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Mathematical Methods I

1. Show that
L[u] ≡ −u′′ = 0, 0 ≤ x ≤ 1,

with the boundary conditions u(0) − u′(0) = 0, u(1) − u′(1) = 0, forms a self-adjoint
system. Calculate the eigenvalues and eigenfunctions of L[u] = λu.

State sufficient conditions on f for there to be a uniformly convergent expansion

f(x) =
∞∑
n=1

an(sinnπx+ nπ cosnπx) 0 ≤ x ≤ 1,

and express an as an integral in terms of f .

2. Consider the non-linear oscillator equation

d2x

dt2
+ k(x2 − x− 2)

dx

dt
+ x = 1.

Show that in the limit k � 1 the closed trajectory has period 2π + O(k2), and that its
leading-order approximation is x0 = 1+2

√
2 cos t. [You may use the fact that cos2 y sin y =

1
4(sin y + sin 3y).]

Find F (x) such that the system may be written in Liénard form

dx

dt
= k(y − F (x)), (1)

k
dy

dt
= 1− x. (2)

In the limit k � 1 sketch the trajectories in the xy-plane, and show that the period of
the closed trajectory is approximately

k

(
27
4
− 2 log(35/8)

)
.
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3. A process obeys the first-order differential equation

ẋ = −x3 + u3,

where u is an unrestricted control. It is desired to minimise, for a given x(0) > 0 and
T > 0, the integral

I =
∫ T

0
(x4 + u4) dt.

Find the Hamiltonian, explaining the procedure you use, show that the optimal value of
u is −3p/4, where p is the adjoint variable, and write down the differential equation for
p. Show that the differential equations are satisfied by an optimal feedback-control law
in the form

u(t) = −K(x(t))x(t),

where the gain (which is a function of x only) satisfies the differential equation

x
dK

dx
=

3− 4K −K4

1 +K3

Specify a boundary value for K and hence shown that K is given implicitly by

x = 31/4x(T )(3− 4K −K4)−1/4.

Using the differential equation for x show that K is given implicitly as a function of t by

T − t =
1

31/2x(T )2

∫ K

0

dk

(3− 4k − k4)1/2
.
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4. Define a weak solution of the partial differential equation

∂P

∂x
+
∂Q

∂y
= 0

where P and Q are differentiable functions of x, y and u. Show that if C is a curve in
the xy-plane and u is a weak solution which takes different values on either side of C,
then along C

dy

dx
=

[Q]
[P ]

. (∗)

Show, by giving an example, that two related partial differential equations may have the
same continuous solutions and yet have different shock relations (∗).
An initial value problem for u(x, y) is defined by

(1 + u)
∂u

∂x
+
∂u

∂y
= 0

with u(x, 0) = f(x). Show that an implicit form of the solution is given by

u = f(x− (1 + u)y)

and explain why this form of the solution may not lead to a unique answer. Illustrate
your answer by considering

f(x) =

{
1 if x < 0
−1 if x > 0

and finding two different weak solutions which are both valid for y > 0. If y is time,
explain how you can decide which, if any, of your solutions is physically viable?
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5. The Riemann Function, G, for the partial differential equation

Lu =
∂2u

∂x∂y
+
∂u

∂x
+
∂u

∂y
+ u = f(x, y)

is defined as follows:

L∗G =
∂2G

∂x∂y
− ∂u

∂x
− ∂u

∂y
+ u = 0 if x 6= ξ, y 6= η,

∂G

∂x
= G on y = η

∂G

∂y
= G on x = ξ

and G = 1 at x = ξ, y = η.

Show that
GLu− uL∗G =

∂

∂x
(G
∂u

∂y
+Gu)− ∂

∂y
(u
∂G

∂x
−Gu),

and deduce that, if Cauchy data is given on the line x+ y = 0, then

u(ξ, η) =
∫ η

−ξ

∫ ξ

−y
Gfdxdy +

∫ η

−ξ

[
G

(
u+

∂u

∂y

)]
x=−y

dy

−
∫ ξ

−η

[
u

(
∂G

∂x
−G

)]
y=−x

dx+ [uG]x=ξ, y=−ξ.

Show that G = ex+y−ξ−η. Hence show that if f = 0 with Cauchy data u = 0, ∂u∂x = β(x)

on x+ y = 0, the solution is given by u(ξ, η) = e−η−ξ
∫ ξ

−η
β(τ)dτ .

Suppose that β(x) is continuous and has continuous derivatives everywhere except at
x = 0 where there is a jump in β′(x). Describe the type and location of any resulting
discontinuities in the solution for u.
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6. (i) Show that the system of equations

∂u

∂t
+
∂p

∂x
= 0

∂p

∂t
+ µ

∂u

∂x
= 0

can be written as a scalar second order equation for u and that the problem is
hyperbolic if µ > 0 and elliptic if µ < 0.
Suppose that u, p are given on t = 0. State the Cauchy-Kowalesky Theorem and
explain how it applies to this problem. Does the sign of µ make any difference to
what the theorem says about solutions of this problem?
When µ = −1, solve for u, p given that

u = cosx and p = 0 on t = 0.

Is it possible to find a solution that is bounded everywhere? Would the answer to
this question be the same if µ = 1? Justify your assertions.

(ii) The function Z(x, t) satisfies the equation

Zt = Zxx

in the region D given by −1 < x < 1, 0 < t < T . If Z is given on x = ±1 for
0 < t < T and on t = 0 for −1 < x < 1, prove that Z will take its maximum value
in D either on x = ±1 or on t = 0.
Hence show that there is at most one solution of the equation

Zt = Zxx + f(x, t)

when Z is subject to the same boundary conditions and f is a continuous function
of x, t.
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