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winple 1.1.4 [Recovering straight projective space)
{"we set all a; to be | then the above (leﬂmuun coincides with that of straight projective
spac

'\ {0))/Gm

where + Aay|, and we more commonly write

Example 1.1.5 [Something that locks a bit like a cone]
We cover this example in more detail later, since it turns out to be an interesting one, so here
we look at it mm. briefly and not particularly rigorously.

Cansider P{1,1,9). Just like in straight projective space, any point is invariant under
scaling, but here wllh respect to the welghting. For example,

non-zero. But then all that we need to L]\L k is that the image is invariant under scaling, f.e
that

[Azd : Azozy : Az

Simply using definitions we get that

@ (M2 s M 4\,-,.) 1o

iven though we haven't really defined what an isomorphism should be for weighted
projective spaces, it makes sense to think that, if we can find an inverse map that is also
given by palynomials in each coordinate, then we can think of B(1, 1 UJmHh image under
¢ in ¥" as isomorphic. That is, we can think of ¢ as an cmmumumuh 1,2) in

To construct our inverse map we take some po oint | 5] in the imag S.»uly even
though & is algebrically closed, we can't take [y 3| a5 our inverse map, since this

i
is not polynomial in each coordinate. But we do know that

for some

where we choose whichever option gives us a point in (1, 1,2), i.e. depending on whether
or not all of w, y1,ys are zero,
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g | 1€igk]

V= Uisa

If fi(x) # O for some i then we must have tha
not then & € 1. Thus V(/.J) CY([)uV(J)

@) If z € V(1) N'V(J) then f(r) = g(z) = Oforall f € I and g € J. Thus (f + g)(}) = 0
for all (f + g) € I + J (which Is all of I + . by definition).
Conversely, since 0 ¢ [,.J, forall [ € ! and g € J we know that f = f+ 0,5 =0

0 for all r and so z € J, and if

! So if z € V(I + J) then it vanishes in particular on all of I and all of
(iii) The only ‘point' which vanishes on x; for all i is 0, but 0 ¢ P(av,. .., a.), so
Vikalzo,
(iv) Every pointin P(ag, ..., an) vanishes on the zero polynomial, al

Lemma 2.1.5
An arbitrary sum

€ Iy and B © Ats finite

7 '2:; 5B

T

of weighted-homogeneaus ideals is @ weighted-homageneous ideal.

Proof. We first claim that an abitrary sum of ideals is an ideal. It is clear thac 0 € I, as
wellas rf € I forany f ¢ Jand r ¢ Ja,], 50 it rem: show that I is
closed under fume sums. Le\J pen aml g L_,‘\ 44 be elements of /. We note that
1= Y ep fs, where D 3 Bis finite and

o f5e tBeB
E 0 ifgep

B

Solet D= BUC. Then f +g = ¥ op(f} + g4) € 4, since (Ff + g) € I for each § € D.

To show further that this sum is a weighted-homogeneous ideal we use Lemma 2.0.11.
By definition, every element f in the arbitrary sum J = 3, 1 is a finite sum of elements
in the summands. That is, there exist /,,... . [, € T and f; € J; such that

[=3

But each 1 is weighted-homogeneous, and so each fi can be written as a sum of weighted
homogeneous elements g where deg g = j. Thus

5 ()

is an expression for f as a sum of weighted-homogeneous elements, and so J is a weighted
homogeneous ideal. a
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By Corollary 2.2.10 we know that weighted-homogeneous prime ideals <[z
correspond to irreducible varieties in .o}, and that maximal weighted hnmogenenus
ideals correspond to points. So if we split up Proj k. | into maximal and prime.
but-not-maximal weighted-homogeneous ideals and use this bijection coming from ¥ and

1 then we can consider P(a, ..., a,,) as a set of points in weighted projective space and irre.
ducible weighted projective varieties:

S0 if we just consider maximal ideals then Proj k, [
when we throw in the other prime ideals as well we enrich (he structure shzh(]
containing all the points of ., a,) as well as all the frreducible weighted projective

varieties in P{ag, ... ap).
Note 3.1.5
We could use this as an alternative definition of P(ao,..., an):

Flao,....an) = Proj k.

In fact, we might as well do so from now on, but when we speak of ‘points in B(ay,. .. a,)’
we still mean points in the old sense, and we still refer to the points of Proj k, [«
that correspond to varieties as ‘varieties',

This is an almost identical situation to when we define A Spee ki
more on this, see [Rei95, Sections 1.3, 1.6] or [Vak15, Section 3.2]

So it seems like just considering maximal ideals will give us pretty much the whole
picture of what Proj It looks like, and the prime ideals will tell us what the varleties inside
Proj It look like, We now make this rigorous.

Let it be a finitely-generated algebra as in Equation (3.1.2) and p < I an a-weighted
homogeneous prime ideal not concaining . = (yo. . ..,y.). Then p corresponds uniquely
to the weighted homugenenus vn‘me idaal ) r,& with I € § such that p = py
Purther, since (yo w that (. p,' i.e. pis relevanc (since p is
prime and thus lulllttl]] The slm'mnn unfn]ds in {he sarne way when m < /7 is a maximal
weighted-homogeneous ideal, giving us a unique maximal weighted-homogeneous relevant
ideal i < ka[zo, . . that [ C m and m = /1,

By Corollary 2.2.10, m corresponds to a point V(m) € Plag,...,an), but I © m
means that pe, © ¥{I}. Conversely, given any point in V{I} we see that it corresponds to a
maximel weighted-homogeneous relevant ideal of k,[zo, ... £, containing 1, and thus to
a maximal ideal of K not .. Similarly, the inclusion.
reversing bijection tells us that p corresponds to an irreducible weighted projective variety
contained inside V1), i.e. a subvariety of V(/), and vice versa.

So we have the bijective correspondence

{p € Proj i}

L (3.1.6)
is an irreducible subvariety)
*See (2858, Chapter 111, Section 8, Theoren
*Proaf by contradict the fact thi a o/
250f 59
where wiy, = 1 for all i, and J is the image of I in R(*), which is homogeneous (in the
straight sense since a = ( 1)) by the above argument.
S0 Theorem 3.3.3 and Theorem 3.1.8 tell us that
X = Proj R = Proj B =V(J) CP(L,..., 1)=pY, u]

We showed in Section 3.2 that our defintion of isomorphisms agrees with the usual
definition of isomorphisms between straight projective varieties. Thus we get the following
corollary, which is really just Theorem 3.3.9 phrased in a different way.

Corollary 3.3.10
Let X © PB(ay,....a,) be a non-empty weighted projective variety. Then X can also be thought
of as a straight projective varfety inside some B

3.4 A worked example

To check that we have a working understanding of Section 3.3 we now look at an explicit
example. This also gives us a chance to see hum ideals transform under truncation, and to
maybe help clarify the proof of Theorem 3.3.9.

The example that we choose is from [Tev, Exercise 5, Section 6.5), and is  variation on
[Rei02, Example 3.7].

Once again, we point out that we are not really covering the whole picture here - we are
dealing simply with the underlying topological spaces. As noted in Theorem 3.3.3, the best
source for the gory details is probably [Gro61, Proposition (2.4.7))

Example 3.4.1
Let f = 2% +4
Compute

Proj

“olution. Since f is weighted-homogeneaus, (
lurther, since f is irreducible and Cyy
Iheorem 3.1.8 we know that this is the variety

f) is a weighted-homogeneous relevant ideal.
2] is a UFD* the ideal (f) is prime, By

V(z® +4 + ) C B

20, 30)

tut Theorem 3.3.9 makes us wonder what this looks like as a straight projective variety
Using the ideas in the proof of Theorem 3.3.6 we see that

i Proj it Proj Ri3 Proj 119

is|a straightening of 2(12,20,30) = Proj C(yz20.50)[£. 1. 2]. So now we have to think how
thz ideal () < R wansforms under these truncations.

"1 Risa UFD then Rt] is also a UFD.
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L?mma 4.2.6
c Pbea nor:su\guia: plane curve and € its straight cover. Let G = ™ x % x 1%

Then

(i) the orbit space €' /G is a compact Riemann surface;

(if) the quotient map #: € — C/G is halomorphic of degree asaras;

(i) mult,(#) = for any point y € C.

Proof. We have already done most of the hard work for this proof, so we just need to fit all
the pieces mgether

Lemmas 4.0.6 and 4.2.5 say that €' is a compact Riemann surface, so Lemma 4.1.1 tells
us that ¥/ is a compact topological space. Theorem 4.1.3 gives us the rest of the claims
assuming that we can show that & acts holomorphically and effectively (since it is finite of
order aga; ;).

The kernel of the action of ¢ on

s
K={3eG|gy=ylorallyet}

but since we have assumed that a is well-formed, and thus that the «; are all pairwise
coprime, we know that u® 1 p* } for i # j. By definition, gy = yforally € C ifand
only if g = (A, A, A) for some A So the above comment tells us that no ¢ € (' is of
this form apart fram (1, 1,1), which is the identity in G. Thus the action is effective, since
the kernel is trivial. As for the map g, being holomorplic, this Follows straight away From
the fact that it is an algebraic map. More specifically, it is simply a polynomial map with
constant coefficients. [=]

Lemma 4.2.7
Let € * be a non-singular plane curve and T © [ be its straight cover, which is
alsa a non nugulm plane curve by Lemma 4.2.5. Let G = p™ x p® x u* act on C as in
ILemma 4.2.6. Then this induces an action of G on the homogeneous coordinate ring and

we have @ well-defined GIT quotient

w Proj §(T)

= Proj ¢

Proof. By Definition 4.1.5, we need to show that G is reductive and has linear action on.
the homogeneous coordinate ring 5(C'). Now G is reductive by definition, since it is finite.
Further, the action is lineas, since it acts diagonally. That is,

00y fw
E I
0 o/ \p

SCWIEL does this 00K [IKe?
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Proof. The fact that €' is a Riemann surface has already been proved in Lemma 4.0.6, and
[Kir92, Corollary 4.19] gives us the degree-genus formula.

S0 we take our non-singular plane curve ' C P given by some sufficiently-general
degree-d weighted-hemogeneous polynomial § ¢ k&, . r,], construct its straight cover
C ¢ P along with a quotient map 7: € — C. Now € is also a non-singular plane curve
defined by a homogeneous polynomial of degree-d, so we have our usual degree-genus for.
mula for €. But then the Riemann-Hurwitz formula tells us the genus of ¢ in terms of its
degree d. If we write this all our nroperly then we expect to get some sort of degree-genus
formula for non-sirgaidr sufficiently-gereral plane curves in P, and that is exactly what we
get

Theréem 4.3.7 [Degree-genus formula®]
[ € = € © Plag,ar, u2) be a non-singular plane curve where  is weighted-homaymeous
of degree d and sufficiently general, i the sense of Definition 4.3.1. Then, using the map nas
defined in Corollary 4.2.10,

L fd-1)(d-2
(+ +1 - aguaz )

go=——o
G0z 1/
where the branching index b{x) is given by
L e | d;
bim) 1 (as — 1) + gl v
CRTEY) 2 ST o i vl

Progji, First we appeal 1o Corollary 4.2,10. This, along with the Riemann-Hurwitz for
mula aid the degree-genus formula for straight projective plane curves (Theorems 4.5.5
and 4.3.6); 2=Ils us that

2= sl Sge=T] T bim) (438)

Now [Mir$5, Chapter I1L, Corollary 3.6] tell us that

” 1
et

where yi, ...,y are all the branch points of . $o all that remains to do is find and classit -
all of the branch points of .

Where would we expect to find branch points? Well, after a lirtle bit of thinking, we see
that the only branch points are those who have some zero coordinate, since that is the only
way that the size of the preimage can drop. That is,

{looxy™ o1y - gy i€ ™ 4= =z, =0 for some i
— T e e E

*Compare and contrast with [12n00, Theorem 12.2].
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5o we need to adjust our fraction to account for this - we need to add in some higher
order negative terms to reduce the ¢, for j > k. But then there might be some relations
between the relations of the #;, and in that case we have reduced the ¢; too much and we
will actually have more combinations of the , and so we will need to put in some positive
terms of higher order to make the ¢ larger, and so on.

We end this paper with one final example, which is again more of an unfinished problem.

Example 5,2.6
Lec's mysCrepear the method taPwe applied in Example 5.1 1 ipseerly T ger
surfaée given by a smooth quartic curve ¢ = worelt the divisor 2 = p

#We know that a canonical divisor & op.6

duivalent to a hyperplane divisor 1 <Ti,. for any line L . So by Riemann-Roch, we

now that #(np) = n — 2 for n = 5, since then deg(x — nD)} < 0 thus £ — np} = 0. By
llefinition, we can see that when n = 0,1 we get £{np) = 1, The question then is:
dalculate £(np) for n = 2, 3,47 We know that £(np) is non-decreasing, and if we can furcher
show that #(np), £(k — np) > 0 then we can use Clifford’s theorem to obtain some bounds,
blst this still gives us a few possible options.

It turns out that, actually, there is no one answer - it depends on the point p that we
cthose. We always have £(2p) = 1 (by non-hyperellipicity), and we can actually choose
tofget any of the possible values of ¢{3p) and ¢(4p) that we like.* So we have the following
posibilides for the Hilbert series coefficients:

1,1,1,2
£np) =4 1,1,2,2,3,4
1,1,2,3,3,4,5

For the sake of concreteness, let's just examine the first one here: assume that

b=ttt Y (m- 2™

m=a

Po(t)=1+e+ 82+ + 2t +3

Following our naive approach from before, then, we find that we can pick elements

v € £(p),w € £(4p),x € £

5p).y € L{6p),z € £(Tp)

that gendrate £(np) without any relations until we hit » = 10, and then we have too many
elements.

The n-tl coefficient of the series -expansion of A(t) = 1'[1 (1= t)(1-2")(1-25)(1-tT)
tell us how fgany elements of £{np) we can generate wi 7.y, 7, as in Example 5.1.1
Since we havlytoo many elements for n 2 10 we expect our Hilben polynomial to have the
same denomindgor as A, but with a negative term of degree 10 in the numerator to lowep
the coefficients fag ¢* in A when @ 3 10. This is where combinatoric intuition can hel" Us
understand a pmlwm about projective plane curves.

~Hiave & look at 8 queign avked by e AUCKGT OR st stackexhasgs. coa! (£l
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INTro

s degree 25 — 2 = 4 and is thus linearly

Supervisor: Prof. Balazs Szendroi

Abstract

Weighted projective space arises when we consider the usual geome
fox prvjecive space and allow for s tival weighis. O is ow
ore than enough interesting phenomena, but it is the fact that w
rises naturally in the context of elassical algebraic geometry that can
nn-Roch theorem w caleulate
and [ = p ¢ E is a point we obtain a non-negat

\ni). This gives rise to an cmbedding of & inside the

s a good idea to look at the things inside it. The
main content of this paper is the introduction and explanation of many basic concepts of
weighted p ve: space and its varieties. There are already many brilliant texis on the
topic ([Rei02; 1an00), o name but a few) but none of them are aimed at an audience
with only an undergraduate’s knowledge of mathematies. This paper hopes to partially
fill this gap whilst mainaining a good balance between ‘interesting’ and simple’.”
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So we have two mutually inverse polynomial maps, which we (for the moment) are
content with calling an isomorphism:

1,2) »

B po, s # 0;
otherwise,

‘Then understanding (1, 1,2) becomes a matter understanding the set X *. We don't
know yet what properties X has exactly, but we will find out later on.

One thing to notice though is that, on the patch {2 = 0} of X ¢ P, we have something
that looks a lot like the Veronese embedding of I into IP; the rational normal curve of
degree 2, also known as the flat conic.

The way that we came up with the idea of the map in Example 1.1,5 was to construct all
the degree two monomials, but where we consider z2 as being a degree two element already:
Generally, though, we see that it looks like we should be able to embed weighted projective
space into some straight projective space of high enough dimension, using something that
ooks remarkably like a Veronese embedding.

It's not entirely clear why exactly this should work ac this point, but it turns out to be
a much easier idea to justify once we have introduced the notion of weighted projective
ing the Proj and ion, later on.

12 Coordinate patches

On straight projective space, picking some 0 < we have the standard decomposition

P'={[go:...:2n]| 2¢ =0} L {jzo:...2n] | 2i 3 0} A"

where the sets Hi = {z, = 0} are closed, and 5o the U, = {z; # 0} are open."

It makes sense to consider the same sets 1, and U, in weighted projective space, and
even though we have yet to really define a Zariski-style topology" it turns out that these s
are closed and open (respectively) as before, in both the Zariski and quotient topologies.

In this decomposition the U, often called coordinate patches or affine patches, turn out
1o be very useful, since they cover the whole of projective space and are isomorphic to
affine space, which is much easier to visualise geometrically in most cases. So given some
projes ariety, we can see how it intersects with the affine patches U/ and study these
using all our familiarity with affine space.

But in welghted projective space we have a slight issus, namely that the U, are not
isemorphic to A", but instead some quotient of A" by a finite group. They still deserve the

e in the quarient twpology coming !

¢ d

be writken as
I ring, and w
i in Defin I|Uu£ 0

ve the expecte

define closed sets 10 be those o
have to worry abe
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Corollary 2.1.6
An arbitrary intersection of weighted projective varieties is a weighted projective variety:

1) ‘«(Lz) ViJ)

I akalro, ... wa) is a weighted-homogeneous ideal.

With Lemma-27T'4 and Corollary 2.1.6 in hand, we can now make the definition that we
To.

Definition 2.1.7 [Zariski topology]
‘The Zariski topology on + ) Is given by defining the closed sets of F(a
be thase of the form V() for some weighted-homogeneous ideal /

the weighted projective varieties,

One final thing to.n
STIEon of weighted proj

ving-omo e Nullstellensatz is how we can use \I\u
ctive space to understand these weighted projective varieti
The way that we define f(p 0 for some a-weighted. h:sumgc\\usm f and point p ¢ :’lr-l
is really by requiring that f(f) = 0, where j € A™"! "\ {0} is a representative of p. We
use the requirement of f being a-weighted.> cols to ensuie «hor this definition is
well-defined under a change 50 tepr-senatives.

S0 we can think of **/) as a quotient of the affine ‘cone™:

-
vir) AT O (1.1.8)

where V,a(f) = {z € A" | f(z) = 0 forall f € I} and we consider I < k[zy, ..., z,] 35 an
ideal in thefusual polynomial ring (i.e. with ail weights equal to 1, though really this dhesn’t
‘matter, sif ce the weights affect only the graded structure of the ring).

Definiti in 2.1.9 [Affine cone]
Given .. = V(I) for some weighted-homogeneous ideal I < k. [z
mean % ,([), so that Equation (2.1.8) can be written as

Note hat we don't simply write X \, {0} in Definition 2.1.9 since we don'r know a priori
that 0 € 7, but we clear this up in Lemma 2.2.8.

mulnuml 0,4, = 1, whence we recor
be understood in the sense of & loase m
g to constandl

ight projective spice. The use of the word
ing, but we will “ram now one speak of the
write cone in quokation marks.
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and, in particular,

{m € Proj it | m < R is maxiffatwaighted-homogeneous)
:: 3.1.7)

P reie-paing
Theorem 3.1.8

Let I < ky|zo, be a radical weighted-homogeneous relevant ideal. Then

Proj ),

T

but where Proj ft has this enriched structure of also containing points corresponding to all the
irreducible subvarieties of V(1)
Equivalently, let X = V(I) ¢

I{X)
where we have the same enriched structure as above.

Proof. This is just using Equations (3.1.6) and (3.1.7) in the same way as in Example 3,37
a

S0 in some sense* Proj and S(~) are mutual inverses, i.c. s oy
S{Proj R)) = R. o)

3.2 Mogghismsfisetibeen arigties

We idea of,mojphitesd is ore complicated than it might sound at firsy, What w cowlr her)
istbut @ briefPart of the whole story, as we take only what wg need. Dil fo time) we fapolg
getically) might skim over some details, and this seg ingiri¥ed fo be Mdve,of o Delitivast
to read other sources than a complete guide. Forffiore (and\better)|infofination, see [Har77,
Chapter I, Section 2], where the peal treatment is given % g ¢he laug ye of schemes.

In summary: treat this sectifn as a brief vacation from { teSgial Wour of mathematics to
the land of ailsgdry. '

{#d ndtvTiave Sbme nigtion of varieties, but as of yet have no rigorous|idex’of hiw ¥y
diduldidefinesmorplisms between them. Taking a cue from the affine and graight frofec
tive case¥ive vhinithat a preliminary definition could be a map given by{a polynorgidl in
each coordinate. But before we make this definition, a thought occurs th us: we€ jusc
formalised the underlying algebraic structure of these geometric objects, antiT'the affine
case a morphism of the coordinate rings induces a morphism of the varieties. So let’s take
this as a definition for the moment and see where we can get with it.

“The way of making this precise is categary theory, which turns out to have ver
to algebraic geom a whele. There is no quick introduction to this fat least, not ¢
but any good book an scheme theory should cover it, but [Vak

‘geamecry after covering a reasonable churk of category th
wouldn't cover it suthor apologises f

v exciting applicati

nd ch
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Pie isomorphism Proj i & Proj k') is induced by the inclusion R <s R (using the
ideas from Section 3.2). How canonical this isomorphism is, however depends on whether
we arE looking at case (i) or case (ii) from Thegrem 3.3.6. That is,/if d | a, for all i then
1) is simply 1t with all the gradings divided thrugh by d. So our yreighted-homogeneous
ideal I | If. however, we have that i «, for all i /* j, and ged{d,a,) = 1,
then the lsnmm’phlsm is a tad less simple. It comes frofithe cor-éspondence of prime ideals
mentioned in our proof of Theorem 3.3.3: weighted homogeneous prime ideals p = 29
correspond uniquely to weighted-homogeneous prime ideals p” < #'*/ in such a way that, if
J e, then f7 e pl.

So our first isomorphism is a very natural one, since 12, 20, 30 all divide by 2:

Proj 02 <} [zy.z L'l’u))( u-.l}\ [z, 3, ) = Proj Cte .’aﬂ[r 2]

But from now on, every isomorphism falls into case (ii) - there is no common factor of ali
of the u, only for pairs a,a,. Let's look at the first such one.

By definition, R =

We first look at the ‘numerator’ of this quotient. Since y.z ¢ R for all k € N, and
ged(5,6) = 1, we see that

S0 let’s turn now to the ‘denominator’.
The ideal in 57 corresponding to (/) should be { %), thus

where f is weighted-homogeneous of degree 30 and so ° is weighted-homogencous of
degree 1 But V(f) = V(S 10,15) by the more general fact that ¥(g) = Vig*)
whenever® g is irreducible and & ¢ N. So Theorem 3.1.8 tells us that

which daes makes sense, as J is weighted-homogeneous of degree 30, and thus / € C
s still weighted-homogeneous, now of degree 6. Finally for this first isomorphism, we sim
plify things a bit by using the isomorphism of graded rings

“We might not need such a strang conditiesgiv §, Bt we lose nothing he

by erring an the side of caution,

The induced action of € on kly, u1, | is given by

Slyo.u Uo:Ta, ¥, Oayli2)-

Recall that we have assumed that a is well formed, and hence that the a; are all pairwise
coprime, s 4 N % = {1} for i # 7. Thus

ke
= Proj

£

This section so far has been not much more than a wall of text consisting solely of
definitions, lemmas, and proofs, so let's now take a break and have a look at what we've
actually discovered and defined.

Given some non-singular plane curve ¢ = ¢’y ¢ 2, by using its straight cover T =
and the finite group G = 5 x u™' x 4" we can build two more objects, giving us three i
total, including €. We later claim (Corollary 4.2.10) that all three actually give us the same
thing, and so we have three ways of looking at non-singular plane curves. The three objects
we have are

(i) the non-singular plane curve € = €y € F;

(i) a quotient map #: © -» C/¢7 of compact Riemann surfaces (Lemma 4.2.6));

(iii) a GIT quotient map w: C' - C f projective varieties (Lemma 4.2.7).
Theorem 4.2.8

The abjects (i) and (iti} are equivalent. That is,  as weighted projective varieties.

Proof. It turns out that, not only are these varieties isomorphic, they are ‘nicely’ |sm1mry}u:
That is, the isomorphism of varieties arises from an isomorphism of graded rings, namely

Zia g

‘This induces the desired isomorphism of weighted projective varicties ' = C'fG. In this

section we denate this isomarphism by 1 + €, where

v orbite(po : p

Lemma 4.2.9
The objects (iii) and (ii) are equivalent. That &, the GIT quotient
', which has all the structure of a compact Riemann surface.

/G is exactly the orbit
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where we ance again use the assumption that a is well-formed.* The points with some zero
coordinates (i.e. the branch points y,) split into two disjoint types: those with just one zero
coordinate, and those with two. We introduce some temporary notation:

oy €C i =0, Ti11,Tig2 7

So with p, as defined in Lemma 4.3.2 we can partition all of the branch points y, into four
disjoint sets

v} = Go UG UGa U {po, ,u.m‘-

We look first at the (i;: we can see that if & € (5, then (z)| = a1 10443 = ageray
S0 we know how each of the points in & contribute to b{x} and we are only left \mndenng
how many points there are in each ©,. Lecs consider the example of (7. Without loss of
generality we can write points in GGy as |0 : 1 : Al Then asking how many points there are
in G, is equivalent to asking how many non-zero roots the polynomial go(A] = f(0,1,)
has. The fundamental theorem of algebra tells us that it has d roots overall, but counting
multiplicity. However, Lemma 4.3.4 tells us that all of the roots are distinct, and thus go has
d distinet roats. By definition, A = 0 is a root if and only if g, € C if and only if & 1 d, and
sowe see that

{w

ifa | d
1 ifaitd

Then we look at the p;: we don't need to worry about counting how many p; there
are, since Lemma 4.3.2 tells us that p; € C if and only if o, { d, and we can see that"

(p)l = 1.
Putting this all together we see that

. I ( ooaraz 1 ifa;|d;
I
Tl B oy 1 ifadfd
s 1 ifay |
4 1 ifatd

as claimed. Al that then remains 1o prove the formula is to rearrange Equation (4.3.8) into
the given form, a]

An interesting side-effect of Theorem -.3.7 is thal the complicated lookin; formula must
always give an integer whenever d and the a; satisfy the hypoth ses, becaust we know that
the genus of ¢ Riemann su face is going o be an ir: eger This s similar to Liow the easiest
waj, o show hat 5 an integer is to note that (}) is a way of counting things, and

50 m st be an mteger

e our feld

algebraically closed and all the a; are pairwise
| with

p2#0
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If we do some algebra, we see that

Folf) =

From this we can see that our discovery that there must be a relation of degree 10 seems
correct, and we speculate (and only speculate, not claim with any amount of certainty) by
Jooking at how the signs change that there are also relations of degree 11,12, 13, 14 with
syzygies of degree 16, 17.18,19.20 and higher syzygies between them of degree 23,24, 25,
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name ‘affine patches’ then, since the quotient of an affine variety by a finite group is again
an affine variety* but a little bit more work needs to be done to see what exactly they look
like.

Definition 1.2.1 [Quotient (:I‘.u‘fmc space by a cyclic xm\m\
Define an action of u™ on A", called the action of type 1an), by

(1.22)

wa, (20,00,

This induces an action of ;™ on k[x, x5 = wh z; and thus'

gives rise to the affine quotient variety

m~i|,.-‘-(m-..‘

as well as the quotient map 7, = (/)

4t klzo,. .., £,

Lemma 1.2.3 Mfﬂl\r. puuho\ in wps)
With U, = {|r ol € Blap,...,an) : 2 # 0} and the quotient A"
Definition 1.2.1 we have

defined as in

U e

where we mean isomorphic in the usual sense: there exists an algebraic morphism given by a
polynomial map with polynomial inverse. We often write A; = A

Proof. We can \wunuvnry point In L J iy | where the | is in the i-th place,
Wiite a point in A, as [( )], that is, the equivalence class of ¥ =,
consisting of the points *-orbit of y. Define the morphism » A by

<1 &n)

which we need to show is a well-defined map. Our concern fs that this map migh rely on
our choice of z;. By definition, where w; = w,, is 2 primitive a;-th root of unity,

CEIITD NPy

Now

Wik ()] e Bt ibn

and note that it is indeed an Inverse to ». We can show that It is well defined in exactly
the same way that we did for @, and clearly both o, and », ' are polynomial in each
coordinate. a
~See [Hon12, Defin
Again, see [Hos12, Definision

on 3.6, Theorer

81
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2.2 Théweighted projective Nullstellelisatz

Lemma 2.2.1 [Five useful facts)
Let 1,0 ok, Jx,] be weighted-homogeneous ilels and let V, W ¢
with V and I be defined as in Definition 2.1.1 we havt that

M XV) € kalan, | is @ radical weidhted-homogeneous ide
(i) If I € J then V(1) 2
(iit) If V C W then
(iv) 1 ¢ ()

) V(1)

1v(1).

Proof. (i) The fact that )
all points of 1 then so wo does f + g, as dod
Since k

nably scraightforward: if [ and g vanish at

f& for any other polynomial k

,,] is Noetherian we know then that I{V) = (/,...., ) for some

fie Iimhwamlumm € I{V') means that { mustbea \'«ugl\lul homogeneous.

Thus I(V') is generated by weighted-homogeneous elements, and is hence an a-weighted.
Tmm(munuou\ ideal.

mul!y. say that f* € UV). Then 0 = (f*)(») = f(p)" and s0 f(p) = © since

1] is an integral domain, So f € I(V) and hcnnc V') is radical

(i) If p € V(J) then f{p) = O forall £ € J, and thus for all f € I, 50 p € V(I).

(iif) If some polynomial vanishes at all points in W then it vanishes in pardcular at all
points in V' C W,

(iv) Let [ ¢ I, so that by definition f(x) = 0 for all z € ¥(/) and thus [ € IV(J).

() Letz € V(I), then f(z}
with (iv) to get that

Oforall f € I¥(I), andso x ¢
1) CV(I).

IV(1). Conversely, use (ii)
o

2 [Relevant ideals]
| is said to be relevant if it is strictly contained inside the irrelevant

Definition 2.
An ideal | «
ideal (zo,.

Just as there are multiple equivalent definitions for an ideal to be homogeneous, there
are multiple equivalent definitions for an ideal to be relevant. Sometimes one is more useful
than the other, so we list four equivalent conditions here, and when we use ‘the’ definition
of a relevant ideal in a proof or suchlike we mean any one of the following conditions.

Lemma 2.2.3

Let I < ky[xq,... ] be a weighted-homogeneous ideal. Then the foliowing are equivalent:

(@) 1 is striccly conrained inside (o, ..z, (Le. I s relevant);

 mare n the irelevai t ideal (and graded rings in general) soe [Agr+ 1 Chapter 6
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Definition 3.

1 [Morphism of wexghted 'pmjetme varieties, attempt 1]
) e weighted projective varieties, and f
Y) = kis,,..0
(3

We might (and should) worry about whether or not Definition 3.2.1 is well defined. Is
it always wue that the fi never all vanish s]mulmneuusly’ Is this map invariant under a
different choice of representatives for the point z ¢ ....an)? Both of these questions
can be answered satisfactorily, but we don't do so here, for reasons explained at the end of
this section. Sweeping any and all problems of this sort under the proverbial rug, we march
onwards.

Definition 3.2.2 [Isomorphism of weighted projective varieties]
Let F: X —» ¥ be a morphism of weighted projective varieties. Then F' is an isomorphism
if there exists another morphism of weighted projective varieties G ¥ — X such that
GeF idy and F o G = idy.

But here we hit what seems like a problem: different embeddings of the same variety
should definitely be isomorphic by any sensible definition, but we will see that different
embeddings might not necessarily have isomorphic coordinate rings. For example, we will
see in Section 3.3 that

¥ = Projklz, y] & Proj klz, 4] = V(v* - uu

but the former has coordinate ring k{z, ), and the lacter has coordinate ring k[, v.
uw). Sipce the number of generators is different in each, the two definitely can't be isomor-
phic as fyraded rings.

The \way to solve this problem is to point out the following: not every morphism of
vekigsles Qomes form a morphism of coordinate rings. So Definition 3.2.1 sounds great as a
partial defnition, i.e. that all maps of this form are indeed what we should call a morphism
of varietie}, but there are other maps that we should also call varieties. It turns out that
listening td) our original idea of polynomial maps would be sensible.

Definitior! 3.2.3 [Morphism of weighted projective varieties, attempt 2]
th F: ) ~+ Y be a map of weighted projective varieties, where X ¢ .. a,) and
by Then F' is a morphism if it is a weighted homogeneous polmmm in
Each coordinate, That is,

2.)

where F; € k

| is weighted-homogeneous.

Now we think about Definition 3.2.2. It still makes sense as a definition, but chere is
another way that we could maybe define an isomorphism, using the algebraic structure

27059

=Hfigs that all have isbmor-

Putting this all together gives us this composition of maps -
phic Proj:

Using the same process and notation as above, if we let 7' = 5'%) then we can repeat this

with T s T s T2, where

Now, having done this example, let’s talk through what it means. First of all, auhough we
have shown that our original weighted projective variety X = V(&' -+ 12,20, 30)
is isomorphic to ', it doesn't mean that it's exactly the same. The .zfﬁne cone over P! is
simply the plane A2, whereas the affine cone X over X is a degree-5 hypersurface inside
A%, It turns out in fact that X is a rather special singularity, see [Rei02, Example 3.7) for
more information, since it isn't too relevant here (but it is very interesting).*

Another thing to note is that we travelled down the algebraic path in our solution of
Example 3.4.1, but as we might have expected, we could have instead followed a more
geometric one. Equation (2.1.8) tells us that X could be thought of as the quotient variety

x=Y

and so we might have tried to construct this quotient explicitly in an attempt to understand
the structure of X. We chose not to, because here the algebraic approach gives us a nice
way of using zll the things that we've found out so far, and because it is arguably much
slicker.

But we could also think of weighted projective space as a quotient of straight projective
space, and construct X as a quotient of a straight projective variery. What do we mean by

“See also the answer ta ane
for a discussion about the links ta ¢

he authar's questions (which
Poincaré Homalogy Sp!

aleo displays their original misunder
Dot

dings)
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Proof. All that this lemma is really saying is that the quotient C'/ ¥ is geometric, as defined
in Definition 4.1.6. So we need to show that the preimage of each point in C /G is a single
orbit in €

Letp e C,
plane curve C C P using the isomorphism v:
point ¥{(p) = |po: p1 : pa| € P. Then

 be a point. By Theorem 4,2.8 we know that we can think of U/ G as the
+ €, and so we can think of p as the

is the orbit of a single point in T, namely (5, : 51" : g™, =}

We can now state and prove the main result of Section 4.2, which happens to be no more
than a corollary of all the technical heavy lifting we've done already

Corollary 4.2.10 _
Let C = C; © I be a non-singular plane curve and € ¢
#:T - O given by

its straight cover. Then the map

7 (o tyn syl = [ ul t
is @ surjective map of compact Riemann surfaces. Further, = is holomorphic of degree aoa s
and such that mult,[: |G| forany y € C.

Proof. Although there is a lot of notation here, due to all these isomorphisms and quotient
maps, the idea behind this is very simple, and has been pretty much explained by what we have
done so far. This is just putting all the mms together and chasing notation around.

First we look at the map 8 1] from Lemma 4.2.1. We
can represent . by polynomials 11 € kly it — . This induces
amap «: Projk ]

1z pal v+ (Mo(p) < I (p) < Ma(p)] = Ip < 0 < 03

% = T/G, and sa ¢ — 0, since they both map a point in T to
its G-orbit Then we use the \sumnrp}\]sm 'n 7 —» C to define the composition
1 o which has all the properties of # from Lemma ¢.2.6. But

Bois [yt yn o pa] + orbite ([ o pal) b 0 s 0 s g

Thus # o 4 = «, and using Lemma 4.2.6,
compact Riemann surfaces such that mult

is & holomorphic map of degree «
=|G,| foranyy € C.

1107 between
o

Figure (4.2.11) is intended to be an understandable summary of all the confusing nota
tion being thrown around, and the proof of Corollary 4.2.10 essentially aims to prove that
the diagram commutes.
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5 The view from where we've ended up

This final section is disappointingly* brief and also not entirely rigorous in the sense that, quite
often we simplify things and hope thar the reader will consult any of the given references before
believing too much in anything read here. Also, some terminology or notation might not be
explained. If this is ever the case then it is because it is considered standard (or as standard
as mathematical notation can ever be) in the general literature of the subject, so any of the
references provided, or other ‘classics’, should clear up what it means.

As my supervisor once said to me, ‘no piece of work is ever complete’, and that is par-
ticularly true here. We have only scraped the surface of weighted projective space and its
varieties, and we have done so in often simple language, which might not be the most naru
ral way of explaining things (it often isn't). But there are a few things that came up during
the writing of this text that the author found exciting and hopes that you might too. We
present them to you in this section in an atempt to entice and lure people in to this exciting
field of mathematics that comes under the vast umbrella that is ‘algebraic geomerry’,

During this text we have climbed a hill which, although minuscule in comparison to the
towering peaks and ranges of mathematics as a whole, is not a hill to be sniffed at. From
the top of this hill we can see a little bir more of the surrounding maths than before. It's still
looming above us, but is ever so slightly more in focus and seems just that little bit more
tangible and achievable. Let's take a look at the view from up here.

5.1 Elliptic curves and friends

Let D be an ample divisor’ on some plane curve C' C . Then we can define a graded ring

R(C, D) = B LC,nD)

where £(C,nD) fwritten as just £(n) when it is clear that we are working on €) is the
{iemann-Roch space of meromorric functions on ¢ with poles no warse than nl2. Using
reasonably staridard notation wé define £(C,n D) by:

} is meromorphic and (1} + D > 0}.

In  loose sense, whitdt means for glvisr to e ample s that e can reconstruct the
curve € from ¢ is graced ring R(C, ). To be slightly more precise,

Proj

Dy=c

but e embedding 6t ¢ given by this Pro] construs ion might not naturally sit inside E. This
is why it becomes very useful to look at this idea, /ince we get different ways of representing
the same curve in different weighted projective  paces.

is rLight
divisors, that s, I
1y

€ Canll
H1ar77, Chaprer V. Lorollary 3 2057

k
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0 Introduction

My work always tried to unite the
true with the beautiful; but when |
‘had t choose one or the ather, |
usually chose the beauriful.

Herman

0.1 Notation, conventions, assumptions, and citations

Effort has been made to avoid using too much presupposed knowledge on the behalf of
the reader, though a working knowledge of group theary, ring theory, topology, Riemann
surfaces, and suchlike is needed, and familiarity with some level of commutative algebra or
algebraic geometry, as well as projective geometry, would not go amiss. Most ‘big' theorems
or ideas are at least stated before use or mentioned in passing. For the sake of not getting
100 off course, some other sources will be referenced in the main text, usually in lieu of
‘proofs.

However, as we progress we require more and more tools, and it would be pure folly
o try to keep this text entirely self-contained when so many brilliant books and notes have
already been written about so many of the subjects which we touch upon in our journey. So
at the beginning of a section we might state a few results, or a topic, that we assume the
reader already has knowledge of, along with a reference for reading up on it if appropriate.
In general, this paper is aimed at readers of the same level as the author: very early graduate
students.

All the assumed knowledge of algebraic geometry can be found in [Rei88) (available
online), which is also just a very useful introduction to algebraic geometry as a whole, We
quite often quote results of affine algebraic geometry (though always try to remember to cite
some sort of reference}, but usually avoid quoting results of projective algebraic geometry,
since this should really be a special case of the things that we're proving here.” Another
very enlightening book by the same auchor is [Rei95) (also available online) which deals
with the commutative algebra side of algebraic geomerry.

There are a few other useful texts to have at hand as a reference (or simply as a beter
written exposition) for most general algebraic geometry and commutative algebra, as well
s the underlying category and scheme theory (I that floats your boat). One s [Agr+11
To quote from the CRing Project website:

The CRing project is an open source textbook on commutative algebra, aiming
to comprehensively cover the foundations needed for algebraic geometry at the level
of EGA or SGA. It is a work in progress.
The other is [Vak15], whose purpase is eloquently summarised in the text itself:
© use some basic facts about

“This does from Seetion 4 omy

wds though, sinee it s mueh ea
hing from scracch
tpo i //mank, berkeley . odu/~nsathev/cr 5tal
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Although the U; give us a nice affine space to work with, it is a quotient space and so
can be quite tricky to realise at times. Much easier is the idea of looking at the covering
space of the affine patches, since it turns out that if the covering space of the affine patch
has certain nice properties then so wo does the affine patch. We now define a few terms to
avold confusion after all this talk of ‘affine patches'.

Definition 1.2.4 I()u:)mm and um.ml;( affine patches
Given some subset . 4,,) we define the quotient affine patches X

g, « and the
covering affine patches X, C A" of X as

X,
X

where we use the isomorphism L/, A, and the quotient map =

So we have two different types of affine patches to think of: those that we glue together
10 get the ambient weighted projective space, which are in some way ‘folded up' (the quo
tlent affine patches); and those that come from ‘unfolding’ the aforementioned ones (the
covering affine patches). The reason for considering both is that they can be equally useful,
but in different ways. Really, the covering affine patches come into their awn in Section 4,
since we already know many useful facts about varieties in A",

2 Weighted projective varieties

Although we are dealing with so-called weighted-homogeneous ideals here, we are really just
laoking at homogeneous ideals (ie. graded submodules where we consider the ring as a module
over itself) of a graded ring, Thus most standard proofs can be used for the vast majority of the
lemmas in this section, and ar times we simply refer to them instead of providing our own. A
good reference is [Agr+11, Chapter 6, Section 1]

Before we define the notion of weighted projective varieties we need to cover a few for.
malities. The main one s ‘how do we define evaluating a polynomial at a point in weighted
projective space, and is this well defined?", It turns out that, just as in straight projective
space, evaluating a polynomial at a point is not well defined, but seeing whether or not a
point is a zero of a p is, as long as our p is but in a slightly
different sense. We start off this section in quite a dull manney, with quite a few definitions
\n a rnu‘ ,md most of them quite expected or natural, but then play around with them to

Definition 2.0.5 [WeightetPTymomial ring]
Dafine the polynomial ring in n + 1 variables with weighting a

k rn) With wt iz = a
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(i) 1 is strictly contained inside ka[zo, #+) and is not equal to the irrelevant ideal;
(i) V{TTy=sy
W) (29, ..,20) € rad($).
Proof. =5 If I is strictly contained inside the irrelevant ideal then it is clearly

strictly contained Inside the whole ring

Conversely, if 1 is scrictly contained inside the whole ring then it cannot have any con
stant generators, since (| -, for any # € k. Thus [ is strictly contained
inside the irrelevant Ilh.'.ll (since by assumption it is not equal to it)

Using Equation (2.1.8) we see that

V() =2 <=

(Hc o

rad(!], and so

(iif) <=+ (iv): By the the affine Null
using Lemma 2.2.1 (ifi) and proe

eding as ahove" gives

V(L)

{0}) €

Var(l) <=+ (20,...,2n) C rad(l)

Definition 2.2.4 [Maximal weighted-homogeneous ideals]

An ideal [ aky[zq, ..., 2v] is said to be a maximal u wnur{huumgl neous
and maximal amongst relevant weighted-homogeneous ideals
is a weighted-hamogeneous ideal such that I ¢ J, then J is 1\N\Lv
OF J = k20 .., 20])

s relevant

With all of these definitions out of the way, we now start our journey towards the
weighted projective Nullstellensatz. We do this by proving a few technical lemmas, and
then the Nullstellensatz drops out quite easily and naturally from them. Really then, the
way to understand this train of thought is to read Theorem 2.2.9 first and then come back
to Lemmas 2.2.5 and 2.2.8 and Corollary 2.2.6, otherwise it might seem like the lemmas
are pulled from thin afr.

] be a weighted-homogeneous ideal. Then rad(f) < k, za,
weighted- hamogeneous ideal

|isaboa

Proof. Let f € rad(J), so that f* ¢ I for some k € N. Write d = deg f and let

zali forogigd

(since for i > d this intersection will be empty). Then by Lemma 2.0.11 it is enough to show
that f; € rad(f) for all 0 i  d, since the f, are uniquely determined by /.

We look first at fy. Because f5 = f* 1 kyfzo,..., 2,4 (since it is the only term of

€ 1, and

high enough degree) and / is weighted-homogeneous, we must have that

we are happy with the fact that the irrelevant ideal is radical then we could just ke the sad of both
i
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again. If we had some bifectic 1 between prime (and maximal) ideals of the two coordinate
rings of our varicii== that nr=served enough information, such as inclusion, then the varieties
should be isomorphic, since the Proj of their coordinate rings will be ‘the same’, in a sense.
‘This happens as an example in Theorem 3.3.3.

It may seem like we are skirting around the issue of settling on a specific definiriett] and
that's because we are. Really, the only times we will talk about morphisms.iwetiiis paper is
when we are talking about isomorphisms, and then we will come-rercss just two cases:

(i)_the underlving.gea g EOmorphic;

(if) one of the underlying graded rings is a truncation of the other.

In case (i) it is very fair that, if two rings are isomorphic, then their Proj should be isomor
phic. In case (if), Theorem 3.3.3 will apply.

Unfortunately; since not much more theory than this is needed in this paper, not much
more theory than this is covered in this paper. The real story is one of morphisms of schemes,
and once again the author recommends the invaluable resource that is [Har77, Chapter I1).

33 Truncation of graded rings

We know that a variety, in the sense we've been describing them so far, depends on its
ambient space, and from our experiences with affine varieties we expect that we might be
able to embed the same variety in different weighted projective spaces. A classical example
is that of a Veronese embedding of a variety from  — P for some specific m 3z n. In fact,
this is the example that we study in hxumule 332

So since Theorem 3.1.8 gave 1= worting between algebra and gevisarry, it
seems like we shoule! . apie to find some process that we caii wnly to our coordinate ring:
that corresr=iuus to an embedding of the associated varieties.

Definition 3.3.1 [Truncation of a graded ring]
Let R = @z0l be a graded ring. Define R\, the d-th truncation of R, by

RY = (B R,

So R is also a graded ring, with grading given by i. That is, an element that has degree
di in 7t has degree i in f20.*

Exampic2.3.2
Let R = k{, y) wide=a nsual grading (ie. wiz, y = 1). Then

A = @D Ry = DS € klr,y] | deg [ = 2i}.

*The chaice of which grading to use in the truncated ring (either the ane that we use het
the grading the same) varies from author to authar. As lang as you pick one and stick with it do
as far as this author knows) matter
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this? Well, we claim that we have quotient maps

A {0}

(001 +18n)

where the labels on the arrows are the groups that we quotient by to obtain the surjection.
‘We study at a slightly more specific case of this in Section 4 (looking only at plane curves)
‘but the general idea stays the same. Up until now we have been studying the quotient along
the bottom of Equation (3.4.2), and the upper-left quotient is a specific case of it, giving the
usual well-understood case of projective space. The quotient on the right hasn't really been
mendoned at all yet, but it comes in useful if we want to use what facts we know about
straight projective space (which are sometimes ‘nicer’ than those about affine space) to gain
some know-how about weighted projective sparz.

4 Plane curves in weighted projective space

In this section we assume familiarity with some of the fundamentals of Riemann surfles and
maps between, them (see [Mir95, Chapters 1, 2]). We alsa assume knowleder.="orbit spaces,
covering spaces, -=nd some other concepts from topology; though tha-c-ure usually explained
when used. Finally, Wets wmssama. fcts. ahaut.=lscliie curves, though these are stated
befare being used.

Note 4.0.3

In this section (£ ctirn 4) onty we write a L and f{r} =
flzo,x1,x2). Bu he weight 2 = (a0, a1, 82) and the mdetem\ma(es E are still lurk:
ing about in the tackground, and when we say ‘weighted-homogeneous' we still mean ‘
weighted-homog : 1eous’. Note that when we write P* we mean projective k-space, as per
usual, and we wi! write P! for the projective line, so there should be no ambiguity in our
use of P to denot 2).

Now seems like a good time to take a look at a specific family of weighted projective
varieties, namely plane curves, so that we don't lose our geometric intuition, and so that we
have some (comparatively) concrete examples to hold on to and examine. As mentioned at
the end of Section 3, we will halfbreak our promise made in Section 0.1: we assume some
prior knowledge of straight projective algebraic geometry, and so don't deal with it as a
spacial case of weighted projective algebraic geometry. Instead, we now shift our viewpoint
ghtly to think of weight§d projective space as a quotient of straight projective space. By
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(4.211)

From all of the above we also get a bonus corollary for free. Even though Corollary 3.3.10
can give us the same result, we mention it here anyway, just to show that this could be an
alternative path of geuing to it.

Corollary 4.2.12
Let C C F be a non-singular plane curve. Then C is (isomorphic to) a projective variety.

Proof. We know that € = C/G by Theorem 4.2.8, and projective GIT quotients are, in
particular, projective varieties (Definition 4.1.5). a

4.2.1""WHET happens to the affine patches?

‘We briefly discuss the story of the affine patches now, though we don't dedicate oo much
time to it, since it is slightly irrelevant compared to the results we move on to state and
prove for the rest of the paper. But it is still interesting enough te be worth a mention.

Itis natural to think that there should be some way of ‘ungluing' a plane curve C into

its three affine patches, and then gluing them together in some standard way (homogenising
the polynemials in such a way that they agree) to obtain the straight cover (", This is slightly
complicated, though, by the fact that the covering affine patches map onto the guotient
affine pacches by =, (that is, the quotient map for a 4™ action), bur the straight cover maps
onto the plane curve by « — xi,x (that is, the quotient map for a ™ % p® x u°* action). In
a sense, we have to split C up into its quotient affine patches, map back up to the covering
affine patches, and then factor through some sort of patches, also in the affine plane, before
finally gluing them back together,
__ Writing D, to mean the quotient affine patches, [, to mean the covering affine patches,
T, to mean the covers of these affine patches we can draw a diagram of the situation: see
Figure (4.2.13)." We hope that the diagram is at least reasonably helpful and understand
able, though we do stress its irrelevance to what is to follow:

“We use + and = to mean the standard inclusion maps, and ~ over a bijection arrow (hooked and double
‘headed) to mean the standard isomorphism.
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Example 5.1.1 [Elliptic curves]
There is an exercise sheet [Rei] by Miles Reid on graded rings which cavers all of the below, and
far far more besides. It should be reasonably easy to find online.

Let C © ¥ be given by a non-singular homogeneous cubic f & and define
the divisor [ = p for some point p € €. We can now use the Riemann-Roch theorem which
tells us the dimension £(nD) of £(n.D) with a correction term involving a canonical divisor
K Of C:

(nD) — ik —nD) =deg D +1- g.

We know that deg n) = n, since [J is just the point p, and we also know the genus g = 1.
Itis a useful fact that degs = 2 — 2 = 0,50 here if n 3 | then deg{x — nD) < 0, and thus
the correction term £(x — nlJ) = 0 disappears. Finally, we know that the only holomorphic
functions on €' are the constant ones, and thus £(0) = C. So Riemann-Rock tells us that

1 n=0
M-ur,-—{ = (5.1.2)

n onxl
Using this fact, we can try to construct R(C. np} a little bit more explicitly.

We've already said that £(0) = C, so let’s look at when n 3 1, using Equation (5.1.2) to
tell us how many elements we need for a basis*:

n = 1: Let € £(p) be such that {z) = L{n). Since £(p) = 1 we know that £(p) = C and so
we can take = to be the image of 1 € C under this isomorphism. Thus = is an identity
map;

n = 2: By definition, = € £(2p), since

p= z)+p+p=(a) +p+ (&) +p 20

But & s the identity, and so = is really just a copy of ¢ that naturally lives inside £(2p),
and hence still the identity: So lec y be such that {z. y) — £(2p);

n = 3: As above, 2% 1y € £(3p), but we need one mare basis element, so let = be such that
{e,y. 2) = L(3p)

Now 2z € £{4p), and no other combinations of
exactly the right amount of elements for a basis;

= are, so we have

Here z° C(5p) gives us exactly the right amount of elements

again;

R TR T

= i Things start to change in this case: &’ i L(6p), which is
e elennentt 100 sty 50 we st kerve sorns Hnsar depﬁndence between them all.
Since x* is an identity map, we see that the only ‘new’ elements that we've got in the
n = 6 case are y* and z* (the only ones without a non-trivial power of ), and so the
linear dependence must involve them. By doing some linear change of coordinates’
we can assume that this equation is of the form

(5.1.3)

s section of being quick and

 Heze we skim over
ot Yery rigorous.

ull details in [Har?7, Chapter IV, Proposit
‘canstais, where che subseript represents

= independence, in keeping with our theme ¢

with suitable

aslr,y)andy - y+
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This baok is intended to give a serious and reasonably complete introduction
to algebraic geometry, not just for (future) experts in the field. [...) Our intent is
to cover a canon completely and rigorously, with enough examples and calculations
to help develop intuition for the machinery: [ ...] We do not live in an ideal world.
For this reason, the book is written as a first introduction, but a challenging one.
his book seeks to do a very few things, bur to try to do them well. Our goals and
premises are as follows.

These are not ‘classic’ references in the way that [Har77] and (Gro60] are, but they are
freely available online, which means that even without access to a library they are easy
(and free) to get hold of,

‘The main three references, and inspiration, for this paper were [Rei02; lan00; Dol82]

0.1.1 List of notation and assumptions

‘The following is a list of any notational quirks or assumed conventions used throughout this
paper, unless otherwise stated:

A C B means that A is a proper subset of B, and A C B means that A is a not

necessarily proper subset of H;
« if Aand B are disjoint sets then we (may) write A Ll B to mean the union AU B
+ rings are commutative and unital, with 0 # 1;
« k refers to an algebraically closed field;*

+N={1,2,...),500¢N;

- when we say ‘graded ring’ we mean specifically a %' graded ring;

ve write o | b to mean that a divides b, and  { b to mean that a does nor

« fora,be
divide b;

& is the multiplicative group of a field;

 is the field considered just as an additive group;

- 4" is the cyclic group of arder 5, usually realised as n-th roots of unity in

 wn is & primitive ni-th root of unity (so 4

- RY denotes the subring of R fixed by G, where 1 s a ring and G Is a group that acts
R

- k|zo,...,z,] Is the jal ring in n + 1 i ie. the z
are assumed to be algebraically independent, and the same goes for anything similar,
such as klu, v, w], unless otherwise explicitly stated;

» B means that f is a surjection;

a summation index, o a gen

al integer. Hopefully though, it
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That is, we think of =, as a degree o, monomial and thus, for example,
deg (][.,‘ ) e

If we omit the subscript a and simply write k[zy,. .., z,,] then we mean the polynomial ring in

+ 1 variables with the usual grading, i.e. a, = 1 for all i.

We sometimes use the phrase weighted degree to be clear that we are including the
welghting in our calculation of the degree. Note that de 0 for any A € k. Fora
general polynomial f € k,[zq, ..., z,] we define the degree f as the maximum of all the
degrees of the monomials in f.*

Note 2.0.6

An important thing to note is that th
doesn't change the underlying &-algebra st
ther, it means that until Section 3, when we'
our choice of notation k. |z,
particularly mater.

a, for some weight a = (a -
! if each monomial in f is eipqred/degree d
i such that

L =10l 2

an all0 s

We write k, [z,

. © kylzo,...,,] to mean the additive group of all weighted
homogeneous polynomi

Note that if [ is a-weighted-homogeneous of degree d then for
Definition 2.0.7,

y A € G, then, by

(20.8)
By definition we also
we can assume that A # 1

Soletp=|py:. € Plap,...,8n
have that p = |A"p, A" p,| for any A ¢
But then, using Equation (2.0.8),

‘i D.mlun

J(A"po,. .., A" pa) = f(po,

Thus the i
doe:
make sense

) ifandonlyif fipo,... pa) = 0.

of evaluating an a-weighted-homogeneous polynomial f at a point p € P(a)
' make sense In general, but looking at the points p € B(a) at which f vanishe
“Thac is, it is well defined to write that f ()} un,: some [ € koo, .., z,] and
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So fu € rad(/). But then f
homogeneous components
the above process with f,_; to &hmv that /i, € 1, nml thus f,

Aftar repeating this finitely many tmes (since the total demt‘ ﬂru.t]y decreases each
time) we have that f; € rad([) forall 0 € i € d. o

Jisa pz:\ym:mml of strictly smaller degree with
¥ [ hmmmk € N, so we repeat

Corollary 2.2.6
Let [ akalzo, ) be a weighted-homogeneous ideal. Then I
homogeneous ideal.

(1) is also a weighted:

Proaf. The affine Nullstellensatz tells us thac Vur(I) = rad(/), so by Lemma 2.2.5 we are
done. =}

Lemma 2.2.7
Let I aky[zo,

be @ maximal weighted- homogeneous ideal. Then 1 is radical.

Z rud(1), thus # @ and hence
V(rad(1]) # 2, 50 rad([) is relevant. 1) is & weighted-homogeneous ideal, by
Lemma 2.2.5. We also know that / C rad(l), but if [ is a proper subset of the
this gives us our contradiction, since I s maximal amongst radical weighted-homogeneaus
ideals. Hence [=}

Proaf. By Lemma 2.2.3 we know that (

The next lemma (Lemma 2.2.8) is really the key to the weighted projective Nullstel
lensatz, but it s largely just technicalicies and abstract faff, so we state and prove it as a
separate lemma just to make the statement and proof of Theorem 2.2.9 a bit more slick.

Lemma 2.2.8

Let I <ka[e ] be @ weighted-homogeneous relevant ideal and X = V(I). Then
LX)
Proaf. Let f be a generator of [e(X) (of which there are finitely many, since &z z,]is

, and so in particular /(%) Lumbmmg these two [ms
we see that f € I{X). Then, since all the generators of [,«( \‘ are in I{X),

Le(X)

For the other inclusion we use the fact that [ is relevant, and so X V() # . We
also know that X = V X)#@. Hence {X) is also relevant. So there are no
constant polynomials in E(X), since otherwise I(X) would be the whole of k, z z
contiadicting the fact that it is relevant. Hence :ffc (X) then f(0) = 0.

Ao, if f € I(X) then f(z) = 0 forall & € X, i.e. f(2) = 0 for all representatives

\ {0}. S0 f € Lus( X \ {0)). But since f(0) = 0 as well, £ € L(X), hence

[=]
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We note then that all polynomials in /t of even degree (which are exactly those that are in
R'™) are generated by &7, xy, . Thus

K,y = ke, o)

Now we know that Proj k[x. ] 1) , but what is Proj k[z.y]? First, let's
write the latter in a form that we know how ] deu] with:

By Definition 3.3.1 we have that degz?, xy, 5 = 1, and so taking wiw, v, w = 1 gives us an
isomorphism of graded rings. In particular, it's important to note that # ¥ R'? here, and in
general i # £,

But now we can use Theorem 3.1.8:

‘This is exactly the degree-2 Veronese embedding of 2! <» B2

Bl = Projk[r,y] = Projk

and hence Proj R  Proj R%) when R = klxr,y], and in fact this truncation corresponds
exacily to the degree-2 Veronese embedding.

It turns out that the above example is more than just a lucky coincidence. We have two
claims:

(i) ProjR = Proj R for any graded ring /t and

(i) Projk|z Veronese embed

ding B" < P

| (so with wt x; = 1) corresponds to the degree-d
("1

The second claim is slightly off topic in a sense, since it is a fact concerning only straight
projective space, but we can formulate it to deal with straight projective varieties too. It
is a very nice example, but we unfortunately don't have the time to delve into it here any
further

The first claim is one that we can apply tw our studies of weighted projective varieties,
and so we study it now.

3.3.1 The first claim

Theorem 2.3.3

Let st he a graded ring and d € N. Then

Proj R & Proj R

Proaf. All that we really e Gi'Froj R = Proj R as sets. Since really they
are endawed with so much more structure than we are covering here (namely, their structure
as sc remes) th : actual proof of this statement uses some ideas and definitions that we haven’t
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doing so, we also get < change to take ¢ break from the algebra side of things and to work
primaily with the geometry of these of jects that wa'r= studying.

An important hing to be aware ¢. is that the path we folie= here is almost certainly
much much longer than it needs to e, but (in the view of the authot)<»e uncovers plenty
of nice facts along Gie voav and Ziso develan multiple ways of viewing these shiects

ur“ n 4.0.4 [Plane curves in weighted projective space]
,&1,22) € S be a weighted-homogeneous degree d polynomial with no ‘e

Fit
pea[ed factors ‘Then

is o degree-d plane curve in

We say that a planc curve € is ireducible if f has no non-constant factors apatt frim
stalar multiples of itself, since then €’ cannot be written as a non-trivial union of oth=1 plane
curves-{asing Lemma 2.1.4).

n 4.0.5 [Singular points]
0. E1.22 be a degree-d weighted-homogeneous polynomial. Then we say that
is a singular point of [ if

ar| _of af

Bz = Bral,

81|, Bral,
We say that f is non smgu!ar ifit has no singular points. Similarly; we say that a plane curve
€ = €y is non-singular if its defining polynomial! f is either non-singular, or singular only
at points outside of C', .¢. only at points p such that £(p) # 0.

When a = (1,1,1), i.e. in the straight case, we see that our definition of plane curves
is exactly the same as the usual definition for projective plane curves. We now state a
fundamental fact about plane curves in straight projective space.

Lemma 4.0.6
Let C © P* be a non-singular piane curve. Then C is a compact Riemann surface.

Proaf. See [Mir95, Chapter I, Proposition 3.6). s

4.1 Some facts about different notions of quotients

In this subsection we state, and cite proofs for, a lot of technical lemmas that we will use in
Section 4.2. We can split these into three types by looking at what notion of ‘quotient’ they
concern: topological spaces, Riemann surfaces, and projective GIT guotients.

really just to si hin haut losing ge:
hai ¥

might as well ass

peaied factors then we'd need (o speci
with no repeated factors.

37 of 59

(4.2.13)

D; — * C; « »

4.3 The degree-genus Tezmula for weighted projective varieties,

In this subsection we often talk of whether or not a polynomial has an =. term, or an z.x
monomial, or something similar When we say this, we implicitly mean a non-zero term,
whether or not we mention it explicitly. So if for example, we say that [ has a =, term, then
we mean that f = Az, + g where A € &\, {0} and g is some other polynomial in the z..

4.3.1 What does syfi€iently general mean?

are equivalent via a projective
, apart from the singular cases that are equivalent to one of
s natural to think that these two examples will be difficulr,
y* doesn't even

sufficiently general if f|

.l/\,D

A degree-d weighted £
satistes tRe following for each i

5059

By doing some dimension counting we can show that z, y, z generate R(C p} with
only one relation between them, namely Equation (5.1.3). This sort of crosses over
10 using the Hilbert polynomial and some theory of generating funetions, which is
covered more in the next section, but the general idea is that

It o) a+28

which is exactly” the ¢* coefficient of the series expansion of

57 € Llnp)}| = [{{en B

5o this tells us that

2.3)[: 1, 2]

(g6)

¥* + ax'y + br® (from Equation (5.1.3)). Thus

R(C,D) =

where g =

> Proj R(C, D) = V(gs) ¢

1,2,3)

is an embedding of C as a degree-6 plane curve in £(1,2,3).

‘We can repeat this story but with ) = 2p, as this is still a very-ample divisor. But, up to
a constant multiple of the grading (or not even that, depending on our grading convention
for truncations), this is the same as looking at the 2-nd truncation:

2np) = P Limp) = [@ :_‘r.,,p) = R(C,p)"

This then gives us a different embedding, namely

R(C.p)

which induces an embedding of €' as a degree-4 plane curve in -

But why stop at 27 It seems like we might as well look at kp for | Table 5.1
summarises what we get when 1) = kp for different values of k.! As a reassuring fact, we
see that Theorem 4.3.7 tells us that the genus is 1 for all of these curves, as it should.

We know" that for k = 3 the divisor D, is very ample, and we thus® get an embedding
of € into P* ', but as k increases the associaed description of ¢ gets more and more
complicated. Bu( we also know that a smooth! C7 ¢ has genus 1, and is thus ulsu
an elliptic curve.™" Yet it doesn't appear in Table 5.1 at aU and we've just said that for &
all of the embeddings will be in *~'. So C- never arises from the above method.

roducsi

tion 3.15 lv.vnlssp(.\
ications of gen
Tian00, Secion 12.6] provies a horough explanation
! Compare with the list in [1an00, Section 12.4]

[Har77, Chapter IV, Corollary 3 2(b)] aga

biem, and the book a5 a whale for a great

in [Har77, Chapter ], just before Remark 7.4.1
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- + B means that f is an injection (and so we usually think of it as an embedding
uf A into B);

- 2.) = (2 ra) - that is, a hat above an element of
a 56¢ o ordered n-twple means ommision of that element;

- the phrase ‘projective space’, without either of the words ‘straight’ or ‘weighted’ in
front of i, is always taken to refer to both straight and weighted projective space.”

0.2 The main aim§

This paper is meant to serve as a beginner’s guide to weighted projective space, its varieties,
and some basic algebra that follows on from this. In some places the explanations might be
quite slow or dense, and the notation seemingly clumsy and complicated, but this is because
nearly all of the currently existing literature on these topics is relatively advanced (at least,
to an undergraduate or early graduate), so this paper aims to fill a gap in the market, as it
were.

Whenever there has been a decision to make in terms of either leaving some detail
out or including it, the lacter has almost always been chosen, even if this might not have
been the best editorial choice. This is because this paper is not intended to be a textbook,
where making the reader puzzle out details themselves helps enormously with their eventual
understanding of the topic, but instead really as an exercise for the author - to never leave
a proof or explanation as ‘an exercise for the reader’. This was how many of the proofs
were originally passed over in the rough notes that came hefore this paper. Bur after having
written the first draft of this papes, I then had to play the role of the reader, which meant
having to complete all the ‘exercises’ anyway.

At the end of the day though, this paper was written by an undergraduate student as a
summer project. Because of this, the author doesn't have a complete understanding of each
and every topic concained within, let alone of the surrounding area of mathematics and the
inner workings of the machinery. Sometimes questions are left unanswered — we apologise
for this.

0.3 An overview of the journey

We start off in Section 1 with the preliminary definitions of weighted projective space, giv-
ing an example or two, and introduce the idea of affine patches to mirror that of straight
projective space

Section 2 introduces the idea of a weighted projective variety and the topology to which
it gives rise. Again, this is very similar to the usual notion of projective varieties and the
Zariski topology on straight projective space, and so it seems narural to consider the idea
of some sort of weighted projective Nullstellensatz, which we do in Section 2.2. Finally in
this section we define the coordinate ring of a weighted projective variety, which has the
expected definition, bar the weighting of the algebraic indeterminates.

*Obviously both of will be defined Later on,
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2.0.9 [Weighted eneous ideal]
We say that an ideal f < ka[zo,.. ., zn] is a-weighted-homogeneous® if it is generated by a
weighted elements (of not the same degree),

bJ(-Ilec 2.0 IG
Leta = (1 an

d 1, < ka[ur, 2, y, 2] be given by

wys), J

Then [ is weighted-homogeneous, but ./ isn't, since deg » A#3

11 ||A\ul\1lgn: definition of weighted-homogeneous ideals]
leal I a k. [zo, | is weighted-homogeneous {f and only if every elem

written as

roof. This proof was originally going to be a simple reference to some pre-existing proof but
apparently everybody else has had the same idea ~ the author couldn't find a reference which
stated this facand didn’t leave its pgpof as an exercise to the reader. If this paper is good for
reference for peaple looking for an easy-to-find proof of

this fact.

Note

y in I, Eor
zli)

SNk, ..., Zuli € FEor. /this intersection is empty, .mll mm erivi
i > d). Yet another way of phrasing this is that / must satisfy | = °,(/

If I satisfies this above condition then for each i we find g," € (I Nk,
that

1) such

By definition, each g’ must be weighted-homogeneous of degree i. But then
1= (INkafxo,...,

is a way of writing / as being generated by weighted-homogeneous elements. So / is
weighted-homogeneous

sne ) = (Us{ai”s oo 00,

will s0p pointing <
riing with, -m-m\,u he case. The ¢
we have already said th
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Theorem 2.2.9 [Weighted projective Nullstellensatz]
Let i 3 be a weighted-homogeneous re

ant ideal. Then

Proof. Write X = (/). Tiien Lemma 2.2.8 tells us that

V(1) = I(X) = LX) = FADE o
Co-ollary 2.2.10 [Applied weighted projective Nullstellensatz)

The maps V and 1 give us an inclusion reversing bijection between weighted projective Visieties
and radical weighted-homogeneous relevant ideals

{

:‘mlwugh:r: hmngmrmu relevant ideals N weighted projective varietie:
ko i 24X =V(!

Further,
varieties, a

der this bijection, prime weighted-homogeneous ideals correspond to irreducible
d maximal weighted- homogeneous ideals* to points.

f. The first part of the statement follows directly from Theorem 2.2.9.

Next we corisider.the statement about prime ideals and irreducible varieties“Assume
first that J < k,[zo,...,z,] Is @ priewaighted-homogeneous relevant ide=-iac

X=V({l)=V(I)uV()=X,uX

be a decomposition of X, and assume that /; is radical (since V(1) ad(1,)) by taking
V of both sides of Theorem 2.2.9). We want to show that X @or X; = X. Since CX
we know that I;. We also know that V(1) v{ Vihl),
and thus § = I, (since the product of radical ideals is again radical). But / is prime, and
s0, since (crivially by the above equality) /ufz C I, we must have /; C I (wichout loss of
generality assume that [, € 1). Se [y € [ C Iy, hence [, land X

For the other direction, assume that X = V(i) is an imreducible weighted projective
variety and let fg € 1 be such that f,g ¢ I. Then X

X

is a non-trivial decomposition, because f,g ¢ I = I(X), and thus X
similarly for g).

Finally, the statement concerning maximal weighted-homogeneous ideals and paints.
Let I < kyr .] be a maximal weighted homogeneous ideal in the sense of Defini
tio 2.2.4. In particular then, [ is relevant, and |hus
1) € I{{z}), and using Lemma 2.2.7 we see that
mal weighted-homogeneous ideal, we know that ither 1

z})=1.

*Recall Def

tion 2.2.4.
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mentioned, and don't intend to, for the sake of time. One important thing that we don't show
is that RU)|f R{f~"]"*, and thus that in particular the degree-0 graded parts are equal.
Rather than picking apart a standard proof and discarding the bits that we won't use, and
hence potentially taking things out of context and missing the bigger picture, we provide here
a sketch praof with commentary, lifted largely from [Eis95, Exercise 9.5]. All of the statements
and theorems concerning integral extensons can be found in (Eis95, Chapter 4.4].

For a full proof of this statement see [Tev, Propasition 5.5.2], for example. And, of course,
this (and so much more) is covered in [Gro61, Proposition (2.4.7)].

First of all we note that there is an injective graded ring homomorphism K <» R
corresponding to inclusion, but this is not usually an isomorphism. So rather than looking
at the underlying rings themselves, we look instead at the structure of their prime ideals.

The above ring extension /) «» R is in fact integral, and thus every prime ideal of
R is given by the restriction of some prime ideal in / to ', but this is in general not
be a bijective correspondence. However, it can be shown® that when we mnslder only
weighted-homogeneous prime ideals, we do in fact end up with a bijection p s p 11 R
from weighted-homogeneous prime ideals of i to those in & s}

We can use Theorem 3.3.3 to simplify certain weighted projective spaces or varieties in
two different ways:

(a) reduce

(b) embed

+t,) to a well-formed weighted projective space

ay,) <+ BV for some large enough N (‘straighten out’ B(e

Both of these terms will be defined and explained next, before we approach an explicit exam-
ple and work through it as best we can in Section 3.4. We start with well-formed “mghted
projective spaces in Section 3.3.2 and then deal with ‘straightening out’ 2
Section 3.3.3. Really, the second is sort of a specific case of the first, since straight prcuecmre
space is a well-formed weighted projective space, but in another sense it is different entirely,
since we want to end up in a specific weighted projectiv straight projective space.

ed weighted projective spaces

Definition 3.3.4 (Well formed we\ghtsl
We say that a weight a = (aa, ... ) is well-formed if any ri — 1 of the a, are coprime. That
i,

1

forallo<i<n.

Definition 3.3.5 [Well-formed weighted projective space]
The weighted projective space (a, .., a,) is said to be well-formed if the weight (ay. . ,a,)
is well-formed.

Theorem 3.3.6

Given some weight a there is @ wellformed weight o’ such that P{ That is, any

the desails are

i : (or variety) into P for some large enough Q ‘we've already mentioned, realfy
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We have a few notational notes before we start that seemed rather pointless to put in
Section 0.1.1 since they are only really used here. Given a group action G on some space
X we write G, for a point p € X to mean the stabiliser subgroup {y € G | g - p = p}. We
write o, to mean a general n-th root of unity (s0 o, = w* for some 0 < k < n). Finally,
with a halomorphic map f: X —» ¥ between Riemann surfaces we write mult, () to mean
the ramification index, as in [Mir95, Chapeer 1, Definition 4.2].

ts-(orblrspacesy

Lemma 4.1.1 [Quotients preserve compactness]
Let X be a compact topological space and G some finite group acting on X. Then the ordjt
space X /G is a compact topological space.

Praof. This follows from the standard fact that a continuous image of a compact space if

compact, and that the quotient map is continuous (by definition of the quotient topology or)
the quotient space). [=

412 Quotients of Riemann surfaces by group actions

Definition 4.1.2 [Group actions on a Riemann surface]
Let GG be a group acting on a Riemann surface X. Then we say that the action of G is

- holomarphic if the bijection v,: X — X given by z ~ g - x is holomorphic for/all

gEG

- effective if the kernel K = {g € G | g =« forall r € X} is wivial

Theorem 4.1.3 [Quotient of a Riemann surface by a group action]

Let G be a finite group acting holomorphicaily and effectively on a Riemann surface X. Then
we can endow the orbit space X/C with the structure of a Riemann surface. Moreover) the
quotient map 9: X — X/G is holomorphic of degree |G| and mult=(d) = |G=| for any point
TeX

Proof. See [Mir95, Chapter [11, Theorem 3.4] 0

4.1.3 Projective GIT quotients

All of the following is taken from [Hos12), but has been phrased here slightly differently,
and in a different order, just to avoid gerting too carried away with the vast subject of
geometric invariant theory (GIT). We also oversimplify the background machinery wildly,
so do check [Hos12, Chapter 4] for the whale story.

Definition 4.1.4 [Linear action of reductive groups on projective varieties
\et a reductive® group G act on a projective varie . Then its action is said to be
wear if ¢ aces via a homomorphism G — GL(

here though, and all finice groups are reduetive
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« if a;  d then there exists some j # i such that

- B is said to be sufficiently general if its defining polynomial f is

Aplane curve € =
sufficiently general

The main reason for Definition 4.3.1 is the quasismoothness that it guarantees (see the
footnotes), and that explains most of the inner workings of what follows from here on in. Fora
more thorough treatment, see [lan00, Section 8].

One of the reasons that we settle upon Definition 4.3.1 is because it gives us Lemma 4.3.2,
which will come in use later. But we also want to make sure that we haven't restricted our-
selves so much that we end up studying a tiny subset of all possible plane curves. Another
way of looking at Definition 4.3.1 is that, if we say a polynomial is of degree-d then we want
ittoat least have an =/ * terms for all . Since this might not always be possible, depending
on the weighting, we sort of say that if this can't happen then we want the next hest thing.

Lemma 4.3.2
2., x,] be @ sufficiently-general degree-d weighted-homogeneous polynomial. Let
0, py=[0:1:0, and :0:1/ €2 Thenp, € C; fand only if a, 4 d

Praof. By our definition of sufficiently general we have two cases:

(i) ifa; | d then there is an =" term in /, and so f(p;) # 0, and p; ¢ C

(i) if &, 4 d then every monomial containing a non-trivial power of z; also contains some
non-trivial power of z; for j # 4, and so every term of f vanishes at py, thus pu € €. 01

Really though, condition (i) in Definition 4.3.1 is superfluous if we assume that  is also
non-singular. The reason that we have that condition is to ensure that if / is sufficiendy
general and if any of the p, are roots of J then they are not singular points. So if p, © '
then C is not singular at p;. But why do we make this restriction?

‘The chain rule can tell us that f is non-singular if /{1, ,y), f{x, Ly), and f{r 3, 1) are
non-singular for all (z,y) € A?\ {(0.0)} and J is non-singular at each of the pi. So, by
the above (which we state and prove in Lemma 4.3.3), it would suffice to check that f is
non-singular on the [/; to show that f is non-singular on the whole of B, This isn't a fact
to which we appeal at all, and so we don't give all the gory details of using the chain rule,
us slightly that our choice of definition might not be too bad - if
lar affine curves that glue together to make a weighted projective
curve will also be non-singular

end up sy e

(Definiri 4
[lan0e, 8.4 Corollary
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k degree of curve(s) ambient space comments

the classical Weierstrass equation
double cover of F* with 4 branch points
plane cubic with an inflexion at infinity
intersection of two qnadr\:s

P* section of Cr: =1

Table 5.1: Different embeddings of an elliptic curve € coming from Veronese truncations of
RIC,p)

It is an interesting question to ask why C; never appears from the process in Exam,
ple 5.1.1. Unfortunately, it is at this point that the author must once more throw up thefr
hands in confession and admit uncertaincy. A believe answer is that this specific embeddjing
is not projectively normal, but the details are beyond this text.

5.2 Syzygies and some homological algebra

This section raises far more questions than it answers. Whether.2/ds"ls due to a [tk of time or
a lack of knowledge on the behalf of the author is left intciirionally ambiguous.
In Example 5.1.1 we constructad 2 si:jective graded ring homoméiphism k. [0, 1, 2

R(C, D) with Yernel (5] Let’ consider 2 more general stiation where we have asurfective
graded ring homomorphism #: £, = k,[ro, . ... 4] — R(D) with kemel (g
degg. = d.. Then we can wrif the sequence

"3 RID) — 0

which §‘eXact at (D7, but not at S,.. To make this sequence exact we need a graded ring 5*
along with a geaded - ing homomorphism ¢ §° —+ 8, such thatim ' = ker & — (g,.. ... 90).
Considgr the mlp ¢: 5’ = L., 5, —+ 5, given by

which we write {1 }matrix-like notation as f ~+ (g1,....gx)f. This is not a graded ring
homomorphism, uj if we give . a different grading then we claim that we can make it
one. Write S, [—d.] th mean the graded ring S, but with a shift of grading by —d;. That is, if
5, is such thai dvg § = d then when we consider f as an element of S, d.] it has degree
d;. Let 8" = @, Sa[d:], so that we have the sequence

—= 85, —5 RD) — 0

which is exact at §, and A( ut not at &;_, 5.[—d
The question /s, if we carry on z

ding S 5. .. and 67, 0™, ier S smilar way, will
we ever end up juith an exact sequence o1 = langth? The wiiver is, maybe surprisingly,
yes.
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ojective space

The Nullstellensatz and the coordinate ring let us now do what algebraic geometry al
ways does: study the link berween algebra and geometry. This is the main motivation of
Section 3. We use the Nullstellensarz to explain the Proj construction and gain some intu-
ition with this algebraic definition of weighted projective space, noting the similarities to
that of the Spec construction in affine algebraic geometry. Using the idea of truncation of a
graded ring we show that we can often reduce a weighted projective space t @ simpler one,
where any (n — 1) of the weights are coprime. We give these ‘fully simplified’ weighted pro-
jective spaces the nice name of ‘well-formed". To ensure that we don't get lost in the heady
realms of abstract algebra, this section ends with a few worked examples and applications.

‘Sticking with the theme of following a standard algebraic geometry course we look next,
in Section 4, at plane curves, which are varieties in weighted p jective 2 space given by the
vanishing ot a single weighted-homogeneous polynomial: V(/) € P(a 2). We
show that sufficiently nice plane curves are also Riemann sumces and then use some of
the associated machinery (such as the Riemann-Hurwitz formula) to see what else we can
find out. This section culminates with a version of the degree-genus formula for weighted
projective plane curves.

Finally, Section 5 is a brief introduction to a few further ideas that follow on from the
theory that we have developed up until this point. We cover (speedily and not overly rigor.
ously) some ideas about the Hilbert polynomial of a variety and the 1t Syzygy Theorem.
It is probably the most interesting of all sections, but is purely expository, with references to
various sources that deal with the subject manter in more detail and depth.
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05 Corrections

It is absurdly unlikely that there are no miscakes in this paper. If you find any, or have
any recommendations for rewording or reordering of sections, please do email the author
at timhosgood®gmail.cor including the version date (as found on the ritle page) in your
message.

Al of the citations and references to theorem such-and-such in this paper have been kyper
linked, so clicking on them should take you straight to the appropriate statement or reference.

Apalogies are made in advance for the ofien averly-florid language that is most likely

not-at-all suitable for rigorous mathematics
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For the other direction, we assume that I is w .gnuu nmmgenmn sol = (g Pl
for sgme weighted-homogeneous gi. Note that {gf} x Thus

| is prime if and only {f whenever fg €I for

2.1 Weighted

Motivated by c
polynomial to
of a weighted pr
space.

scussion about defining what it means for a weighted-hi
point in weighted projective space, we can define now th
variety, much in the same way as one would for straight p

V()

{pe

Conversely, let V C Pfag, ..., a,) be a subset of weighted projective space. Define tje

associated to V by

ety fs sa i w0 be \rn.:hlubn T

jective
4 '3 wit

le. V

It's imbortant to boint out tha, although we cali (V') the ideal associated to v/, vie have
yut to pro e that it {crually is an‘ideal. We do this ir) Lemma 2.2.1
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is a contradiction. So we must

z})

}) is irrelevant, then {z} } 2
us V(1) =V {x} is a point.

Styfhat I
have that I({z}} = I. Thus vi({z})

NogH-ecF =" p ) be a point and defin<ithe ideal J <k, [ z
Yy
J | R - i}
so that ./ is weighted-homogeneous with J € I({p}). Thus I p}) is
rele Let a <k, zg, .., ,] be a relevant weighted-homogeneous w ph) € a.
Then @ G V{a), {p}, and so ¥(a) = {p}. This then tell{ us thac I({z
Burd )G radfa a. Hence a = I({p}), and I({p}) is a maxi

him: ge reon's deal

Note 2 2:11

Sinse't se bijection in Corollary 2.2.10 is only between non-empty weighted pidjective vari
eties a1d radical weighted-homogeneous relevant ideals, most of the theorems that we cover
from /tow on concerning a weighted projective variety X will include che hypothesis that X
is ngh-empty. Usually these theorems will be trivially true if X = 2, bu it is imponant to
nor: that the proofs we give assume (if stated) that X = V(/) is non-empty and thus /
i< relevant.

2.3 Coo/din ite | ng

We define the idea of the coordinate ring of a weighted proje-tive variety in this section, but
it won't be until Section 3.1 that we have 3 proper understa ad of it, or even much of a use.

Definition 2.3.1 [Weighted-homogeneous coordinaté fings
Let X = V() be a non-empty weighted projective variey. Then define the weighted
homogeneous coordinate ring of X to be

S(Xx)

If we write A(Y') to mean the coordinate ring of an affine variety Y* then

Kalzo,...,Ea] _ kfzo,...,

S(X >
{X

It's important to realise that we can't really think of the elements 0. S(X) §s polynomial
functions on X, since ‘evaluating a function at a point in weighted ~rojectivf space’ is not
a well-defined concept in general. They can be thought of as polyr omial fuslctions on the
affine cone though, but this isn't always much use, since a morphis nes doesn't
necessarily descend everywhere to a morphism of weighted projec ive varietied(this will be
covered more in Section 3.2).

a,) is isomorphic to a well-formed weighted projective spact

\J, 50 that Proj lf Smce ‘we might as well as.

there exists some common factor d of all the a:;

i) ao, .., . have no common factor, but there is some j such that
common factor d which is coprime to a,.

Ve use Theorem 3.3.3 for both cases.

, that d Ras for al

In case (i) we have, for all 0 < i 1, and thus =

us

Praj kq 2o Projk,

In case (i) we see that, since d is coprime t a;, the only a; term that will appear in R
is o and its powers. So R = ky ulzo,. .., 2%, .., ,], and thus

So, given some weight a = (ao, ...,
can use case (i) todivide all the a, through by d. We can repeat this untl the
1. Then, if any r — 1 of the o, have some common factor o', we can use case (i) 1o divi
G0y 1. . sap through by & until g

So in light of Theorem 3.3.6 there is usually no loss in generality g that a

weigited projective space is well-formed, unless we care about th ‘embedding. We

will not always assume that 2la BT, and if we ever do then we
¥ say so.

Example 3.3.7

Here are two particularly nice cases, the second of which will croj again in Section 3.4:

(1,1) = P! for any a,b € N;

b, be, ea) = F(b,be, ¢) NN (assumed to

l,e.¢) = PF(1,1,1) = P2 for any a, b,
be coprime, without lass of generality)

3.3.3 Embedding a,) inte PV¥

A good source that also covers the same material as in this section, and wifere the author first

read most of this, is (Tev, Section 5.5].

Now we take a look at using Theorem 3,3.3 to embed any weighted projecgve space

i = jective GIT quotient*]
Let G be a‘sgductjfe group Wil itmearm apmiectivilvy
ve quotient variety X /G to be ma projective Win

X) is the homogeneous coordinate ring of X.

Definition 4.1.6 [Geometric quotient’]
A projective GIT quotient map’ ¢: X —» X /G is said to be geomdric if the preimage ¢ ' [
of each point [] € X /G is a single orbit in X.

So if o: X -» XJG is a geometric projective GIT quotient then X /G is simply the
topological quotient (i.e. the orbit space) X/G. In particular then, X/G naturally has the
quotient topology coming from the quotient map X — X/G.

%2 Weighted projective plane curves as Riemann surfaces

We now make the assumption that our weighted projective space P is well-formed so that, in
particular, the a, are pairwise coprime. Note that we don't lose much generality by doing
this, since Theorem 3.3.6 tells us that any weighted projective space is isomarphic to a well
formed one. The anly information that we lose by passing to this isomorphic copy is the specific
embedding of our original variety, but here we are much less interested in the embedding of
plane curves and much more so in their intrinsic narure.

Lemma 4.2.1
Define® the homomorphism of graded rings

w4t kalzo,z1,23)

2] be weighted-homogeneaus of degree d. Then =a(f) is homogencous of

Proof. This follows from the definition of the degree of a weighted-homogeneous palyno
sl (Definition 20.7) [=

Note 4.2.2
We try to be consistent with the convention that the o ue’ghled pmmorma] ring has inde-
terminates z, and the usual poly I ring has i ut we slip

up, and sometimes for a good reasen (to avoid unnecessary mn‘p]‘ml‘mw with notation at
times). It is just a choice of notation, so doesn't affect that maths ac all, but can be confusing.
Just be aware.
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Lemma 4.3.3
Let f € k0.1, 73] be a sufficiently-general degree-d weighted-homogeneous polynomial. If
i € C (which happens if and only if u, 1 d) then p, is not @ singular point of C.

Proof. Assume that p; € C, so that
for some j # i, where m = (d

d. By our definition then, f contains an z;z;* term
term. Further, every other

monomial in 2 either has . for some ! 1 or is z, for some [ 3 1. Either way, every

, which evaluates to some
o

other monomial vanishes at p: and the only remaining term

#0, and 5o p, is not a singular point of

non-zero scalar. Thus

Finally, we state and prove one more technical lemma here. This one is seemingl;
related to anything we have mentioned so far, but ends up being 2 key part in the proof of
Theorem 4.3.7, 50 we get it out of the way now. The proof is messy but, in essence, simple.

Lemma 4.3.4
Let f €
pobynomial. Then f =

1,22] be @ sufficiently-general degree-d non-singular weighted-homogeneous
(as defined in Lemma 4.2.1) is such that all of

Jo.1,8, FA01, FLAD

have no repeated roots when considered as polynomials in A

Proaf. We prove that [(0,1, A) kas no repeated roots, and the other two claims follow in exactly
the same manner, mutatis mutandis.

Say for a contradiction that F(0, 1, \) has a multiple root A = ¢, so that (A—c
Also, since (0,1 0 we know that [0 : 1 : ¢ € C. We aim to show that [0 :
singular point of f, contradicting the fact that J is non-singular. For easier reading we s
this proof up into three parts - one for each partial derivative of

(i) Now, if y # 0 then

Twp.z) = F0p.2) + 3 ea'y's*

where e, € k

and this evaluates to 0 at [z

(if) Next we examine two separate cases:
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Thiorem 5.2.1 [Hilbert syzygy theorem*]
Le. % be a finitely-generated k algebra. Then every finitely-generated A-module A
¢ aded free resolution of length no more than r, by finitely-generated free modules.

s a finite

The theorem is a bit stronger than what we've heen asking for in our simplified lang uage,
bir in essence it tells us that we can always find a finite free resolution (i.e. turn our chain
inte,an exact chain of finite length). Let’s look at some simple examples.

Example 2:2.2 h =1)
If we take k = I"then we can stop where we stopped above. That is, we hav
) where tg = — 4. Then we have the (short) sva=t scuence

+ RID)

0 — Si[-d] — S. —="R(D) — 0

Example 5.2.3 [k = 2]

When = 2 we get a slightly more interesting case. Using the same matrix-like notatioras
before, we obiain the exact sequence

0 — Su[(d: + d2)] 25 S,

where (

2fi—anf

This is all very interesting, but doesn't yet seem to relevant to what we were Joing in
the last section. But we now provide a few examples and some explanation 250 why this
is acually all very interesting. Compare and contrast the following wirh-{Kei02, Proposi
tion 40y Fxample 4.4].

Example 5.2.4
We see that a variety which falls under the category of that in Example §.2.2.(s0 given by
1,)) has the Hilbert series

i—g
na-e

and one in the same family as in Example 5.2.3 has Hilbert series
1—th _phpphte ¢

mr-=) I

So if we can calculate the Hilbert series of a variety then, by writing it as 2 fraction and
changing the denominator, we can get a rough idea of what embeddings we can get from
it. We can see what the weights a, the denominator gives us, and we can say what sort of
relations and syzygies its defining pelynomials will satisfy by looking at the numerator. Wiy
is this?

em 1.13
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1 Weighted projective space

At a first glance, it's very possible that the idea of weighted projective space seems like a
needless generalization of the usual projective space (herein referred to as straight projec
rive space) to which we have all grown to know and love, especially when we show that we
can simply embed weighted projective space into a large enough straigh projective space.
But it turns out that, quite often, using a weighted projective space instead
ding results in much simpler equations and a generally more manageable beast. 5o some
projective varieties can be more easily described as weighted projective spaces (similar to
how some seemingly complicated varieties can turn out to be just a Veronese embedding of
some smaller swraight projective space), but there is also the fact that weighted projective
space itself encompasses the idea of straight projective space and allows us to study inter.
esting ideas in more generality. We cover some particularly narural uses and applications of
weighted projective space in Section 5.1.

Like in a lot of algebraic geometry, there are two main ways of approaching a topic:
geometrically and algebraically. The geometrie way below mirrors the method usually used
in approaching projective space and is a very ‘hands-on’ construction. The algebraic way
uses some language from very basic scheme theory, dealing with the Proj construction, and
is covered in Section 3.

1.1 Geometric construction of weighted projective space

Definition 1.1.1 [Weights and their induced action]
a,) with a and define the corresponding ac
o avoid confusion) on A™*" \ {0} by

(which we

A-(x0,... .3, A%Zo,..., A%z, 1.1.2)

as follows.

Definition 1.1.3 [Weighted projective space]
Leta = (ag,...,4,) be a weight. Define a-weighted projective space as the quotient

We write points in
class of the point
working in

It is easigssed®IWith weighted projective space once we
X Mother perspective under our belt, and so the 1 " of big examples will come at
the end of a later section, but here are a few right now to help build some kind of intuition.

M < W
o WE W WoTk

a< asli S{hl notational quirk we write VI to ncm\hc mmpmltnn V o, since this looks a lot
less messy. So instead of writing, { » we write VIV(]

Example 2.1.3
Here are some simple examples of

ind
will develop and uncover some more advanced machinery and techniques later on in this

sing just the definitions that we have so far. We

section and the next

V(z:) = {| a
V(z3* X we must have
0) gives us
X =(lro:1:1 0|
where we use that fact that |zo : x4 : 22 1/x: 20 x1 : xa| for the first case;

+ Whatis I'V(z])? Well 0if and only if x 0, since k is a field, so

.nkc iny value in k (as long as they aren't all simultaneously
atisf) 0 for n! r

We will later see that weighted projective varieties are in fact also projective vari
in the usual sense, and so they really are deserving of the name ‘varieties'. But then
doesn't seem 00 unreasonable to hope that we could define some sort of Zariski topology
on weighted projective space with our weighted projective varieties, so we state and prove
a lemma that lets us do so.

Lummzn
Let 1, J

1 x| be weighted-homogeneous ideals. Then

(0]
(i) v(I V(J, V(I+J

(i) &

)

land g, € J,
er all of  or all of
vanishes on all elements of 1.J.

Proof. (I An elemeiit of JJ is h\ defi
’h tells usnat
aybe some of bnlh) lhul it dcfm
IJ for alMf € fand g € J. Since s is Noetherian,
I=( fx) and J 515, P if r vanishes on all nf”mcu in particular
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artant is the fact chat isomorphic weighted projective ies might h !\c
weighted rings (again, covered in Section 3

3 An algebraic approach

3.1 Explaining Proj with the

For this section we take for granted a knowledge
Many of the theorems in this section could be,
but we tend to consider only the case when
straying too far into the world of schemes
Recall Section 0.1.1 - when we say that a ri

graded rings (see (Agr+ 11, Chapter 6]).
and proved for general graded rings R,
finitely-generated k-algebra, to avoid

s graded we mean specifically Z*°-graded.

ded ring R, but here we only really define it
ients of k, [z z,] by radical a-weighted:
, that s, coordinate rings S(V(J)). Note th:
G R, so that it is in a sense non-trivial

The Proj construction is defined fos
for specific types of graded rings,” name!
homogeneous relevant idea
requiring / to be radical sim;

means that

[Proj of a finitely-genexfited k-algebra
tely-generated k-algebra of the form

(3.1.2)

in the quotientjby ty fo= wix,), and / is a geffica]
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specific case of Section 3.3.2, since the weight (1,..., 1) is well-formed, but in a sense it is
also very different, since we are aiming for a specific well formed weighted projective space.
We start this section with a technical lemma.

Lemma 3.3.8
Let*
k,[x x
R i
for some radical weighted- homogeneous relevant ideal I <k, [zo, . . ., z.,). Then there exists some
d € N such that R is generated by R.
Proof. We can simply apply the more general proof of [Tev, Lemma 5.5.3]. o

deals in 5'° not (unlammz
e in exact (vr':spu'lden:e ik prine weighted humgenms ideals in § not con

g... Thus, since 1 < .} is a prime weighted-homogeneous relevant ideal
e weighted-homogeneous

2] not conainin k.o £

where J is prime weighted-homogeneous and such that V(J) € Projk.[x o] is
non-empty (since J doesn't contain & =

By Lemma 3.3.8 we can find some d ¢ N such that R is generated by Ry. In R the
elements of By have degree | by definition, and so

gice engggh B].’me curve C;, the staight cover C i o
saying what exactly we mean by ‘nice

/) is homoge
2 then

its straight cover C

Proof. Define m.(x.) = = ma{z2)). Then the

chain rule tells us thar

all

for any p = [ S0 if we can show that neither of the 2L or the 2
simultaneously vanish at any point in C; then we know that C; is non-singular

= 1 for any i then 2% = 1, and so we cannot ever have all vanishing simulta-
atany poin Ife, > 1 forall i then %2 ,and this is zero if and only
), 50 the only ‘point’ in 2 at which all %
. Thus the 2™ cannot all simultaneously vanish anywhere on P

but this is not a paint
, or thus anywhere in

is such thar all of the
such that g’ € Cy (since

Now, say for a contradiction that p =
simultaneously vanish at r, = p,. Then &/

0) and all of the 7 vanish at z, = o
0 of 58,
ifc(f Othen (=
~Othen 7 =
In both cases we see that % evaluates to O at [z 1y : 2] E
(iii) Finally,
a . g
05 " gc -
1,¢) = O tells us that
50 A(0, 1,¢) = 0. Thus ZZ evaluates to 0 at o

432 Ri Hurwitz and the usual degree-genus formula

Here is where all the hard work in Section 4.2 pays of. With our idea of constructing a
Riemann surface for a plane curve C C F, along with a surjective map of Riemann
surfaces 7: C —» C with parcicularly nice properdies (maialy the fact that it is holomorphic,
f Corollary 4.2.10 comes in useful), we can now look at using one of the particularly
powerful theorems from the study of Riemann surfaces: the Riemann-Hurwitz formula

Theorem 4.3.5 [Riemann-Hurwitz formula]
Let R, S be compact Riemann surfaces and f: R —

Then
rus-5 5 o)

and gx = ${x(X) +2) is the genus of the Riemann surface X.

be a non-constant holomorphic map.

Proof. See almost any text on Riemann surfaces, e.g. [Mir95, Chapter II, Theorem 4.16].
D

Theorem 4.3.6 (Degree-genus formula for scaight projeccive plane curves]

Ler C be a non-singular degree-d plane curve. Then C is a Riemann surface with genus
e given by
- _ 2]
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Well, let X C P* be a projective variety with homogeneous coordinate ring S(X) =

. Then we can construct the Hilbert series Py (t) of X by considering
D on X as we did sbove:

Py -—g,

some ample i

1)

Using Riemann-Roch we can usually find #(m D) explicidy, often by choosing D = p to be
a specifically nice point in X. Then, ignoring any issues of convergence (by assuming that |¢
s small enough), we can Ty to rewrite this series as a single fraction. This is probably best
explained here as an example, since we are being nowhere near rigorous enough to Ty t©
explain ourscives in proper mathematical language.

Example 5. tic curves, continued!
This example is a continuarion Example 5.1.1, and so, in particular, all notation remains the
same.

We've already calculated £ €, and so we know that the Hilbert polynomial

of our elliptic curve is

forp

Now, indeed

and by our previous comments this looks like an embedding of C into
vanishing of a single degree-6 curve. Similarly

BP0+ ... =

which both agree with the embeddings that we already know. namely C;
CCF

The idea of generating functions and the combinatorics behind all this can really help
to give us some inguition as to why we can read off such daa, and why the mumerator tells
us about the relations. If R(X, D) has generators zo. . . such that z; € £{X. a;D?) then
to see how many combinations (ie. products) of these lie in £(kD) we simply look at cx,
defined as the k-th coefficient in the series expansion of

But if there are some relations between the z; then we won't be geing the full amount
of distinct combinations all the time. That is, we won't have o distinct combinations of
the =, in £(X.c: D) when k becomes too large, since there will be some cancellation, and
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Sed ut perspiciatis unde omnis iste natus error sit
voluptatem accusantium doloremque laudantium, to-
tam rem aperiam, eaque ipsa quae ab illo inventore
veritatis et quasi architecto beatae vitae dicta sunt ex-
plicabo. Nemo enim ipsam voluptatem quia voluptas
sit aspernatur aut odit aut fugit, sed quia consequun-
tur magni dolores eos qui ratione voluptatem sequi
nesciunt. Neque porro quisquam est, qui dolorem ip-
sum quia dolor sit amet, consectetur, adipisci velit,
sed quia non numquam eius modi tempora incidunt
ut labore et dolore magnam aliquam quaerat volup-
tatem. Ut enim ad minima veniam, quis nostrum ex-
ercitationem ullam corporis suscipit laboriosam, nisi
ut aliquid ex ea commodi consequatur? Quis autem
vel eum iure reprehenderit qui in ea voluptate velit
esse quam nihil molestiae consequatur, vel illum qui
dolorem eum fugiat quo voluptas nulla pariatur?
At vero eos et accusamus et iusto odio dignissimos
ducimus qui blanditiis praesentium voluptatum de-
leniti atque corrupti quos dolores et quas moles-
tias excepturi sint occaecati cupiditate non provident,
similique sunt in culpa qui officia deserunt mollitia
animi, id est laborum et dolorum fuga. Et harum
quidem rerum facilis est et expedita distinctio. Nam
libero tempore, cum soluta nobis est eligendi optio
cumque nihil impedit quo minus id quod maxime
placeat facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem
uibusdam et aut officiis debitis aut rerum necessitat-
ibus saepe eveniet ut et voluptates repudiandae sint
et molestiae non recusandae. Itaque earum rerum hic
tenetur a sapiente delectus, ut aut reiciendis volup-
tatibus maiores alias consequatur aut perferendis do-
loribus asperiores repellat.
Sed ut perspiciatis unde omnis iste natus error sit
voluptatem accusantium doloremque laudantium, to-
tam rem aperiam, eaque ipsa quae ab illo inventore
veritatis et quasi architecto beatae vitae dicta sunt ex-
plicabo. Nemo enim ipsam voluptatem quia volup-
tas sit aspernatur aut odit aut fugit, sed quia con-
sequuntur magni dolores eos qui ratione voluptatem
sequi nesciunt. Neque porro quisquam est, qui do-
lorem ipsum quia dolor sit amet, consectetur, adip-
isci velit, sed quia non numquam eius modi tem-
pora incidunt ut labore et dolore magnam aliquam
quaerat voluptatem. Ut enim ad minima veniam,
quis nostrum exercitationem ullam corporis suscipit
laboriosam, nisi ut aliquid ex ea commodi conse-
quatur? Quis autem vel eum iure reprehenderit qui
in ea voluptate velit esse quam nihil molestiae conse-
quatur, vel illum qui dolorem eum fugiat quo volup-
tas nulla pariatur? At vero eos et accusamus et iusto
odio dignissimos ducimus qui blanditiis praesentium
voluptatum deleniti atque corrupti quos dolores et
quas molestias excepturi sint occaecati cupiditate non
provident, similique sunt in culpa qui officia deserunt
mollitia animi, id est laborum et dolorum fuga. Et
harum quidem rerum facilis est et expedita distinc-
tio. Nam libero tempore, cum soluta nobis est eli-
gendi optio cumque nihil impedit quo minus id quod
maxime placeat facere possimus, omnis voluptas as-
sumenda est, omnis dolor repellendus. Temporibus
autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet ut et voluptates repu-
diandae sint et molestiae non recusandae. Itaque
earum rerum hic tenetur a sapiente delectus, ut aut
reiciendis voluptatibus maiores alias consequatur aut
perferendis doloribus asperiores repellat. Sed ut...
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