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1. (i) Starting from Fourier’s theorem stating that
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(ii) Obtain Parseval’s identity in the form
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(iii) Obtain the Fourier transforms of
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in terms of
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(iv) List some criteria that a boundary-value problem for a partial differential equation should
satisfy if it is to be susceptible to the application of a Fourier transform.
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2. (i) Explain what is meant by saying that a function
�������

has an asymptotic expansion as
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Show that, when
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is real,
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. Over what region of complex
�

would you expect this formula to apply? Can
you find a formula that is valid as

���
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?

(ii) Explain how the method of stationary phase can be used to compute the asymptotic expansion
of ���� ei !����  �� (+����� d ��& ��&)(

real
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as
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in the case where
�

has a vanishing derivative at one point within the range of
integration.

A wave is described by � �� � 	 ����� ei  �� ! ��� �  �� � � d ��$
Evaluate this integral as
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3. What is meant by the statement that � ���� � ��� ������ �	�
is quasilinear? Consider the Cauchy problem for a quasilinear system with
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as prescribed data:

(i) Show that the derivatives of
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on
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0,
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0 can be calculated formally as long as
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(ii) Define well-posedness and state conditions under which the Cauchy problem is well posed.

(iii) In the case that

�
,
�

,
�
,
�

0,
�

0,
�

0 are analytic functions of all their arguments, what does
the Cauchy–Kowalewski theorem say?

(iv) In the case that a quasilinear system is in conservation form�� � � � � � � ���� � � � ����� & :���� ��� � & ���
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0, explain what is meant by a weak solution.
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are both weak solutions of this conservation law but that only one of them satisfies causality
as
�

increases.
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4. Show that the solution of the linear second-order ordinary differential equation
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where
0

(as a function of
�

) satisfies a differential equation and boundary conditions that you
should define.

Show further that if
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also satisfies a differential equation and boundary conditions that you should define.

Generalise these formulae to
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(ii)

� 2 �� � ��� ������� & � �
with
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0 on an open curve Γ nowhere parallel to the axes.

In each case write
�

as a double integral over a region that you should specify and indicate the
nature of the singularities of

0
and

�
, respectively.

Show in (i) that if Ω is
� �

0 and suitable assumptions are made about the behaviour of
�

and
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at infinity then 0 � 1
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5. (i) Show that the flow of an incompressible inviscid fluid can be modelled by the equations

��� � �
0

� 	 ���� 2 � � ��� � � � : ���
where

�
is the velocity, � the density and

�
the pressure and where body forces are neglected.

Cite typical initial and boundary conditions for
�

and
�

. Show that in the case of irrotational
flow � � 1

2
��� � � 2 � �
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where
� � � 	

. How does this relationship between velocity and pressure differ from that
which exists in porous medium flow?

(ii) Show that heat transfer in a heat-conducting material can be modelled by

� " ���� 2 � � � 2 �

where � is the density,
"

the specific heat,
�

the conductivity (all constant) and
�

is the
temperature.

Suppose that a phase change occurs across the surface
�����9& � &�
�&"24� �

0 with a release of
latent heat

�
per unit mass. Show that

[
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where ��� � � denotes the jump from solid to liquid.

What second boundary condition could be applied on
�5�

0?

6. The Chezy relation between mean velocity and channel depth in river flow is� ��� � ��� � 1 � 2 &
where

�
is the hydraulic depth and

�
is the slope;

�
is defined as �  �� , where

�
is the cross-sectional

perimeter and � is the cross-sectional area. Assuming that
�

is constant, derive a model equation
for � and show that, by suitably non-dimensionalising it, it can be written in the form� �� 2 � ���

� �� 7 �
0
&

where � should be specified. Deduce that wave-like disturbances can propagate downstream,
and give their speed in terms of the mean velocity.

A river is supplied by groundwater flow at a constant rate � (volume per unit length of river per
unit time). Derive the corresponding equation for � and find its steady solution.

Measurements indicate that
��� "�� 1 � 3, where

�
is the river discharge (volume flux). Describe

how this affects the steady states and wave speeds of the model.
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