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Describe the #-method for the numerical solution of the heat equation u; = aug, on
0 <z <1,t>0,given the values of u(x,0),0 < x <1, and u(0,t),u(1,t),t > 0. Explain
how the method is implemented, and give in terms of J an estimate of the number of
arithmetical operations to calculate the values U;l+1,j =1,2,...J —1. Here U} is the
numerical approximation to u(z;,t,), where x; = jAx,t, = nAt.

What is meant by the truncation error of the method? Explain briefly why the choice
0= % affects the leading terms of the truncation error.

Show that
\Uj" —u(xj, tn)| < nAt T

where T is an upper bound for the truncation error, provided that 2(1 — )aAt < (Az)2.
Comment on this restriction on the size of At, in relation to the stability of the method.

. Define the Lax—Wendroff method for the solution of u; + au, = 0, where a is a positive

constant; use Fourier analysis to determine the leading terms in the amplitude and phase
errors. [Note that if ¢ ~ C1& + 0262 + C363 + ... then tan~!q ~ C1€ + C2&% + (C5 —
weHe+.. ]

Explain what is meant by the practical stability of a difference scheme for the solution of
U + aug, = bug,, where a and b are positive constants. Show that for the explicit scheme
using the upwind approximation to u, the condition for practical stability is

—_— 2——— < 1.
Ax +

aAt\? _ alt bAL
- Az (Az)? —



3. Find the order of the truncation errors for the following methods of approximating the
boundary value problem y” + f(z,y) = 0 in [0,1],y(0) = y(1) = 0.
(&) B2 (yr1 = 2y + yp—1) + flar,y,) =0, r=1,-- N -1
(b) h_Q(yr-‘rl - 2yr + yr—l) + %(f(mr—i-la yr+1) + 10f(xr7 yr) + f(xr—la yr—l)) = O,
r=1,---,N -1,

Y

where x, = rh with Nh =1 and yo = yny = 0.
Show that if

N-—1
yT:ZgrsU57 r=20,---,N,
s=1

where
r(N—s)/N, 0<r<s<N\,
Ors =
(N—r)s/N, 0<s<r<N,
then
yr+1_2y’r‘+y7“—1:_v7’a T:1,"’,N—17
for arbitrary vy -, on_1.

Show also that

N-1
ZQTSZ%T(N—T), r=1,---,N —1.
s=1

Suppose that f(x,y) has Lipschitz constant L with respect to y. Show that the solution
error e, = y(z,) — y, in method (a) satisfies

N—-1
’67“‘ ShQZgrs(L|es|+‘Ts|)a r=1,---,N —1,

s=1
where 7, is truncation error at xg.

Deduce that, provided L < 8,
max |e,| < (8 — L)_1 max |7, |
IS '

and hence that method (a) is second order.

Find the corresponding result for method (b).
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(a)

What is a Householder matrix H(w)? Prove that if u,v € R" satisfy u’u = vTv,
then there exists w € R" such that H(w)u = v and show how this may be used in
computing a QR factorisation of a matrix A € R™*™,

Let b € R™ be given.

If A is square and non singular, show briefly how the QR factorisation may be used
in computing the solution z of Az = b. What factorisation is more usually used for
the solution of linear equations?

If A= QR is not square with m > n and Qb = [ ¢

d } with ¢ € R",d € R™™"

prove that

min ||Az — b||l2 = ||d]|o.
rER?

(You may assume that the columns of R are linearly independent.) Using the QR
factorisation, how could you calculate the minimising vector 7

If A, M € R™" are non-singular, show that if the iteration
Mz® = (M - Az 4, k=1,2,...

converges for some starting value z(¥), then it converges to z* which satisfies Az* =
b. If M—1'A is diagonalisable, establish a condition on the eigenvalues of M~'A
which guarantees convergence for any z(°). What governs the rate of convergence?
Show how a second sequence of vectors {y(k)} can be constructed from the sequence
{z*)} so that

a* —y®) = pp(T)(z* — 2©)

where py is a real polynomial of degree k which satisfies px(1) = 1 and T = I —
M~YA. If T =T7, what is ||px(T)||2 and how should the polynomials {p;} ideally
be chosen so that ||z* — y*) ||y reduces most rapidly?
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Solutions of the form w(z,t) = e“!u(z), with boundary conditions u(0) = 0 = u/(1), are
sought for the motion of a vibrating system described by

wy = (pwy)y —qw, 0<z <1, t>0,

where p(z) > pp > 0 and ¢(x) > 0. Derive the weak form of the eigenvalue problem for
the vibration frequencies w® and continuous eigenmodes u(®)(z), defining the relevant
function space Héo. Using a finite element space S C H}JO, containing piecewise linear
finite elements on a uniform mesh with spacing 1/N, deduce the Rayleigh-Ritz equations
giving approximate frequencies Q) and eigenmodes U®) ().

Define the Rayleigh Quotient, and state the Courant minimax principle characterising
the eigenvalues \; = (w")? of the system, written in the form a(u®,v) = X\(uV,v) Vv e
H}, .

Let B, = span{u(l), u?@, .. .u(m)} where « 1@ .. u(™ are the first m eigenvectors,
corresponding to A1 < A2 < ... < Ap; and suppose that PB,, has dimension m, where
P H}Eo — S(’} is the projection onto the finite element space defined by

a(v—Po,W)=0 VYW e Sk
Show that if A,, = (20™)?2 is the finite element approximation to A, then

Am < A < A s (Jol[2, /1IP0I, )-

. Irrotational, incompressible flow in a curved two dimensional channel is to be approxi-

mated on a mesh of (straight-sided) quadrilateral finite elements. If the velocity poten-
tial is given by V2® = 0, explain the physical significance of the boundary conditions
0®/0n = 0 on the channel walls, 9®/9n given at inlet and ® = 0 across a parallel-sided
outlet, and state the variational formulation of the problem. (9/0n denotes differentia-
tion in the outward normal direction.)

Derive the mapping from local to global co-ordinates for a quadrilateral and describe
briefly how this is used to calculate the stiffness matrix obtained from setting up the
discrete variational problem for the finite element approximation U(x,y) of ®.

Derive the tensor product local basis functions for both a bilinear and a biquadratic ap-
proximation U(x,y). Comment briefly on (i) the need for Gaussian quadrature formulae;
and (ii) how the curved boundaries might be better approximated.
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