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Travelling pulses instead of traveling fronts for FitzHugh-Nagumo: Add a
slowly changing “recovery” variable w .

ut = uxx + f (u)− w
wt = ε (u − γw) .

A travelling pulse: u vs ζ = x + ct
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Travelling wave equations:

u′ = v

v ′ = cv − f (u) + w

w ′ =
ε

c
(u − γv)

Suppose that ε = 0, so w is constant. Then w controls the speed,
amplitude, and direction of the traveling front.
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Equation for a travelling front:

U ′ = V

V ′ = CV − F (U) + w

Let c∗0 be the speed of the front when w = 0. As w increases, the speed of
the front decreases.

If ∫ u+

u−
(f (u)− w) du = 0

then (one can show), the speed is zero (a standing wave)
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Increasing w further (c is still taken ≥ 0), the “fronts” turn into “backs”
(u decreasing).

The speed increases, until some w2 such that c = c∗0 again. The
symmetry of f (u) = u (1− u) (u − a) around its inflection point implies
that such a w2 exists.
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Three models of neural behavior:

FitzHugh-Nagumo model of a nerve axon:

ut = uxx + f (u)− w
wt = ε (u − γw)

with
f (u) = u (1− u) (u − a) .

Pinto-Ermentrout model of a neural network:
∂u(x ,t)

∂t = −u (x , t)− v (x , t) +
∫ ∞
−∞ J (x − y) S (u (y , t)) dy

1
ε

∂v (x ,t)
∂t = u (x , t)− βv (x , t)

where S is the firing rate and J gives strength of connectivity within a
population of cells along the x axis.

G. Faye (like Bressloff, Kilpatrick; includes synaptic depression)
∂u(x ,t)

∂t =
∫ ∞
−∞ J (x − y) q (y , t) S (u (y , t)) dy − u (x , t)

1
ε

∂q(x ,t)
∂t = 1− q (x , t)− βq (x , t) S (u (x , t))
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In the integral equation models we will assume that S is smooth.

Take

J (x) =
b
2
e−b|x |.

Fourier transform or differentiation converts the integral equations to
PDEs

ζ = x + ct converts the PDEs to systems of ODEs, ′ = d
d ζ
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u′ = v
v ′ = cv − f (u) + w
w ′ = ε

c (u − γw)
(FHN)

u′ = w−u−v
c

w ′ = z
z ′ = b2 (w − S (u))
v ′ = ε

c (u − βv)

(PE)

u′ = v−u
c

v ′ = w
w ′ = b2 (v − qS (u))

q′ = ε
c (1− q − βqS (u))

(FAYE)
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Look for traveling pulse solutions p:

lim
ζ→−∞

p (ζ) = lim
ζ→∞

p (ζ) = p0,

where p0 is an equilibrium point of the system.

homoclinic orbit

Our goals in this part are:

Outline the proof of a non-trivial extension of the results of Faye
about existence of pulses for his model

Show why existence for (PE) is apparently harder than for (FAYE)

Discuss the extension of results on (FHN) to more general functions f .
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FitzHugh-Nagumo:

u′ = v
v ′ = cv − f (u) + w
w ′ = ε

c (u − γw)

Choose γ so that this system has only one equilibrium point, (0, 0, 0) .

It has been shown that if f is in the cubic form above and ε is suffi ciently
small, then homoclinic orbits exist for at least two positive values of c. See
Hastings and McLeod, 2012, for a recent exposition.
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Recall that for FitzHugh-Nagumo we have considered the existence of
travelling fronts, which exist if ε = 0.

Setting ε = 0 in the
Pinto-Ermentrou pde gives a single integral equation, studied by
Ermentrout and McLeod in 1993:

∂U (x , t)
∂t

=
∫ ∞

−∞
J (x − y) S (U (y , t)) dy − U (x , t) .

They proved the existence of traveling fronts for a wide range of functions
J and S .

However, no existence proofs for pulses has been obtained for (PE).

For most of this lecture we will outline such a proof for the model of Faye.
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Results of Faye:
u′ = v−u

c
v ′ = w

w ′ = b2 (v − qS (u))
q′ = ε

c (1− q − βqS (u))

(FAYE)

S (u) =
1

1+ eλ(κ−u)
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Equilibrium points:

u = v

w = 0

q =
u

S (u)

q =
1

1+ βS (u)

We can choose parameters so that the function u
S (u) has an S - shaped

form and there is a single equilibrium point.
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Fast system (ε = 0):

U ′ = V−U
c

V ′ = W
W ′ = b2 (V − qS (U))

where q is constant.

Stuart Hastings (University of Pittsburgh) Existence of Traveling Pulses in some Neural Models June 2, 2015 15 / 45



U ′ = V−U
c

V ′ = W
W ′ = b2 (V − qS (U))

(FF)

Consider values of q ∈ (qmin, q0].
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Three equilibria for the fast system:

W = 0

V = U = uq,0 < uq,m < uq,+.
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Theorem (Ermentrout and McLeod): The system (FF) has a traveling
wave solution (U,V ,W ) with c > 0 connecting (uq,0, uq,0, 0) to
(uq,+, uq,+, 0) for each q ∈ (qmin, q0].

This wave is a front (U increasing)
if
∫ uq,+
uq,0

(qS (u)− u) > 0 and a back (U decreasing) if∫ uq,+
uq,0

(qS (u)− u) < 0.

(ode proof straightforward)
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Front and Back waves for the fast system of Faye
(waves move left)

front

back

q1 ∈ (qmin, q0) , close to qmin.
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Theorem (Ermentrout and McLeod, Faye) Let Uq be the traveling front
or back solution for some q ∈ (qmin, q0]. Then the speed c (q) of this
solution is

c (q) =
1
q

∣∣∣∫ uq,+uq,0
(qS (u)− u) du

∣∣∣∫ ∞
−∞ U

′
q (ζ)

2 S ′ (Uq (ζ)) dζ

With S (u) = 1
1+eλ(κ−u) there is a unique q̄ in (qmin, q0) such that

c (q̄) = 0. For higher q, the connecting wave is a front, while for
q ∈ (qmin, q̄) the connecting wave is a back.
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1
q

∣∣∣∫ uq,+uq,0
(qS (u)− u) du

∣∣∣∫ ∞
−∞ U

′
q (ζ)

2 S ′ (Uq (ζ)) dζ
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Faye proves the existence of a pulse using the method of geometric
perturbation.

The first step is to construct a “singular solution”, which
consists of four pieces.

The first piece is the front with speed c (q0) .

The second part is a slow trajectory moving along the right branch of the
nullcline u = qS (u) .
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The third part of the singular solution is a “downjump”, or “back”, from a
point q = q1 determined by where c (q1) = c (q0) .

The singular solution
is said to “jump down above the knee” if q1 ∈ (qmin, q̄) .
Numerical computations suggest that often no such q1 exists. In this case,
there is still a traveling back with speed c (q0) , but it is at q1 = qmin.

Nullclines: Red, Blue
Singular solution: Green.

The fourth part of the singular solution is a slow return along the left
branch of the nullcline.
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Hypotheses of Faye:

(i) The system (FAYE) has a unique equilibrium point (u0, u0, 0, q0).

(ii) If g (u) = u
S (u) then the equation

g (u) = q0

has exactly three solutions, u0 < um < u+, with g ′ (u0) > 0, g ′ (um) < 0,
and g ′ (u+) > 0.

(iii) ∫ u+

u0
(q0S (u)− u) du > 0.

(iv) The speed of any “back”with q ∈ (qmin, q̄) is less than c (q0) .
It follows that the back of the singular solution is required to be at the
knee. This condition can only be verified by numerical integration of the
fast system.
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The orbit of the singular solution is the green curve.
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Theorem (Faye): Under hypotheses (i), (ii), (iii), and (iv), if ε is
suffi ciently small then the system (FAYE) has a homoclinic orbit for at
least one positive value of c.

(Hypotheses (iv) is that the downjump (back) is “at the knee”. )

Geometrical perturbation, based on work of Fenichel and others, is a
technique for showing that the singular solution is close to a real solution
if ε is suffi ciently small. Certain “transversality” conditions can be
complicated to check, requiring a technique called “blow-up”.

Our result is
Theorem: Under hypotheses (i), (ii), and (iii), if ε is suffi ciently small
then the system (FAYE) has a homoclinic orbit for at least two positive
values of c.

(Demo)

BREAK

Outline of proof:
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Assume:

(i) unique equilibrium point, (u0, u0, 0, q0)

(ii) u
S (u) is S - shaped, and equals q0 when u = u0 < um < u+.

(iii)
∫ u+
u0
(q0S (u)− u) du > 0

Then for c > 0 and ε > 0 there is a one dimensional unstable manifold U
at p0 = (u0, u0, 0, q0) .

Specify a unique solution pc = (uc , vc ,wc , qc ) on U by requiring that
uc (0) = um .
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Let c∗0 be the speed of the front solution of the fast system which
connects (u0, u0, 0) to (u+, u+, 0) and let c1 = 1

2c
∗
0 .

solutions on U for c = c∗0 and c1
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Then set

Λ = {c ≥ c1 | There exist t1, t2, and t3 such that 0 < t1 < t2 < t3 and
(a) u′c > 0 on [0, t1), u

′
c (t1) = 0, uc (t2) = u0,

(b) either uc (t3) = 0 or qc (t3) = q0,

(c) u′′c (t1) < 0, u
′
c < 0 on (t1, t2] and uc < u0 on (t2, t3]}.

Each figure shows one solution with c ∈ Λ and one solution with c /∈ Λ
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Lemma 1: c1 ∈ Λ, and for some δ > 0 Λ is a relatively open subset of
[c1, c∗0 − δ).
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Let
c∗ = supΛ.
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We must show that for pc ∗ , t1 and t2 are defined, but t3 is not defined,
and on [t2,∞), 0 < u < u0, q < q0

The proof uses the fact that c∗ is on the boundary of Λ.

Neither solution shown above is for c on this boundary, but possibly other
solutions, with different behavior, are.
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For example, behaviors like the following must be eliminated. A solution
like one of these would be on the boundary of Λ and yet not homoclinic.
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Most interesting: Eliminate this:

Let p∗ = (u∗, v∗,w∗, q∗) = pc ∗ .

Then

u′∗ (τ) = w
′
∗ (τ) = q

′
∗ (τ) = 0

v ′∗ (τ) < 0.
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We trace the solution backwards, by letting

P (s) = (U,V ,W ,Q) (s) = p∗ (τ − s) .
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Then
U ′ = U−V

c
−V ′ = W

W ′ = b2 (QS (U)− V )
Q ′ = ε

c (Q + βQS (U)− 1)

. (1)

Also,

U (0) = u0, V (0) = u0, Q (0) = q0,

U ′ (0) = W ′ (0) = Q ′ (0) = 0, − V ′ (0) < 0,

Because the terms on the right of (1) are increasing in U,−V ,W , and Q,
these variables decrease as long as the solution exists.
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We show that this must happen instead:

Hence, u∗ (−∞) 6= u0, a contradiction because the solution was chosen on
the unstable manifold U .
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With this and similar results we show that pc ∗ lies in the region
0 < u < u0, q < q0 on [t2,∞).

But in this region, q′ > 0. Hence limt→∞ qc ∗ (t) exists and it follows that
limt→∞ pc ∗ (t) = (u0, u0, 0, q0) .
This method relies on results for the fast system when q = q0, but pays no
attention to whether the recovery is “below the knee”or not.
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Ideally we would like to extend Λ to the left of c1 and show that if
c∗ = inf Λ then pc∗ is also homoclinic.

Unfortunately, proving existence of a slow wave requires different sets on
the c axis.

Reason: If ε
c is large then the concept of fast and slow waves breaks down.
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Why is it harder to prove that (PE) has a homoclinic orbit?

The eigenvalues of the linearization around equilibrium can have complex
roots if ε is not too small. The geometry above does not work, since even
if ε is too small to allow complex eigenvalues, the solution may oscillate
around u = u0 a few times.

Complex roots have interesting consequences.
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What more is to be said about the FitzHugh-Nagumo equations?

Does the
issue of “below the knee” come up there? Yes, except it is “above the
knee”: For the standard cubic,

f (u) = u (1− u) (u − a) ,

there is symmetry which implies that the downjump of the singular
solution is always below the knee.

The graph is symmetric around the inflection point of f . Hence the
downjump occurs at a w value where the ratio of positive area to negative
area under f − w is inverted from that of the upjump.
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However, consider another function f :

Note that
Area A < Area B.
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Question: What is the relation between area and speed?

|c | =

∣∣∣∫ 10 f (σ) dσ
∣∣∣∫ ∞

−∞ u
′ (t)2 dt

.

This only seems useful when
∫ 1
0 f (σ) dσ = 0. For example, is |c | a

monotone function of
∫ 1
0 f in intervals where c 6= 0 ?
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