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Abstract

We present a partial Hölder regularity result for solutions of degenerate systems

divA( · , Du) = 0 in Ω,

on bounded domains in the weak sense. Here certain continuity, monotonicity, growth and struc-
ture condition are imposed on the coefficients, including an asymptotic Uhlenbeck behavior close
to the origin. Pursuing an approach of Duzaar and Mingione [17], we combine non-degenerate
and degenerate harmonic-type approximation lemmas for the proof of the partial regularity result,
giving several extensions and simplifications. In particular, we benefit from a direct proof of the
approximation lemma [11] that simplifies and unifies the proof in the power growth case. Moreover,
we give the dimension reduction for the set of singular points.

MSC (2010): 35J45, 35J70

1 Introduction

In these notes I will present an approach towards regularity of weak solutions to possibly degenerate
elliptic problems, that is mainly contained in the paper [3] for differential forms. We study weak solutions
u ∈W 1,p(Ω,RN ) with Ω a bounded domain in Rn, n,N ≥ 2, to nonlinear systems of the form

divA( · , Du) = 0 in Ω, (1.1)

where the coefficients are Hölder continuous with respect to the first variable, with some exponent
β ∈ (0, 1), and of class C1 (possibly apart from the origin) with respect to the second variable with a
standard p-growth condition. The main focus is set on the ellipticity condition: we allow a monotonicity
or ellipticity condition which shows a degenerate (when p > 2) or singular (when p < 2) behavior in the
origin and which is usually expressed by the assumption

〈A(x, z)−A(x, z̄), z − z̄ 〉 ≥ ν (µ2 + |z|2 + |z̄|2)
p−2
2 |z − z̄|2

for all x ∈ Ω and all z, z̄ ∈ RN for some µ ≥ 0. The nondegenerate situation refers to the case where
µ > 0 (and by changing the value ν these cases can be reduced to the model case µ = 1), whereas we
here treat the degenerate case µ = 0, meaning that we are dealing with a lack of ellipticity in the sense
that no uniform bound on the ellipticity constant is available for p 6= 2. We highlight that the quadratic
case does not impose any additional difficulties and is already covered by the standard regularity theory.

Let us first recall some of the well known facts for nondegenerate systems. In the vectorial case
N > 2 – in contrast to the scalar case N = 1 – we cannot in general expect that a weak solution
to the nonlinear elliptic system (1.1) is a classical solution (see e.g. the counterexamples in [6, 24]).
Instead only a partial regularity result holds true, in the sense that we find an open subset Ω0 ⊂ Ω with
Ln(Ω \Ω0) = 0 such that Du is locally Hölder continuous on Ω0 with optimal exponent β given by the
exponent in the Hölder continuity assumption on the x-dependency of the coefficients. These results
were first obtained by Giusti and Miranda [23] via the indirect blow-up technique, then by Giaquinta,
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Modica and Ivert [21, 27] via the direct method, and finally Duzaar and Grotowski [12] gave a new proof
based on the method of A-harmonic approximation introduced by Duzaar and Steffen [18]. For further
references and in particular for related results concerning variational problems we refer to Mingione’s
survey article [33].

In the degenerate case µ = 0 no (partial) regularity result seems to be known for such general
systems. However, supposing some additional assumptions on the structure of the system, Uhlenbeck
succeeded in her fundamental paper [37] in showing that Moser-type techniques may be applied and
that the classical regularity results of De Giorgi, Nash and Moser can be extended to systems of this
special form (often called Uhlenbeck structure). A prototype of these systems is the p-Laplace system
with A(z) = |z|p−2z. More precisely, she stated in the superquadratic case (for systems without explicit
dependency on the space variable) that the gradient of the solution is globally Hölder continuous in
the interior with an exponent depending only on the space dimension n and the ellipticity ratio ν/L.
We emphasize that Uhlenbeck’s proof was carried out in the more general setting of RN -valued closed
`-differential forms ω ∈ Lp(Ω,Λ`Rn) solving the weak formulation to

d∗ρ(|ω|)ω = 0 in Ω ,

where ρ satisfies the Uhlenbeck structure assumptions (see p. 5). Further results concerning the regu-
larity theory under such structure assumptions can for instance be found in [36, 22, 1, 20, 25, 29, 30, 10].
We highlight that Hamburger [25] gave an extension of Uhlenbeck’s results in the setting of differential
forms on Riemannian manifolds with sufficiently smooth boundary. In particular, he used an elegant
duality argument to derive the subquadratic result from the superquadratic one (see also [26]). Re-
stricting ourselves to the special case of 1-forms it is clear that the regularity result also covers weak
solutions u ∈W 1,p(Ω,RN ).

Minimizers to variational integrals with possibly degenerately quasiconvex integrands were already
considered Duzaar and Mingione [14]. They observed that the non-degenerate and the degenerate theory
can be combined in the following way: as long as the gradient variable keeps away from the origin, the
system is also for µ = 0 not singular/degenerate, and therefore a local partial regularity result holds true
without an additional Uhlenbeck structure assumption. In contrast, if the origin is approached, then by
requiring this crucial structure assumption even full regularity is locally expected. In fact, this strategy
of distinguishing the local type of ellipticity was applied successfully in [14] in case of an asymptotic
behavior like the p-Laplace system close to the origin, and as a final result minimizers were proved to
be locally of class C1,α for some α > 0 (specified in the neighborhood of points where Du does not
vanish) outside a set of Lebesgue measure zero. In order to obtain an estimate for the decay of a suitable
excess quantity, we employ local comparison principles based on harmonic-type approximation lemmas
which are inspired by Simon’s proof of the regularity theorem of Allard and which extend the method of
harmonic approximation (i. e. approximating with functions solving the Laplace equation) in a natural
way to bounded elliptic operators with constant coefficients or to even more general monotone operators.
Here it is worth to remark that we give a direct proof of the harmonic approximation lemma, motivated
from [11], and as a consequence the whole proof of the main partial regularity result is direct and we
obtain a good control of the regularity estimates in terms of the structure constants. The important
feature of the comparison system resulting from this harmonic-type approximation is the availability of
good a priori estimates for its weak solutions (more precisely, solutions to linear systems with constant
coefficients are known to be smooth, and solutions to Uhlenbeck systems are known to admit at least
Hölder continuous gradients). In case of systems with degeneracy in the origin the above-mentioned
distinction of the two different situations is accomplished as follows: if the average of the gradient is not
too small compared to the excess quantity, then we deal with the non-degenerate situation and the usual
comparison with the solution to the linearized system is performed via the A-harmonic approximation
lemma (see Proposition 7.1). If in contrast the average of the gradient is very small (again compared to
the excess), then we are in the degenerate situation, meaning that the solution is approximately solving
an Uhlenbeck system, and it is therefore compared to the exact solution of this Uhlenbeck system (see
Proposition 7.3). These two decay estimates are then matched together in an iteration scheme as in
[14], ending up with the desired partial regularity result.
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On the one hand, we give a generalization of the existing results concerning possibly degenerate
problems. We pursue an approach proposed by Duzaar and Mingione [17] in order to extend the known
results dealing with a possible degeneracy at the origin like the p-Laplace system to more general ones
that may behave at the origin like any arbitrary system of Uhlenbeck structure; a similar generalization
was also suggested by Schmidt [35] who obtained the corresponding partial regularity result for degen-
erate variational functionals under (p, q)-growth conditions. This first aim is essentially achieved by the
use of an extension of the p-harmonic approximation lemma from [15] (and similar to the one in [11]),
namely the a-harmonic approximation Lemma 4.3.

Once the partial regularity result is achieved, it is natural to ask whether the Hausdorff dimension of
the singular set can still be improved. We first note that for degenerate Uhlenbeck systems the (interior)
singular set is indeed empty – due to the special structure of the coefficients. Turning our attention
to the non-degenerate situation without any structure assumptions, much less is known. Indeed, in
the course of proving regularity of the gradient Du for classical solutions u ∈ W 1,p(Ω,RN ), the set of
regular points is characterized, which in turn yields as a first and immediate consequence of a measure
density result that the singular set is of Lebesgue measure zero. An estimate of the Hausdorff dimension
was firstly investigated in the case of differentiable systems by Campanato in the 80’s. The proof relied
on the possibility of differentiating the system and obtaining existence of second-order derivatives of
the solution. The first one who built a bridge between Hölder continuity of the coefficients and size of
the singular set was Mingione [32, 31]: he showed that the singular set Ω \ Ω0 is not only negligible
with respect to the Lebesgue measure, but that its Hausdorff dimension is actually not greater than
n − 2β (with β the degree of Hölder continuity of the coefficients). For related results on dimension
reduction of the singular set in the context of convex variational integrals we refer to [28]. By means of
the machinery of fractional Sobolev spaces and the differentiability of the system in a fractional sense
developed in the previous papers, this upper bound on the Hausdorff dimension of the singular set is
shown to be still valid for the solutions under consideration in this paper.

In conclusion, the main regularity result of our paper in the special case of classical weak solution
can be stated as follows:

Theorem 1.1: Let Ω ⊂ Rn be a bounded domain, p ∈ (1,∞), and consider a weak solution u ∈
W 1,p(Ω,RN ) to the system (1.1) under assumptions corresponding to (H1)–(H5) given in Section 2.
Then there exists an open subset Ω0 ⊂ Ω such that

u ∈ C1,σ
loc (Ω0,RN ) and dimH

(
Ω \ Ω0

)
≤ n− 2β ,

where σ is an exponent depending only on n,N, p, L, ν and β.

2 Structure conditions and main results

We start with Ω a bounded domain in Rn and we suppose that u ∈ Lp(Ω,RN ), with 1 < p < ∞, is a
weak solution to the elliptic system

divA( · , Du) = 0 in Ω, (2.1)

for a vector field A : Ω × RN → RN satisfying some structure conditions: the mapping P 7→ A(x,P)
is of class C0(RN ,RN ) ∩ C1(RN \ {0},RN ), and for fixed numbers 0 < ν ≤ L, all x, x̄ ∈ Ω and all
P, P̄ ∈ RN the following assumptions concerning growth, ellipticity and continuity hold true:

A is Lipschitz continuous with respect to P with(H1)

|A(x,P)−A(x, P̄)| ≤ L (|P|2 + |P̄|2)
p−2
2 |P− P̄| ,

DPA is Hölder continuous with some exponent α ∈ (0, |p− 2|) such that(H2)

|DPA(x,P)−DPA(x, P̄)| ≤ L (|P|2 + |P̄|2)
p−2−α

2 |P− P̄|α

holds for p > 2, whereas in the subquadratic case p ∈ (1, 2) there holds for all P, P̄ 6= 0
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|DPA(x,P)−DPA(x, P̄)| ≤ L |P|p−2|P̄|p−2(|P|2 + |P̄|2)
2−p−α

2 |P− P̄|α,
A is degenerately monotone:(H3)

〈A(x,P)−A(x, P̄),P− P̄ 〉 ≥ ν (|P|2 + |P̄|2)
p−2
2 |P− P̄|2 ,

A is Hölder continuous with respect to its first argument with exponent β ∈ (0, 1):
(H4)

|A(x,P)−A(x̄,P)| ≤ L |P|p−1 |x− x̄|β ,
A is of Uhlenbeck structure at 0, i. e. there exists a non-decreasing function(H5)

µ̃ : R+ → R+ such that for all P̃ ∈ RN with |P̃| ≤ µ̃(t) there holds

|A(x, P̃)− ρx(|P̃|) P̃| ≤ t |P̃|p−1

uniformly for all x ∈ Ω, where ρx is a family of functions satisfying (G1)–(G3)
introduced on p. 5 further below.

We first note that – due to the growth condition (H1), the monotonicity in (H3) and the Uhlenbeck
type behavior at 0 in (H5) – the coefficients A(x,P) exhibit a polynomial growth with respect to the
variable P, namely for all x ∈ Ω, P ∈ RN there holds

ν |P|p−1 ≤ |A(x,P)| ≤ L |P|p−1 . (2.2)

Secondly, in view of the differentiability of P 7→ A(x, z), we remark that (H1) and (H3) imply a growth
and (degenerate) ellipticity condition for DPA(x,P), more precisely, we have

|DPA(x,P)| ≤ L |P|p−2 , (2.3)

〈DPA(x,P) ξ, ξ 〉 ≥ ν |P|p−2 |ξ|2 (2.4)

for all ξ ∈ RN , every x ∈ Ω and all P ∈ RN \ {0} (for p > 2 these inequalities are also valid for P = 0).

Example: A simple example or model case for the systems under consideration in this paper are the
following type of x-depending versions of the p-Laplace system:

A(x,P) := β(x) |P|p−2 P

for all P ∈ RN and with β(·) a continuous function in Ω taking values in [ν, L] with Hölder exponent β.

For a field P ∈ Lp(Br(x0),RN ) we now introduce the excess

Φ(P;x0, r,P0) :=

∫
−
Br(x0)

|V|P0|(P−P0)|2 for every P0 ∈ RN ,

where Vµ(ξ) := (µ2 + |ξ|2)(p−2)/4ξ. In the sequel this excess shall frequently be used for the choice
P0 = (P)x0,ρ, where (P)x0,r =

∫
−
Br(x0)

P is an abbreviation for the meanvalue of P on the ball Br(x0).

As mentioned in [35] , [11] this excess is equivalent to∫
−
Br(x0)

|V0(P)− V0(P0)|2 (2.5)

up to a constant depending only on n,N, p , and also to the one used in [14] . With this notation at
hand we can now state our main regularity result for weak solutions to (2.1) on a bounded domain in
Rn:

Theorem 2.1: Let Ω ⊂ Rn be a bounded domain, p ∈ (1,∞) and consider a weak solution u ∈
W 1,p(Ω,RN ) to the homogeneous system (2.1) under the assumptions (H1)–(H5). Then there exists
σ = σ(n,N, p, L, ν, β) and an open subset Ω0 ⊂ Ω such that

∇u ∈ C0,σ
loc (Ω0(∇u),RN ) and |Ω \ Ω0| = 0
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with the following characterization of the set of regular points:

Ω0 = R :=
{
x0 ∈ Ω: : lim inf

r↘0
Φ(x0, r, (∇u)x0,r) = 0 and lim sup

r↘0

∣∣(∇u)x0,r

∣∣ < ∞} .
Moreover, if x0 ∈ Ω0(∇u) and

lim sup
r↘0

∣∣(∇u)x0,r

∣∣p
Φ(x0, r, (∇u)x0,r)

= ∞ , (2.6)

then ∇u is locally Hölder continuous with exponent min{β, 2β/p}. Furthermore, if ∇u(x0) 6= 0, then
∇u ∈ C0,β(Bs(x0),RN ) for some s > 0.

Remark: More precisely, in points x0 where (2.6) is not satisfied, the local Hölder continuity on the
regular set Ω0 is determined by the exponent from the Hölder continuity of the coefficients with respect
to the first variable and the asymptotic degenerate system in the origin in a neighborhood of x0,
namely the exponent σ is given by min{γ, β} in the subquadratic case and by min{2γ/p, 2β/p} in the
superquadratic case. Here γ ∈ (0, 1) is the number from the a priori estimate for weak solutions to
systems of Uhlenbeck-type given in Proposition 3.1 below (we note that γ does not depend on the point
x0 since the parameters n,N, p, L and ν remain fixed for all functions ρx).

As a second result we give the dimension reduction for the singular set, which states a relation
between the degree of regularity of the coefficients and the size of the Hausdorff dimension of the
singular set:

Theorem 2.2: Let Ω ⊂ Rn be a bounded domain, p ∈ (1,∞) and consider a weak solution ∇u ∈
Lp(Ω,RN ) to the system (2.1) under the assumptions (H1)–(H5). Then we have

dimH

(
Ω \ Ω0(∇u)

)
≤ n− 2β .

3 Uhlenbeck result

A regularity result for degenerate Uhlenbeck systems. I will state a comparison estimate for special
nonlinear degenerate systems which exhibit a particular structure that allows to prove everywhere
regularity of the solution. More precisely, we consider vector fields of the form

a(P̄) = ρ(|P̄|) P̄

for every P̄ ∈ RnN . For the function ρ : [0,∞) → [0,∞) we shall assume the following continuity,
ellipticity and growth conditions:

The function t 7→ ρ(t) is of class C0([0,∞]) ∩ C1((0,∞]) ,(G1)

There hold the inequalities(G2)

ν tp−2 ≤ ρ(t) ≤ L tp−2

and

ν tp−2 ≤ ρ(t) + ρ′(t) t ≤ L tp−2 ,

There exists a Hölder exponent βρ ∈ (0,min{1, |p− 2|}) such that(G3)

|ρ′(s) s− ρ′(t) t| ≤ L (|s|2 + |t|2)
p−2−βρ

2 |s− t|βρ .

for all s, t ∈ (0,∞), and some p ≥ 2, 0 < ν ≤ L. The model case of a vector field satisfying these
conditions is the p-Laplace system, i. e. the vector field give by a(P̄) = |P̄|p−2P̄ for all P̄ ∈ RnN . For
systems satisfying the above Uhlenbeck structure assumptions the following regularity result can be
retrieved from [37, Theorem 3.2], [30]) and [25, Theorem 4.1]:



6 B. Stroffolini

Proposition 3.1: Let p ∈ (1,∞). There exists a constant c ≥ 1 and an exponent γ ∈ (0, 1) depending
only on n,N, p, L and ν such that the following statement holds true: whenever h ∈W 1,p(BR(x0),RN )
is a weak solution of the system

div
(
ρ(|∇h|)∇h

)
= 0 in BR(x0) ,

where ρ(·) fullfills the assumptions (G1)–(G3), then for every 0 < r < R there hold

sup
BR/2(x0)

|∇h|p ≤ c

∫
−
BR(x0)

|∇h|p and Φ(x0, r, (∇h)x0,r) ≤ c
( r
R

)2γ

Φ(x0, R, (∇h)x0,R) .

4 Harmonic approximation lemmas

In this section we shall state two harmonic-type approximation lemmas which are adapted to the
degenerate and the non-degenerate situation and which will allow us to compare the solution to the
original system to the solution of an easier systems (for which good a priori estimates are available).
To this aim we first need a result on Lipschitz-truncation, which from its original formulation can be
restated as follows:

Proposition 4.1 (Lipschitz truncation, cf. [19], Prop. 4.1): Let B ⊂ Rn be a ball. There exists
a constant c depending only on n,N, p and B such that whenever χk ⇀ 0 weakly in W 1,p

T (B,RN ), then

for every λ > 0 there exists a sequence {χλk}k∈N of maps χλk ∈W
1,∞
T (B,RN ) such that

‖χλk‖W 1,∞ ≤ c λ .

Moreover, up to a set of Lebesgue measure zero we have

{z ∈ B : χλk(z) 6= χk(z)} ⊂ {z ∈ B : M(∇χk)(z) > λ} ,

where M denotes the maximal operator restricted to B.

Due to the direct approach for the proof of Lemma 4.3 we in fact need it only in a simpler version,
namely for single functions instead of weakly converging sequences. However, there are much more
involved Lipschitz truncation lemmas available in the literature, such as on general domains, versions
involving sequences of truncations and variable exponent in [9, Theorem 2.5, Theorem 4.4]), versions
truncating at two different levels (one for the function itself, the second one as above for its gradient) etc.
In this paper we shall use a consequence of the previous truncation Lemma 4.1 from [11] for a version

concerning the existence of a good truncation level in the setting of Sobolev-Orlicz spaces W 1,φ
T (B,Λ`).

I will state it in the case of power functions.

Corollary 4.2 ([11]): For every ε > 0 there exists c > 0 depending only on n,N, p such that the
following statement holds: If B ⊂ Rn is a ball and χ ∈ W 1,p

0 (B,Λ`), then for every m0 ∈ N and γ > 0
there exists λ ∈ [γ, 2m0γ] such that the Lipschitz truncation χλ ∈W 1,∞

T (B,RN ) of Theorem 4.1 satisfies

‖∇χλ‖∞ ≤ c λ ,∫
−
B

|∇χλ|p 1{χλ 6=χ} dx ≤ c

∫
−
B

λp 1{χλ 6=χ} dx ≤
c

m0

∫
−
B

|∇χ|p dx .

Restricting ourselves to the case of power growth in order to keep the setting as simple as possible, we
now derive by similar techniques a suitable version which will apply not only to the p-Laplace system, but
also to more general monotone operators. In what follows we consider vector fields a : Ω × RN → RN
which are measurable with respect to the first variable, continuous in the second, and which satisfy
growth and monotonicity conditions of the form

∣∣a(x,P)
∣∣ ≤ L

(
µ2 + |P|2

) p−1
2 ,

a(x,P) ·P ≥ ν
(
µ2 + |P|2

) p−2
2 |P|2 ,(

a(x,P)− a(x, P̄)
)
· (P− P̄) ≥ ν

(
µ2 + |P̄|2 + |P|2

) p−2
2 |P− P̄|2

(4.1)
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for all x ∈ Ω, P, P̄ ∈ RN , p > 1, µ ∈ [0, 1] and 0 < ν ≤ L. Furthermore, we assume that a(·, ·) is
uniformly continuous on bounded subsets, i. e. that

|a(x,P)− a(x, P̄)| ≤ K(|P|+ |P̄|)ϑ(|P− P̄|) (4.2)

whenever x ∈ Ω, P, P̄ ∈ RN , where K : [0,∞) → [0,∞) is a locally bounded, nondecreasing function
and ϑ : [0,∞)→ [0, 1] is a nondecreasing function with limt↘0 ϑ(t) = 0. We note that these assumptions
are in particular satisfied with µ = 0 for vector fields a(P) := ρ(|P|) P where ρ fullfills conditions (G1)
and (G2) from the previous section. Following the notation of [7], we define for a convex function
φ ∈ C1((0,∞)) and µ ≥ 0 the shifted function φµ by

φµ(t) :=

∫ t

0

φ′µ(s) ds with φ′µ(t) :=
φ′(µ+ t)

µ+ t
t

for t > 0. In the case of powers φ(t) := tp, the excess function Vµ(t) introduced in Section 3 is equivalent
to the shifted function (φµ(t))1/2 (up to a constant depending only on p) and relates to the operator
a(·, ·) satisfying the assumption (4.1) above via the inequalities:

|a(x,P)| ≤ c(p, L)φ′µ(|P|) ,
a(x,P) ·P ≥ ν |Vµ(P)|2 ≥ c−1(p) ν φµ(|P|) ,(
a(x,P)− a(x, P̄)

)
· (P− P̄) ≥ c−1(p) ν |Vµ(P)− Vµ(P̄)|2 .

(4.3)

We may now introduce the notion of an a-harmonic field: a field u ∈ W 1,p(Ω,RN ) is called a-
harmonic in a domain Ω if a(·, ·) fulfills the growth assumption (4.1)1 and if∫

Ω

〈 a(x,∇u),∇η 〉 = 0 for every η ∈ C∞0 (Ω,RN ) .

Lemma 4.3 (a-harmonic approximation; cf. [11]): Let p ∈ (1,∞) and φ(t) = tp for all t ≥ 0. For
every ε > 0 and every θ ∈ (0, 1) there exists δ > 0 which depends only on n,N, p, ν, L, θ and ε such that
the following statement holds true: Let B ⊂ Rn be a ball. Whenever a(·, ·) : B × RN → RN is a vector
field satisfying (4.1) and (4.2) and whenever χ ∈ W 1,p(B,RN ) is a vector field that is approximately
a-harmonic in the sense that∣∣∣ ∫−

B

〈 a(x,∇χ),∇η 〉
∣∣∣ ≤ δ

(∫
−
B

φµ(|∇χ|) + φµ(‖∇η‖∞)
)

(4.4)

holds for all η ∈ C1
0 (B,RN ), then the unique a-harmonic h ∈W 1,p(B,RN ), h = χ on ∂B satisfies∫

−
B

φµ(|∇h|) ≤ c(p, ν, L)

∫
−
B

φµ(|∇χ| and
(∫
−
B

|Vµ(∇χ)− Vµ(∇h)|2θ
) 1
θ ≤ ε

∫
−
B

φµ(|∇χ|) .

Secondly, we state a suitable version of the A-harmonic approximation lemma for both the super-
and the subquadratic case. This version is proved by adjusting the proof of [18, Lemma 3.3], [13, Lemma
6] and [34, Lemma 6.8], respectively, or in a similar way as in the proof of the a-harmonic approximation
lemma presented above.

Lemma 4.4 (A-harmonic approximation): Let ν ≤ L be positive constants, p ∈ (1,∞) . Then
for every ε > 0 there exists a positive number δ ∈ (0, 1] depending only on n,N, p, νL and ε with the
following property: whenever A is a bilinear form on RnN which is elliptic in the sense of Legendre-
Hadamard with ellipticity constant ν and upper bound L and whenever χ ∈ W 1,p(Br,RN ) satisfying∫
−
Br
|V1(∇χ)|2 ≤ ς2 ≤ 1 is approximately A-harmonic in the sense that∣∣∣ ∫−

Br

A(∇χ,∇η) dx
∣∣∣ ≤ ς δ sup

Br

|∇η| (4.5)
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holds for all η ∈ C1
0 (Br,RN ), then there exists an A-harmonic map h ∈ W 1,p(Br,RN ), h = χ on ∂Br,

which satisfies

sup
Br/2

|∇h|+ r sup
Br/2

|D2h| ≤ c and

∫
−
Br/2

∣∣∣V1

(χ− ςh
r

)∣∣∣2 dx ≤ ς2 ε .

for a constant c depending only on n,N, p, ν and L.

5 A Caccioppoli inequality

As usual the first step in proving a regularity theorem for solutions of elliptic systems is to establish
a suitable reverse-Poincaré or Caccioppoli-type inequality. This version of the Caccioppoli inequality
takes into account the possible degeneracy of the monotonicity condition (H3) (and therefore also of the
ellipticity condition).

Lemma 5.1: Let p ∈ (1,∞) and consider a weak solution u ∈W 1,p(Br(x0),RN ), r < 1, to the system
(2.1) under the assumptions (H1), (H3) and (H4). Then, for ξ ∈ Lp(Br(x0),RN ) and ζ ∈ RnN there
holds ∫

−
Br/2(x0)

∣∣V|ζ|(∇u− ζ)
∣∣2 ≤ c

∫
−
Br(x0)

∣∣∣V|ζ|(u− ξ − ζ · (x− x0)

r

)∣∣∣2 + c |ζ|p r2β (5.1)

for a constant c depending only on p, L and ν.

Proof: Without loss of generality we may assume x0 = 0. We consider a cut-off function η ∈
C∞0 (Br, [0, 1]) such that η ≡ 1 on Br/2 and |Dη| ≤ c

r . We may take ηp(u − ξ − ζ · x) as a test
function in (2.1). Using the assumptions and keeping in mind the properties of the cut-off function η,
we thus arrive at the desired inequality. �

Remark 5.2: Applying the Poincaré inquality we get immediately a reverse Hölder’ s inequality for
∇u− ζ for a θ < 1∫

−
Br/2(x0)

∣∣V|ζ|(∇u− ζ)
∣∣2 ≤ c

(∫
−
Br(x0)

∣∣V|ζ|(∇u− ζ)
∣∣2θ) 1

θ

+ c |ζ|p r2β (5.2)

This would get a higher integrability result for ∇u− ζ.

6 Approximate A- and a-harmonicity

Our next aim is to find a framework in which the A-harmonic and the a-harmonic approximation lemma,
respectively, can be applied. This means that we have to identify systems for which the smallness
conditions in the sense of (4.5) and (4.4) hold true (provided that additional smallness assumptions are
satisfied). This shall be accomplished in the non-degenerate case by linearization of the coefficients,
whereas in the degenerate case assumption (H5) allows to define a suitable Uhlenbeck-type system.

To start with the non-degenerate case we first recall the definition of the excess: for every ball
Br(x0) ⊂ Rn, a fixed function u ∈ W 1,p(Br(x0),RN ), p ∈ (1,∞), and every P0 ∈ RnN the excess of u
is defined via

Φ(x0, r,P0) :=

∫
−
Br(x0)

∣∣V|P0|(∇u−P0)
∣∣2 .

Lemma 6.1 (Approximate A-harmonicity): Let p ∈ (1,∞). There exists a constant cA depending
only on p and L such that for every weak solution u ∈W 1,p(Br(x0),RN ), r < 1, to system (2.1) under
the assumptions (H2) and (H4), and every P0 ∈ RnN such that |P0| 6= 0 6= Φ(x0, r,P0) we have∣∣∣ ∫−
Br(x0)

〈DPA(x0,P0) |P0|1−p (∇u−P0),∇η 〉
∣∣∣ ≤ cA

[( Φ(r)

|P0|p
) 1

2 +
|p−2|

2p

+
( Φ(r)

|P0|p
) 1

2 +α
2

+rβ
]

sup
Br(x0)

|∇η|

for all η ∈ C1
0 (Br(x0),RN ). Here we have abbreviated Φ(x0, r,P0) by Φ(r).
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To treat the degenerate case where the system under consideration is close to a possibly degenerate
system of Uhlenbeck structure, we define analogously to [14]

Ψ(x0, r) =

∫
−
Br(x0)

|∇u|p .

Then, the structure assumption (H5) allows us to prove the following

Lemma 6.2 (Approximate a-harmonicity): Let p ∈ (1,∞). There exists a constant cH depending
only on L such that for every weak solution u ∈ W 1,p(Br(x0),RN ), r < 1, to system (2.1) under the
assumptions (H1), (H4) and (H5), and for every t > 0 we have∣∣∣ ∫−

Br(x0)

〈 ρx0(|∇u|)∇u,∇η 〉
∣∣∣ ≤ cH

[
tΨ(r)

p−1
p + rβ Ψ(r)

p−1
p +

Ψ(r)

µ̃(t)

]
sup
Br(x0)

|∇η|

for all η ∈ C1
0 (Br(x0),RN ). Here we have abbreviated Ψ(x0, r) by Ψ(r).

Proof: We assume without loss of generality x0 = 0 and that the test function η ∈ C1
0 (Br,RN ) satisfies

supBr |∇η| ≤ 1. We fix t > 0. Since u is a weak solution to (2.1) we first observe∣∣∣ ∫−
Br

〈 ρ0(|∇u|)∇u,∇η 〉
∣∣∣ =

∣∣∣ ∫−
Br

〈A(x, ω)− ρ0(|∇u|)∇u,∇η 〉
∣∣∣

≤
∫
−
Br

∣∣A(x,∇u)−A(0,∇u)
∣∣+
∣∣∣ ∫−
Br

〈A(0,∇u)−P0(|∇u|)∇u,∇η 〉
∣∣∣ . (6.1)

Using assumption (H4) on the Hölder continuity of the coefficients A(·, ·) with respect to the x-variable
and Jensen’s inequality, we easily find∫

−
Br

∣∣A(x,∇u)−A(0,∇u)
∣∣ ≤ Lrβ Ψ(r)

p−1
p . (6.2)

To estimate the second integral on the right-hand side of the previous inequality we now distinguish the
cases where |∇u| ≤ µ̃(t) and where |∇u| > µ̃(t). In the first case, we may apply (H5) and see

|Br|−1
∣∣∣ ∫
Br∩{|∇u|≤µ̃(t)}

〈A(0,∇u)− ρ0(|∇u|)∇u,∇η 〉
∣∣∣ ≤ t

∫
−
Br

|∇u|p−1 ≤ t
(∫
−
Br

|∇u|p
) p−1

p

.

In order to give an estimate for the integral on the remaining set {|∇u| > µ̃(t)} we first recall the weak
Lp-type estimate stating ∣∣Br ∩ {|∇u| > µ̃(t)}

∣∣ ≤ µ̃(t)−p
∫
Br

|∇u|p .

Thus, we infer from the upper bound (2.2) on the growth of A(x,∇u) and Hölder’s inequality that there
holds

|Br|−1
∣∣∣ ∫
Br∩{|∇u|>µ̃(t)}

〈A(0,∇u)− ρ0(|∇u|)∇u,∇η 〉
∣∣∣

≤ 2L |Br|−1

∫
Br∩{|∇u|>µ̃(t)}

|∇u|p−1

≤ 2L |Br|−1
∣∣Br ∩ {|∇u| > µ̃(t)}

∣∣ 1p (∫
Br

|∇u|p
) p−1

p ≤ 2L

µ̃(t)

∫
−
Br

|∇u|p .

Merging the previous estimates together, we finally arrive at the inequality∣∣∣ ∫−
Br

〈A(0,∇u)− ρ0(|∇u|)∇u,∇η 〉
∣∣∣ ≤ t (Ψ(r))

p−1
p +

2L

µ̃(t)
Ψ(r) ,

where we have used the definition of Ψ(r). In combination with (6.2), the assertion of the lemma follows
(after rescaling) immediately from (6.1). �



10 B. Stroffolini

7 Excess decay estimates

In this section we take advantage of the results of the previous sections and deduce decay estimates for
the excess of the solution on different balls in terms of the ratio of the radii. To this aim, the crucial
ingredients in the non-degenerate and the degenerate situation – identified by a criterion involving the
ratio excess to a suitable power of the meanvalue (which of course change with the radius) – are the
a priori estimates available for solutions to linear systems and to Uhlenbeck systems, respectively. In
a second step these excess decay estimates have to be iterated. Once the non-degeneracy criterion is
satisfied, the iteration proceeds in a standard way, but the criterion for degeneracy might fail as the
radius decreases, i. e. at a certain radius the situation might become non-degenerate (and as we will see
then remains non-degenerate for all smaller ones), and therefore, the two iterations finally have to be
combined in a suitable iteration schemes.

Proposition 7.1: Let p ∈ (1,∞). For every β′ ∈ (0, 1) there exist constants θ = θ(n,N, p, ν, L, β′) ∈
(0, 1

4 ], ε0 = ε0(n,N, p, ν, L, α, β′) ∈ (0, 1
2 ) and r0 = r0(n,N, p, ν, L, α, β, β′) ∈ (0, 1) such that the

following is true: for every weak solution u ∈ W 1,p(Br(x0),RN ), r ≤ r0, to system (2.1) under the
assumptions (H1)–(H4) which satisfies the smallness condition

Φ(x0, r, (∇u)x0,r) < ε0 |(∇u)x0,r|p , (7.1)

we have the following growth condition:

Φ(x0, θr, (∇u)x0,θr) ≤ 1
2 θ

2β′ Φ(x0, r, (∇u)x0,r) + c0 |(∇u)x0,r|p (θr)2β , (7.2)

and the constant c0 depends on n,N, p, ν, L and β′.

Proof: Without loss of generality we take x0 = 0, and we shall further use the abbreviation Φ(r) =
Φ(0, r, (∇u)0,r). Moreover, we assume Φ(r) > 0, otherwise Φ(θr) = 0 and the assertion in (7.2) is
trivially satisfied. Now let ε > 0 (to be determined later) and choose δ ∈ (0, 1] according to the
A-harmonic approximation Lemma 4.4. From (7.1) follows |(∇u)0,r| > 0. We define ũ via

ũ =
u− (∇u)0,r · x
|(∇u)0,r|

on Br .

Then, by definition of χ̃ and Φ(r) there holds∫
−
Br

|V1(∇ũ)|2 = |(∇u)0,r|−p Φ(r) ≤ 1 .

The approximate A-harmonicity result from Lemma 6.1 further ensures∣∣∣ ∫−
Br

〈 DPA(x0, (∇u)0,r)

|(∇u)0,r|p−2
∇ũ,∇η 〉

∣∣∣
≤ cA

( Φ(r)

|(∇u)0,r|p
+ 2 δ−2 c2A r

2β
) 1

2
(( Φ(r)

|(∇u)0,r|p
) |p−2|

p

+
( Φ(r)

|(∇u)0,r|p
)α

+
δ2

2c2A

) 1
2

sup
Br

|∇η|

=: cA ς
(( Φ(r)

|(∇u)0,r|p
) |p−2|

p

+
( Φ(r)

|(∇u)0,r|p
)α

+
δ2

2c2A

) 1
2

sup
Br

|∇η|

for all functions η ∈ C1
0 (Br,RN ) with the obvious abbreviation for ς. Now assume that( Φ(r)

|(∇u)0,r|p
) |p−2|

p

+
( Φ(r)

|(∇u)0,r|p
)α

<
δ2

2c2A
. (SC.1)

Then, provided that r is chosen sufficiently small (in dependency of the parameters cA and δ) and that
consequently ς is bounded from above by 1, we find that ũ is approximately A-harmonic with respect
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to A = |(∇u)0,r|2−pDPA(x0, (∇u)0,r), which is elliptic with ellipticity constant ν and upper bound L,
(see (2.4) and (2.3)). Hence, we infer the existence of a A-harmonic map h ∈ W 1,2(Br,RN ) such that
it satisfies

sup
Br/2

|∇h|+ r sup
Br/2

|D2h| ≤ c(n,N, p, ν, L) and

∫
−
Br/2

∣∣∣V1

( ũ− ςh
r

)∣∣∣2 ≤ ς2 ε . (7.3)

From the first inequality we obtain by Taylor expansion

sup
x∈B2θr

|∇h(x)− (∇h)0,2θr| ≤ (2θr) sup
Br/2

|D2h| ≤ c θ

for c depending only on n,N, p, ν and L as above. Hence, for θ ∈ (0, 1
4 ] (to be chosen later) we now use

the properties of Vµ, Poincaré’s inequality and we find:∫
−
B2θr

∣∣∣V1

( ũ− ςh0 − ς(dh)0,2θr · x
2θr

)∣∣∣2
≤ c(p)

∫
−
B2θr

∣∣∣V1

( ũ− ςh
2θr

)∣∣∣2 + c(p)

∫
−
B2θr

∣∣∣V1

( ς(h− h0 − (∇h)0,2θr · x)

2θr

)∣∣∣2
≤ c(p) θ−n−max{2,p}

∫
−
Br/2

∣∣∣V1

( ũ− ςh
r

)∣∣∣2
+ c(n,N, p)

∫
−
B2θr

(
|ς(∇h− (∇h)0,2θr)|2 + |ς(∇h− (∇h)0,2θr)|max{2,p})

≤ c(p) θ−n−max{2,p} ς2 ε+ c(n,N, p, ν, L) ς2 θ2

≤ c(n,N, p, ν, L) ς2
(
θ−n−max{2,p} ε+ θ2

)
.

Setting ε = θn+2+max{2,p} and recalling the definitions of ũ and ς we hence find the preliminary decay
estimate∫
−
B2θr

∣∣∣V|(∇u)0,r|

(u− (∇u)0,r · x− |(∇u)0,r|ς
(
h0 + (∇h)2θr · x

)
2θr

)∣∣∣2 ≤ c θ2
(
Φ(ρ) + δ−2 |(∇u)0,r|p r2β

)
,

(7.4)
and the constant c depends only on n,N, p, ν and L. In order to apply the Caccioppoli inequality from
Lemma 5.1 we now have to pass from Vµ(·) in the previous inequality with index µ1 = |(∇u)0,r| to
a corresponding one with index µ2 = |(∇u)0,r + |(∇u)0,r|ς(∇h)2θr|. This can be done if the indices
are equivalent up to a constant. Therefore, since |∇h| is bounded in B2θr by a constant depending
only on n,N, p, ν and L, we now require an additional smallness condition on ς which guarantees
1
2µ1 ≤ µ2 ≤ 3

2µ1. To this end we assume

c2
Φ(r)

|(ω)0,r|p
≤ min

{1

8
, θn
}
, (SC.2)

c2 δ−2 c2A r
2β ≤ 1

16
(SC.3)

where c (without loss of generality we assume c ≥ 4) is the constant appearing in (7.3) (the reason for
requiring the smallness assumption with respect to θ−n will become clear in the iteration immediately
after this lemma). We now apply the shifting Lemma, the Caccioppoli inequality and the decay estimate
(7.4) to find:

Φ(θr) =

∫
Bθr

∣∣V|(∇u)0,θr|
(
∇u− (∇u)0,θr

)∣∣2
≤ c(p)

∫
Bθr

∣∣V|(∇u)0,r+|(∇u)0,r|ς(∇h)2θr|
(
∇u− (∇u)0,r − |(∇u)0,r|ς(∇h)2θr

)∣∣2
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≤ c(p, L, ν)

∫
−
B2θr

∣∣∣Vµ2

(u− (∇u)0,r · x− |(∇u)0,r|ς
(
h0 + (∇h)2θr · x

)
2θr

)∣∣∣2 + c(p, L, ν)µp2 (θr)2β

≤ c(p, L, ν)

∫
−
B2θr

∣∣∣Vµ1

(u− (∇u)0,r · x− |(∇u)0,r|ς
(
h0 + (∇h)2θr · x

)
2θr

)∣∣∣2 + c(p, L, ν)µp1 (θr)2β

≤ c θ2
(
Φ(r) + δ−2 |(∇u)0,r|p r2β

)
+ c |(∇u)0,r|p (θr)2β =: c1 θ

2 Φ(r) + c0 |(∇u)0,r|p (θr)2β ,

and the constants c1 depends only on n,N, p, ν and L, and c0 depends additionally on θ. Given β′ ∈ (0, 1)
we now choose θ ∈ (0, 1) sufficiently small such that 2c1θ

2 ≤ θ2β′ . For later purposes we also assume
that 2max{2,p}θ2β′ < 1 is fullfilled. Note that this fixes θ in dependency of n,N, p, ν, L and β′ which
in turn determines ε = θn+2+max{2,p} and δ in dependency of the same quantities. Then we infer
from the latter inequality the desired excess decay estimate stated in the proposition, provided that the
smallness conditions (SC.1), (SC.2) and (SC.3) hold true. Taking into consideration the dependencies in
(SC.1), (SC.2) on Φ(r)/|(∇u)0,r|p, we observe that they are satisfied if Φ(r) ≤ ε0|(∇u)0,r|p is required
for a number ε0 chosen sufficiently small in dependency of n,N, , p, ν, L, α and β′. For the iteration we
will need an additional smallness condition 3p+3c0 r

2β′ ≤ ε0, thus, in view of the dependencies in the
smallness condition (SC.3) on the radius, it suffices to choose r < r0 for a number r0 > 0 depending
only on n,N, p, ν, L, α, β and β′, and the proof of the proposition is complete. �

Lemma 7.2: Let p ∈ (1,∞), β′ ∈ (0, β] and m ≥ 1. Then, with the numbers ε0 and r0 defined above,
the following is true: for every weak solution u ∈W 1,p(BR(x0),RN ), R ≤ r0, to system (2.1) under the
assumptions (H1)–(H4) which satisfies the smallness conditions

Φ(x0, R, (∇u)x0,R) < ε0 |(∇u)x0,R|p and |(∇u)x0,R| < 2m, (7.5)

we have |(∇u)x0,r| < 6m and

Φ(x0, r, (∇u)x0,r) ≤ cit

(( r
R

)2β′

Φ(x0, R, (∇u)x0,R) + r2β′
)

(7.6)

for all r ≤ R, and the constant cit depends only on n,N, p, ν, L, β′ and m.

Proof: The assertion follows by a more or less standard iteration procedure. However, for the con-
venience of the reader we give the main steps and refer to by now classical regularity papers for the
details. In the first step one proves that the smallness condition (7.5) implies for every k ∈ N0:

(i) Φ(x0, θ
kR, (∇u)x0,θkR) ≤ 2−k θ2β′k Φ(x0, R, (∇u)x0,R) + 3p+2 c0 (θkR)2β′ |(∇u)x0,R|p,

(ii) Φ(x0, θ
kR, (∇u)x0,θkR) < θ2β′k ε0 |(∇u)x0,R|p,

(iii) |(∇u)x0,R| ≤ 2k |(∇u)x0,θkR|,

(iv) Φ(x0, θ
kR, (∇u)x0,θkR) < ε0 |(∇u)x0,θkR|p,

(v) |(∇u)x0,θkR| ≤ 3 |(∇u)x0,R|,

and θ, c0 are the constants appearing in the previous Proposition 7.1. These estimates are established
by induction and essentially rely on Proposition 7.1 .

In the second step we then derive a continuous version and consider r ∈ (0, R] arbitrary. Then there
exists a unique number k ∈ N0 such that r ∈ (θk+1R, θkR], and exactly as above in (v), we find

|(∇u)x0,r| ≤ 3 |(∇u)x0,R| < 6m.
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Moreover, in view of (i) and shifting Lemma, we get

Φ(x0, r, (∇u)x0,r) ≤
(θkR

r

)n ∫
−
B
θkR

(x0)

∣∣V|(∇u)x0,r|
(
∇u− (∇u)x0,r

)∣∣2
≤ c(p) θ−n

∫
−
B
θkR

(x0)

∣∣V|(∇u)
x0,θ

kR
|
(
∇u− (∇u)x0,θkR

)∣∣2
≤ c(p) θ−n

(
2−k θ2β′k Φ(x0, R, (∇u)x0,R) + 3p+2 c0 (θkR)2β′ |(∇u)x0,R|p

)
≤ cit

(( r
R

)2β′

Φ(x0, R, (∇u)x0,R) + r2β′
)
,

and due to the dependencies of θ we have cit = cit(n,N, p, ν, L, β
′,m). This completes the proof of the

excess decay estimate (7.6) and thus of the lemma. �

As already mentioned before we derive an excess decay estimate for the degenerate situation where
the mean value of ∇u on a ball BR(x0) is “small” with respect to the excess (in some sense this
assumption is equivalent to the system being degenerate). Duzaar and Mingione [14] had considered a
degeneracy as the p-Laplace system, and they then concluded that approximate p-harmonicity allows
to find an excess-decay estimate. We here argue similarly, namely we show that if the system exhibits
a degeneracy as a system of Uhlenbeck-structure, then approximate a-harmonicity implies the desired
excess-decay estimate. Nevertheless, our proof is slightly different in order to succeed in showing that
also in the superquadratic situation one smallness condition on the mean value of ∇u (instead of an
additional second condition on a smaller ball) is sufficient to prove the decay estimate. In what follows,
we denote by γ ∈ (0, 1) the exponent from the excess decay estimate in Proposition 3.1 for weak solutions
of systems with Uhlenbeck structure (meaning that the weak solution has Hölder exponent 2γ/p in the
superquadratic case and Hölder exponent γ in the subquadratic case).

Proposition 7.3: Let p ∈ (1,∞). For every exponent γ′ ∈ (0,min{γ, β}) and every number κ > 0 there
exist constants τ ∈ (0, 1

4 ] and r1 < 1 depending on n,N, p, ν, L, γ, γ′, β and κ, and a constant ε1 > 0
depending additionally on µ̃(·) such that the following is true: Let u ∈ W 1,p(Br(x0),RN ), r ≤ r1, be a
weak solution to system (2.1) under the assumptions (H1)–(H5). If

κ |(∇u)x0,r|p ≤ Φ(x0, r, (∇u)x0,r) < ε1 (7.7)

is fullfilled, then we have

Φ(x0, τr, (∇u)x0,τr) ≤ τ2γ′ Φ(x0, r, (∇u)x0,r) . (7.8)

Proof: Without loss of generality we take x0 = 0, and we use the abbreviations Φ(r) = Φ(0, r, (∇u)0,r)
and Ψ(r) = Ψ(0, r). From |(∇u)0,r|p ≤ κ−1Φ(r) we see for the superquadratic case p ≥ 2

Ψ(r) ≤ 2p−1

∫
−
Br

|∇u− (∇u)0,r|p + 2p−1 |(∇u)0,r|p ≤ 2p−1(1 + κ−1) Φ(r) ,

whereas in the subquadratic case we distinguish the cases where |∇u− (∇u)0,r| ≥ |(∇u)0,r| and where
the opposite inequality holds true, and we obtain

Ψ(r) ≤ 2p−1

∫
−
Br

|∇u− (∇u)0,r|p + 2p−1 |(∇u)0,r|p

≤ 2p−1 2
2−p
2

∫
−
Br

∣∣V|(∇u)0,r|
(
∇u− (∇u)0,r

)∣∣2 + 2p |(∇u)0,r|p ≤ 2p (1 + κ−1) Φ(r) .

Hence, in any case we get
Ψ(r) ≤ cΨ Φ(r) , (7.9)
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where we have set cΨ = 2p(1 + κ−1). In view of Lemma 6.2 on approximate a-harmonicity we have for
every t > 0 and every η ∈ C1

0 (Br,RN ):∣∣∣ ∫−
Br

〈 ρx0(|∇u|)∇u,∇η 〉
∣∣∣ ≤ cH

[
tΨ(r)

p−1
p + rβ Ψ(r)

p−1
p +

Ψ(r)

µ̃(t)

]
sup
Br

|∇η|

Now let τ ∈ (0, 1
4 ] to be specified later and define ε = τp+max{1, p2 }(n+2γ). Furthermore, let δ =

δ(n,N, p, ν, L, ε) ∈ (0, 1] be the constant according to the a-harmonic approximation with θ = n/(n+p):
For all assumptions of Lemma 4.3 to be fullfilled it still remains to verify assumption (4.4). For this

purpose we fix t = t(L, δ) > 0 and a radius r1 = r1(L, δ, β) > 0 such that cHt ≤ δ/3 and cH r
β
1 ≤ δ/3,

which in turn fixes µ̃(t). If we assume that the smallness condition

cH
(cΨΦ(r))1/p

µ̃(t)
≤ δ

3
(SC.4)

holds, then, after application of Young’s inequality, u satisfies all assumption of Lemma 4.3, provided
that r ≤ r1. Consequently, there exists a a-harmonic map h ∈ W 1,p(Br,RN ) for a(z) = ρ0(|z|) z and
which satisfies∫

−
Br

|∇h|p ≤ c

∫
−
Br

|∇u|p and
(∫
−
B

|V (∇u)− V (∇h)|2θ
) 1
θ ≤ ε

∫
−
2B

(|∇u|)p (7.10)

for a constant c depending only on p, ν and L. We here have used the fact that for all possible choices
of ρ satisfying the assumptions (G1)–(G3) the statement of Lemma 4.3 holds true with µ = 0 (and
hence Vµ(z) = |z|(p−2)/2z) as well as a simple property of the V -function. In fact Caccioppoli and
Poincaré imply a higher integrability result for ∇u (see 5.2), so we can consider the previous smallness
assumption in this way:(∫

−
B

|V (∇u)− V (∇h)|2
)
≤ ε

(∫
−
2B

|∇u|p+η
) p
p+η

+ cΨ(r)r2β (7.11)

Suppose that we start from Bτr. For the minimality of (∇u)0,τr we can consider any P ∈ RnN and use
the minimality of the shifted function:

Φ(τr) =

∫
−
Bτr

∣∣V|(∇u)0,τr|
(
∇u− (∇u)0,τr

)∣∣2
≤ c(p)

∫
−
Bτr

∣∣V|P |(∇u− P )∣∣2 ≤ c(p)

∫
−
Bτr

∣∣V (∇u)− V (P )
)∣∣2

≤ c(p)

∫
−
Bτr

∣∣V (∇u)− V (∇h)
)∣∣2 +

∫
−
Bτr

∣∣V (∇h)− V (P )
)∣∣2 (7.12)

≤ c(p, L, ν)ετ−nΨ(r) + c(p, L, ν) [τ2γ+, (2τr)2β ]Ψ(r)

≤ c3(n,N, p, L, ν, κ)
(
τ2γ + (τr)2β

)
Φ(r) . (7.13)

Here we have chosen P = (∇h)0,τr and applied the excess decay estimate stated in proposition 3.1.
For a given exponent γ′ ∈ (0,min{γ, β}) we now fix τ ∈ (0, 1

4 ] such that

c3 τ
min{2γ,2β} ≤ τ2γ′ . (SC.5)

Hence, τ is fixed in dependency of n,N, p, L, ν, γ, γ′, β and κ. The choice ε = τp+max{1, p2 }(n+2γ) further
fixes δ – and therefore also t and the radius r1 – with exactly the same dependencies as those appearing
in τ . We now remark that (SC.4) may be rewritten by

Φ(r) ≤ c−1
Ψ

(δ µ̃(t)

3cH

)p
= 2−p

κ

1 + κ

(δ µ̃(t)

3cH

)p
.
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For later purposes, we additionally assume that

Φ(r)
1
p
τ−n/2

1− τγ′
κ
p−2
2p + Φ(r)

1
p

τ−n/p

1− τ2γ′/p
≤ 1 . (SC.6)

Hence, we observe that these smallness conditions are fullfilled if we choose ε1 sufficiently small in
dependency of the parameters stated in the proposition. This completes the proof. �

Remark: We mention that the radius r appears in inequality (7.12) as a factor. Thus, we may replace
(SC.5) by the following smallness condition concerning r and τ :

c3 r
β τ2β ≤ 1

2
τ2β and c3 τ

2γ
p ≤ 1

2
τ2β ,

where c3 = c3(n,N, p, L, ν, κ). This enables us to state the excess decay estimate also with exponent
γ′ = β when β < γ.

Lemma 7.4 (Excess decay): Let p ∈ (1,∞). For every exponent γ′ ∈ (0,min{γ, β}) and m ≥ 1 there
exist ε1 = ε1(n,N, p, ν, L, γ, γ′, α, β, µ̃(·)) > 0 and a radius r2 = r2(n,N, p, ν, L, γ, γ′, α, β) > 0 such that
the following is true: Let u ∈ W 1,p(BR(x0),RN ), R ≤ r2, be a weak solution to system (2.1) under the
assumptions (H1)–(H5). If the smallness conditions

Φ(x0, R, (∇u)x0,R) < ε1 and |(∇u)x0,R| < m (7.14)

are fullfilled, then we have

Φ(x0, r, (∇u)x0,r) ≤ c
(( r

R

)2γ′

Φ(x0, R, (∇u)x0,R) + r2γ′
)

for all r ≤ R , (7.15)

and c depends on n,N, p, ν, L, γ, γ′, β, α and m.

Proof: We again take x0 = 0 and use the abbreviation Φ(R) = Φ(0, R, (∇u)0,R). Let γ′ ∈ (0,min{γ, β}),
where γ is the exponent from Proposition 3.1, and choose β′ = γ′ in Lemma 7.2. This fixes two positive
constants

ε0 = ε0(n,N, p, ν, L, α, γ′) ,

r0 = r0(n,N, p, ν, L, α, β, γ′) .

Furthermore, we set κ = ε0 and we find from Proposition 7.3 positive constants

τ = τ(n,N, p, ν, L, γ, γ′, β, α) ,

r1 = r1(n,N, p, ν, L, γ, γ′, β, α) ,

ε1 = ε1(n,N, p, ν, L, γ, γ′, β, α, µ̃(·)) .

We define r2 := min{r0, r1}. We next observe that (7.14) ensures that the second inequality in the
smallness assumption (7.7) required for the application of Proposition 7.3 is satisfied. We introduce the
set of natural numbers

S :=
{
n ∈ N0 : Φ(τnR) ≥ ε0 |(∇u)0,τnR|p

}
(we note that due to the different conditions in the excess-decay estimate [14, Proposition 4] we need -
in contrast to [14, Lemma 13] – only one condition). In order to prove the desired excess decay estimate
we have to distinguish the cases where the mean values of ∇u is always small (i. e. where the system is
purely degenerate) and where the mean value for a certain radius (and then for every smaller radius)
dominates the excess of ∇u:

Case S = N: By induction we prove for every k ∈ N0

Φ(τkR) < ε1 and Φ(τkR) ≤ τ2kγ′ Φ(R) . (7.16)
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For k = 0 these inequalities are trivially satisfied due to (7.14). Now, for a given k ∈ N0, we suppose
(7.16)j for j ∈ {0, . . . , k}. In view of k ∈ S we may apply Proposition 7.3 on the ball BτkR and we find

Φ(τk+1R) ≤ τ2γ′Φ(τkR) ≤ τ2(k+1)γ′Φ(R). Moreover, Φ(τk+1R) < ε1 follows from (7.16)0 and τ < 1.
This shows that (7.16) is valid for k + 1 and therefore, for every k ∈ N0. For proving the excess decay
estimate (7.15) we first infer from Lemma ??

Φ(r) =

∫
−
Br

∣∣V|(∇u)0,r|
(
∇u− (∇u)0,r

)∣∣2
≤ c(p)

( r
R

)−n ∫
−
BR

∣∣V|(∇u)0,R|
(
∇u− (∇u)0,R

)∣∣2 = c(p)
( r
R

)−n
Φ(R) (7.17)

for all 0 < r ≤ R. For a continuous analogue of the decay estimate in (7.16) we now consider r ∈ (0, R]
arbitrary. Then there exists a unique k ∈ N such that r ∈ (τk+1R, τkR], and using (7.16) and (7.17) we
conclude

Φ(r) ≤ c(p)
( r

τkR

)−n
Φ(τkR) ≤ c(p) τ−n τ2kγ′ Φ(R) ≤ c(p) τ−n−2γ′

( r
R

)2γ′

Φ(R) , (7.18)

and the statement of the lemma follows taking into account the dependencies of τ given above.
Case S 6= N: We define k0 := minN \ S. We obtain Φ(τk0R) < ε0 |(∇u)τk0R|p by definition of k0,

and the calculations leading to (7.16) reveal

Φ(τkR) ≤ τ2kγ′ Φ(R) for every k ≤ k0 . (7.19)

Furthermore, we observe that (7.14) and (7.19) combined with the smallness condition (SC.6) ensure
that the mean values of ∇u remain uniformly bounded in the sense that we have |(∇u)0,τkR| < 2m for
every k ≤ k0: In the subquadratic case this can be seen as follows:

|(∇u)0,τkR| ≤ |(∇u)0,R|+
k−1∑
j=0

|(∇u)0,τjR − (∇u)0,τj+1R|

< m+ τ−
n
p

k−1∑
j=0

Φ(τ jR)
1
p + τ−

n
2

k−1∑
j=0

Φ(τ jR)
1
2 |(∇u)0,τjR|

2−p
2

≤ m+ τ−
n
p (1− τ2γ′/p)−1 Φ(R)

1
p + τ−

n
2 (1− τγ

′
)−1 Φ(R)

1
p ε

p−2
2p

0 ≤ 2m.

In the superquadratic case instead, we find proceed analogously (but the third term in the sum does
not appear) and get the same result. Hence, the assumptions of Lemma 7.2 are satisfied on the ball
Bτk0R. In view of (7.19) we thus infer for every r ∈ (0, τk0R]

Φ(r) ≤ cit

(( r

τk0R

)2γ′

Φ(τk0R) + r2γ′
)
≤ cit

(( r
R

)2γ′

Φ(R) + r2γ′
)
, (7.20)

where cit is the constant from Lemma 7.2 and depends only on n,N, p, ν, L, γ′ and m. To finish the
proof of the excess decay estimate (7.15) it still remains to consider radii r ∈ (τk0R,R], but the assertion
is then deduced easily from (7.19) following the line of arguments for the case S = N. Exactly as in
the proof of the excess decay result stated in [14], the integer k0 (which cannot be controlled and which
depends on the point x0 under consideration) is not reflected in the dependencies of the constant c
appearing in (7.15). �

Remark: As mentioned in the introduction, the proof presented here simplifies slightly the one of [14,
Lemma 13]. The key point here is the definition of the set S which was previously defined in a way such
that the condition was required to hold on two subsequent balls (see the different smallness assumptions
(7.7) and [14, (5.25)] in the excess decay estimate).
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8 Proofs of the main results

We finally come to the proof of the partial regularity results and the dimension reduction stated in
Theorem 2.1 and Theorem 2.2.

Proof (of Theorem 2.1): We consider an arbitrary point x0. Then, denoting by r2 the radius from
Lemma 7.4, we find m ≥ 1 and R ∈ (0, r2) such that BR(x0) ⊂ R, Φ(x0, R, (∇u)x0,R) < ε1 and
|(∇u)x0,R| < m, i. e. such that the assumptions (7.14) of Lemma 7.4 are fullfilled. Since (7.14) is an
open condition and since the functions x 7→ (∇u)x,R, x 7→ Φ(x,R, (∇u)x,R) are continuous, we observe
that (7.14) is satisfied in a small neighborhood Bs(x0) of x0. Hence, due to the equivalence of the
excess Φ(x,R, (∇u)x,R) and the one given in (2.5), the excess decay estimate (7.15) and Campanato’s
characterization of Hölder continuous functions imply the local Hölder continuity of V0(∇u), from which
in turn the local Hölder continuity of ∇u is obtained via [15, Lemma 3]. Finally, |R \ Ω0| = 0 follows
from Lebesgue’s theorem.

We now consider x0 ∈ Ω0 such that additionally the assumption (2.6) is satisfied. Then we choose
ε0 and r0 according to Lemma 7.2 (with β′ = β and an appropriate number m ≥ 1). We observe that
(2.6) guarantees that the assumptions in (7.5) are fullfilled for x0. Since this is also an open condition
we find a small neighborhood Bs(x0) of x0 such that it is satisfied for all y ∈ Bs(x0), and therefore, we
end up with the decay estimate (7.6) for all y ∈ Bs(x0). Consequently, Campanato’s characterization
of Hölder continuous functions yields that V0(∇u) is locally Hölder continuous with exponent β, which
implies that ∇u is Hölder continuous with exponent min{β, 2β/p}. Moreover, if ∇u(x0) 6= 0, this result
may still be improved in the superquadratic case: since ∇u is already continuous, we may assume
|(∇u)y,R| 6= 0 in Bs(x0) (after possibly choosing s smaller if necessary), and we conclude that the excess
Φ(y,R, (∇u)y,R) is dominated by the quadratic term for every y ∈ Bs(x0). This immediately yields the
improved local Hölder regularity result with exponent β and finishes the proof. �

We shall now address the estimate on the Hausdorff dimension for the singular set stated in The-
orem 2.2. To this aim we proceed as Mingione in [32, 31] and differentiate the system in a fractional
sense, using fractional Sobolev spaces (for the relevant definitions we refer to [2, Chapter 7]). With this
reasoning we first come up with the following fractional differentiability result:

Lemma 8.1: Let p ∈ (1,∞) and consider a weak solution u ∈ Lp(BR(x0),RN ) to the system (2.1)

under the assumptions (H1), (H3) and (H4). Then we have V (∇u) ∈ W β′,2
loc (BR(x0),RnN ) for all

β′ < β.

Proof: We start by proving an estimate for finite differences of V (∇u). Furthermore, consider Br(y) ⊂
BR(x0) and let η ∈ C∞0 (B3r/4(y), [0, 1]) be a cut-off function with η ≡ 1 on Br/2(y) and |Dη| ≤ c/r.
We then introduce the finite difference operator τs,h via τs,hτ(x) := τ(x+ hes)− τ(x) for an arbitrary
vector τ , every real number h ∈ R and s ∈ {1, . . . , n}. Analogously as in [32, proof of Proposition 3.1]
we then choose τs,−h(η2τs,hu) with s ∈ {1, . . . , n} and h sufficiently small as a test function in the weak
formulation of (2.1). Then taking into account the assumptions (H1), (H3) and (H4) it follows∫

−
Br/2(y)

∣∣τs,hV (∇u)
∣∣2 ≤ c |h|2β

∫
−
Br(y)

∣∣V (∇u)
∣∣2

for all s ∈ {1, . . . , n} and a constant c depending only on p, L, ν and r (but independently of h). Due to
the uniform estimate in h and the fact that Br(y) ⊂ BR(x0) was chosen arbitrarily, the assertion then
follows from [2, 7.73]. �

Proof (of Theorem 2.2): As a consequence of a measure density result going back to Giusti, see
[32, Section 4], the previous lemma implies that the singular set of every weak solution u to (2.1) is
actually not only of Lebesgue measure zero, but that its Hausdorff dimension is not greater than n−2β.
This finishes the the dimension reduction. �
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[17] F. Duzaar and G. Mingione, Harmonic type approximation lemmas, J. Math. Anal. Appl. 352
(2009), no. 1, 301–335.

[18] F. Duzaar and K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic
variational integrals, J. Reine Angew. Math. 546 (2002), 73–138.
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