
M.Phil. in Mathematics for Industry
M.Sc. in Mathematical Modelling and Numerical Analysis

Paper A (Mathematical Modelling)

Thursday 23 April, 1998, 9.30 a.m. – 12.30 p.m.

Candidates must attempt at least one of the questions from option A (i.e. questions 1 and 2
or option B (i.e. questions 3 and 4). They may not attempt questions from both option A

and option B.
Candidates may then attempt as many of questions 3–6 as they wish. All questions will carry

equal marks.
Please answer option A on a separate sheet.
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Option A

1. (a) In a single step of the binomial model, the asset price is S0 at time t, and at
time t + δt it is Su > S0 with probability p and Sd < S0 with probability
1 − p. A derivative contingent on this asset has corresponding prices V0, Vu, Vd.
The continuously compounded risk-free rate is r and no dividends are paid. Find
an arbitrage-free formula for V0 in terms of Vu and Vd. Explain how this approach
can be used to calculate the value at time t = 0 of a derivative with payoff V (S, T )
at time t = T .

(b) In continuous time, the evolution of an asset price is modelled by the stochastic
differential equation

dS

S
= (µ−D)dt+ σdX.

Explain the meaning of the terms in this equation, and why it is a reasonable model
for equity prices.
If σ = 0.2, µ = 0.1, D = 0.03 in annualised units, roughly what proportion of a
typical day’s price change is attributable to the first term, and what proportion to
the second?

(c) Show that, as x→ −∞,

∫ x

−∞
e−s

2/2ds ∼ e−x
2/2

|x|
(1 +O(1/x)).

Use this result to estimate the probability of a fall of 15% or more in a single day
of trading when σ is as above. Comment on the result.

2. An asset evolves by the stochastic differential equation of Question 1(b). A derivative
contingent on this asset can be shown to satisfy the Black-Scholes equation

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0. (1)

(a) Find the solution of (1) in which V = F (t)S, and interpret it financially.

(b) Calculate the stochastic differential equation followed by ξ = Sn, n > 1. Hence
calculate the value of a derivative that has payoff V (S, T ) = Sn.

(c) Write down, with justification, boundary value problems which enable you to cal-
culate the value of an option that pays $1 if, before time T , the asset first falls to a
lower value B−, then rises to a higher value B+ > B−, and otherwise pays nothing.
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Option B

3. A glacier of viscosity η and density ρ flows slowly down a plane slope inclined at an angle
α to the horizontal. Supposing the motion to be two-dimensional, use the lubrication
approximation to derive the evolution equation for the depth h in the form

∂h

∂t
+

∂

∂x

[
ρg sinα

3η

{
1− cotα

∂h

∂x

}
h3
]

= a,

where x is the downslope coordinate, and specify the meaning of the term a.

If a(x) = a0(1− 2x/l), show that a non-dimensional form of the equation can be written
as

∂h

∂t
+

∂

∂x

[
(1− µhx)h3

]
= 1− 2x,

where µ should be given. If µ � 1, find an approximate steady state (you may assume
h = 0 at x = 0), and explain how perturbations to this might behave.

4. Two-dimensional flow in a porous medium is described by the dimensionless equations

∇2ψ = −RTx,

Tt + ψzTx − ψxTz = ∇2T.

Explain the meaning of these equations, and give suitable boundary conditions on the
base z = 0, and the top z = 1, given that the temperature is prescribed on each (the
lower surface being hotter), and the base is impermeable, but the top is permeable. Hence
show that a steady state solution exists in the form

T = 1− z, ψ = 0.

Show that small perturbations of the form ψ = Rl f(z)eikx+σt, T −1+z = Rl g(z)eikx+σt

exist, and deduce that f and g satisfy the boundary value problem

f ′′ − k2f = −ikRg,

g′′ − k2g = σg + ikf,

with
f(0) = f ′(1) = g(0) = g(1) = 0.

Hence show that when σ = 0,

tanhα+

α+
+

tanα−
α−

= 0,

where α+ = (k2 + k
√
R)1/2, α− = (k

√
R− k2)1/2.
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Methods I

5. (i) What is meant by saying that a function f(ε) has an asymptotic expansion
f(ε) ∼

∑∞
n=0 fn(ε) as ε→ 0?

(ii) Suppose A is a symmetric matrix and has an eigenvalue λ with eigenvector X. Show
that the solution of

(A− (λ+ ε)I)x = b

is
x ∼ 1

ε
x0 + x1 + . . .

as ε→ 0 and find x0 in terms of X.

(iii) Suppose ẍ+(1+ε)x+Kε3x3 = cos t where K = O(1). Show that there are solutions
with period 2π of the form

x ∼ 1
ε
x0(t) + x1(t) + . . .

where x0 = A cos(t+ θ) as long as

3
4
KA3 +A = ±1

and θ = 0 or π respectively (N.B. cos3 t ≡ 3 cos t
4 + cos 3t

4 ).
When the method of multiple scales is used to investigate the stability of this solu-
tion, you start by writing

x ∼ 1
ε
x0(t, τ) + . . . .

Select a suitable slow scale τ and write down equations to determine x0.
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6. A fundamental matrix for the system of ordinary differential equations ẋ = A(t)x is a
square matrix whose columns are independent complementary functions.

(i) If Y and Z are both fundamental matrices, show that

Y = ZC

for some constant matrix C.

(ii) Suppose A(t+T ) ≡ A(t) for some constant T , and that Y is a fundamental matrix.
Show that there is another constant matrix D such that

Y (t+ T ) = Y (t)D.

Show further that, for another constant matrix B, Y = PeBt, where P has period
T and

eBT = D.

Supposing that B has independent eigenvectors ei with eigenvalues λi, show that
ei are eigenvectors of D and hence give conditions on λi for x either to grow or to
remain bounded as t→∞.

(iii) Suppose the square matrix G(t, τ) is such that dG
dt = −GA, with G = I at t = τ

and that y satisfies ẏ = Ay + b(t), y(0) = 0.
Show that y(τ) = G(τ, τ)−1

∫ τ
0 G(t, τ)b(t)dt.
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7. The Green’s function G(x; ξ) = G(x, y; ξ, η) for Poisson’s problem in the plane,

∆φ = f(x) ∈ Ω

with (*)

φ = g(x) ∈ ∂Ω,

is the solution of the equation

∆G = δ(x− ξ)δ(y − η)

with
G = 0 x ∈ δΩ.

Explain how such a function G enables one to write down the solution of the problem
(*) as

φ(ξ) =
∫

Ω
G(x; ξ)f(x)dx +

∫
∂Ω
g(x)

∂G

∂n
(x; ξ)dS,

and by integrating over a suitable subset of Ω, or otherwise, find the appropriate form
of the singularity of G at (x, y) = (ξ, η).

When Ω is a circle of radius a centred at the origin, use the method of images to show
that the corresponding Green’s function is

G(x; ξ) =
1

4π

[
log r2

0 − log

(
|ξ|2

a2
r2

1

)]
,

where

r2
0 = |x− ξ|2 and r2

1 =

∣∣∣∣∣x− a2

|ξ|2
ξ

∣∣∣∣∣
2

.

Denoting |x| by r, note that
∂x
∂r

= x̂ =
x
|x|
,

and hence show that
∂G

∂n

∣∣∣∣
r=0

=
(a2 − |ξ|2)
2πa|x− ξ|2

.

Deduce that if f ≡ 0 in (*), then the value of φ at the centre of the circle is the average
of its values on the circumference.
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8. For which functions p(w) is the system

wt − vx = 0, vt + p(w)x = 0 (∗)

hyperbolic?

For such functions p(w), take suitable linear combinations of the equations to show that
the Riemann invariants are

v ±
∫ w√

−p′(ξ) dξ.

The particular choice p(w) = kw−γ , with k > 0 and γ ≥ 1 gives a common model of
homentropic gas dynamics; for the model to be meaningful, w must be strictly positive.
Suppose that v(x, 0) and w(x, 0) are given, with w(x, 0) > 0. Evaluate the Riemann
invariants for this choice of p(w), assuming that w(x, t) > 0 for t positive.

Derive an equation which gives weak solutions of (*) (for this particular p(w)), and find
the Rankine-Hugoniot conditions which must hold across any shock. Deduce that shocks
move with speed c, where

c2 = − [kw−γ ]
[w]

.

([f ] denotes the jump in f over the shock.)
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