M.Phil. in Mathematics for Industry
M.Sc. in Mathematical Modelling and Numerical Analysis

Paper A (Mathematical Modelling)

Thursday 23 April, 1998, 9.30 a.m. — 12.30 p.m.

Candidates must attempt at least one of the questions from option A (i.e. questions 1 and 2
or option B (i.e. questions 3 and 4). They may not attempt questions from both option A
and option B.

Candidates may then attempt as many of questions 3—6 as they wish. All questions will carry
equal marks.

Please answer option A on a separate sheet.

Do not turn this page until you are told that you may do so



Option A

1. (a) In a single step of the binomial model, the asset price is Sy at time ¢, and at
time ¢t + 6t it is S, > Sp with probability p and S; < Sy with probability
1 — p. A derivative contingent on this asset has corresponding prices Vp, Vi, Vy.
The continuously compounded risk-free rate is r and no dividends are paid. Find
an arbitrage-free formula for Vj in terms of V,, and V;. Explain how this approach
can be used to calculate the value at time ¢t = 0 of a derivative with payoff V'(S,T')
at time t =T

(b) In continuous time, the evolution of an asset price is modelled by the stochastic

differential equation

% = (u— D)dt + odX.

Explain the meaning of the terms in this equation, and why it is a reasonable model
for equity prices.

If o =02, p =0.1, D = 0.03 in annualised units, roughly what proportion of a
typical day’s price change is attributable to the first term, and what proportion to
the second?

(c) Show that, as © — —oo,

2

x 5 —x°/2
/_ e*s/2ds~€| (1+0(1/2)).

z|

Use this result to estimate the probability of a fall of 15% or more in a single day
of trading when o is as above. Comment on the result.

2. An asset evolves by the stochastic differential equation of Question 1(b). A derivative
contingent on this asset can be shown to satisfy the Black-Scholes equation

oV
— 4

1 5 0%V ov
ot T3 % a5 T

(T—D)S%—TV:O. (1)

(a) Find the solution of (1) in which V' = F(¢)S, and interpret it financially.

(b) Calculate the stochastic differential equation followed by & = S™, n > 1. Hence
calculate the value of a derivative that has payoff V(S,T) = S™.

(c) Write down, with justification, boundary value problems which enable you to cal-
culate the value of an option that pays $1 if, before time T, the asset first falls to a
lower value B_, then rises to a higher value By > B_, and otherwise pays nothing.
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Option B

3. A glacier of viscosity 1 and density p flows slowly down a plane slope inclined at an angle
« to the horizontal. Supposing the motion to be two-dimensional, use the lubrication
approximation to derive the evolution equation for the depth A in the form

%4_3 [pgsina{
ot  Ox 3n

oh
1— U3 =
COta@x}h} a,

where x is the downslope coordinate, and specify the meaning of the term a.

If a(z) = ap(1 — 2x/1), show that a non-dimensional form of the equation can be written
as

oh 0 2
E+8—$[(1—uh$)h}_1—2x,

where p should be given. If 1 < 1, find an approximate steady state (you may assume
h =0 at z = 0), and explain how perturbations to this might behave.

4. Two-dimensional flow in a porous medium is described by the dimensionless equations
V%) = —RTy,

T + Ty — 1, T, = V*T.

Explain the meaning of these equations, and give suitable boundary conditions on the
base z = 0, and the top z = 1, given that the temperature is prescribed on each (the
lower surface being hotter), and the base is impermeable, but the top is permeable. Hence
show that a steady state solution exists in the form

T=1-2 v¢=0.

Show that small perturbations of the form 1) = RI f(2)e?**+9t T —14 2 = Rl g(z)ei**+ot
exist, and deduce that f and g satisfy the boundary value problem

" — k?f = —ikRy,

g" — k*g = og +ikf,
with

Hence show that when o = 0,

tanhay tana_
+
a4 a_

where oy = (k* + kvVR)'?, a_ = (kvV/R — k*)Y/2,
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Methods
5. (i)

(i)

(iii)
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I
What is meant by saying that a function f(¢) has an asymptotic expansion
fle) ~ >0 fnle) as e — 07
Suppose A is a symmetric matrix and has an eigenvalue A with eigenvector X. Show
that the solution of
(A-(A+e))x=Db
is
1
X~ —-Xg+X1+...
€
as € — 0 and find x¢ in terms of X.

Suppose i+ (1+¢e)z+ Ke3xz? = cost where K = O(1). Show that there are solutions
with period 27 of the form

1
x ~ Emo(t) +a1(t)+ ...
where g = Acos(t + 0) as long as
3 e 43
ZKA +A=4=1

and 6 = 0 or 7 respectively (N.B. cos®t = % + %?’t)
When the method of multiple scales is used to investigate the stability of this solu-
tion, you start by writing

~ Szt T) + ..
x 6:60( T)+

Select a suitable slow scale 7 and write down equations to determine xg.



6. A fundamental matriz for the system of ordinary differential equations x = A(t)x is a
square matrix whose columns are independent complementary functions.

(i)

(ii)

JMAT 7301

If Y and Z are both fundamental matrices, show that
Y =ZC

for some constant matrix C.

Suppose A(t+T) = A(t) for some constant T, and that Y is a fundamental matrix.
Show that there is another constant matrix D such that

Y(t+T)=Y(t)D.

Show further that, for another constant matrix B, Y = PeP*, where P has period
T and
BT = D.

Supposing that B has independent eigenvectors e; with eigenvalues \;, show that
e; are eigenvectors of D and hence give conditions on \; for x either to grow or to
remain bounded as t — oo.

Suppose the square matrix G(t,7) is such that Cfi—ct; =-GA, withG=Tatt=r
and that y satisfies y = Ay + b(¢), y(0) = 0.

Show that y(7) = G(r,7)7! [§ G(t,7)b(t)dt.

) Turn Over



7. The Green’s function G(x;§) = G(x,y;&,n) for Poisson’s problem in the plane,
Ad= f(x) €9
with *)
¢ = g(x) € 09,
is the solution of the equation
AG =b(z = §)d(y —n)

with
G=0 xedi.

Explain how such a function G enables one to write down the solution of the problem
(*) as
oG
06 = [ Geaefxax+ [ 9605 (x:)ds,
Q a0 n
and by integrating over a suitable subset of 2, or otherwise, find the appropriate form
of the singularity of G at (x,y) = (§,n).

When ) is a circle of radius a centred at the origin, use the method of images to show
that the corresponding Green’s function is

G(x;¢) = S log 2 — log @TQ
’ Am 0 a2
where
2 2 2 a’ ’
o =|x —&|* and lex—wf .
Denoting |x| by r, note that
X _,_ X
o x/
and hence show that
G| _ (@®-g?
onl,—y 2malx — &2

Deduce that if f =0 in (*), then the value of ¢ at the centre of the circle is the average
of its values on the circumference.
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8. For which functions p(w) is the system
w—vy =0, v +pw)y=0 (%)

hyperbolic?

For such functions p(w), take suitable linear combinations of the equations to show that

the Riemann invariants are w
vt [ e

The particular choice p(w) = kw™", with £ > 0 and 7 > 1 gives a common model of
homentropic gas dynamics; for the model to be meaningful, w must be strictly positive.
Suppose that v(z,0) and w(x,0) are given, with w(z,0) > 0. Evaluate the Riemann
invariants for this choice of p(w), assuming that w(x,t) > 0 for ¢ positive.

Derive an equation which gives weak solutions of (*) (for this particular p(w)), and find
the Rankine-Hugoniot conditions which must hold across any shock. Deduce that shocks
move with speed ¢, where

([f] denotes the jump in f over the shock.)
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