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1. BRIEF OUTLINE

We shall describe the classical Merton optimal investment problem and its solution via
stochastic control and dynamic programming methods, involving the Hamilton-Jacobi-
Bellman (HJB) equation.

We shall then describe the so-called dual approach (or martingale approach, or convex
duality approach) to solving utility maximisation problems, which is an alternative to
dynamic programming and the HJB equation, and which works for systems which do
not necessarily have Markovian dynamics. We give the main ideas in a complete market
(the incomplete market case is considerably more difficult).

We shall then distinguish partial and full information models. In the former, the
value of the drift process of the underlying stock price is not known, because the agent
is not assumed to observe the Brownian motion driving the stock price. That is, the
agent does not llave access to the Brownian filtration F, and only has access to the stock
price filtration F, the so-called observation filtration. We shall use the theory of linear
filtering, in particular the celebrated Kalman-Bucy filter, to re-write the model under
the observation filtration, and we shall then use the convex duAality method developed
earlier to solve the Merton optimal investment problem under F.

If time allows we shall then describe a simple example of an incomplete market,
sometimes called a basis risk model, in which a claim on a non-traded asset is hedged
using a correlated traded asset. Because the market is incomplete, the risk from selling
the claim cannot be completely eliminated, so any valuation and hedging scheme has
to take into account the risk preferences of the agent, and we shall do this via the
exponential utility function. We shall describe the method of utility-based valuation
and hedging of the claim, derive closed form expressions for the claim value and the
optimal hedging strategy, and finally we shall describe the dual approach to optimal
investment with the random endowment of the claim payoff, and revisit the basis risk
model via duality methods.

2. THE MERTON PROBLEMS

A stochastic optimal control problem involves a system whose state, X, is a stochastic
process which, as well as having inherent deterministic and random time evolution,
can also have its evolution affected by an agent exerting some influence, or control, to
optimise some performance criterion.

The classical financial example is the so-called Merton problem to maximise expected
utility of terminal wealth and intermediate consumption, which we shall now describe
briefly, by way of introduction. In Section [3| shall describe the technique of dynamic
programming to handle control problems subject to Markovian state dynamics, and
apply this approach to the Merton problems.

In continuous time, suppose a stock price S = (S¢)=0, on a probability space (€2, F, P)
equipped with a filtration F = (F})¢>0, evolves according to the classical Black-Scholes-
Merton (BSM) model. The stochastic differential equation (SDE) for the stock price
is

dS; = puSedt + oS dWy, peR, oceRy,

where W is an F-Brownian motion (BM), and u € R, o > 0 are known constants. There
is a constant interest rate r = 0. We can take the filtration F to be the P-augmentation
of the natural filtration of the Brownian motion W (so augmented with the null sets of
F, and then the filtration I satisfies the so-called usual conditions of right-continuity
and completeness).

An agent with initial capital x > 0 trades the stock and cash, and may also consume
wealth, using a non-negative F-adapted consumption rate process ¢ = (¢t)i=0. Denote
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by X = (X¢)t>0 the wealth process of a self-financing portfolio containing H; shares of
stock at t = 0. The cash in the portfolio at time ¢ is X; — H:St, so the wealth dynamics
are

dX; = H;dS; + T(Xt — HtSt) dt — ¢ dt
(21) TXtdt+07rt()\dt+ th) —Ctdt,

where m; := HyS; is an F-adapted strategy describing the wealth held in the stock, and
A := (u — r)/o is the market price of risk of the stock.

The agent chooses a consumption-investment strategy (7, ¢) from some admissible set
A(x) given initial wealth z. The agent has an objective to maximise the expected utility
from consumption and investment, over some given horizon [0,7]. We define his value
function u by

T
(2.2) u(z):= sup E [J e U () dt + UQ(XT):| ,
(m,c)eA(z) 0
where U;,7 = 1,2 are increasing concave utility functions, encapsulating the agent’s
preferences, and 0 > 0 is some subjective discount rate for consumption (and measures
impatience, the desire to spend sooner rather than later).

Remark 2.1 (Notation). We shall use the symbol u for the value function of a variety of
problems, so be aware that u will represent different quantities as we proceed through
these lectures.

The stochastic control problem is to find an optimal strategy (7*,c*) achieving the
supremum in . The state variable is the wealth process X, and the control process
is (m, c).

The problem is known as the finite horizon Merton problem for utility from
consumption and terminal wealth. There are some natural variations to this objective:

e The finite horizon problem for utility from terminal wealth only, which has value
function (for some utility function U(-))
(2.3) u(z) := sup E[U(X7)],
meA(x)
where we do not consume any wealth, so the wealth dynamics are those in (2.1)
but with ¢ = 0:

dX; = rX, dt + om(Adt + dIV,).

One can in fact include possible consumption in these dynamics, and then show
(the intuitively clear fact) that, since the objective in features no utility
from consumption, the optimal consumption process is indeed null. We won’t
show this, and just take consumption to be zero from the outset in the terminal
wealth problem.

e The finite horizon problem for utility from consumption only, which has value
function

T
(2.4) u(z):= sup E [J e U (cy) dt] ,
(m,0)eA(z) 0

where the wealth dynamics are again those in (2.1).
e The infinite horizon problem for utility from consumption only, which has value
function

(2.5) u(z) ;== sup E UOO e U (cy) dt] :

(m,c)eA(x) 0
where the wealth dynamics are again those in (2.1)).
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In these lectures we shall focus on terminal wealth problems of the type in ({2.3)).
2.1. Utility functions and convex conjugates.

Definition 2.2 (Utility function). A utility function will be a continuous, strictly
increasing, strictly concave, differentiable function U : (0,00) — R (or sometimes
U:R — R) with

U'(0) := lim U'(x) =0, U'(0+):= li?& U'(z) = o,

T
and in the case that U is defined over all of R, the second condition is replaced by
U'(—0) := mgrzloo U'(x) = oo.
The classical utility functions are:
Logarithmic utility:
U(r) =logz, xeRT,

Power utility:
p

Exponential utility:
U(x) = —exp(—az), a>0, zeR

The coefficient of absolute risk aversion associated with a utility function is

U”($)
R = —
and the coefficient of relative risk aversion is
xU"(x)
R =
R(x) U/(JI)

For the power and logarithmic utilities we have that R4(z) is proportional to 1/z, so
these are sometimes called Hyperbolic Absolute Risk Aversion (HARA) utilities. The
relative risk aversion for these utility functions is constant. For the exponential utility
the absolute risk aversion is the constant « > 0. For this reason the exponential utility
function is sometimes referred to as a Constant Absolute Risk Aversion (CARA) utility.

For a utility function U we shall denote by I the inverse of the marginal utility U’,
satisfying

U'(I(y)) = I(U'(y)) =y, foranyy > 0.

Both U’ and I are continuous, strictly decreasing, and map (0,00) onto itself with
I(0+) = U'(0+) = o0, and I(0) = U'(0) = 0.

Definition 2.3 (Convex conjugate of a utility function). The convex dual (or convex
conjugate) V : R™ — R of U is defined by

(2.6) V(y):= sup [U(z)—zyl=U((y) —yl(y), y>0.
zedom(U)

The conjugate function V is a convex, decreasing function, continuously differentiable
on (0, 0), satisfying

(2.7) V(y) = U(z) — zy, with equality if and only if = = I(y),
as well as

(2.8) Vi(y) =—1(y),
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and the bi-dual relation

(2.9) U(z) = inf [V(y) +ay] = V(U (z)) + 2U'(z), =z € dom(U).

yeRT

For the utility functions listed above, the inverse of marginal utility and convex con-
jugate are as follows:

Logarithmic utility:

1
U(z) =logz, zeR* I(y)=-, V(y) =-(1+logy), y>0.

Yy
Power utility:
ar - ~(1-q) Y
U(‘T) = ?7 pE (—OO, 1)\{0}7 reR™, I(y) =Y ’ V(y) = _Ea y>0.
where

1 1

-+ -=1

p q

Exponential utility: For z € R and y > 0, we have

1
U(z) = —exp(—ax), a>0, I(y)=——Ilog (ﬂ) , Viy) = y <10g (g> — 1) .
Q@ o o o
2.2. Merton terminal wealth problem: direct solution. In this subsection, let us
assume that the agent does not consume any wealth: ¢ = 0, and let us work on a finite

horizon [0, T]. The portfolio wealth process follows
(210) dXt = T'Xt dt + O'7Tt()\ dt + th)

The portfolio optimisation problem is to choose a trading strategy 7 := (m¢)o<t<r from
some admissible set A(x) of trading strategies to maximise expected utility of terminal
wealth at time 7. We write X = X®" = X® = X™ whenever we need to emphasise
dependence of the wealth on the initial wealth Xy = x and/or the trading strategy. The
value function starting from time zero is
(2.11) u(z) := sup E[U(XT)|X{ = ],
meA(x)

where U(+) is an increasing concave utility function.

We shall first solve problems of the form using a direct approach (which works
because the parameters are constant and the model is one-dimensional). In later sections
we shall obtain the same results via dynamic programming.

2.2.1. Direct solution of logarithmic utility Merton problem. Take U(x) = logz,z € RT.
Let the class A(x) of admissible strategies given Xy = z be those with non-negative
wealth process. In anticipation of our final result, define

Tt
0; = —, 0<t<T,
t Xt7

the fraction of wealth in the risky asset. In terms of 6 the wealth dynamics are
dX; = Xt[(T + O')\et) dt + o6 th]

Given Xy = « this implies
¢

(2.12) log Xy =logz + rt + af

t
0, <)\—;0¢93> ds+af OsdW,, 0<t<T.
0

0
Equivalently,

t 1 t
(2.13) Xy = xexp <T‘t+0’f 0 ()\—2005> ds+af 05dW3>, 0<t<T.
0 0
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Assume the stochastic integral in (2.12) is a martingale. We can (at least formally) solve
the utility maximisation problem (2.11f) for U(z) = log x directly. From (2.12]) we have

r 1
(2.14) Ellog X7]| = logz + rT + oE [J 0y ()\ - 209t> dt} .
0

This is maximised if we maximise the integrand on the right-hand-side. So we choose
0 = 6*, given by

(2.15) 0 ==, 0<t<T,

which is constant. The optimal strategy to maximise expected logarithmic utility of
terminal wealth is to keep a constant proportion of wealth in the risky asset. Note that
this requires continuous portfolio rebalancing.

The maximum utility in is then

u(z) = E[log X7| X0 = z],
where X* denotes the wealth process with optimal strategy 0*. This gives, using ([2.14)),

(2.16) u(z) = logx + (r + ;A2> T.

Remark 2.4. Notice that if we define the Radon-Nikodym derivative of the unique equiv-
alent martingale measure Q by

dQ 1.,

— =Zp:=&(— = — — =T

aP T 5( )\W)T exXp ( )\WT 2)\ > 5
as well as the deflator (or state price density) at time T', Y7 := exp(—rT)Zp, then the
value function in (2.16)) can be written as

(2.17) u(z) =logz +rT — E[log Z1| = log x — E[log(Yr)].
The quantity —E[log Z7] is called the reverse relative entropy between Q and P. The

reason for the structure in (2.17)) is to do with the dual problem to the utility maximi-
sation problem (2.11]), as we shall explore in Section

Ezercise 2.5. Repeat the above calculation with U(z) = 2P/p,p < 0,p # 1, to show that
the optimal trading strategy 6* is given by

A
*
(2.18) 0; = o0 —p)
and so keeps a constant proportion of wealth in stock at all times. Note that this the
result for logarithmic utility is the p — 0 limit of this result. Show that the maximum
utility is given by

_ L/l p 2
(2.19) u(z) = pexp[<Tp+2<1_p>)\>T].
[Hint: use (2.13)) to compute E[X?./p].]

Ezercise 2.6. Repeat the above calculation with U(z) = —exp(—ax),a > 0, to show
that the optimal trading strategy is described in terms of the process 7w, the wealth in
the risky asset, and the optimal such strategy is 7*, given by

0<t<T,

(2.20) T = e—T(T—“i, 0<t<T.
[67e)

Show that the maximum utility is given by

1
(2.21) u(x) = —exp (—ame’"T - 2/\2T> .



OPTIMAL INVESTMENT, VALUATION AND HEDGING 7

[Hint: use (2.10) to find the SDE for e " X; and hence solve for (X;)o<t<r. Then
compute E[— exp(—aX7)| X = x|, assuming 7 = (m;)o<t<7 is deterministic. You should
find that the solution to (2.10]) in terms of 7 is

- ¢ ¢
X, =e" |z + O')\J e rgds + af e "m, dWs] .
| 0 0

Assume the stochastic integral is a martingale.]

3. DYNAMIC PROGRAMMING AND THE HJB EQUATION
Consider a controlled diffusion process with state X = (Xg)s>0, for X € R", satisfying
(3.1) dXs = b(Xs, as)ds + o( X, ag) dWs.

Here, W is d-dimensional BM on a filtered probability space (2, F,F := (F;)¢=0, P), the
control is & = (as)s>0, an F-adapted process, with as; € A < R™, and the coefficient
functions are b : R® x A — R” and ¢ : R x A — R"*¢,

3.1. Finite horizon problem. Fix T € (0,00). Let A(z) denote the set of admissible
controls given Xy = x. We are interested in the problem

(3.2) u(xz) = sup E {JT f(s, Xs,a5)ds + F(X7)
acA(x) 0

X0=IE:|.

The method of dynamic programming tackles this problem by considering a starting
state (t,z) € [0,T] x R™. Let A(t,z) denote the set of admissible controls given this
starting state. We will often write (X ;x) se[t,r] to denote the solution to starting
at Xy = z, for any t € [0,T]. Define the objective functional

T
J(t,z;a) :=E {f f(s, X" ag)ds + F(X;z)} :
t

The value function is
u(t,z):= sup J(t,z;)
acA(t,z)

Thus, with this notation, the time zero value function in is u(z) = u(0, x).

Given an initial state (¢,x) € [0, T] x R"™, we say that o* € A(t, z) is an optimal control
if u(t,x) = J(t, x; a*).

A control process of the form ay = a(s, X¢*) for s € [t,T] and some function a :
[0,T] x R™ — A is called a Markov control, or feedback control. We shall always assume
that the controls are of this type.

3.1.1. Dynamic programming principle. Compare two strategies:

I: Using the optimal control ()¢, over the interval [¢, T, versus:

IT: using an arbitrary control (as)efs4n) Over the interval [t,¢ + h) (where h
represents a small time interval) and then using the optimal control (o) seft+h,71]
over the interval [t + h, T7.

Strategy I is at least as good as strategy II, leading to

t+h
(3.3) u(t,r) = E [ oG Xo" 05)ds +u(t + h»Xffh)] :

We suppose we get equality if we maximise the RHS over «, leading to the Bellman
equation

t+h
u(t, QT) = sup E |: (Sa Xé’:ca aS) ds + u(t + h’ X:fh)] .
t

(as)seft,t+h)
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Assuming that v is smooth enough, we apply It0 to write

t+h
u(t + h, Xffh) =u(t,z) + J (u + Eo‘u> (5, X1"¥)ds + local martingale,

ot

t

where £% denotes the generator of the diffusion (3.1)). Assuming the local martingale
is a martingale, dividing by A and letting A — 0 in the Bellman equation leads us to
expect that the value function solves the Hamilton-Jacobi-Bellman (HJB) equation

0
(3.4) —u(t, x) +sup [LY(t, x) + f(t,z,a)] =0, w(T,z) = F(z).

ot acA
3.1.2. Martingale optimality principle. Another way to state the dynamic programming
principle and so arrive at the HJB equation is to invoke the idea that:

Principle 3.1 (Martingale principle of dynamic programming). The process

¢
(J f(s, X5, as)ds + u(t, Xt)>
0 te[0,T7]
is a super-martingale for any admissible control o, and a martingale for the optimal
control o*.

We can formalise this in the following theorem.

Theorem 3.2 (Davis-Varaiya martingale principle of optimal control). Suppose the
objective is . Suppose there exists a function u : [0,T] x R* — R which is C12,
such that u(T,x) = F(x) for x € R™. Suppose also that for any o € A(x) the process
R = (Rt)e[o,1] defined by

t
(3.5) R, ;:f F(5, Xorow)ds +u(t, X)), 0<t<T
0

is a super-martingale, and that for some o* € A(x) the process R is a martingale. Then
o™ is the optimal control, and the value of the problem starting at time zero with initial

state Xo = x > 0 is u(z) = u(0, ).

Proof. From the super-martingale property of R we have, for any « € A(z),
T

(3.6) Ry =u(0,z) = E[Rr] = E [J ft, X, o) dt + F(XT)] ,
0

on using the boundary condition that (7, x) = F(x). Thus, for any admissible control,
the value of the objective is less than or equal to u(0,x). If we use the control a*, then
the value of the objective becomes equal to u(0, x), since the super-martingale inequality
in becomes an equality, and this is the highest achievable expected value of the
objective. Hence a* is optimal.

O

Let us show how the martingale optimality principle leads to the HJB equation.
Perform an It6 expansion of the process R in (3.5)), assuming that u possesses sufficient
regularity:

0
dR; = <f(t, Xt, o) + (;; + L’O‘> (¢, Xt)> dt + local martingale.

For this to be a super-martingale we must have

flt,z, ) + aaltb(t,x) + LY, x) <0



OPTIMAL INVESTMENT, VALUATION AND HEDGING 9

for any admissible control . If we maximise the differential operator on the LHS over
« € A we get a martingale corresponding to the optimal control a*, so we are once more
led to the HJB equation ((3.4]).

3.1.3. Verification theorem. The HJB equation gives a necessary condition for optimal-
ity: if u is sufficiently smooth and if o* is the optimal control, then u satisfies the HJB
equation and a*(t,x) realises the supremum in the HJB equation. The HJB equation
also acts as a sufficient condition for optimality by virtue of the following verification
theorem. Its content is that if one finds a candidate (and hence sufficiently smooth)
solution of the HJB equation and an optimiser of the relevant differential operator in
the HJB equation, then one has found the value function and optimal Markov control

*(t, x)E| The optimal control process is then of = o*(s, XF), for s € [¢, T] and starting
state (¢,7) € [0,T] x R", where X* = X*%? is the optimal state process given starting
state (t,x) € [0,T] x R™.

Theorem 3.3 (Finite horizon verification theorem). Let w € C12([0, T]xR™)nC°([0, T] x
R™). Suppose that w(T,z) = F(x) and that there exists a function o* : [0,T] x R" — A
such that

Z(t,w) + sup [L2w(t,x) + f(t,,0)] = S (t,2) + L w(t, @) + f(t,2,@) = 0.
ot aed ot

Suppose further that the SDE
dXs = b(Xs, (s, X5)) ds + (X5, 0™ (s, X)) dWs, Xy ==z
admits a unique solution (X7 ) e[, 1] = ()A(;"t’x)se[tﬂ, and that the process (a(s, )?:’t@))se[t,T]

lies in A(t,x). Then

w=u onl0,T] xR",
a*(t, x) is the optimal Markov control, (a*(s, )A(;k’t’x))se[t’ﬂ is the optimal control process
over [t,T], and (X:’t’x)se[t,T] is the optimal state process.
Proof. Choose an arbitrary feedback control o € A(t,z) and a starting state (¢,z) €
[0,7] x R™. Using It6 we have

T
w(T, X5*) + f f(s, X5 o) ds = w(t, x)
¢

T
+ J (f(s,Xﬁ’x,as) + (%t + L% > (S,X;z)) ds + local martingale,
t

where we write oy = a(s, X2") for brevity.

Since w satisfies the HJB equation, f(t,z,a) + (%f’ + an) (S,X};’x) < 0 for any
admissible feedback control law. Using this, the boundary condition w(7T,x) = F(x)
and taking the expectation (and assuming the local martingale is a martingale) we get

J(t,x;a) = [J f(s Xﬁ,’x,as)ds—i—F(X;lx)] < w(t, z).

Since the chosen control was arbitrary, we have
w(t,z) = sup J(t,z;0) = u(t, x).
acA(t,z)

lWe are abusing notation and using the same symbol a* for the optimal control process as well as
the optimal feedback control function.
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To obtain the reverse inequality, repeat the above arguments, this time choosing the
control law o* (¢, z) which by assumption achieves the supremum in the HJB equation,
to obtain

(3.7) w(t,x) = J(t,x;a").
We also have the trivial inequality

(3.8) u(t,z) = J(t, z; "),
so combining and we obtain

w(t,z) = u(t,z) = J(t, z;a™).

4. DYNAMIC PROGRAMMING SOLUTION TO THE MERTON PROBLEM
4.1. Merton terminal wealth problem. The wealth process X = X7 follows
(4.1) dX; = rXpdt + om(Ndt + dW),
and the value function is

u(t,z) = sup E[U(X7p)|Xi==x], 0<t<T,
TeA(t,x)

for some utility function U : Ry — R and admissible strategies m € A(t,x) such that
the wealth process is almost surely non-negative.
The HJB equation is

(4.2) sup [ut(t,x) + (rx 4+ oAm)ug(t,x) + ;UQWQwa(t,.%)] =0, w(T,z)="U(x),

where subscripts denote partial derivatives.
Performing the maximisation over 7 gives the optimal feedback control function
m*(t, x):
A ug(t,x
(4.3) (b, ) = 2 Lalbo)
0 Ugy(t, T)
The optimal control process T = (m¥)o<i<r is given by 7} = 7*(t, X}), where X* =
X™ is the wealth process in (4.1)) with m, = 71';“
Insert (4.3)) into (4.2), converting the HJB equation to

1 2
(4.4) ur(t, @) + reu, — f)\QM

2N 1) =0, u(T,z)="U(x).

Ezample 4.1 (Logarithmic utility). Take U(x) = logz. Seek a separable solution to

(4.4) of the form
(4.5) u(t,z) =logz + f(t),
for some function f(¢). Using (4.5)) in (4.3) and (4.4]) gives
A
*(t,x) = =,
o

and
@) +r+ %)\2 =0, f(T)=0,

2We abuse notation and use the same symbol, 7* for the optimal feedback control function 7*(t,z)
as for the optimal control process 7*.
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implying
(1) = (7’ + ;v) (T —1).

Hence, the value function is
1
u(t,x) =logx + <1“ + 2)\2> (T —1t),

in agreement with our earlier result (2.16]).
The optimal trading strategy is

m o= —X¢, te[0,T],

so that the optimal fraction of wealth in the risky asset is
(4.6) ef:zﬁzé, 0<t<T,
X o

reproducing our earlier result .

FEzercise 4.2. Repeat the above calculation with U(z) = 2P/p,0 < p < 1, to reproduce
the results in (2.18) and ([2.19)).

[Hint: seek a solution to the HJB equation of the form wu (¢, x) = (aP/p)f(t), for some
function f(t).]

FEzercise 4.3. Repeat the above calculation with U(z) = —exp(—az),a > 0, to repro-
duce the results in (2.20)) and (2.21)).

[Hint: seek a solution to the HJB equation of the form wu(t,z) = — exp(—ax)f(t), for
some function f(t).]

Ezample 4.4. Two stock prices S := (Sgi))(]gtg’]“,i = 1,2 follow
dS® = 1S dt + oy aw ), i =12,

with p1, pe, 01,02 constant, and wo, w® independent Brownian motions. Stock S@)
is riskier, with ug > p; and o9 > o1. An agent decides which fraction 6 := (6;)o<t<r Of
his wealth X to place in the riskier stock. There is no risk-free asset.

The wealth process is X = X given by

dX, = X, [(ul(l —0,) + p26y) dt + o1 (1 — 0,) AWV + 590, th@)] .

Suppose the agent wishes to maximise expected utility of wealth at time 7', with power
utility. The value function is

u(t, ) = eei‘u(gz)E [ (Xé0)>p‘ Xt(e) = x] ,

where 0 < p < 1, with the set A(¢, z) of admissible strategies such that X > 0 almost
surely. The HJB equation is then

1
ug + sup [(,ul(l —0) + p20) ruy + 3 (O’%(l —0) + 0302) x2um] =0,
0

the maximisation being performed over a scalar variable 6. Performing the maximisation
over 6, the optimal control is to choose the optimal weight 6} to be constant for all
t € [0,T], and given by

- 1
0§:<a%+“i “1) sy, 0<t<T.
-p ) o} + 03

(To obtain this, suppose u is separable: u(t,z) = (P /p)f(t).)
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4.2. Merton problem with consumption and terminal wealth. The wealth dy-
namics are

dX; =rX;dt + Uﬂt()\ dt + th) — ¢ dt.
The value function is

T
u(t,z):= sup E [J e U (cs) ds + Uay(X7)
(m,c)eA(t,x) t

Xt—x},

where U;, 1 = 1,2 are increasing concave utility functions, and § > 0. The HJB equation
is
u¢ + max [e_étUl(c) + E(“’C)u] =0, u(T,z)=Us(x),

(m,e
where £(™¢) denotes the generator of X when using control (m,c).
Ezample 4.5 (Logarithmic utilities). Take Ui(c) = loge, Ua(z) = logz. Performing

the maximisation over (7,c¢) in the HJB equation gives the optimal feedback control
functions

—it by t
C*(t’x) = © , Tr*(t’l‘) = _fM
U (t, ) O Ugy (t, )
Inserting the optimal feedback controls into the HJB equation converts it to
1., ul(t
—e (1 + 6t +log(ug(t, x))) + us(t, ) + raug(t, z) — f/\QM =0, u(T,z)=Ilogx.
2 Ug(t,x)

This equation can be solved by looking for a solution of the form

ult,z) = £(t)log (f(t)) T g(t),

for functions f(t) and g(¢) satisfying f(T") = 1 and ¢(T") = 0 respectively. Then one
finds that f and g must satisfy

flt) = —e % g(t) = dte ™ — (7“ + ;)\2> f(t).

Solving these equations gives

fO) = 145 -,

(T + (15> e T — (t + (15> e %
(re s [& (o) o (1 2o ) o]

The optimal consumption and investment feedback control functions become
£ S e_at *
H(tx) = —x, 7(t,x)=—x,
f(t) o
so that the agent places a constant proportion of wealth in the stock at all times, and
consumes at a rate that, as a fraction of current wealth, is a deterministic function of
time.

Q

—~
~

~

+

5. THE DUAL APPROACH TO OPTIMAL INVESTMENT

We now describe the dual approach to solving portfolio problems, which exploits the
martingale properties of the wealth process. This approach works even in non-Markovian
models, so we shall illustrate it in a fairly general continuous-time market.
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5.1. Multi-dimensional complete Itd6 process market. Consider a complete multi-
dimensional It6 process market. We have a complete filtered probability space (2, F,F =
(Ft)i=0,P), supporting a d-dimensional Brownian motion W, for some d € Z..

There is a cash asset associated with non-negative adapted interest rate process r =

(7¢)¢=0 and d stocks, with non-negative price processes S%, i = 1...,d, evolving according
to
. . . d .. .
(5.1) ds; = 5 (,uidt+20?thJ>, i1=1,...,d.
j=1

We can condense these equations into a single vector equation:
(52) dsS; = diagd(St)(,ut dt + oy th>,

where diagy(S) denotes the d x d diagonal matrix with S 1 ..., 5% along the diagonal.
The appreciation rates p* and the entries 0 (i,j5 = 1,...,d) of the invertible d x d
volatility matrix o are F-adapted processes satisfying

T d d T 2
f lldt <o, f (o8) dt <o, as
0 i=15=170
Here | - | denotes the Euclidean norm, so that for instance,

il = () + -+ ()

The R%valued adapted market price of risk (MPR) process A is defined by

2

M=o Y —rly).
Associated with this MPR process is the deflator Y, defined by
¢
(5.3) Y, :=exp (—f Ts ds) E(=N-W), t=0.
0

Here, A - W = {j A{ dW; denotes the stochastic integral, with A the transpose of the
vector A, and £(-) denotes the stochastic exponential, so that

t 1 t
E(=X- W), = exp <_J AW, — ZJ 12| ds> >0,
0 0
The deflator thus satisfies
dY; = —Yi(redt + A dW;), Yo = 1.

Note that since Z := E(—A - W) is a positive local martingale, Y is a positive super-
martingale.

A small investor with initial wealth z > 0 invests in the stocks and cash, generating
self-financing wealth process X = (X;)¢>0 satisfying

d d
dXy = > H{dS]+m (Xt = HZSZ) dt
=1 =1

d d
= X, dt + Z w;f <(,quf —ry)dt + Z o thJ)
j=1

=1

(54) = rX;dt + 7T§r [(Mt — Tt]-d) dt + oy th] , Xo=ux>0,
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where H' is the process for the number of shares held of stock i € {1,...,d} and 7’ =
H'S? is the wealth held in stock i, with associated vector 7 := («!,..., 79, which
forms the trading strategy, satisfying, for any 1" > 0,

T
[} Grtronl? + G = i) at < o, s
0

For a given « > 0 and 7 as above, the process X = X*%7 of is called the wealth
process corresponding to initial capital x and portfolio .
We can, when the wealth process is strictly positive, parametrise the portfolio in terms
of the stock proportion process @ := /X and then we will sometimes write X = X%9,
Recalling the deflator Y defined in , if we compute the dynamics of the deflated
wealth process XY, we obtain that

t
(5.5) XY, =+ f Yi(ros — X AY)dW,, t=0.
0

If the wealth process is positive we can recast this in terms of the proportion of wealth
process 0 := 7/X, to write

t
(5.6) XY, =x+ J X Ys(0%0s — AF)dW,, t=0.
0

We see that the deflated wealth is a local martingale.

Remark 5.1 (Including consumption). If the agent also consumes wealth at a non-
negative consumption rate ¢ = (¢;)i=0 then the wealth dynamics (5.4) are altered to

dXy = (1 Xy — ) dt + m" [(ue — 1¢lq) dt + op dWi], X =2 > 0,

and the deflated wealth equation (5.6) is altered to

t

t
(5.7) XiY; + f csYsds =z + J X Ys(0%0s — A")ydW,, t=0.
0

0
Thus, in this case, the deflated wealth plus cumulative deflated consumption is a local
martingale.

For the most part, we shall restrict our attention to non-negative wealth processes,
which motivates the following definition.

Definition 5.2 (Admissible strategies). The class of portfolio strategies 7 (or portfolio-
consumption strategies (m,c¢) if including consumption), starting with initial capital
x > 0, such that the associated wealth process X satisfies

X; =20, t=0, as., Xy=u=,
will be called admissible, and denoted by A(z).

If m € A(x), then the process in (5.6 (or (5.7)) if including consumption) is a non-
negative P-local martingale and hence a supermartingale, so satisfies

(5.8) E [XTYT] <z,

or
T

(5.9) E [XTYT + J Yy dt] <z,
0

if including consumption.
These conditions will be used as constraints on allowable wealth processes in what
follows.
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5.2. Utility maximisation from terminal wealth. We consider the following prob-
lem. With zero consumption, maximise over admissible § € A(z) the functional J(x;6)
representing expected utility of terminal wealth:

J(z;0) == E[U(X7)].
Denote the value function of this problem by

u(z) := sup J(z;0).
e A(x)

With zero consumption, the wealth dynamics are characterised according to (5.6l):
t

(5.10) XYy =x+ f X Ys(0%0s — ATy dW,, 0<t<T,
0

and the budget constraint is (5.8)):

We introduce a Lagrange multiplier y > 0 whose role is to enforce this constraint and
consider, for any 0 € A(z), and any x,y > 0, the Lagrangian

L(Xp,y) :=E[U(X7)] +y(z — E[X7Yr]) = E[U(X7y) — yX7rYr] + xy.

We can now maximise this pointwise over X1 and y. The first order conditions for an
optimum give the optimal terminal wealth X7. as satisfying

(5.12) U'(X7)=yYr <= Xi=I(yYr),
and optimising over the Lagrange multiplier yields that X7 also satisfies
(5.13) E[X}Yr] = .

That is, at the optimum, the process X*Y is a martingale. This condition can be used in
(5.12)) to fix the value of the Lagrange multiplier, thus giving a complete characterisation

of the optimal terminal wealth. Using in gives
X(y) == E[YrI(yYr)] = 2.
Denote the inverse of X'(-) by Y(+), so that
Xy) =2z <= y=V().

Thus, the optimal terminal wealth can be expressed as

(5.14) X3(z) = [(V(@)Yr).
Then the optimal wealth process is obtained from the fact that X*Y is a martingale:
1
X/ = ?E[X;YTU-}], 0<t<T,
t

and the optimal strategy 6* is obtained from ([5.10) with X = X™*:
t

(5.15) XY :x+J X;‘l@(&:tras—)\gr)dWS, 0<t<T.
0

These ideas have been written down in abstract form. They come to life if we consider
an example.

Ezxample 5.3 (Logarithmic utility of terminal wealth). Take U(z) = logz. This is the
simplest case. Then we have U'(z) = 1/x, I(y) = 1/y, and hence

s 1

Toyyr
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Then y is determined by the constraint E[Y7X 7] = x, giving y = 1/z. Hence

x
Xi=—
T YT )
and the optimal wealth process is given by
1 T
X} =E[YVi X} A=, 0<t<T.
t }/t [ t T‘ t] }/t7

Comparing with (5.15]), we see that the optimal strategy is given by
0F = (oi")tN,, 0<t<T.
The primal value function can be directly computed using u(z) = E[log X7] to give

u(z) =logz — E[log Yr].

6. FULL VERSUS PARTIAL INFORMATION MODELS

In classical models of financial mathematics, one usually specifies a probability space
(Q, F,P) equipped with a filtration F = (F;)o<t<7, and then writes down some stochastic
process S = (S;)o<t<r for an asset price, such that S is adapted to the filtration F. A
typical example would be the Black-Scholes (BS) model of a stock price, following the
geometric Brownian motion (in the case of zero interest rate)

(61) ds; = O'St(>\ dt + th),

where W is a (P, F)-Brownian motion and the volatility o > 0 and the Sharpe ratio A
are assumed to be known constants. Implicit in this set-up is the strong assumption
that a financial agent is able to observe the Brownian motion process W, as well as the
stock price process S. We refer to this as a full information scenario. In this case, an
agent uses F-adapted trading strategies in S, which is an F-adapted process with known
drift and diffusion coefficients.

We wish to relax the full information assumption. Suppose we now assume that
the agent can only observe the stock price process, and not the Brownian motion W.
Hence, the values of the parameters o, A are not known with certainty. Moreover, we
wish to insist that the agent’s trading strategies be adapted to the observation filtration
F:= (ﬁt)ogtST generated by S. We refer to this as a partial information scenario.

In this case, the parameter A would be regarded as an unknown constant whose value
needs to be determined from price data. In principle, one would also have to apply
this philosophy to the volatility o, but we shall make the approximation that price
observations are continuous, so that ¢ can be computed from the quadratic variation
[S] of the stock price, since we have

[S]; = 02S2t, te[0,T).

One way to model the uncertainty in our knowledge of the value of the (supposed
constant) parameter A is to take a so-called Bayesian approach. This means we consider
A to be an Fp-measurable random variable with a given initial distribution (the prior
distribution) conditional on Fo. The prior distribution initialises the probability law
of A conditional on .7?0, and this is updated in the light of new price information, that
is, as the observation filtration F evolves. (In the case that A is some unknown process
(At)o<t<T (as opposed to an unknown constant), then we would consider it to be some F-
adapted process such that its starting value A\g has a given prior distribution conditional
on F.)

This is an example of a filtering problem: to compute the best estimate of a random
process given observations up to time ¢ € [0, 7], and hence given the o-algebra .7?15, te
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[0, T]. In the case of the BS model (6.1)), where we model \ as an Fy-measurable random
variable, we are interested in computing the conditional expectation

X i=E[\|F], telo,T)

We shall see (though we shall not give a proof here of the underlying filtering theorem)
that the effect of filtering is that the model (6.1) may be replaced by a model specified

on the filtered probability space (2, Fr,F,P) and written as
ds; = aSt(Xt dt + dI//I?t),

where W is a (P, I’F\‘)—Brownian motion. This model may now be treated as a full infor-

mation model, since both W and \ are ]@—adapted processes. The price to be paid for
restoring a full informAation scenario is that the constant parameter A\ has been replaced
by a random process A. The procedure by which a partial information model is replaced
with a tractable full information model under the observation filtration is typically only
achievable in special circumstances, such as Gaussian prior distributions and certain
linearity properties in the relation between the observable and unobservable processes,
as we shall see in the next section.

6.1. Drift parameter uncertainty. How severe is the aforementioned issue of drift
parameter uncertainty (equivalent to uncertainty in the MPR process A if the volatility
is assumed known) in the BS model ? The short answer is: extremely severe. This
point has been well made by Rogers [23],24] and by Monoyios [I§] (the latter from which
the following arguments are taken).

Consider an agent in the BS model with zero interest rate (so A = p/o, where
 is the stock price drift) who attempts to infer the value of A from observations of the
share price. Assume (unrealistically, of course) for simplicity that the agent observes
the stock returns continuously, and that the volatility ¢ is known. The agent records

the normalised returns

A5y ars dw,
O'St

and uses these to estimate A. Using observations over a time interval [0,¢], the best
estimate of A is A(t) given by

- 1t dSs W,
(6.2) thLU&A+t.

The estimator is normally distributed, A(t) ~ N (), 1/t), so (A(t) — A\)/(1/4/1) is a stan-
dard normal random variable. Hence, a 95% confidence interval for A is

[Mwiﬁjm+i?]

Suppose that the true parameter values are p = 20% per annum and o = 20% per
annum, so that A = 1. We ask, for how long do we have to observe the share price to
be 95% certain that we know the value of A to within 5% of its true value? That is, we
require [A(t) — A| < 0.05. This implies that

- 1.96 - 1.96
Mﬂ+v€_(M”_xﬁ>:0L

which gives t &~ 1537 years! This gives a measure of the severity of drift parameter
uncertainty in lognormal models, and it is remarkable that (to the best of our knowledge)
the above calculation does not appear in any of the standard financial mathematics texts
(which the exception of the recent book by Rogers [24]).
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7. FILTERING THEORY

Filtering problems concern estimating something about an unobserved stochastic pro-
cess X given observations of a related process Y. In particular, one seeks the conditional
expectation E[X;|F;],0 < ¢ < T, where F = (Fi)o<t<r is the filtration generated by
Y. This problem was solved for linear systems in continuous time by Kalman and Bucy
[12]. Subsequent work sought generalisations to systems with nonlinear dynamics, see
Zakai [20] for instance. Kailath [10] developed the so-called innovations approach to
linear filtering, which formulated the problem in the context of martingale theory. This
approach to nonlinear filtering was given a definitive treatment by Fujisaki, Kallianpur
and Kunita [§]. Textbook treatments can be found in Bain and Crisan [I], Kallianpur
[11], Lipster and Shiryaev [I5] [16] and Rogers and Williams [25], Chapter VI.8 (which
follows the program of Fujisaki, Kallianpur and Kunita [g]).

The setting is a probability space (€2, F,P) equipped with a filtration F = (F})o<i<7-
All processes are assumed to be F-adapted. Note that I is not the observation filtration.
Let us call F the background filtration. We consider two processes, both taken to be one-
dimensional (for simplicity):

e a signal process X = (Xt)o<t<r which is not directly observable;
e an observation process Y = (Yi)o<i<r, which is observable and somehow corre-

lated with X, so that by observing Y we can say something about the distribution
of X.

Let I := (ﬁt)ogtg’]‘ denote the observation filtration generated by Y. That is,
ﬁt:za(Ys;O<3<t), 0<t<T.

The filtering problem is to compute the conditional distribution of the signal X;,t €
[0, 7], given observations up to that time. Or, equivalently, to compute the conditional
expectation

E[f(Xt)‘ﬁt]u 0<t<T,

where f: R — R is some test function.

To proceed further, we need to specify some particular model for the observation and
signal processes. We shall specialise to the case where both signal and observations
follow linear SDEs, and where the initial distribution of the signal is Gaussian. This
leads to the celebrated Kalman-Bucy filter. See for instance Bain and Crisan [I] for a
proof.

7.1. Linear observations and linear signal. Suppose that the signal process has
a Gaussian initial distribution and, for deterministic functions A(-),C(-), G(-), assume
that the signal and observation processes follow

dX; = A(t)Xt dt + C(t) dB;, Xg~ N(/L,V),

dY; = Gt)Xydt+ dW, Yy =0,
with B, W correlated BMs with constant correlation p, with Xy independent of B and

of W, and where N(u,v) denotes the normal probability law with mean p and variance
v. The two-dimensional process (X,Y") is then Gaussian, so the conditional distribution

of the signal X given the observation filtration F (generated by the observation process
Y) will also be normal (so, in particular, is completely characterised by its mean and
variance), with conditional mean

)?t = E[Xt|]?t]a t>o,
and conditional variance

Vi i= var[ Xy Fi] = E[(X, — X)?|F] = X2 — (X,)?, t=>0.
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Observe that the initial values are
Xo = E[Xo|Fo] = E[Xo] = 4,
and R R
Vo = E[(Xo — Xo)?|Fo] = E[(Xo — 1)*] = var(Xo) = v.
The prg\blem then boils down to ﬁndir/l\g an algorithm for computing the sufficient sta-
tistics X, Vi from their initial values Xg = p, Vo = v.

Theorem 7.1 (One-dimensional Kalman-Bucy filter). On a filtered probability space
(Q, F,F,P), with F = (Fi)o<i<r, let X = (X¢)o<t<r be an F-adapted signal process
satisfying
dX; = A(t) Xy dt + C(t) dBy,
and let Y = (Y;)o<t<r be an F-adapted observation process satisfying
dY; = G(t) Xy dt + AW, Yy =0,

where B, W are F-Brownian motions with correlation p, and the coefficients A(-), C(-),
G(-) are deterministic functions satisfying

fT (JA®)] + C%(t) + G*(t)) dt < 0.
0

Define the observation filtration Fi= (j':t)ostsT by
Fii=o(Y0< s <),

Suppose Xg is an Fp-measurable random wvariable, and that the distribution of Xg s
Gaussian with mean p and variance v, independent of B and W. Then the conditional
expectation X; := E[X;|F;] for 0 <t < T satisfies
dXy = AW X, dt + [G()Vi + pC(1)] ANy, Xo = p,
where N = (N;)o<i<r 1S the innovations process, an F-Brownian motion satisfying the
defining relation
dNt = dY;g - G(t)Xt dt,

and V; := Var[Xt\]?t], for 0 <t < T, is the conditional variance, which is independent
of Fi and satisfies the deterministic Riccati equation

dV;

dt

A multi-dimensional version of the Kalman-Bucy filter can be derived along similar

lines to the one-dimensional case. See Theorem V9.2 in Fleming and Rishel [7], for
instance.

= (1- PO (1) + 2[A() - pCOCWD Vi — COVP, Vo =v.

Theorem 7.2 (Multi-dimensional Kalman-Bucy filter). Consider a filtered probability
space (2, F,F,P), with F = (F)o<t<r, and two F-adapted processes X,Y as given below.
Let X = (Xi)o<t<r be an n-dimensional signal process satisfying

(7.1) dX; = A(t) X dt + C(t)dBy, Xo ~ N(u,v), (linear signal),

where Xo ~ N(u,v) denotes an n-dimensional Fo-measurable Gaussian vector with mean
w e R™ and covariance matriz v e R™ x R", independent of the d-dimensional Brownian
motion B, and where A(t) e R® x R?, C(t) e R® x R%,

Let Y = (Y})o<t<r be an m-dimensional observation process satisfying

dY; = G(t) Xy dt + D(t)dW,, Yy =0, (linear observations),

where G(t) € R™ x R", C(t) € R™ x R*, and B is a k-dimensional Brownian motion
independent of B and Xj.
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We assume that A,C,G,D are bounded on bounded intervals, that DDT is non-
singular, and that (D(t)D(t)")~" is bounded on every bounded t-interval.

Let T = (ﬁt)ogtg’]“ denote the observation filtration generated by Y, so that ]?t =
o(Ys;0<s<t).

The conditional expectation vector Xy := E[X;|F:],0 <t < T, satisfies the SDE

dX, = A@®X.dt+ VG (@) (DD (1) (dYt Q)X dt) . Xo=u,
(7.2) — AWX dt+ViGT(t) (DODT(®) AN, KXo = p,

where N is the innovations process, defined by
¢
N, =Y, —J G(s)Xsds, 0<t<T,
0
and satisfying

(7.3) Ny = ﬂ D(s) dW,

where W s a standard k-dimensional F-Brownian motion.
The error X; — X; is independent of F;, and the error covariance

Vi = E[(Xy — Xo)(Xe — Xo) T|Fi] = var[ Xe| F],
satisfies the deterministic matrix Riccati equation

% = AV, + VAT(t) = Vi GT ) (D)D" () tG)V, + C)CT (1), Vo=v.

Remark 7.3. Notice that:
e by (7.3) we can rewrite ([7.2)) as

dX; = AW X, dt + V,iGT () (D(#)DT (1)) D(t)dW;, KXo = p,

which is a linear SDE of the same type as ;

e since X ,)/(\' satisfy , and Xy is Gaussian, then Xt,)z't are Gaussian
vectors for each ¢, and the error X; — )?t is also Gaussian: X; — )?t has mean 0
and covariance V;, and LaW(Xt|]?t) = N()A(t, Vi).

7.2. Merton problem with uncertain drift. We consider the Merton problem when
the agent has uncertainty over the true value of the drift parameter. Optimal investment
models under partial information have been considered by many authors. We refer the
reader to Rogers [23] and Bjork, Davis and Landén [3], for example.

A stock price process S = (St)o<i<r follows

(74) dSt = O'St(>\ dt + th),

on a complete probability space (£, F,P) equipped with a filtration F := (F})o<t<7,
with W = (W})o<i<r an F-Brownian motion. For simplicity take the interest rate to be
Zero.
Define the process £ = (&)o<i<T, by
1 (" dSs

= — =X+W, tel0,T].
&t s Jo 5. + Wh, e [0,T]

The process & will shortly be considered as the observation process in a filtering frame-
work, corresponding to noisy observations of A, with W representing the noise.
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In a partlal information model with continuous stock prlce observations, an agent

must use F- adapted trading strategies, where where Fi= (.7-})0<t<T is the observation
filtration, defined by

Fri=o0(l:0<s<t)=0(S;0<s<t), tel0,T).

Then o is known from the quadratic variation of S, but A is an unknown constant, and
hence modelled as an Fp-measurable random variable. We assume the distribution of A
is Gaussian, A ~ N()\g, vo), independent of W.

We are faced with a Kalman-Bucy type filtering problem whose unobservable signal
process is the market price of risk A\. The signal process SDE is

(7.5) dX =0,
and the observation process SDE is
(7.6) dé& = Adt + dWs.

We apply Theorem to the signal process A in ([7.5)) and observation process & in ([7.6]).
Then the optimal filter

Aoi=E\F], 0<t<T,
satisfies
(7.7) A\ = v dW,, Ao = Ao,
where A
vii=E[(A = M\)?|F], 0<t<T,
is the conditional variance. This satisfies the Riccati equation

th
(7.8) - —v;,
with initial value vg, so that
Vo
7.9 =— 0<t<T.
( ) vt 1+ Vot’

The process W is an F-Brownian motion, the innovations process, satisfying
(7.10) AW, = d& — N\ dt.
Using this in ([7.7]), the optimal filter can also be written in terms of the observable £ as

2 Ao + Vot
11 A= ———>—
(7 ) t 1+ vot

The effect of the filtering is that the agent is now investing in a stock with dynamics
given by dS; = 05 d& which, using ([7.10]), becomes
(712) dsS; = USt<Xt dt + dﬁ\/t)

Let our agent have power utility function U(-). She may invest a fraction of her wealth

in shares and the remaining wealth in the cash account. The (H’f‘—adapted) wealth process
X follows

(7.13) dX, = 00, X, (N dt + dW,), X0 = z,

, o<t<T.

where 6; is the proportion of wealth invested in shares at time t € [0,7], an F- adapted

process satisfying So 6? dt < oo almost surely, and such that X; > 0 almost surely for all
€ [0,T]. Denote by A(x) the set of such admissible strategies.

The objective is to maximise expected utility of terminal wealth over the I@—adapted
admissible strategies. The value function is

u(z) := E[U(X7)|Fo).



22 MICHAEL MONOYIOS

This may now be treated as a full information problem, with state dynamics given by
(7.13]).

Ezample 7.4 (Logarithmic utility). With U(z) = log x, the dual approach to the terminal
wealth problem immediately gives that the optimal I’E:—adapted process for the Merton
problem with the MPR considered as an unknown Gaussian random variable is 8* =
(07 Jost<T, given by

At
0f =—, tel0,T
t 0_7 6[7 ]7

where \ = (/A\t)(]gth satisfies 1' and vy is given by 1'

The classical Merton strategy is thus altered in that the constant )\ is replaced by its
filtered estimate A. This result is only true with logarithmic utility. For other utility
functions, there is an additional correction as well as the replacement A — X. See
Monoyios [19] for computations involving power utility.

8. BASIS RISK MODEL

We shall study a simple example of an incomplete market in which the ideas of utility-
based pricing can be illustrated with great clarity and explicit solutions. A number of
papers [5], O] 17, [18], 20, 21] have studied such basis risk models.

The setting is a filtered probability space (2, F,F := (F;)o<t<1, P), where the filtra-
tion F is the P-augmentation of that generated by a two-dimensional Brownian motion
(W, W), A traded stock price S := (S;)g<i<7 follows a log-Brownian process given by

(81) dsS; = O'St(A dt + th),

where ¢ > 0 and A are known constants. For simplicity, the interest rate is taken to be
Zero.
A non-traded asset price Y := (Y})o<t<r follows the correlated log-Brownian motion

(8.2) dY; = nY,(6dt + dBy),

with 7 > 0 and 6 known constants. The Brownian motion B is correlated with W
according to

d[B,W]; = pdt, B =pW ++/1—p2W+, pe[-1,1].

The market prices of risk of the stock S (respectively, non-traded asset Y') are A (re-
spectively, 6).

A European contingent claim pays the non-negative random variable hA(Y7) at time
T, where h is a bounded continuous function. If [p| = 1, the model is complete and
a BS-style perfect hedge is possible (as we shall show). But for |p| # 1 the market is
incomplete.

Examples of underlying assets that are either not traded (or are difficult to trade)
include weather indices or baskets of many stocks. There is no trade-able asset which can
be used to perfectly replicate the claim payoff. Traders may resort to using a correlated
traded asset to hedge the claim, where the correlation is presumed to be close to 1, in
effect taking the traded asset as a perfect proxy for the non-traded one. A typical case
is the hedging of a basket option using a futures contract on a stock index, where the
composition of the basket and the index are not identical.

The set M of local martingale measures Q is defined via the density process Z =

(Z4)o<t<T given by

Zy=E(-A-W—9-Wh),, 0<t<T,
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where £ denotes the stochastic exponential, and 1) = (¢;)o<t< is a process satisfying
Sg P2 dt < oo a.s. If, in addition, Z is a martingale, then we may define probability

measures Q equivalent to P by
dQ

= Zt, te [O,T]
P,

The set M of martingale measures is then in one-to-one correspondence with the set of
integrands 1.
By the Girsanov theorem, the two-dimensional process (WQ, W@’L) defined by

t
W2 =B+ xt, WEti=wl+ f Yudu, 0<t<T,
0

is a two-dimensional Q-Brownian motion. Therefore, under Q € M the dynamics of the
asset prices are

dS; = 08 dWR,  dY; = nYi[(0 — pA — /1 — p2¢y) At + dBY],
where WQ, BQ are correlated Q-Brownian motions:
W B, —pt, 0<t<T.

The traded asset price is a local Q-martingale, but the drift of the non-traded asset is
arbitrary and parametrised by the integrand ¢ appearing in the density process of any
ELMM Q € M.
The minimal martingale measure Q™ which will feature in many of our formulae,
corresponds to ¥ = 0, so has density process with respect to P given by
dQM

=E&(-\A-W 0<t<T.
d]P) ]:t ( )t?

Hence, under QV, (S,Y) follow
A4S, = 08, W2,  dY; = gVi[(6 — pA) dt + aB2"],

where W@ = W@ and BQ" = pW@ 4 /1 — p2W+ are correlated Brownian motions
under QM. The stock price S is a local QM-martingale but this is not the case for the
non-traded asset.

8.1. Perfect correlation case. In the perfect correlation case, p = 1, Y is effectively
a traded asset, so no-arbitrage requires the Q™-drift of Y to be zero. Therefore, given
o,mn, in the p = 1 case the Sharpe ratios of the assets are related by

(8.3) 0=\
In fact, with p =1, B = W, so we have
Y, n/o
?t = (?) exp(ct), 0<t<T,
0 0

where c is given by

1
c=gn(o—m).
In this case the market becomes complete, and perfect hedging is possible. Let the claim
price process be v(t,Y;),0 < t < T, where v : [0,7] x RT — R™ is smooth enough to

apply the It6 formula, so that
dv(t,Y;) = [ve(t. V) + LY 0(t, Y2)] dt + nYivy(t, Y:) dBy,
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where £Y is the generator of the process Y, given by

1
LY u(t,y) = nyvy(t,y) + §n2y2vyy(t, Y).

Form a portfolio with H = (Hy)o<t<7 units of S plus cash and denote the corresponding
wealth process by X. Then X satisfies

dX; = H, dS;.
The replication conditions are
Xe=v(t,Y), 0<t<T, dX;= du(t,Y;).
Standard arguments then show that to perfectly hedge the claim one must hold H;
shares of S at t € [0,T], given by
(8.4) H, = Z}SEZZ(@}Q),
and the claim pricing function v(t,y) satisfies

1
vr(t,y) + 00 — Nyvy(t,y) + §n2ygvyy(t,y) =0, o(T,y) = h(y).

But when p = 1, we have 8 — A = 0, so we get the BS PDE, and
v(t,Yy) = BS(t, Yism),

where BS(t, y; o) denotes the BS option pricing formula at time ¢, with underlying asset
price y and volatility o. An important feature of (8.4) is that the perfect hedge does
not require knowledge of the values of the parameters A, 6.

8.2. Utility-indifference valuation and hedging. Now suppose the correlation is
not perfect, so that the market is incomplete. We embed the problem in a utility max-
imisation framework. Let the agent have risk preferences expressed via the exponential
utility function
U(z) = —exp(—azx), xzeR, a>0.

The agent maximises expected utility of terminal wealth at time 7', with a random
endowment of n units of claim payoff. Define m = (m)o<i<7 as the process of wealth
in the stock, so that m := H;S;. The wealth process X = (X;)o<i<r of a portfolio
containing H = (Hy)o<t<1 shares of stock S satisfies

dX, = om(\dt + dW,).
Given a starting time ¢ € [0, T'] the objective to be maximised is
T (t,z,y;7) = E[U(X7 + nh(Y7))| X; = 2,Y; = y].
The value function is (™ (t, x,y), defined by

(8.5) u(t,2,y) = sup Ut 2, y5m),
TeA
u™(T,z,y) = Uz +nh(y)).

Denote the optimal trading strategy that achieves the supremum in li by 7™, and

denote the optimal wealth process by X (™). We assume the set A of admissible strategies
are those for which X7 is a martingale, where Z is the density process of any ELMM

Q.
Given X; = z,Y; = v, the utility indifference price per claim is p(™(t,z,y), defined
by

(8.6) u™ (t,x —np™(t,2,y),y) = uO(t, ).
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We allow for possible dependence on ¢, z,y of p(™ in the above definition, but with
exponential preferences it turns out that there is no dependence on z, as we shall see.

The optimal hedging strategy is defined as the adjustment one makes to one’s optimal
portfolio strategy relative to the problem when n = 0. In terms of the variable 7 := HS,
the optimal hedging strategy for n units of the claim is 7 := (7t)o<t<7 given by

(8.7) #o=a2" 70 0<t<T

The solution to the optimisation problem is well-known, using a so-called distortion
transformation (see Zariphopoulou [27]) to linearise the Hamilton-Jacobi-Bellman (HJB)
equation for u(™. See [I7] for more details of the computation in this model.

The HJB equation for the value function u(™ is

ugn) + max[£XYu™] = 0,

EX,Y

where is the generator of the two-dimensional process (X,Y):

1 1
LYY f(t,2,y) = oATfo + 502ﬂ2fm + 00y fy + §n2y2fyy + ponTY fuy.

Performing the maximisation over m yields that the optimal trading strategy 7™ is
given by 7?1,@ =7, Xt(n), Y;), where the function 7( : [0,T] x R x R* is given by

() (n)
(8.8) 200 (12, y) = — (A“”“ Pty ) .

(n)

OUgy
Plugging this back into the Bellman equation gives the HJB PDE as
( ™ 4 <n>)2
x PNYUzy

(89) "+ L U™ — ) =0, u"™(T,2,y) = Uz +nh(y)),
Uz

where £Y is the generator of Y.
We have the following representation for the value function and indifference price.

Proposition 8.1. [17]
The value function u = u™ and indifference price p = p() given Xy = x,Y; =y for
t € [0,T], are given by

(8.10) Wtz y) = —e BT [R(tg)] 0

(8.11) F(t,y) = E% [exp (~an(l - p*)h(¥7))|Y: = 9],
() _ v

(8.12) P (ty) o ) s ().

Proof. The function F(t,y) satisfies a linear PDE by virtue of the stochastic represen-
tation and the Feynman-Kac theorem. It is easy to verify that the value function
as given in the proposition then satisfies the HJB equation . The indifference price
formula then follows from its definition.

O
The indifference pricing function p(™ (¢, y) satisfies
(8.13) o™ 4+ (8 — pA)yplV + STy — gPytna(l = p*)(pf)* = 0,

with p(™(T,y) = h(y). This is a semi-linear PDE, and in this sense the indifference
pricing methodology constitutes a non-linear pricing rule.
Notice that for p = 1 we recover the BS PDE, as the market becomes complete.
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For n = 0, the indifference pricing PDE becomes linear, and by the Feynman-Kac
Theorem we obtain the following representation for the marginal utility-based price

pt,y) = lim, o p™(t,):
Bt y) = B [a(Y)|Y; = ).

This is a special case of a general representation of the marginal price as the expectation
of the payoff under the optimal dual measure for the problem with n = 0, as we shall
explain in more detail in Section For exponential utility the dual optimal measure
is the minimal entropy measure QF, which minimises the relative entropy H(Q|P) :=
EQlog Zr]. In the basis risk model the minimal entropy measure QF coincides with
the minimal martingale measure Q™. This is because the relative entropy between a
martingale measure Q € M and P is given by

?ﬂ@@%:ﬂﬂé(ﬁT+L?ﬁdQ],

and this is clearly minimised by ¢ = 0.

Given the form of the value function, it is easy to show that the expression for
the optimal control loses its dependence on x. Then, applying gives the optimal
hedging strategy for a position in n claims.

Proposition 8.2. The optimal hedging strategy for a position in n claims is to hold ﬁt
shares at t € [0,T], given by
5 n Y: op™)
8.14 Hy = —np———(t,1}).
(8.14) ey (t,Yy)
Note that for p = 1 we recover the perfect delta hedge (8.4)), and (as already noted)
the claim price then satisfies the BS PDE.

Proof of Proposition[8-3. The optimal trading strategy is given by applying (8.7)), using
(8.8) to compute the optimal feedback control (from which the optimal trading strategy
is computed by evaluating the feedback control, at the current value of the state (X,Y")):

(n) (m)
(8.15) %W@Lw=—<M$+mmw>.

(n)

OUgxy

Setting n = 0 we also have

)
(8.16) 2Ot 2) = — (“‘?OJ .

We also have, from (8.10))
W (t, 2, ) = u® (¢, 2) [F(2, Y]V,
and using this in conjunction with (8.12)), we have
ul (t, 2,y) = uO(t, 2) exp(—anp™(t,y)).
We compute partial derivatives to insert into (8.15)) and (8.16]) and deduce that

A0t a,y) = 7Ot 2) = —np " p (¢, y).

O

Note that the optimal strategy 7 is the classical Merton trading strategy 7(9) for the
problem without the claim plus a correction which corresponds precisely to the utility-
based hedging strategy. Note also that if p = 1, then we recover the perfect hedge

B9
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8.3. Residual risk process. Suppose the agent trades n claims at time zero for price
p™(0,Yy) per claim. The agent hedges this position over [0,7] using the strategy
(}/\It)ogts’f. Her overall position has value process R := (R;)o<i<r given by R, = X, +
np™(t,Y};), so that

(8.17) dR, = dX; + ndp™(t, V),
where X = (X;)o<i<r is the value of the hedging portfolio in S, satisfying
d)?t = ﬁt dSt, )20 = —np(") (0, }/0)

Using this in (8.17) along with the Ité formula and the PDE satisfied by p(™ (t,y), we
obtain

(8.18)  dR, = n n2a(l — )Y2( (n >) (£, Y2) dt + /1 — p2Yipl) (¢, Y7) AW,

with Ry = 0. We call R the residual risk (or hedging error) process. The term in thl,
orthogonal to the Brownian increments driving the stock price, is interpreted as the
unhedgeable component of risk. If p = 1 we see that the process R becomes riskless
(recall that the interest rate is zero), reflecting the fact that the market incompleteness
disappears in this case.

8.4. Power series expansions for the indifference price and hedge. We are in-
terested in analysing the distribution of the terminal hedging error R7p. This is not
possible in closed form, so our approach is to use the SDE to simulate R over
many asset price histories, and compute the distribution of terminal hedging error Ry.
This programme was carried out in [I7] and [18].

To simulate R via efficiently, one may use analytic approximations for p(™ (¢, )
and p@(,n) (t,y), in the form of power series expansions in powers of a := —a(l — p?)n.
These arise from a Taylor expansion of the indifference pricing function

(8.19) P (t,9) =~ log B [exp (ah(Vr))| Vi = y].

For a random variable X, recall that its cumulant generating function (CGF) is Cx (a) :=
log Eexp(aX). Using linearity of the expectation operator, it is not hard to see that the
CGF has a Taylor expansion of the form

where kj(X) = k; is the j*" cumulant of X. The cumulants are related to the central
moments of X. For instance, writing

m;(X) = E(X?), pj(X):=E[(X —m)7], jeN,

m‘,_‘

for the j*® raw and central moments, it is not hard to show that the first three cumulants
are the mean, variance and skewness:

ki(X) = mi(X),
ko (X) = pa(X),
k‘g(X) = ,ug(X)
Since the pricing function (8.19) is proportional to the cumulant generating function of

the payoff under the minimal measure, it is easy to generate an analytic formula for the
indifference pricing function. In [I8], Monoyios gives the following representation.
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Proposition 8.3. The indifference pricing function p() (t,y) has the power series ex-
pansion

5
1 .
(8.20) P (ty) = )] ﬁkj (h(YT)) @~ + O(a”),
=17
where a = —a(1 — p?)n and k; is the 3™ cumulant of the payoff under QM , conditional
on Y; = y. The expansion is valid for model parameters satisfying
(8.21) E®" [exp(ah(Y7))|Y: = y] < 2.

This means one can produce an accurate perturbation series for p(™ (t,y), as a series
of BS-type formulae, which can be differentiated term by term to give an analytic
approximation for pén) (t,y). In particular, the leading order term in the price expansion
is Davis’ [4] marginal price. Once again, this shows how the non-linear pricing rule given
by the indifference price reduces to the linear pricing rule of the marginal price as the
number of claims tends to zero.

The terms in the expansion depend ultimately on the moments m; := EQY [W (Y7)|Y; =
y], 7 € N and (in the case of pén) (t,y)) on their partial derivatives dm; := dm;/dy, j € N.
These are easy to compute (in the case of a put option we give some results shortly)
since, under QM, and conditional upon Y; = vy, log Y7 is normally distributed: with

N(m, ©2) denoting the normal probability law with mean m and variance ¥2, we have

logYr ~ N(logy+b—3%%%2),
(8:22) b n(0 — pA)(T — 1),
2 = (T —1).
For the optimal hedging strategy, the explicit results are obtained by differentiating

(8.20) with respect to y. If we denote by 0r; the partial derivative of x; with respect
to y:

where r; denotes any of m;, uu;, k;, then we have:

Corollary 8.4. The partial derivative of the indifference price p(™) (t,y) with respect to
y has the power series expansion
op(™) 5 1 4
"5y (b9 = X 5@t +0()
J=1
The partial derivatives of the cumulants are related to u;,du;. For instance, up to
7 = 3 we have

814:1 = aml,
ak? = a,LLQ,
ak’g = 6,ug .

(See [18§] for full details and more formulae.)

The significance of the expansions is that they give easily computed closed form
approximations for the indifference price and optimal hedge. In the specific case of a
put option, we have the following formulae for the raw moments of the payoff under the
minimal measure QM.

Lemma 8.5. For a put option, h(y) = (K —y)*, where K > 0 is the strike price, the
™ moment m; = EQY [W (Y7)|Y; =], j €N, is given by

m; = ZO ( / > (—y) K0 exp [z <b + %(z - 1)22>] B(—dy — (0 — 1)%),
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where ®(-) denotes the standard cumulative normal distribution function, and where

di = % {log (%) +b+ ;EQ}

b= n(0—pA)(T —1),
¥ = (T —t).
Proof. For the put payoff, we have, for j € N,
(h(yr)y = (K =¥r)")
= (K =YV Ly, <k

J .
2 ( , > (1) K=V Ly, <xy
(=0

Given the lognormal distribution (8.22)) of Y7, it is easy to show that

1
B9 [V ivyana Vi = o] = o exw (¢ (34 50 - 122) ) a1 - - 1)

from which the result follows.

O

Lemma 8.6. Let j € N. For a put option payoff, h(y) = (K —y)*, dm; is given by

J .
: 1
omj =— > ( é ) (=) VKT exp (e <b + (- 1)22>> (N(—d; — (= 1)%).
=1

Proof. This is a straightforward exercise in differentiation.

O

(n)

This power series expansions for p(™ (t,y) and py (t,y) give a closed form and ex-
tremely accurate (see [I7]) computation of the optimal price and hedging strategy,
with the leading order term in the expansion for the price being the marginal price,
p(t,y) = EXY [h(Y7)|Y; = y], of the claim.

8.5. Optimal versus naive hedging. In [I7, [I§], a comparison was made between
hedging a claim with the optimal strategy versus with the BS-style “naive” strategy
(8.4) which takes S as a good proxy for Y.

In the BS-style hedge, let us repeat the calculation leading to the residual risk SDE
, but with the claim traded at the BS price v(0,Yy) = BS(0,Y)) per claim and
hedged HY, using the p — 1 limit of the optimal hedging formula (even though
true value of p is not equal to 1). We then obtain the “naive” hedging error process R,
following

dRY = nnYy(0 — N)vy, (£, Y1) dt + nnYev (£, Y1) [(p — 1) dW; + /1 — p2 dW].

Once again, we note that this is not riskless, but becomes so if the true value of p is
indeed 1. The “naive” trader hopes this proves a good approximation.

For the case when the agent sells a put option (n = —1) on the non-traded asset, in
[18] Monoyios generated optimal and naive hedging error distributions (by simulating
the processes R and RV ) using 10,000 asset price histories. These showed that the opti-
mal hedge error distribution has a higher mean, lower standard deviation, and a higher
median, than the naive hedge error distribution. The increased median, in particu-
lar, showed how the relative frequency of profits over losses is increased when hedging
optimally. Figure[l|shows a typical path trajectory for one simulated asset price history.
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Asset Price and Portfolio Paths
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FIGURE 1. A typical trajectory when hedging a short put position with
the optimal strategy or the naive strategy. The put is sold optimally for
price p(-1(0,Yp), or naively for price BS(0, Yp).

TABLE 1. Model parameters for histograms in Figure

So Yo K r 1 o v n T
100 100 110 5% 13% 30% 10% 25% lyear

TABLE 2. Summary statistics for histograms in Figure

EVr sd(Vr) med(Vy) max(Vy) min(Vp)

0.4346  9.5902  2.1621 33.40 -41.60
EVY  sd(VEY) med(VY) max(VY) min(VY)
-0.8574 10.3724 0.1216 39.11 -47.99
Suppose the agent sells a put option (so n = —1) on the non-traded asset. Figure

shows the optimal and naive hedging error distributions generated from 10,000 asset
price histories, for p = 0.75. a = 0.01, with the other parameters as in Table[l] Summary
statistics for the hedge error distributions, in Table[2] show that the optimal hedge error
distribution has a higher mean, lower standard deviation, and a higher median, than
the naive hedge error distribution. The increased median, in particular, shows how the
relative frequency of profits over losses is increased when hedging optimally.
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Hedging Error Distributions
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FiGURE 2. Hedging error distributions over 10,000 simulated asset price
histories. A short put position is hedged, with p = 0.75, @ = 0.01. The
remaining parameters are as in Table The put is sold optimally for
price p(=1(0,Yp) = 13.14, and naively for price BS(0, Yy) = 12.66.

Thus, the hedging strategy in is, at first sight, superior to the BS-style hedge
. But the exponential hedge requires knowledge of A, 6, which are impossible to
estimate with any degree of accuracy (Monoyios [18]). This can ruin the effectiveness
of indifference hedging, as shown in [18]. A way round this problem is presented by
Monoyios [18| 20] using filtering theory.

9. THE DUAL APPROACH TO OPTIMAL INVESTMENT IN INCOMPLETE MARKETS

Here we briefly revisit the dual approach to solving utility maximisation problems.
We studied this topic in Section [5] in the complete market case. Here, we give the
main ideas in the incomplete market case. The major difference is that there are many
equivalent local martingale measures (ELMMSs), and the unique density process of the
single ELMM of the complete market is replaced by the dual optimiser that achieves the
infimum in a suitably defined dual problem. We shall not give a complete proof (which
is difficult) of the duality, but shall proceed with the assumption that the primal and
dual optimisers exist (this is the hard thing to establish in general, requiring a delicate
demonstration of closure of the optimisation sets in a suitable topology). In subsequent
sections, these ideas are applied to the case of utility maximisation with the random
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endowment of a claim payoff, to derive dual representations of utility-based prices, and
we revisit the basis risk model via a dual approach.

9.1. Abstract incomplete market. We shall work in a general incomplete semi-
martingale model, with zero interest rate (for simplicity), and with some (say) n-
dimensional stock price process S, a semi-martingale on a filtered probability space
(Q,F,F := (F)osi<r P).

Ezample 9.1 (Itd process model). An example would be a multi-dimensional It6 process

model, with stock prices S%, i = 1...,n, evolving according to
(9.1) ds; =S} (uidt—l—Za?dWﬁ), i=1,...,n,
j=1
or, as a single vector equation:
(92) ds; = diagn(St)[,ut dt + o th],
where diag,, (S) denotes the n x n diagonal matrix with S*',...,S" along the diagonal,

and W is a d-dimensional Brownian motion.
The appreciation rates p' and the entries ¢ (i =1,...,n,j=1,...,d) of the n x d
volatility matrix o are F-adapted processes satisfying

T nodo T, 2
f g || dt < oo, EZJ (JZJ) dt < w, a.s.
0

0 i=1j=1

Here | - | denotes the Euclidean norm, so that for instance,

2 2
Il = (ad)” + -+ (uf)*-

We assume that there exists (at least one) R%valued progressively measurable process
q such that the equations

(93) otqt = MU, 0<t< T7 a.s.

admit at least one solution. We call the market price of risk (MPR) equations, and
the processes q are called MPRs. The existence of a MPR, satisfying is equivalent
to a no-arbitrage (NA) condition on the market model, and that this equivalence is a
form of the first Fundamental Theorem of Asset Pricing (FTAP I) (see Chapter 0 of
Karatzas [13] for more details).

Observe that constitutes n equations for d > n unknowns (the components of
q=(q', - ,¢q%)*, where * denotes matrix transposition). Hence, in general, there will
not be a unique MPR (and this is in one-to-one correspondence with the multiplicity of
ELMMSs), unless n = d and the volatility matrix is invertible (and this is the special case
of a complete market). This ends the It6 process example. You can read more about
this model in, say, Karatzas [13], Chapter 0.

Returning to the general semi-martingale model, the wealth process X from trading
the stocks is given by

t
(9.4) Xt:X0+J 0,dS,, tel0,T],
0

where 0 is the n-dimensional predictable and S-integrable process for the number of
shares of each stock.
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If the market is incomplete there are many ELMMs Q ~ P such that S (and hence
also X) is a local Q-martingale. Denote the class of ELMMs by M. Denote the density
process of any ELMM Q € M by Z, a positive martingale:

dQ
= — te|0,T].
t dP ]:ta [ ) ]
We shall identify any ELMM Q with its density process Z.
Ezample 9.2 (It6 process model, continued). In the It6 process model of Example
for any ¢ satisfying (9.3]), we define the positive local martingale

(95) Zt = 5(—q . W)t, 0<t< T,
satisfying
dZt = —th,;k th

Here, £(-) denotes the stochastic exponential:
£(a) = exp (-0 - 30
for any continuous process M, as well as
@wy=[araw, o<i<r

for the stochastic integral, so that

t 1 t
8<—q-w>t=exp(—jq:dws—2f rqsﬁds), 0<i<T.
0 0

If E[Z7] = 1, then Z is a martingale and we define equivalent local martingale measures
(ELMMs) Q via

dQ

P - Zr.
Denote the set of ELMMSs by M. Under any Q € M, the stock prices are local martingales.
To see this, recall that the Girsanov theorem (Theorem 3.5.1 in Karatzas and Shreve
[14]) implies that under any Q € M, the process

t
Wt(@:th—i-Jqsds, 0<t<T,
0

is Brownian motion, and hence we have
dS; = diag,, (S;)o; AW,
Hence the stock prices are local Q-martingales.

Returning to the general semi-martingale model, the process Z X is a local P-martingale.
In this section, we shall take admissible strategies 6 to be those that yield non-negative
wealth process:

Definition 9.3 (Admissible strategies). The class of portfolio strategies 6, starting with
initial capital x > 0, such that the associated wealth process X satisfies

Xt = Xt(.%') = O, 0 <t < T, a.s.
will be called admissible, and denoted by A(z).
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If 0 € A(z), then the process ZX is a non-negative P-local martingale and hence a
super-martingale, so satisfies

(9.6) E[ZrXr] <z, forany Qe M.

This condition will be used as a constraint on allowable wealth processes in what follows

For now, we consider the case where the utility function U is defined on R™ (so keep
logarithmic and power utility in mind). We shall restrict attention (for the present) to
admissible strategies with non-negative wealth process, so we have the super-martingale
constraint (9.6). We consider the following problem.

Problem 9.4 (Utility from terminal wealth). Denote by 6 € A(x) the portfolio process.
Maximise over admissible 6 € A(z) the functional J(x;#) representing expected utility
of terminal wealth:

J(x:0) :=E[U(X7)].
Denote the value function of this problem by

u(z) := sup J(z;0).
feA()

The wealth dynamics are characterised according to (9.4) and the budget constraint
is . Introduce a Lagrange multiplier y > 0 whose role is to enforce this constraint
and consider, for any 6 € A(z), and any z,y > 0,

E[UX7)] < E[UX7)]+y (e —E[XrZr])
= E[UXr)—yZrXr]+ 2y
(9.7) < E[V(yZr)] + =y,

where we have used ([2.7)). The inequality (9.7)) motivates us to define the dual problem
to the primal utility maximisation Problem [9.4] with dual value function

(9.8) v(y) = éggﬂE[V(yZT)] , y>0.

Now, inequality (9.7) holds for all § € A(x) and Q € M, and for all z,y > 0. Then,
maximising over trading strategies on the LHS of (9.7)) and minimising over ELMMSs on
the RHS, leads to

v(y) = u(zr) —zy, VY >0,y >0,
and thus to
v(y) = suplu(z) —zy], y >0,

>0
This suggests that u(-), v(-) are conjugate (inheriting this property from U(-), V(-)). This
can be made rigorous, and we get equality in if and only if the primal and dual
optimisers Xr = XT(a;) (we identify the optimal trading strategy with the resultant
terminal wealth) and Zr= Zp(y) satisfy the martingale constraint

(9.9) E[XrZr] = »

holds (so the first inequality becomes an equality) and also if and only if X7 satisfies

(9.10) U'(X7) = yZy < Xp = I(yZr),

so the second inequality becomes an equality. Thus and (9.10) identify the optimal
9.10 0 1@)

terminal wealth )A(T, once we fix y > 0 by inserting (| ) int

(9.11) E [ZTI(yET)] —z.
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To establish the conjugacy between wu(-), v(-), first write v(-) as

v(iy) = E [V(yET)] ;o y>0,
= E[U(I(yZr))] - yE[Zr1(yZ7)]
(9.12) = F(y) —yX(y),

where we have used and where we have defined

F(y) == E|UUWZr)|, X@)=E|ZriyZr)], y>o.
Thus, the constraint reads as

X(y) ==

Denote the inverse of X'(-) by (), so that
(9-13) X(y) =2 =y=V()
Thus, the optimal terminal wealth can be expressed as
(9.14) Xr(x) = I(V(2)Zr).

Then, in principle, the optimal wealth process is obtained from the from the fact that
X7 is a martingale:

~ 1 A o~

(9.15) X==E [XTZT‘ .7-}] , 0<t<T.
Zt
The primal value function may be expressed in the form
(9.16)  w(z) = E[U(Xr(2))] = E[UI(V(x)Z7))] = F(Y(2)) = v(V(2)) + Y (),
where we have used (9.12]) to get the last equality.
Observe from (9.7)) that we have
u(z) <v(y) +axy, forall x>0,y >0.

Hence,

(9.17) sup|u(z) — zy] <wv(y), for all y > 0.

>0
Evaluating the primal value function u at X(y), for any y > 0, and using and
, we have
w(X(y)) = FY(X(y))) = Fy) = v(y) +yX(y),
or
v(y) = w(X(y)) —yX(y),
which implies that

(9.18) v(y) < suplu(z) —zy], for all y > 0.

x>0

From (9.17)) and (9.18)) we conclude that

v(y) = suplu(z) —zy], y>0.

>0
In other words, u,v are conjugate (inheriting this property from U, V).
Finally, the functions X, ) are in fact related to the derivatives of the value functions
v,u as we now show.
Differentiating v(y) = E[V (yZ7)] with respect to y we have

v(y) = E[V'(yZr)Zr] = ~E[ZrI(yZr)] = -X(y).
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While for v we have, on differentiating the last equality in (9.16) and using v/ = —X,
u'(z) = (V@)Y (@) + V(@) + 2Y (2) = V().
Thus, the relations ((9.13|) between the initial wealth > 0 and the Lagrange multiplier
y > 0 may also be written as
y=1d'(z), ==-1(y).
Moreover, the expression (9.14]) for the optimal terminal wealth translates to the striking
expression for the dual optimiser:
_U'(Xp(x)
v

10. OPTIMAL INVESTMENT WITH RANDOM ENDOWMENT IN AN INCOMPLETE MARKET

We now specialise to the exponential utility function U(z) = —exp(—ax) for z € R
and o > 0 and consider the problem of optimal investment in an incomplete market when
one has also to pay out at time T the payoff of a European claim, some Fpr-measurable
random variable C. Let m denote the trading strategy (the wealth held in stocks). The
set of admissible strategies A(z) are assumed to be such that XZ is a martingale, for
any deflator Z € Z. (The set of deflators Z is in one-to-one correspondence with the set
M of ELMMs.) The primal problem is defined by

(10.1) u(z) := sup E[U(Xr—C)], zeR,
weA(x)

and we assume that E[XpZrp] = z, for any Z € Z.
Consider, for any admissible 7, any deflator Z, any x € R and any y > 0,

ElUXr—-C)] = E[UXr—0C)]+y(x—E[XrZr])

E[U(Xr - C) —yZr(Xr — C) —yZrC| + zy
E(V(yZr) — yZrC] + xy.

We define the dual problem to the primal utility maximisation problem by
(10.2) v(y) = ZhggE[V(yZT) —yZrCl, y=>0,

A

Now, (10.2) holds for any 7 € A(x), any deflator Z € Z, any € R and any y > 0, so
if we maximise the LHS over 7w € A(z) and minimise the RHS over Z € Z, we have the
usual inequality
u(z) <v(y) +zy, YreR, y>0.

Denote the dual minimiser in 1D by Z(©) and the optimal terminal wealth in l)
by )’(\':(FC). We suppose (and this can be made rigorous, see for example, Delbaen et al
[6]) that we get equality in (10.2) when we choose X1 = )A(}C) and Zp = 2}0) such
that U’()A(;C) -C) = yééc), with y > 0 fixed via E[)?éc)ééc)] = z. Once again, the
theory goes through as in the case without random endowment and we get the following
theorem.

Theorem 10.1 (Optimal investment with random endowment in incomplete market).
Define the primal value function by

(10.3) u(z) := sup E[UXr—-C)], zeR.
meA(x)

and suppose that u(x) < o for all x € R.
Define the dual value function by

U(y) = égg]E [V(yZT) - yZTC] ) Yy > Oa



OPTIMAL INVESTMENT, VALUATION AND HEDGING 37

Then we have
(1) The value functions u and v are conjugate:

v(y) = sup[u(z) —zyl,  u(2) = inflv(y) +2y], zeR, y>0.

zeR

(2) The optimal terminal wealth )/(\'j(ﬂc) and the dual minimiser 27(?) are related by

U'()’(\':(FC) —-C) = yZ_(FC) — )’(\':Sﬂc) —C = I(yZC(FC)),

with y > 0 fized via E[)?;C)E;C)] =z, or
(10.4) X(y) =z -1(C) =y =V -1C)), YV:=a1

where the function X(-) and the constant II(C) are defined by
—E72© 70,7 . gQ©
X(y):=E [ZT I(yZ )] . y>0, I(C):=EX[].
(3) The primal value function is given as
~(C
u(@) = E|U (I0(z = 1(C)Z7) ) | = FO@ —11(C)),
where F is defined by
Fly) = E[UUZ{)]. y>o0.
(4) The derivatives of the primal and dual value functions are given by
W' (z) =Y —T1(C)), v'(y) =—(X(y) +1(C)),
so that the relations y = Y(x — II(C)) and X (y) = = — II(C) between the initial
wealth © > 0 and the Lagrange multiplier y > 0 in may be written as
y=1u(z), z=-v(y).

10.1. Exponential utility-based indifference valuation. We now apply the theory
of the previous subsection to the valuation and hedging of the claim C. Recall that in an
incomplete market there is no replication strategy for C, so any valuation method must
take into account potential unhedged risk, so should incorporate the agent’s preferences
towards risk. These are captured by her utility function.

We are still using the exponential utility function U(z) = —exp(—ax) for z € R and
a > 0. Take the interest rate process to be zero. Thus the deflator Z is a positive local
martingale (given by Z = £(—A-W)), and when Z is a martingale then it is also the
density process of any ELMM Q € M:

4Q
dP |’

We shall assume that this is the case from now on. Then, with exponential utility, the
dual problem may be written as

y . Q
— 2 inf EQlog Z1 — aC].
v(y) V(y)+aégM [log Z7 — aC]

Zt = te [O,T]

The quantity
E%[log Z7] =: H(Q,P)
is called the relative entropy between Q and P. We may therefore write

— Y, _EQ
(10.5) o(y) = V() + 2 inf (H(Q.P) ~ E¥aC]).
Thus, the dual problem amounts to the minimisation:

inf, (#(@.P) - E2[aC)) .
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Observe that for the case C' = 0, the dual problem without random endowment is thus
equivalent to minimising the relative entropy over ELMMs. Denoting the dual value
function for the case C' = 0 by vy, we have

w(y) = Vy) + 7 inf (HQ.P) = V(y) + ZHQ" P).

where QF denotes the minimal entropy martingale measure (MEMM).
Now, using that u,v are conjugate, we have

u(z) = inflv(y) + zy].

Using the form of v in ((10.5)), we obtain
= _ —ar — i _wQ
(10.6) u(z) exp( ax égl{;ﬂ (’H(Q,IP’) E [aC])) :

Definition 10.2 (Utility indifference price). Let uo denote the value function for the
problem ((10.3) with C' = 0. The time zero utility indifference price of the claim C' is p,
defined by

u(x + p) = up(x).

Applying this definition to the dual representation ((10.6)) of the primal value function
we obtain the dual representation of the indifference price:

p = sup [EQ[C] . (H(Q,P) - H(@E,PD} :
QeM @

Observe that we have the limits

lim p = sup EQ[C], p:= limp = EQE[C].

a—0 QeM a—0

The first of these is called the super-replication price, and the second is called the
marginal utility-based price (MUBP). For this latter quantity, we have the following
representation.

Lemma 10.3. The marginal utility-based price of the claim C at time zero is given by
E[U/(X")C]

p—
up ()

)

where ug and X}O) denote the primal value function and optimal terminal wealth respec-

tively, for the problem with C = 0.

Proof. The dual minimiser for the case C' = 0 is Q¥ and we have
dQ¥
Yy dP
with y = uf(z).
O

10.2. The basis risk model revisited via duality. We apply the utility indifference
valuation results to the basis risk model of Section 8] with a traded asset S and a
correlated non-traded asset Y following the geometric Brownian motions

dS; = oSy (N dt + dWy),  dY; =Y (0dt + dB;), M\0eR, o,0eR*
where W, B are correlated Brownian motions, satisfying
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A European contingent claim pays the non-negative random variable h(Yr) at time T,
where h(-) is a bounded continuous function. The interest rate is zero. This market is
incomplete unless the correlation is perfect. The set M of ELMMs Q is defined as

= {Q ~ P|S is a local (Q,F)-martingale},

where F is the augmented filtration generated by (W, W), with W+ a Brownian motion

independent of W, so that
B = pW + /1 —p2W+.

The density process of any Q € M is given by
Zy=E(-AW —¢p-Wh),, 0<t<T,

where v is an adapted process satisfying

T
f 1/)? dt < oo, a.s.
0

For Q to be a probability measure we need Z to be a martingale, and we assume this
is the case here (a sufficient condition for this is the Novikov condition on v (since A

is constant we need no further conditions on it)): E [exp (% Sg 2 dt)] < o0. By the
Girsanov theorem, the two-dimensional process (WQ7 WQ’l) defined by

t
W2 =B, + At, W2t .=wit+ f Yudu, 0<t<T,
0

is a two-dimensional Q-Brownian motion. Therefore, under Q € M the dynamics of the
asset prices are

dS; = oS, dWR2,  dY; = nYi[(6 — pA — /1 — p2y) dt + dBY],
where W@, BQ are correlated Q-Brownian motions:
WO B, =pt, 0<t<T.

The traded asset price is a local Q-martingale, but the drift of the non-traded asset is
arbitrary and parametrised by the integrand ) appearing in the density process of any
ELMM Q € M. The set M of martingale measures is then in one-to-one correspondence
with the set ¥ of integrands 1.

The minimal martingale measure Q™ corresponds to 1) = 0, so has density process
with respect to P given by

Q"
dP |,

Hence, under QM, (S,Y) follow
48, = 0S, W2, dY, = gVi[(6 — pA) dt + dB2"],

where W@ = W2 and BQ" = pW@ + /1 — p2W+ are correlated Brownian motions
under QM.

As shown in Section 8.1 if [p| = 1, the model is complete and a BS-style perfect hedge
for the claim with payoff h(Yr) is posmble For |p| # 1 the market is incomplete.
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10.2.1. Utility-indifference valuation and hedging. Suppose the correlation is not perfect,
so that the market is incomplete. The relative entropy between Q € M and P in this
model is given by

1 T
HQP) = <>\2T +EQ U V2 dtD .
0
We see immediately that
dQF
— =E(—A\W
ap =AW
so that QF = QM in this model. Then the MUBP at time zero is given by
~ M
p=EY [n(yr)].
The time-zero indifference price has the stochastic control representation

1 T
p = supEC {h(n) e [ v dt] ,
el 2a0 Jo

H(QP,P) = LT,

Consider the intermediate value function

1 T
p(t,y) = sup EC [h(n) e [ wrau
e 20 Jy

Yt=y]'

This is the indifference pricing function at ¢ < T given Y; = y. The HJB equation for
p(t.y) is

1
LY — —?| =0, p(T,y)=nh
oot max | €79 - v =0, p(T) = h(),
where £Y'Q is the generator of Y under Q € M:
1
LY =ny(0 — pA = N1 = p*0)py + 519 Py

Maximising over ¢ in the HJB equation gives the optimal Markov control as @(t, y) =
—an/1 — p?nypy(t,y). Substituting this into the HJB equation gives the PDE for p(t,y
as
1 1
P10 = pA)ypy + 50°Y pyy + S0y (1= p")py = 0, p(T,y) = h(y).
Observe that this PDE is consistent with (8.13) derived via the primal approach in
Section [§
One can check that the indifference price PDE is solved by

plt.y) = log E®" [exp (a(1 — p?)h(Y7))|Yi = o]

1
a(l —p?)
For a — 0, the indifference pricing PDE becomes linear, and by the Feynman-Kac
Theorem we obtain the marginal utility-based price (MUBP) p(¢,y) := limy—0 p(t,y):

~ M
p(t,y) = EX [a(YD)|Y: = y].
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