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1. Layers and Spikes

One problem here would be to obtain spikes in higher dimensions (the
pde case). Dancer and Yan (see our book for the references) use calculus
of variations to obtain single and multiple layers. But according to Dancer
(private communication) their technique does not extend to spikes.
Something new appears to be needed.
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2. local pulse models (pde’s)

Existence of a “fast”pulse, with speed c = O (1) as ε→ 0, has been
proved for the FitzHugh-Nagumo equations by Hastings (1976); Carpenter
(1977); Jones, Kopell, Langer (1991). Existence of a slow pulse
(c = o (1) as ε→ 0 ) was proved by Hastings (1976, 1982), and by
Krupa, Sandstede and Szmolyan (1997, for

( 1
2 − a

)
small).

The FitzHugh-Nagumo equations are a simplification of the
Hodgkin-Huxley equations (1952, part V). Existence of a fast pulse for
the Hodgkin-Huxley equations was proved by Hastings (1976) and under
slightly different hypotheses, by Carpenter (1977). There has been no
proof of the existence of a slow pulse for the Hodgkin-Huxley equations.
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In addition to traveling pulses, the FitzHugh-Nagumo equation supports
periodic traveling waves. This was proved by Hastings (1974).
Presumably it is also true for other models, such as Hodgkin-Huxley, but I
am not aware of any proofs of this.
The linearization of the FitzHugh-Nagumo traveling wave equations
around the equilibrium point has real eigenvalues if ε is suffi ciently small,
but for slightly larger ε, these roots become complex. This is also true for
the model of Pinto and Ermentrout, but it is not true for the model of
Faye, where the roots stay real for all ε > 0.
In a class of neural models, complex roots can lead to interesting
additional waves, as shown by Evans, Fenichel and Feroe, 1982. It was
shown by Hastings (1982) that FitzHugh-Nagumo is in this class. It
appears that Pinto-Ermentrout may be also, but this has not been proved.
It seems that the model of Faye is not in this class.
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Local stability of the fast pulse has been proved for the FitzHugh-Nagumo
model (C.K.R.T. Jones) and for the model of Faye (G. Faye). They use a
technique called the Evans functions to show that there are no positive or
zero eigenvalues for the relevant eigenvalue problems.

However there is no result about global stability. What sorts of initial
conditions can trigger a pulse?
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Recall the result of Fife and Mcleod for

ut = uxx + u (1− u) (u − a)
u (x , 0) = φ (x)

Theorem: Suppose that φ is continuous and 0 < φ (x) < 1 for all x .
Suppose also that

lim sup φ (x) < a, lim inf φ (x) > a

x → −∞ x → ∞

Then for some x0 and positive constants K and ω,

|u (x , t)− U (x + ct − x0) | < Ke−ωt

for all x and all t > 0. ..

Can anything like this be done for travelling pulses?
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FitzHugh-Nagumo case:

ut = uxx + u (1− u) (u − a)− w
wt = ε (u − γw) .

qt : x → (u (x , t) ,w (x , t)) , −∞ < s < ∞

Consider spatially independent solutions:

U ′ = U (1− U) (U − a)−W
W ′ = ε (U − γW )

Alternative formulation: Consider on a semi-infinite interval, with a
boundary condition

u (0, t) = p (t) .

For what p is a pulse generated?
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3. Nonlocal pulse models

Here there are still questions about existence. For traveling fronts a major
advance was made by Ermentrout and McLeod. This was extended by X.
Chen (1997, Advances in Differential Equations) to include many models
where the waves are monotonic. This paper also extended the Fife-McLeod
global stability result to the Ermentrout-McLeod model and many others.
For pulses, in addition to the paper of Faye, Faye and Scheel have new
results which are particularly interesting because they do not rely on
reduction of the integral equation to a pde. Thus a much wider class of
kernels k and firing functions S is allowed. However, they require, in the
language of part 4, that the “downjump”of the singular solution occurs
before the knee. This seems to exclude most, if not all, cases of the
Pinto-Ermentrout model, where the pulse appears to “fall off the knee”.

There are no global stability results for pulses of any kind (in these models)
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Two unsolved ode problems

Finite time blowup of the nonlinear Schrödinger equation

Applies to:

propagation of a laser beam through a medium
electromagnetic waves in a plasma

motion of a vortex filament for the Euler equations of fluid mechanics
some models of Bose-Einstein condensates.
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Cubic form:

i
∂Φ
dt
+ ∆Φ+Φ |Φ|2 = 0 (1)

where Φ is complex.

Assume radial symmetry in dimension d ≥ 1.
Consider finite time blow-up (“wave collapse”).
We will concentrate on the case d = 3.

Suitable scaling of t, r , and Φ together with an appropriate similarity
substitution results in a complex ode

Qξξ +
d − 1

ξ
Qξ −Q + ia (ξQ)ξ +Q

∣∣Q2∣∣ = 0, (2)

where a is a real parameter. The function Q is to satisfy boundary
conditions

limξ→0 Qξ (ξ) = 0, limξ→0 ImQ (ξ) = 0
limξ→∞ |Q (ξ)| = 0. (3)
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Physical constraint:

H (ψ) =
∫
R n
|∇ψ|2 − 1

4
|ψ|4 dx is finite,

Equivalent to:
H (Q) = 0. (4)
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Linearizing the complex equation (2) around Q = 0 for n = 2 gives

Q̃ ′′ +
2
ξ
Q̃ ′ − Q̃ + ia

(
ξQ̃ (ξ)

)′
= 0.

Section 7.1.1 of a book by Sulem and Sulem shows that this equation has
solutions Q̃1 and Q̃2, where as ξ → ∞,

Q̃1 (ξ) ∼ |ξ|−1−
i
a , Q̃2 (ξ) ∼ |ξ|−(2−

i
a ) e−ia

ξ2

2 .

Q̃1 is in L4
(
R3
)
and Q̃ ′1 is in L2

(
R3
)
. On the other hand, Q̃ ′2 is not in

L2
(
R3
)
, because the volume integral introduces an r2 into the integrand

and so H (Q) is finite only for solutions which are asymptotic to a multiple
of Q̃1 as ξ → 0.
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By setting Q = x + iy we obtain the following system:

x ′′ + 2
r x
′ + x

(
x2 + y2 − 1

)
− ay − ary ′ = 0

y ′′ + 2
r y
′ + y

(
x2 + y2 − 1

)
+ ax + arx ′ = 0

(5)

We wish to know if this system has a solution on (0,∞) such that

limr→0+ y (r) = limr→0+ x ′ (r) = limr→0+ y ′ (r) = 0

limr→∞ rx ′ (r) + x (r)− 1
a y (r) = 0

limr→∞ ry ′ (r) + 1
a x (r)− y (r) = 0.

(6)
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A third equivalent version can be found by using polar coordinates for the
dependent variable Q = x + iy .

It appears from numerical computation that the problem has a solution for
each d with 2 < d ≤ 4. However the only existence proofs are those by
Kopell and Landman and by Rottshafer and Kaper, each of which covers a
range 2 < d < 2+ δ for a small δ.
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Uniqueness of Bound States for an Elliptic Problem

Standing wave solutions of (1) are solutions of the form

Φ (x , t) = e iλ
2tψ (x)

where ψ is real.
∆ψ− λ2ψ+ ψ3 = 0 (7)

Look for radially symmetric solutions ψ (x) = u (r) where r = |x | . Setting
λ = 1 and taking the spatial dimension to be 3 gives the equation

u′′ +
2
r
u′ − u + u3 = 0.

Physical boundary conditions (Weinstein reference in book):

u′ (0) = 0, u (∞) = 0,
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Nehari (1960’s): The problem above has at least one positive solution.
This is the solution of minimum energy, or “ground state”.

C. Coffman proved that there is only one positive solution.

Solutions which have sign changes, called “bound states”, are also
important, as localized finite energy solutions. It was shown by G. H.
Ryder that for each k ≥ 1 there is a solution with exactly k zeroes in
(0,∞) . The problem is whether these solutions are unique. There are no
results for this problem. In our book we give a new proof of the existence
of the bound states.
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Following Coffman’s paper, K. Mcleod and Serrin considered equations of
the form

u′′ +
n− 1
r
u′ + |u|p−1 u − u = 0 (8)

with boundary conditions

u′ (0) = 0, u (∞) = 0. (9)

It is known from work of Pohozaev that for n > 2 there are no solutions if
p ≥ n+2

n−2 . Coffman’s result was for the case p = n = 3. K. McLeod and
Serrin proved uniqueness of the ground state under a variety of conditions
on p and n. In particular, the proof covers those (n, p) such that
2 < n ≤ 4 and 1 < p < n+2

n−2 . M. K. Kwong completely solved the ground
state uniqueness problem by removing the restriction on n, showing that
for every n > 2 there is a unique positive solution if 1 < p < n+2

n−2 . His
proof uses techniques of Coffman and Sturm oscillation theory. The result
was extended, and the proof shortened, by K. McLeod, and a further
shortening, using geometric methods, was given by Clemons and Jones.
The later proof made use of an “Emden-Fowler” transformation, and it
would be interesting to see if a shorter classical proof could be found using
this transformation.
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There are also solutions which are not positive. Once again the condition
1 < p < n+2

n−2 is imposed, and then, for every k ≥ 1 there is a solution with
exactly k zeros. This result was proved by Jones and Kuiper by a
dynamical systems method and by K. McLeod, Troy and Weissler using a
classical method. The uniqueness of these solutions is unknown for any
k > 0. Troy obtained a uniqueness result for k = 1, 2 in the case where
the nonlinear term is a piecewise linear function mimicking u − u3.
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