt, Y0 “ 0, (linear observations),

where Gptq P Rm ˆ Rn, Cptq P Rm ˆ Rk, and B is a k-dimensional Brownian motion
independent of B and X0.
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We assume that A,C,G,D are bounded on bounded intervals, that DDJ is non-
singular, and that pDptqDptqJq´1 is bounded on every bounded t-interval.

Let pF “ p pFtq0ďtďT denote the observation filtration generated by Y , so that pFt “
σpYs; 0 ď s ď tq.

The conditional expectation vector pXt :“ ErXt| pFts, 0 ď t ď T , satisfies the SDE

d pXt “ Aptq pXt dt` VtG
Tptq

`

DptqDTptq
˘´1

´

dYt ´Gptq pXt dt
¯

, pX0 “ µ,

“ Aptq pXt dt` VtG
Jptq

`

DptqDTptq
˘´1

dNt, pX0 “ µ,(7.2)

where N is the innovations process, defined by

Nt :“ Yt ´

ż t

0
Gpsq pXs ds, 0 ď t ď T,

and satisfying

(7.3) Nt “

ż t

0
Dpsq dxWs,

where xW is a standard k-dimensional pF-Brownian motion.
The error Xt ´ pXt is independent of pFt, and the error covariance

Vt :“ ErpXt ´ pXtqpXt ´ pXtq
J| pFts “ varrXt| pFts,

satisfies the deterministic matrix Riccati equation

dVt
dt

“ AptqVt ` VtA
Jptq ´ VtG

JptqpDptqDJptqq´1GptqVt ` CptqC
Jptq, V0 “ v.

Remark 7.3. Notice that:

‚ by (7.3) we can rewrite (7.2) as

d pXt “ Aptq pXt dt` VtG
Jptq

`

DptqDJptq
˘´1

Dptq dxWt, pX0 “ µ,

which is a linear SDE of the same type as (7.1);

‚ since X, pX satisfy (7.1), (7.2) and X0 is Gaussian, then Xt, pXt are Gaussian

vectors for each t, and the error Xt ´ pXt is also Gaussian: Xt ´ pXt has mean 0

and covariance Vt, and LawpXt| pFtq “ Np pXt, Vtq.

7.2. Merton problem with uncertain drift. We consider the Merton problem when
the agent has uncertainty over the true value of the drift parameter. Optimal investment
models under partial information have been considered by many authors. We refer the
reader to Rogers [23] and Björk, Davis and Landén [3], for example.

A stock price process S “ pStq0ďtďT follows

(7.4) dSt “ σStpλ dt` dWtq,

on a complete probability space pΩ,F ,Pq equipped with a filtration F :“ pFtq0ďtďT ,
with W “ pWtq0ďtďT an F-Brownian motion. For simplicity take the interest rate to be
zero.

Define the process ξ “ pξtq0ďtďT , by

ξt :“
1

σ

ż t

0

dSs
Ss

“ λt`Wt, t P r0, T s.

The process ξ will shortly be considered as the observation process in a filtering frame-
work, corresponding to noisy observations of λ, with W representing the noise.
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In a partial information model with continuous stock price observations, an agent

must use pF-adapted trading strategies, where where pF :“ p pFtq0ďtďT is the observation
filtration, defined by

pFt :“ σpξs; 0 ď s ď tq “ σpSs; 0 ď s ď tq, t P r0, T s.

Then σ is known from the quadratic variation of S, but λ is an unknown constant, and
hence modelled as an F0-measurable random variable. We assume the distribution of λ
is Gaussian, λ „ Npλ0, v0q, independent of W .

We are faced with a Kalman-Bucy type filtering problem whose unobservable signal
process is the market price of risk λ. The signal process SDE is

(7.5) dλ “ 0,

and the observation process SDE is

(7.6) dξt “ λdt` dWt.

We apply Theorem 7.1 to the signal process λ in (7.5) and observation process ξ in (7.6).
Then the optimal filter

pλt :“ Erλ| pFts, 0 ď t ď T,

satisfies

(7.7) dpλt “ vt dxWt, pλ0 “ λ0,

where
vt :“ Erpλ´ pλtq

2| pFts, 0 ď t ď T,

is the conditional variance. This satisfies the Riccati equation

(7.8)
dvt
dt
“ ´v2

t ,

with initial value v0, so that

(7.9) vt “
v0

1` v0t
, 0 ď t ď T.

The process xW is an pF-Brownian motion, the innovations process, satisfying

(7.10) dxWt “ dξt ´ pλt dt.

Using this in (7.7), the optimal filter can also be written in terms of the observable ξ as

(7.11) pλt “
λ0 ` v0ξt
1` v0t

, 0 ď t ď T.

The effect of the filtering is that the agent is now investing in a stock with dynamics
given by dSt “ σSt dξt which, using (7.10), becomes

(7.12) dSt “ σStppλt dt` dxWtq.

Let our agent have power utility function Up¨q. She may invest a fraction of her wealth

in shares and the remaining wealth in the cash account. The (pF-adapted) wealth process
X follows

(7.13) dXt “ σθtXtppλt dt` dxWtq, X0 “ x,

where θt is the proportion of wealth invested in shares at time t P r0, T s, an pF-adapted

process satisfying
şT
0 θ

2
t dt ă 8 almost surely, and such that Xt ě 0 almost surely for all

t P r0, T s. Denote by Apxq the set of such admissible strategies.

The objective is to maximise expected utility of terminal wealth over the pF-adapted
admissible strategies. The value function is

upxq :“ ErUpXT q| pF0s.
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This may now be treated as a full information problem, with state dynamics given by
(7.13).

Example 7.4 (Logarithmic utility). With Upxq “ log x, the dual approach to the terminal

wealth problem immediately gives that the optimal pF-adapted process for the Merton
problem with the MPR considered as an unknown Gaussian random variable is θ˚ “
pθ˚t q0ďtďT , given by

θ˚t “
pλt
σ
, t P r0, T s,

where pλ “ ppλtq0ďtďT satisfies (7.7) and vt is given by (7.9).

The classical Merton strategy is thus altered in that the constant λ is replaced by its

filtered estimate pλ. This result is only true with logarithmic utility. For other utility

functions, there is an additional correction as well as the replacement λ Ñ pλ. See
Monoyios [19] for computations involving power utility.

8. Basis risk model

We shall study a simple example of an incomplete market in which the ideas of utility-
based pricing can be illustrated with great clarity and explicit solutions. A number of
papers [5, 9, 17, 18, 20, 21] have studied such basis risk models.

The setting is a filtered probability space pΩ,F ,F :“ pFtq0ďtďT ,Pq, where the filtra-
tion F is the P-augmentation of that generated by a two-dimensional Brownian motion
pW,WKq. A traded stock price S :“ pStq0ďtďT follows a log-Brownian process given by

(8.1) dSt “ σStpλ dt` dWtq,

where σ ą 0 and λ are known constants. For simplicity, the interest rate is taken to be
zero.

A non-traded asset price Y :“ pYtq0ďtďT follows the correlated log-Brownian motion

(8.2) dYt “ ηYtpθ dt` dBtq,

with η ą 0 and θ known constants. The Brownian motion B is correlated with W
according to

drB,W st “ ρ dt, B “ ρW `
a

1´ ρ2WK, ρ P r´1, 1s.

The market prices of risk of the stock S (respectively, non-traded asset Y ) are λ (re-
spectively, θ).

A European contingent claim pays the non-negative random variable hpYT q at time
T , where h is a bounded continuous function. If |ρ| “ 1, the model is complete and
a BS-style perfect hedge is possible (as we shall show). But for |ρ| ‰ 1 the market is
incomplete.

Examples of underlying assets that are either not traded (or are difficult to trade)
include weather indices or baskets of many stocks. There is no trade-able asset which can
be used to perfectly replicate the claim payoff. Traders may resort to using a correlated
traded asset to hedge the claim, where the correlation is presumed to be close to 1, in
effect taking the traded asset as a perfect proxy for the non-traded one. A typical case
is the hedging of a basket option using a futures contract on a stock index, where the
composition of the basket and the index are not identical.

The set M of local martingale measures Q is defined via the density process Z “

pZtq0ďtďT given by

Zt :“ Ep´λ ¨W ´ ψ ¨WKqt, 0 ď t ď T,
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where E denotes the stochastic exponential, and ψ “ pψtq0ďtďT is a process satisfying
şT
0 ψ

2
t dt ă 8 a.s. If, in addition, Z is a martingale, then we may define probability

measures Q equivalent to P by

dQ
dP

ˇ

ˇ

ˇ

ˇ

Ft

“ Zt, t P r0, T s.

The set M of martingale measures is then in one-to-one correspondence with the set of
integrands ψ.

By the Girsanov theorem, the two-dimensional process pWQ,WQ,Kq defined by

WQ
t :“ Bt ` λt, WQ,K

t :“WK
t `

ż t

0
ψu du, 0 ď t ď T,

is a two-dimensional Q-Brownian motion. Therefore, under Q PM the dynamics of the
asset prices are

dSt “ σSt dWQ
t , dYt “ ηYtrpθ ´ ρλ´

a

1´ ρ2ψtq dt` dBQ
t s,

where WQ, BQ are correlated Q-Brownian motions:

xWQ, BQyt “ ρt, 0 ď t ď T.

The traded asset price is a local Q-martingale, but the drift of the non-traded asset is
arbitrary and parametrised by the integrand ψ appearing in the density process of any
ELMM Q PM.

The minimal martingale measure QM , which will feature in many of our formulae,
corresponds to ψ “ 0, so has density process with respect to P given by

dQM

dP

ˇ

ˇ

ˇ

ˇ

Ft

“ E p´λ ¨W qt , 0 ď t ď T.

Hence, under QM , pS, Y q follow

dSt “ σSt dWQ
t , dYt “ ηYtrpθ ´ ρλqdt` dBQM

t s,

where WQ ” WQM
and BQM

“ ρWQ `
a

1´ ρ2WK are correlated Brownian motions
under QM . The stock price S is a local QM -martingale but this is not the case for the
non-traded asset.

8.1. Perfect correlation case. In the perfect correlation case, ρ “ 1, Y is effectively
a traded asset, so no-arbitrage requires the QM -drift of Y to be zero. Therefore, given
σ, η, in the ρ “ 1 case the Sharpe ratios of the assets are related by

(8.3) θ “ λ.

In fact, with ρ “ 1, B “W , so we have

Yt
Y0
“

ˆ

St
S0

˙η{σ

exppctq, 0 ď t ď T,

where c is given by

c “
1

2
η pσ ´ ηq .

In this case the market becomes complete, and perfect hedging is possible. Let the claim
price process be vpt, Ytq, 0 ď t ď T , where v : r0, T s ˆ R` Ñ R` is smooth enough to
apply the Itô formula, so that

dvpt, Ytq “
“

vtpt, Ytq ` LY vpt, Ytq
‰

dt` ηYtvypt, Ytq dBt,
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where LY is the generator of the process Y , given by

LY vpt, yq “ ηθyvypt, yq `
1

2
η2y2vyypt, yq.

Form a portfolio with H “ pHtq0ďtďT units of S plus cash and denote the corresponding
wealth process by X. Then X satisfies

dXt “ Ht dSt.

The replication conditions are

Xt “ vpt, Ytq, 0 ď t ď T, dXt “ dvpt, Ytq.

Standard arguments then show that to perfectly hedge the claim one must hold Ht

shares of S at t P r0, T s, given by

(8.4) Ht “
η

σ

Yt
St

Bv

By
pt, Ytq,

and the claim pricing function vpt, yq satisfies

vtpt, yq ` ηpθ ´ λqyvypt, yq `
1

2
η2y2vyypt, yq “ 0, vpT, yq “ hpyq.

But when ρ “ 1, we have θ ´ λ “ 0, so we get the BS PDE, and

vpt, Ytq “ BSpt, Yt; ηq,

where BSpt, y;σq denotes the BS option pricing formula at time t, with underlying asset
price y and volatility σ. An important feature of (8.4) is that the perfect hedge does
not require knowledge of the values of the parameters λ, θ.

8.2. Utility-indifference valuation and hedging. Now suppose the correlation is
not perfect, so that the market is incomplete. We embed the problem in a utility max-
imisation framework. Let the agent have risk preferences expressed via the exponential
utility function

Upxq “ ´ expp´αxq, x P R, α ą 0.

The agent maximises expected utility of terminal wealth at time T , with a random
endowment of n units of claim payoff. Define π “ pπtq0ďtďT as the process of wealth
in the stock, so that πt :“ HtSt. The wealth process X “ pXtq0ďtďT of a portfolio
containing H “ pHtq0ďtďT shares of stock S satisfies

dXt “ σπtpλ dt` dWtq.

Given a starting time t P r0, T s the objective to be maximised is

J pnqpt, x, y;πq “ ErUpXT ` nhpYT qq|Xt “ x, Yt “ ys.

The value function is upnqpt, x, yq, defined by

upnqpt, x, yq :“ sup
πPA

J pnqpt, x, y;πq,(8.5)

upnqpT, x, yq “ Upx` nhpyqq.

Denote the optimal trading strategy that achieves the supremum in (8.5) by pπpnq, and

denote the optimal wealth process by pXpnq. We assume the set A of admissible strategies
are those for which XZ is a martingale, where Z is the density process of any ELMM
Q.

Given Xt “ x, Yt “ y, the utility indifference price per claim is ppnqpt, x, yq, defined
by

(8.6) upnqpt, x´ nppnqpt, x, yq, yq “ up0qpt, xq.
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We allow for possible dependence on t, x, y of ppnq in the above definition, but with
exponential preferences it turns out that there is no dependence on x, as we shall see.

The optimal hedging strategy is defined as the adjustment one makes to one’s optimal
portfolio strategy relative to the problem when n “ 0. In terms of the variable π :“ HS,
the optimal hedging strategy for n units of the claim is pπ :“ ppπtq0ďtďT given by

(8.7) pπt :“ pπ
pnq
t ´ pπ

p0q
t , 0 ď t ď T.

The solution to the optimisation problem (8.5) is well-known, using a so-called distortion
transformation (see Zariphopoulou [27]) to linearise the Hamilton-Jacobi-Bellman (HJB)

equation for upnq. See [17] for more details of the computation in this model.

The HJB equation for the value function upnq is

u
pnq
t `max

π
rLX,Y upnqs “ 0,

where LX,Y is the generator of the two-dimensional process pX,Y q:

LX,Y fpt, x, yq “ σλπfx `
1

2
σ2π2fxx ` ηθyfy `

1

2
η2y2fyy ` ρσηπyfxy.

Performing the maximisation over π yields that the optimal trading strategy pπpnq is

given by pπ
pnq
t “ pπpnqpt, pX

pnq
t , Ytq, where the function pπpnq : r0, T s ˆ Rˆ R` is given by

(8.8) pπpnqpt, x, yq :“ ´

˜

λu
pnq
x ` ρηyu

pnq
xy

σu
pnq
xx

¸

.

Plugging this back into the Bellman equation gives the HJB PDE as

(8.9) u
pnq
t ` LY upnq ´

´

λu
pnq
x ` ρηyu

pnq
xy

¯2

2u
pnq
xx

“ 0, upnqpT, x, yq “ Upx` nhpyqq,

where LY is the generator of Y .
We have the following representation for the value function and indifference price.

Proposition 8.1. [17]

The value function u ” upnq and indifference price p ” ppnq, given Xt “ x, Yt “ y for
t P r0, T s, are given by

upnqpt, x, yq “ ´e´αx´
1
2
λ2pT´tq rF pt, yqs1{p1´ρ

2q ,(8.10)

F pt, yq “ EQM “

exp
`

´αnp1´ ρ2qhpYT q
˘ˇ

ˇYt “ y
‰

,(8.11)

ppnqpt, yq “ ´
1

αnp1´ ρ2q
logF pt, yq.(8.12)

Proof. The function F pt, yq satisfies a linear PDE by virtue of the stochastic represen-
tation (8.11) and the Feynman-Kac theorem. It is easy to verify that the value function
as given in the proposition then satisfies the HJB equation (8.9). The indifference price
formula then follows from its definition.

�

The indifference pricing function ppnqpt, yq satisfies

(8.13) p
pnq
t ` ηpθ ´ ρλqyppnqy `

1

2
η2y2ppnqyy ´

1

2
η2y2nαp1´ ρ2qpppnqy q2 “ 0,

with ppnqpT, yq “ hpyq. This is a semi-linear PDE, and in this sense the indifference
pricing methodology constitutes a non-linear pricing rule.

Notice that for ρ “ 1 we recover the BS PDE, as the market becomes complete.
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For n “ 0, the indifference pricing PDE becomes linear, and by the Feynman-Kac
Theorem we obtain the following representation for the marginal utility-based price
p̂pt, yq :“ limnÑ0 p

pnqpt, yq:

p̂pt, yq “ EQM
rhpYT q|Yt “ ys.

This is a special case of a general representation of the marginal price as the expectation
of the payoff under the optimal dual measure for the problem with n “ 0, as we shall
explain in more detail in Section 10.1. For exponential utility the dual optimal measure
is the minimal entropy measure QE , which minimises the relative entropy HpQ|Pq :“
EQrlogZT s. In the basis risk model the minimal entropy measure QE coincides with
the minimal martingale measure QM . This is because the relative entropy between a
martingale measure Q PM and P is given by

HpQ,Pq “ EQ
„

1

2

ˆ

λ2T `

ż T

0
ψ2
t dt

˙

,

and this is clearly minimised by ψ “ 0.
Given the form of the value function, it is easy to show that the expression (8.8) for

the optimal control loses its dependence on x. Then, applying (8.7) gives the optimal
hedging strategy for a position in n claims.

Proposition 8.2. The optimal hedging strategy for a position in n claims is to hold pHt

shares at t P r0, T s, given by

(8.14) pHt “ ´nρ
η

σ

Yt
St

Bppnq

By
pt, Ytq.

Note that for ρ “ 1 we recover the perfect delta hedge (8.4), and (as already noted)
the claim price then satisfies the BS PDE.

Proof of Proposition 8.2. The optimal trading strategy is given by applying (8.7), using
(8.8) to compute the optimal feedback control (from which the optimal trading strategy
is computed by evaluating the feedback control, at the current value of the state pX,Y q):

(8.15) pπpnqpt, x, yq “ ´

˜

λu
pnq
x ` ρηyu

pnq
xy

σu
pnq
xx

¸

.

Setting n “ 0 we also have

(8.16) pπp0qpt, xq “ ´

˜

λ

σ

u
p0q
x

u
p0q
xx

¸

.

We also have, from (8.10)

upnqpt, x, yq “ up0qpt, xq rF pt, Y qs1{p1´ρ
2q ,

and using this in conjunction with (8.12), we have

upnqpt, x, yq “ up0qpt, xq expp´αnppnqpt, yqq.

We compute partial derivatives to insert into (8.15) and (8.16) and deduce that

pπpnqpt, x, yq ´ pπp0qpt, xq “ ´nρ
ηy

σ
ppnqy pt, yq.

�

Note that the optimal strategy pπ is the classical Merton trading strategy pπp0q for the
problem without the claim plus a correction which corresponds precisely to the utility-
based hedging strategy. Note also that if ρ “ 1, then we recover the perfect hedge
(8.4).
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8.3. Residual risk process. Suppose the agent trades n claims at time zero for price
ppnqp0, Y0q per claim. The agent hedges this position over r0, T s using the strategy

p pHtq0ďtďT . Her overall position has value process R :“ pRtq0ďtďT given by Rt “ pXt `

nppnqpt, Ytq, so that

(8.17) dRt “ d pXt ` n dppnqpt, Ytq,

where pX “ p pXtq0ďtďT is the value of the hedging portfolio in S, satisfying

d pXt “ pHt dSt, pX0 “ ´np
pnqp0, Y0q.

Using this in (8.17) along with the Itô formula and the PDE satisfied by ppnqpt, yq, we
obtain

(8.18) dRt “
1

2
η2n2αp1´ ρ2qY 2

t

´

ppnqy

¯2
pt, Ytqdt` ηn

a

1´ ρ2Ytp
pnq
y pt, Ytq dWK

t ,

with R0 “ 0. We call R the residual risk (or hedging error) process. The term in dWK
t ,

orthogonal to the Brownian increments driving the stock price, is interpreted as the
unhedgeable component of risk. If ρ “ 1 we see that the process R becomes riskless
(recall that the interest rate is zero), reflecting the fact that the market incompleteness
disappears in this case.

8.4. Power series expansions for the indifference price and hedge. We are in-
terested in analysing the distribution of the terminal hedging error RT . This is not
possible in closed form, so our approach is to use the SDE (8.18) to simulate R over
many asset price histories, and compute the distribution of terminal hedging error RT .
This programme was carried out in [17] and [18].

To simulate R via (8.18) efficiently, one may use analytic approximations for ppnqpt, yq

and p
pnq
y pt, yq, in the form of power series expansions in powers of a :“ ´αp1 ´ ρ2qn.

These arise from a Taylor expansion of the indifference pricing function

(8.19) ppnqpt, yq “
1

a
logEQM

rexp pahpYT qq|Yt “ ys .

For a random variableX, recall that its cumulant generating function (CGF) is CXpaq :“
logE exppaXq. Using linearity of the expectation operator, it is not hard to see that the
CGF has a Taylor expansion of the form

CXpaq “
8
ÿ

j“1

1

j!
kjpXqa

j ,

where kjpXq ” kj is the jth cumulant of X. The cumulants are related to the central
moments of X. For instance, writing

mjpXq :“ EpXjq, µjpXq :“ ErpX ´m1q
js, j P N,

for the jth raw and central moments, it is not hard to show that the first three cumulants
are the mean, variance and skewness:

k1pXq “ m1pXq,
k2pXq “ µ2pXq,
k3pXq “ µ3pXq.

Since the pricing function (8.19) is proportional to the cumulant generating function of
the payoff under the minimal measure, it is easy to generate an analytic formula for the
indifference pricing function. In [18], Monoyios gives the following representation.
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Proposition 8.3. The indifference pricing function ppnqpt, yq has the power series ex-
pansion

(8.20) ppnqpt, yq “
5
ÿ

j“1

1

j!
kj phpYT qq a

j´1 `Opa5q,

where a “ ´αp1´ ρ2qn and kj is the jth cumulant of the payoff under QM , conditional
on Yt “ y. The expansion is valid for model parameters satisfying

(8.21) EQM
rexppahpYT qq|Yt “ ys ď 2.

This means one can produce an accurate perturbation series for ppnqpt, yq, as a series
of BS-type formulae, which can be differentiated term by term to give an analytic

approximation for p
pnq
y pt, yq. In particular, the leading order term in the price expansion

is Davis’ [4] marginal price. Once again, this shows how the non-linear pricing rule given
by the indifference price reduces to the linear pricing rule of the marginal price as the
number of claims tends to zero.

The terms in the expansion depend ultimately on the momentsmj :“ EQM
rhjpYT q|Yt “

ys, j P N and (in the case of p
pnq
y pt, yq) on their partial derivatives Bmj :“ Bmj{By, j P N.

These are easy to compute (in the case of a put option we give some results shortly)
since, under QM , and conditional upon Yt “ y, log YT is normally distributed: with
Npm,Σ2q denoting the normal probability law with mean m and variance Σ2, we have

(8.22)
log YT „ N

`

log y ` b´ 1
2Σ2,Σ2

˘

,
b “ ηpθ ´ ρλqpT ´ tq,

Σ2 “ η2pT ´ tq.

For the optimal hedging strategy, the explicit results are obtained by differentiating
(8.20) with respect to y. If we denote by Bκj the partial derivative of κj with respect
to y:

Bκj ”
Bκj
By

,

where κj denotes any of mj , µj , kj , then we have:

Corollary 8.4. The partial derivative of the indifference price ppnqpt, yq with respect to
y has the power series expansion

Bppnq

By
pt, yq “

5
ÿ

j“1

1

j!
pBkjqa

j´1 `Opa5q.

The partial derivatives of the cumulants are related to µj , Bµj . For instance, up to
j “ 3 we have

Bk1 “ Bm1,
Bk2 “ Bµ2,
Bk3 “ Bµ3.

(See [18] for full details and more formulae.)
The significance of the expansions is that they give easily computed closed form

approximations for the indifference price and optimal hedge. In the specific case of a
put option, we have the following formulae for the raw moments of the payoff under the
minimal measure QM .

Lemma 8.5. For a put option, hpyq “ pK ´ yq`, where K ą 0 is the strike price, the

jth moment mj :“ EQM
rhjpYT q|Yt “ ys, j P N, is given by

mj “

j
ÿ

`“0

ˆ

j
`

˙

p´yq`Kpj´`q exp

„

`

ˆ

b`
1

2
p`´ 1qΣ2

˙

Φp´d1 ´ p`´ 1qΣq,
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where Φp¨q denotes the standard cumulative normal distribution function, and where

d1 “
1

Σ

„

log
´ y

K

¯

` b`
1

2
Σ2



b “ ηpθ ´ ρλqpT ´ tq,

Σ2 “ η2pT ´ tq.

Proof. For the put payoff, we have, for j P N,

phpYT qq
j
“

`

pK ´ YT q
`
˘j

“ pK ´ YT q
j
1tYTďKu

“

j
ÿ

`“0

ˆ

j
`

˙

p´1q`Kpj´`qY `
T1tYTďKu.

Given the lognormal distribution (8.22) of YT , it is easy to show that

EQM
”

Y `
T ItYTďKu

ˇ

ˇ

ˇ
Yt “ y

ı

“ y` exp

ˆ

`

ˆ

b`
1

2
p`´ 1qΣ2

˙˙

Φp´d1 ´ p`´ 1qΣq,

from which the result follows.
�

Lemma 8.6. Let j P N. For a put option payoff, hpyq “ pK ´ yq`, Bmj is given by

Bmj “ ´

j
ÿ

`“1

ˆ

j
`

˙

p´yqp`´1qKpj´`q exp

ˆ

`

ˆ

b`
1

2
p`´ 1qΣ2

˙˙

`Np´d1 ´ p`´ 1qΣq.

Proof. This is a straightforward exercise in differentiation.
�

This power series expansions for ppnqpt, yq and p
pnq
y pt, yq give a closed form and ex-

tremely accurate (see [17]) computation of the optimal price and hedging strategy,
with the leading order term in the expansion for the price being the marginal price,

p̂pt, yq “ EQM
rhpYT q|Yt “ ys, of the claim.

8.5. Optimal versus naive hedging. In [17, 18], a comparison was made between
hedging a claim with the optimal strategy versus with the BS-style “naive” strategy
(8.4) which takes S as a good proxy for Y .

In the BS-style hedge, let us repeat the calculation leading to the residual risk SDE
(8.18), but with the claim traded at the BS price vp0, Y0q “ BSp0, Y0q per claim and
hedged HN , using the ρ Ñ 1 limit of the optimal hedging formula (8.14) (even though
true value of ρ is not equal to 1). We then obtain the “naive” hedging error process RN ,
following

dRNt “ nηYtpθ ´ λqvypt, Ytqdt` nηYtvypt, Ytqrpρ´ 1qdWt `
a

1´ ρ2 dWK
t s.

Once again, we note that this is not riskless, but becomes so if the true value of ρ is
indeed 1. The “naive” trader hopes this proves a good approximation.

For the case when the agent sells a put option (n “ ´1) on the non-traded asset, in
[18] Monoyios generated optimal and naive hedging error distributions (by simulating
the processes R and RN ) using 10,000 asset price histories. These showed that the opti-
mal hedge error distribution has a higher mean, lower standard deviation, and a higher
median, than the naive hedge error distribution. The increased median, in particu-
lar, showed how the relative frequency of profits over losses is increased when hedging
optimally. Figure 1 shows a typical path trajectory for one simulated asset price history.
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Figure 1. A typical trajectory when hedging a short put position with
the optimal strategy or the naive strategy. The put is sold optimally for
price pp´1qp0, Y0q, or naively for price BSp0, Y0q.

Table 1. Model parameters for histograms in Figure 2.

S0 Y0 K r µ σ ν η T
100 100 110 5% 13% 30% 10% 25% 1year

Table 2. Summary statistics for histograms in Figure 2.

EVT sdpVT q medpVT q maxpVT q minpVT q
0.4346 9.5902 2.1621 33.40 -41.60

EV N
T sdpV N

T q medpV N
T q maxpV N

T q minpV N
T q

-0.8574 10.3724 0.1216 39.11 -47.99

Suppose the agent sells a put option (so n “ ´1) on the non-traded asset. Figure
2 shows the optimal and naive hedging error distributions generated from 10,000 asset
price histories, for ρ “ 0.75. α “ 0.01, with the other parameters as in Table 1. Summary
statistics for the hedge error distributions, in Table 2, show that the optimal hedge error
distribution has a higher mean, lower standard deviation, and a higher median, than
the naive hedge error distribution. The increased median, in particular, shows how the
relative frequency of profits over losses is increased when hedging optimally.
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Figure 2. Hedging error distributions over 10,000 simulated asset price
histories. A short put position is hedged, with ρ “ 0.75, α “ 0.01. The
remaining parameters are as in Table 1. The put is sold optimally for
price pp´1qp0, Y0q “ 13.14, and naively for price BSp0, Y0q “ 12.66.

Thus, the hedging strategy in (8.14) is, at first sight, superior to the BS-style hedge
(8.4). But the exponential hedge requires knowledge of λ, θ, which are impossible to
estimate with any degree of accuracy (Monoyios [18]). This can ruin the effectiveness
of indifference hedging, as shown in [18]. A way round this problem is presented by
Monoyios [18, 20] using filtering theory.

9. The dual approach to optimal investment in incomplete markets

Here we briefly revisit the dual approach to solving utility maximisation problems.
We studied this topic in Section 5 in the complete market case. Here, we give the
main ideas in the incomplete market case. The major difference is that there are many
equivalent local martingale measures (ELMMs), and the unique density process of the
single ELMM of the complete market is replaced by the dual optimiser that achieves the
infimum in a suitably defined dual problem. We shall not give a complete proof (which
is difficult) of the duality, but shall proceed with the assumption that the primal and
dual optimisers exist (this is the hard thing to establish in general, requiring a delicate
demonstration of closure of the optimisation sets in a suitable topology). In subsequent
sections, these ideas are applied to the case of utility maximisation with the random
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endowment of a claim payoff, to derive dual representations of utility-based prices, and
we revisit the basis risk model via a dual approach.

9.1. Abstract incomplete market. We shall work in a general incomplete semi-
martingale model, with zero interest rate (for simplicity), and with some (say) n-
dimensional stock price process S, a semi-martingale on a filtered probability space
pΩ,F ,F :“ pFtq0ďtďT ,Pq.

Example 9.1 (Itô process model). An example would be a multi-dimensional Itô process
model, with stock prices Si, i “ 1 . . . , n, evolving according to

(9.1) dSit “ Sit

˜

µit dt`
d
ÿ

j“1

σijt dW j
t

¸

, i “ 1, . . . , n,

or, as a single vector equation:

(9.2) dSt “ diagnpStqrµt dt` σt dWts,

where diagnpSq denotes the n ˆ n diagonal matrix with S1, . . . , Sn along the diagonal,
and W is a d-dimensional Brownian motion.

The appreciation rates µi and the entries σij (i “ 1, . . . , n, j “ 1, . . . , d) of the nˆ d
volatility matrix σ are F-adapted processes satisfying

ż T

0
}µt}dt ă 8,

n
ÿ

i“1

d
ÿ

j“1

ż T

0

´

σijt

¯2
dt ă 8, a.s.

Here } ¨ } denotes the Euclidean norm, so that for instance,

}µt}
2 “

`

µ1
t

˘2
` ¨ ¨ ¨ ` pµnt q

2 .

We assume that there exists (at least one) Rd-valued progressively measurable process
q such that the equations

(9.3) σtqt “ µt, 0 ď t ď T, a.s.

admit at least one solution. We call (9.3) the market price of risk (MPR) equations, and
the processes q are called MPRs. The existence of a MPR satisfying (9.3) is equivalent
to a no-arbitrage (NA) condition on the market model, and that this equivalence is a
form of the first Fundamental Theorem of Asset Pricing (FTAP I) (see Chapter 0 of
Karatzas [13] for more details).

Observe that (9.3) constitutes n equations for d ě n unknowns (the components of
q “ pq1, ¨ ¨ ¨ , qdq˚, where ˚ denotes matrix transposition). Hence, in general, there will
not be a unique MPR (and this is in one-to-one correspondence with the multiplicity of
ELMMs), unless n “ d and the volatility matrix is invertible (and this is the special case
of a complete market). This ends the Itô process example. You can read more about
this model in, say, Karatzas [13], Chapter 0.

Returning to the general semi-martingale model, the wealth process X from trading
the stocks is given by

(9.4) Xt “ X0 `

ż t

0
θs dSs, t P r0, T s,

where θ is the n-dimensional predictable and S-integrable process for the number of
shares of each stock.
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If the market is incomplete there are many ELMMs Q „ P such that S (and hence
also X) is a local Q-martingale. Denote the class of ELMMs by M. Denote the density
process of any ELMM Q PM by Z, a positive martingale:

Zt “
dQ
dP

ˇ

ˇ

ˇ

ˇ

Ft

, t P r0, T s.

We shall identify any ELMM Q with its density process Z.

Example 9.2 (Itô process model, continued). In the Itô process model of Example 9.1,
for any q satisfying (9.3), we define the positive local martingale

(9.5) Zt :“ Ep´q ¨W qt, 0 ď t ď T,

satisfying

dZt “ ´Ztq
˚
t dWt.

Here, Ep¨q denotes the stochastic exponential:

EpMq :“ exp

ˆ

´M ´
1

2
xMy

˙

,

for any continuous process M , as well as

pq ¨W qt :“

ż t

0
q˚s dWs, 0 ď t ď T,

for the stochastic integral, so that

Ep´q ¨W qt “ exp

ˆ

´

ż t

0
q˚s dWs ´

1

2

ż t

0
}qs}

2 ds

˙

, 0 ď t ď T.

If ErZT s “ 1, then Z is a martingale and we define equivalent local martingale measures
(ELMMs) Q via

dQ
dP

“ ZT .

Denote the set of ELMMs by M. Under any Q PM, the stock prices are local martingales.
To see this, recall that the Girsanov theorem (Theorem 3.5.1 in Karatzas and Shreve
[14]) implies that under any Q PM, the process

WQ
t :“Wt `

ż t

0
qs ds, 0 ď t ď T,

is Brownian motion, and hence we have

dSt “ diagnpStqσt dWQ
t .

Hence the stock prices are local Q-martingales.

Returning to the general semi-martingale model, the process ZX is a local P-martingale.
In this section, we shall take admissible strategies θ to be those that yield non-negative
wealth process:

Definition 9.3 (Admissible strategies). The class of portfolio strategies θ, starting with
initial capital x ą 0, such that the associated wealth process X satisfies

Xt ” Xtpxq ě 0, 0 ď t ď T, a.s.

will be called admissible, and denoted by Apxq.
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If θ P Apxq, then the process ZX is a non-negative P-local martingale and hence a
super-martingale, so satisfies

(9.6) E rZTXT s ď x, for any Q PM.

This condition will be used as a constraint on allowable wealth processes in what follows
For now, we consider the case where the utility function U is defined on R` (so keep

logarithmic and power utility in mind). We shall restrict attention (for the present) to
admissible strategies with non-negative wealth process, so we have the super-martingale
constraint (9.6). We consider the following problem.

Problem 9.4 (Utility from terminal wealth). Denote by θ P Apxq the portfolio process.
Maximise over admissible θ P Apxq the functional Jpx; θq representing expected utility
of terminal wealth:

Jpx; θq :“ E rUpXT qs .

Denote the value function of this problem by

upxq :“ sup
θPApxq

Jpx; θq.

The wealth dynamics are characterised according to (9.4) and the budget constraint
is (9.6). Introduce a Lagrange multiplier y ą 0 whose role is to enforce this constraint
and consider, for any θ P Apxq, and any x, y ą 0,

ErUpXT qs ď E rUpXT qs ` y px´ ErXTZT sq

“ E rUpXT q ´ yZTXT s ` xy

ď E rV pyZT qs ` xy,(9.7)

where we have used (2.7). The inequality (9.7) motivates us to define the dual problem
to the primal utility maximisation Problem 9.4, with dual value function

(9.8) vpyq :“ inf
QPM

E rV pyZT qs , y ą 0.

Now, inequality (9.7) holds for all θ P Apxq and Q P M, and for all x, y ą 0. Then,
maximising over trading strategies on the LHS of (9.7) and minimising over ELMMs on
the RHS, leads to

vpyq ě upxq ´ xy, @x ą 0, y ą 0,

and thus to

vpyq ě sup
xą0
rupxq ´ xys, y ą 0,

This suggests that up¨q, vp¨q are conjugate (inheriting this property from Up¨q, V p¨q). This
can be made rigorous, and we get equality in (9.7) if and only if the primal and dual

optimisers pXT ” pXT pxq (we identify the optimal trading strategy with the resultant

terminal wealth) and pZT ” pZT pyq satisfy the martingale constraint

(9.9) Er pXT
pZT s “ x

holds (so the first inequality becomes an equality) and also if and only if pXT satisfies

(9.10) U 1p pXT q “ y pZT ðñ pXT “ Ipy pZT q,

so the second inequality becomes an equality. Thus (9.9) and (9.10) identify the optimal

terminal wealth pXT , once we fix y ą 0 by inserting (9.10) into (9.9):

(9.11) E
”

pZT Ipy pZT q
ı

“ x.
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To establish the conjugacy between up¨q, vp¨q, first write vp¨q as

vpyq “ E
”

V py pZT q
ı

, y ą 0,

“ ErUpIpy pZT qqs ´ yEr pZT Ipy pZT qs
“: F pyq ´ yX pyq,(9.12)

where we have used (2.6) and where we have defined

F pyq :“ E
”

UpIpy pZT qq
ı

, X pyq :“ E
”

pZT Ipy pZT q
ı

, y ą 0.

Thus, the constraint (9.11) reads as

X pyq “ x.

Denote the inverse of X p¨q by Yp¨q, so that

(9.13) X pyq “ xðñ y “ Ypxq.
Thus, the optimal terminal wealth can be expressed as

(9.14) pXT pxq “ IpYpxq pZT q.
Then, in principle, the optimal wealth process is obtained from the from the fact that
pX pZ is a martingale:

(9.15) pXt “
1

pZt
E
”

pXT
pZT

ˇ

ˇ

ˇ
Ft
ı

, 0 ď t ď T.

The primal value function may be expressed in the form

(9.16) upxq “ ErUp pXT pxqqs “ ErUpIpYpxq pZT qqs “ F pYpxqq “ vpYpxqq ` xYpxq,
where we have used (9.12) to get the last equality.

Observe from (9.7) that we have

upxq ď vpyq ` xy, for all x ą 0, y ą 0.

Hence,

(9.17) sup
xą0
rupxq ´ xys ď vpyq, for all y ą 0.

Evaluating the primal value function u at X pyq, for any y ą 0, and using (9.16) and
(9.12), we have

upX pyqq “ F pYpX pyqqq “ F pyq “ vpyq ` yX pyq,
or

vpyq “ upX pyqq ´ yX pyq,
which implies that

(9.18) vpyq ď sup
xą0
rupxq ´ xys, for all y ą 0.

From (9.17) and (9.18) we conclude that

vpyq “ sup
xą0
rupxq ´ xys, y ą 0.

In other words, u, v are conjugate (inheriting this property from U, V ).
Finally, the functions X ,Y are in fact related to the derivatives of the value functions

v, u as we now show.

Differentiating vpyq “ ErV py pZT qs with respect to y we have

v1pyq “ ErV 1py pZT q pZT s “ ´Er pZT Ipy pZT qs “ ´X pyq.
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While for u we have, on differentiating the last equality in (9.16) and using v1 “ ´X ,

u1pxq “ v1pYpxqqY 1pxq ` Ypxq ` xY 1pxq “ Ypxq.
Thus, the relations (9.13) between the initial wealth x ą 0 and the Lagrange multiplier
y ą 0 may also be written as

y “ u1pxq, x “ ´v1pyq.

Moreover, the expression (9.14) for the optimal terminal wealth translates to the striking
expression for the dual optimiser:

pZT “
U 1p pXT pxqq

u1pxq
.

10. Optimal investment with random endowment in an incomplete market

We now specialise to the exponential utility function Upxq “ ´ expp´αxq for x P R
and α ą 0 and consider the problem of optimal investment in an incomplete market when
one has also to pay out at time T the payoff of a European claim, some FT -measurable
random variable C. Let π denote the trading strategy (the wealth held in stocks). The
set of admissible strategies Apxq are assumed to be such that XZ is a martingale, for
any deflator Z P Z. (The set of deflators Z is in one-to-one correspondence with the set
M of ELMMs.) The primal problem is defined by

(10.1) upxq :“ sup
πPApxq

ErUpXT ´ Cqs, x P R,

and we assume that ErXTZT s “ x, for any Z P Z.
Consider, for any admissible π, any deflator Z, any x P R and any y ą 0,

ErUpXT ´ Cqs “ E rUpXT ´ Cqs ` y px´ ErXTZT sq

“ E rUpXT ´ Cq ´ yZT pXT ´ Cq ´ yZTCs ` xy

ď E rV pyZT q ´ yZTCs ` xy.
We define the dual problem to the primal utility maximisation problem by

(10.2) vpyq :“ inf
ZPZ

ErV pyZT q ´ yZTCs, y ą 0,

Now, (10.2) holds for any π P Apxq, any deflator Z P Z, any x P R and any y ą 0, so
if we maximise the LHS over π P Apxq and minimise the RHS over Z P Z, we have the
usual inequality

upxq ď vpyq ` xy, @x P R, y ą 0.

Denote the dual minimiser in (10.2) by pZpCq and the optimal terminal wealth in (10.1)

by pX
pCq
T . We suppose (and this can be made rigorous, see for example, Delbaen et al

[6]) that we get equality in (10.2) when we choose XT “ pX
pCq
T and ZT “ pZ

pCq
T such

that U 1p pX
pCq
T ´ Cq “ y pZ

pCq
T , with y ą 0 fixed via Er pXpCqT

pZ
pCq
T s “ x. Once again, the

theory goes through as in the case without random endowment and we get the following
theorem.

Theorem 10.1 (Optimal investment with random endowment in incomplete market).
Define the primal value function by

(10.3) upxq :“ sup
πPApxq

E rUpXT ´ Cqs , x P R.

and suppose that upxq ă 8 for all x P R.
Define the dual value function by

vpyq :“ inf
ZPZ

E rV pyZT q ´ yZTCs , y ą 0,
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Then we have

(1) The value functions u and v are conjugate:

vpyq “ sup
xPR
rupxq ´ xys, upxq “ inf

yą0
rvpyq ` xys, x P R, y ą 0.

(2) The optimal terminal wealth pX
pCq
T and the dual minimiser pZ

pCq
T are related by

U 1p pX
pCq
T ´ Cq “ y pZ

pCq
T ðñ pX

pCq
T ´ C “ Ipy pZ

pCq
T q,

with y ą 0 fixed via Er pXpCqT
pZ
pCq
T s “ x, or

(10.4) X pyq “ x´ΠpCq ðñ y “ Ypx´ΠpCqq, Y :“ X´1,

where the function X p¨q and the constant ΠpCq are defined by

X pyq :“ E
”

pZ
pCq
T Ipy pZ

pCq
T q

ı

, y ą 0, ΠpCq :“ EpQpCqrCs.

(3) The primal value function is given as

upxq “ E
”

U
´

IpYpx´ΠpCqq pZ
pCq
T q

¯ı

“ F pYpx´ΠpCqqq,

where F is defined by

F pyq :“ E
”

UpIpy pZ
pCq
T qq

ı

, y ą 0.

(4) The derivatives of the primal and dual value functions are given by

u1pxq “ Ypx´ΠpCqq, v1pyq “ ´pX pyq `ΠpCqq,

so that the relations y “ Ypx´ΠpCqq and X pyq “ x´ΠpCq between the initial
wealth x ą 0 and the Lagrange multiplier y ą 0 in (10.4) may be written as

y “ u1pxq, x “ ´v1pyq.

10.1. Exponential utility-based indifference valuation. We now apply the theory
of the previous subsection to the valuation and hedging of the claim C. Recall that in an
incomplete market there is no replication strategy for C, so any valuation method must
take into account potential unhedged risk, so should incorporate the agent’s preferences
towards risk. These are captured by her utility function.

We are still using the exponential utility function Upxq “ ´ expp´αxq for x P R and
α ą 0. Take the interest rate process to be zero. Thus the deflator Z is a positive local
martingale (given by Z “ Ep´λ ¨W q), and when Z is a martingale then it is also the
density process of any ELMM Q PM:

Zt “
dQ
dP

ˇ

ˇ

ˇ

ˇ

Ft

, t P r0, T s.

We shall assume that this is the case from now on. Then, with exponential utility, the
dual problem may be written as

vpyq “ V pyq `
y

α
inf
QPM

EQrlogZT ´ αCs.

The quantity
EQrlogZT s “: HpQ,Pq

is called the relative entropy between Q and P. We may therefore write

(10.5) vpyq “ V pyq `
y

α
inf
QPM

´

HpQ,Pq ´ EQrαCs
¯

.

Thus, the dual problem amounts to the minimisation:

inf
QPM

´

HpQ,Pq ´ EQrαCs
¯

.
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Observe that for the case C “ 0, the dual problem without random endowment is thus
equivalent to minimising the relative entropy over ELMMs. Denoting the dual value
function for the case C “ 0 by v0, we have

v0pyq “ V pyq `
y

α
inf
QPM

pHpQ,Pqq “: V pyq `
y

α
HpQE ,Pq,

where QE denotes the minimal entropy martingale measure (MEMM).
Now, using that u, v are conjugate, we have

upxq “ inf
yą0
rvpyq ` xys.

Using the form of v in (10.5), we obtain

(10.6) upxq “ ´ exp

ˆ

´αx´ inf
QPM

´

HpQ,Pq ´ EQrαCs
¯

˙

.

Definition 10.2 (Utility indifference price). Let u0 denote the value function for the
problem (10.3) with C “ 0. The time zero utility indifference price of the claim C is p,
defined by

upx` pq “ u0pxq.

Applying this definition to the dual representation (10.6) of the primal value function
we obtain the dual representation of the indifference price:

p “ sup
QPM

„

EQrCs ´
1

α

`

HpQ,Pq ´HpQE ,Pq
˘



.

Observe that we have the limits

lim
αÑ8

p “ sup
QPM

EQrCs, pp :“ lim
αÑ0

p “ EQE
rCs.

The first of these is called the super-replication price, and the second is called the
marginal utility-based price (MUBP). For this latter quantity, we have the following
representation.

Lemma 10.3. The marginal utility-based price of the claim C at time zero is given by

pp “
ErU 1p pXp0qT qCs

u10pxq
,

where u0 and pX
p0q
T denote the primal value function and optimal terminal wealth respec-

tively, for the problem (10.3) with C “ 0.

Proof. The dual minimiser for the case C “ 0 is QE , and we have

U 1p pX
p0q
T q “ y

dQE

dP
,

with y “ u10pxq.
�

10.2. The basis risk model revisited via duality. We apply the utility indifference
valuation results to the basis risk model of Section 8, with a traded asset S and a
correlated non-traded asset Y following the geometric Brownian motions

dSt “ σStpλdt` dWtq, dYt “ ηYtpθ dt` dBtq, λ, θ P R, σ, θ P R`

where W,B are correlated Brownian motions, satisfying

xW,Byt “ ρt, ρ P r´1, 1s, 0 ď t ď T.
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A European contingent claim pays the non-negative random variable hpYT q at time T ,
where hp¨q is a bounded continuous function. The interest rate is zero. This market is
incomplete unless the correlation is perfect. The set M of ELMMs Q is defined as

M :“ tQ „ P|S is a local pQ,Fq-martingaleu,

where F is the augmented filtration generated by pW,WKq, with WK a Brownian motion
independent of W , so that

B “ ρW `
a

1´ ρ2WK.

The density process of any Q PM is given by

Zt “ Ep´λW ´ ψ ¨WKqt, 0 ď t ď T,

where ψ is an adapted process satisfying

ż T

0
ψ2
t dt ă 8, a.s.

For Q to be a probability measure we need Z to be a martingale, and we assume this
is the case here (a sufficient condition for this is the Novikov condition on ψ (since λ

is constant we need no further conditions on it)): E
”

exp
´

1
2

şT
0 ψ

2
t dt

¯ı

ă 8. By the

Girsanov theorem, the two-dimensional process pWQ,WQ,Kq defined by

WQ
t :“ Bt ` λt, WQ,K

t :“WK
t `

ż t

0
ψu du, 0 ď t ď T,

is a two-dimensional Q-Brownian motion. Therefore, under Q PM the dynamics of the
asset prices are

dSt “ σSt dWQ
t , dYt “ ηYtrpθ ´ ρλ´

a

1´ ρ2ψtq dt` dBQ
t s,

where WQ, BQ are correlated Q-Brownian motions:

xWQ, BQyt “ ρt, 0 ď t ď T.

The traded asset price is a local Q-martingale, but the drift of the non-traded asset is
arbitrary and parametrised by the integrand ψ appearing in the density process of any
ELMM Q PM. The set M of martingale measures is then in one-to-one correspondence
with the set Ψ of integrands ψ.

The minimal martingale measure QM corresponds to ψ “ 0, so has density process
with respect to P given by

dQM

dP

ˇ

ˇ

ˇ

ˇ

Ft

“ E p´λW qt , 0 ď t ď T.

Hence, under QM , pS, Y q follow

dSt “ σSt dWQ
t , dYt “ ηYtrpθ ´ ρλqdt` dBQM

t s,

where WQ ” WQM
and BQM

“ ρWQ `
a

1´ ρ2WK are correlated Brownian motions
under QM .

As shown in Section 8.1, if |ρ| “ 1, the model is complete and a BS-style perfect hedge
for the claim with payoff hpYT q is possible. For |ρ| ‰ 1 the market is incomplete.



40 MICHAEL MONOYIOS

10.2.1. Utility-indifference valuation and hedging. Suppose the correlation is not perfect,
so that the market is incomplete. The relative entropy between Q P M and P in this
model is given by

HpQ,Pq “ 1

2

ˆ

λ2T ` EQ
„
ż T

0
ψ2
t dt

˙

.

We see immediately that

HpQE ,Pq “
1

2
λ2T,

dQE

dP
“ Ep´λW qT ,

so that QE “ QM in this model. Then the MUBP at time zero is given by

pp “ EQM
rhpYT qs.

The time-zero indifference price has the stochastic control representation

p “ sup
ψPΨ

EQ
„

hpYT q ´
1

2α

ż T

0
ψ2
t dt



,

Consider the intermediate value function

ppt, yq :“ sup
ψPΨ

EQ
„

hpYT q ´
1

2α

ż T

t
ψ2
u du

ˇ

ˇ

ˇ

ˇ

Yt “ y



.

This is the indifference pricing function at t ď T given Yt “ y. The HJB equation for
ppt, yq is

pt `max
ψ

„

LY,Qp´ 1

2α
ψ2



“ 0, ppT, yq “ hpyq,

where LY,Q is the generator of Y under Q PM:

LY,Qp “ ηypθ ´ ρλ´
a

1´ ρ2ψqpy `
1

2
η2y2pyy.

Maximising over ψ in the HJB equation gives the optimal Markov control as pψpt, yq “

´α
a

1´ ρ2ηypypt, yq. Substituting this into the HJB equation gives the PDE for ppt, yq
as

pt ` ηpθ ´ ρλqypy `
1

2
η2y2pyy `

1

2
η2y2αp1´ ρ2qp2

y “ 0, ppT, yq “ hpyq.

Observe that this PDE is consistent with (8.13) derived via the primal approach in
Section 8.

One can check that the indifference price PDE is solved by

ppt, yq “
1

αp1´ ρ2q
logEQM “

exp
`

αp1´ ρ2qhpYT q
˘
ˇ

ˇYt “ y
‰

.

For α Ñ 0, the indifference pricing PDE becomes linear, and by the Feynman-Kac
Theorem we obtain the marginal utility-based price (MUBP) pppt, yq :“ limαÑ0 ppt, yq:

pppt, yq “ EQM
rhpYT q|Yt “ ys.
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