JMAT 7303

Degree Master of Science in Mathematical Modelling and Scientific Computing

Mathematical Methods II

TRINITY TERM 2011 Thursday, 18th April 2013, 9:30 a.m. – 11:30 a.m.

Candidates should submit answers to a maximum of four questions that include an answer to at least one question in each section.

Please start the answer to each question on a new page.

All questions will carry equal marks.

Do not turn over until told that you may do so.

Section A — Applied Partial Differential Equations

Question 1

Consider the first-order partial differential equation for u(x, y):

$$F(x, y, u, p, q) = 0,$$

where $p = \frac{\partial u}{\partial x}$, $q = \frac{\partial u}{\partial y}$ and F is C^2 in its arguments. Suppose that initial data is specified on a curve in the (x, y)-plane so that

$$x = x_0(s), y = y_0(s), u = u_0(s) \text{ for } s_1 \leq s \leq s_2.$$

- (a) State Charpit's equations for this problem, together with appropriate initial data for their solution. Show that F = 0 along their solutions. [8 marks]
- (b) Find a solution in parametric form for

$$p^2x + qy = u, (1)$$

with $x = x_0(s)$, $y = y_0(s)$ and $u = u_0(s)$ for $s_1 \le s \le s_2$. Is your solution unique? [8 marks]

(c) Determine all solutions to (1) when the initial data reads

$$u(1,s) = 1$$
 for $s_1 \leq s \leq s_2$.

Explain clearly where in the (x, y)-plane your solutions are defined.

[9 marks]

(a) You are given that F(t, x, u) = constant and G(t, x, u) = constant are linearly independent solutions of the ordinary differential equations

$$\frac{\mathrm{d}t}{a(t,x,u)} = \frac{\mathrm{d}x}{b(t,x,u)} = \frac{\mathrm{d}u}{c(t,x,u)}.$$

Explain why F and G satisfy the partial differential equations

$$a\frac{\partial F}{\partial t} + b\frac{\partial F}{\partial x} + c\frac{\partial F}{\partial u} = 0,$$
$$a\frac{\partial G}{\partial t} + b\frac{\partial G}{\partial x} + c\frac{\partial G}{\partial u} = 0.$$

Show further that if u(t, x) is determined implicitly by the relation

$$F(t, x, u) = \Lambda(G(t, x, u))$$

where $\Lambda(.)$ is any suitably smooth function, then u(t, x) satisfies the partial differential equation

$$a\frac{\partial u}{\partial t} + b\frac{\partial u}{\partial x} = c.$$

[13 marks]

(b) Hence, or otherwise, determine the general solution of the following partial differential equation:

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial}{\partial x} (u^2) = u^2.$$
⁽²⁾

[6 marks]

(c) Determine an explicit solution to equation (2) when $u(0,x) = e^{-x}$ for $0 \le x < \infty$. Where is your solution valid? [6 marks]

(a) Suppose that T(x,t) > 0 satisfies the partial differential equation

$$\frac{\partial T}{\partial t} + \frac{\partial T}{\partial x} = \frac{\partial^2 T}{\partial x^2} - T,$$
(3)

By taking a Fourier transform in x, or otherwise, show that the solution of (3) that satisfies $T(x, 0) = \delta(x)$ and $T \to 0$ as $x \to \pm \infty$ is

$$T(x,t) = \frac{1}{2\sqrt{\pi t}} \exp\left\{-t - \frac{(x-t)^2}{4t}\right\}.$$

[6 marks]

[You may use, without proof, the result that

$$\int_{-\infty}^{\infty} \exp\left\{-(y-\theta)^2\right\} dy = \sqrt{\pi}$$

for all $\theta \in \mathbb{C}$.]

(b) Suppose now that T(x,t) > 0 satisfies equation (3) in $x_1 < x < x_2$ and $0 < t < \tau$, with

$$\left. \begin{array}{ll}
 T(x,0) &= T_0(x), & x_1 < x < x_2, \\
 T(x_1,t) &= T_1(t), & 0 < t < \tau, \\
 T(x_2,t) &= T_2(t), & 0 < t < \tau. \end{array} \right\}$$
(4)

Show that, if a solution exists, then T(x,t) attains its maximum value on $x = x_1, x_2$ or at t = 0. Show further that such a solution is unique. [8 marks]

- (c) Suppose that T(x,t) satisfies equations (3) and (4). State the conditions satisfied by the associated Green's function $G(x,t;\xi,\tau)$. Derive an expression for $T(\xi,\tau)$ in terms of the Green's function and the boundary and initial conditions. [6 marks]
- (d) Use the results from (b) to determine an analytical expression for $G(x, t; \xi, \tau)$ when $x_1 \to -\infty$ and $x_2 \to \infty$. [5 marks]

Consider the system

$$\begin{cases} 0 &= \rho_t + (\rho u)_x, \\ 0 &= u_t + uu_x + 2\rho x. \end{cases}$$
 (5)

(a) Determine the characteristics of equations (2) and show that $u \pm 2\sqrt{2\rho}$ are Riemann invariants.

[12 marks]

(b) Suppose that u and ρ are everywhere smooth, except on a smooth curve x = S(t), which splits the upper half plane $(t > 0, -\infty < x < \infty)$ into two regions, D_+ and D_- , say. For $(x, t) \in D_{\pm}$, we define

$$[u] = u_{+} - u_{-} \neq 0, \quad [\rho] = \rho_{+} - \rho_{-} \neq 0,$$

where

$$u_{\pm} = \lim_{x \to S(t)} u(x, t), \quad \rho_{\pm} = \lim_{x \to S(t)} \rho(x, t).$$

Show that the curve x = S(t) satisfies

$$\left[\begin{array}{c} \rho\\ u \end{array}\right] \frac{\mathrm{d}S}{\mathrm{d}t} = \left[\begin{array}{c} \rho u\\ \frac{u^2}{2} + 2\rho \end{array}\right].$$

What are the conditions for the shock to be causal?

[7 marks]

(c) Suppose further that $u_+ = 0$ and $\rho_- = 1$. Determine u_- and dS/dt in terms of ρ_+ . For what values of ρ_+ is the shock causal? [6 marks]

Section B — Further Applied Partial Differential Equations

Question 5

The Legendre polynomials $P_n(x)$ for n = 0, 1, 2, ... are solutions of

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x^2)\frac{\mathrm{d}}{\mathrm{d}x}P_n(x)\right) + n(n+1)P_n(x) = 0$$

on the interval $|x| \leq 1$, normalised by $P_n(1) = 1$. Their generating function is

$$\phi(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} t^n P_n(x).$$

(a) Show that

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$
 for $n \ge 2$.

[6 marks]

(b) Show that

$$\int_{-1}^{1} P_n(x) P_m(x) \, \mathrm{d}x = 0 \text{ for } n \neq m.$$

[4 marks]

(c) Hence show that

$$\int_{-1}^{1} P_n(x) P_m(x) \, \mathrm{d}x = \frac{2}{2n+1} \delta_{nm}.$$

[6 marks]

(d) Hence find the Green's function for

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x^2)\frac{\mathrm{d}y}{\mathrm{d}x}\right) + \lambda y = f(x),$$

where λ is not an eigenvalue of Legendre's equation.

Calculate y explicitly for $f(x) = 5x^3$ and $\lambda = 7$.

[9 marks]

Hint: The first few Legendre polynomials are $P_0(x) = 1$, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, $P_3(x) = \frac{1}{2}(5x^3 - 3x)$. *You may wish to consider the integral*

$$\int_{-1}^{1} \frac{1}{1 - 2xt + t^2} \, \mathrm{d}x = \sum_{n=0}^{\infty} \frac{2}{2n+1} t^{2n}.$$

7303

TURN OVER

(a) Write down the forward Hankel transform of a function u(r) with respect to r, and the corresponding inverse transformation.

[3 marks]

(b) Derive the expression for the forward Hankel transform from the two-dimensional Fourier transform.

[7 marks]

(c) Small displacements u of an infinite elastic membrane are governed by

$$\frac{\partial^2 u}{\partial t^2} + \nabla^4 u = 0,$$

where ∇^4 is the two-dimensional biharmonic operator. Show that the solution for the axisymmetric initial conditions u(r, 0) = f(r), $u_t(r, 0) = 0$ may be written as

$$u(r,t) = \int_0^\infty \xi f(\xi) \left[\int_0^\infty k J_0(k\xi) J_0(kr) \cos(k^2 t) \,\mathrm{d}k \right] \,\mathrm{d}\xi.$$

[15 marks]

Hint: You may use the integral representation $J_n(x) = (2\pi)^{-1} \int_0^{2\pi} \exp\{i(n\phi - x\cos\phi)\} d\phi$.