
JMAT 7303

Degree Master of Science in Mathematical Modelling and Scientific Computing

Mathematical Methods II

TRINITY TERM 2015
Thursday, 23rd April 2015, 9:30 a.m. – 11:30 a.m.

Candidates should submit answers to a maximum of four questions that include an answer to at least one
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Section A — Applied Partial Differential Equations

Question 1

(a) Suppose that T (x, t) > 0 satisfies
∂T

∂t
=
∂2T

∂x2
− Tf, (1)

in the rectangular domain D = {(x, t) : 0 < x < L, 0 < t < τ}. Suppose also that f(x, t) > 0 and

T (x, 0) = Tin(x), 0 < x < L, (2)

T (0, t) = T0(t), 0 < t < τ, (3)

T (L, t) = TL(t), 0 < t < τ, (4)

where Tin(x), T0(t) and TL(t) are known smooth functions. Show that if T has a positive maximum
then it must be attained on either x = 0, x = L or at t = 0. Show further that such a solution is unique.

[8 marks]

(b) Let A(x, t) and B(x, t) be (2× 2) matrices and let c(x, t) = (c1(x, t), c2(x, t))
T and

u = (u(x, t), v(x, t))T be continuously differentiable. Suppose that for 0 < x and 0 < t

A
∂u

∂t
+B

∂u

∂x
= c for (x, t) ∈ R2. (5)

State conditions on A and B that make this system of partial differential equations parabolic.

[4 marks]

(c) Let

A =

(
1 0
0 1

)
, B =

(
2 1
−1 0

)
, C =

(
0
0

)
, (6)

and suppose further than u(0, t) = 1/t and v(0, t) = V ∗/t for t > 0, where V ∗ is a positive constant.
Use the result from part (b) to show that this system is parabolic.

[5 marks]

(d) Determine the real constants α and β and the functions f(.) and g(.) for which equation (5), with
A,B and C defined by equation (6), admits solutions of the form u(x, t) = tαf(x/tβ) and v(x, t) =
tαg(x/tβ). Derive analytical expressions for u(x, t) and v(x, t). Comment briefly on where you solu-
tion is valid.

[8 marks]
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Question 2

Consider the first order partial differential equation for u(x, y)

F (x, y, u, p, q) = 0

where
p =

∂u

∂x
, q =

∂u

∂y
,

and F is C2 in its arguments. Suppose that u = u0(x, y) is specified on a curve in the (x, y)-plane on which
x = x0(s), y = y0(s) and s1 6 s 6 s2.

(a) State Charpit’s equations for this problem, together with appropriate initial data for their solution. Show
that F = 0 along their solution.

[8 marks]

(b) Use Charpit’s equations to find a solution in parametric form for

(p2 + q2)u = 1,

with u = u0(x, y) on x = x0(s), y = y0(s), s1 6 s 6 s2.

[8 marks]

(c) Suppose that u = 1 on x2 + y2 = 1. Obtain an explicit solution for u = u(x, y) in the interior of the
circle and state clearly where your solution is defined. Show that the maximum value of u is (5/2)2/3.
Is your solution unique?

[9 marks]
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Question 3

Consider the system
0 = nt + (nu)x,
0 = ut + uux + 1

n fx,

}
(7)

where f = f(n) = nα and α > 1 is a constant.

(a) Determine the characteristics of equations (7) and the associated Riemann invariants.

[12 marks]

(b) Consider the case for which α = 3. Suppose that u and n are everywhere smooth, except on a smooth
curve x = S(t) which splits the upper half plane (t > 0,−∞ < x <∞) into two regions, D+ and D−
say. For (x, t) ∈ D±, we define

[u] = u+ − u− 6= 0, [n] = n+ − n− 6= 0,

where
u± = lim

x→S(t)
u(x, t), n± = lim

x→S(t)
n(x, t).

Show that the curve x = S(t) satisfies[
n
u

]
dS

dt
=

[
nu

u2

2 + 3n2

]
.

Determine the conditions for the shock to be causal.

[7 marks]

(c) Suppose further that u+ = 0 and n− = 1. Determine u− and dS/dt in terms of n+. For what values
of n+ is the shock causal?

[6 marks]
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Question 4

(a) You are given that F (t, x, u) = constant and G(t, x, u) = constant are linearly independent solutions
of the ordinary differential equations

dt

a(t, x, u)
=

dx

b(t, x, u)
=

du

c(t, x, u)
.

Explain why F and G satisfy the partial differential equations

a
∂F

∂t
+ b

∂F

∂x
+ c

∂F

∂u
= 0,

a
∂G

∂t
+ b

∂G

∂x
+ c

∂G

∂u
= 0.

Show further that if u(t, x) is determined implicitly by the relation

F (t, x, u) = Γ(G(t, x, u))

where Γ(.) is any suitably smooth function, then u(t, x) satisifes the partial differential equation

a
∂u

∂t
+ b

∂u

∂x
= c.

[13 marks]

(b) Hence, or otherwise, determine the general solution of the following partial differential equation:

∂u

∂t
+ tu

∂u

∂x
= tu2. (8)

[6 marks]

(c) Determine an explicit solution to equation (8) when u(0, x) = 1 + e−x for 0 6 x <∞. Where is your
solution valid?

[6 marks]
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Section B — Further Applied Partial Differential Equations

Question 5

The Bessel functions Jm(x) are the solutions of the equation[
x2

d2

dx2
+ x

d

dx
+ x2 −m2

]
Jm(x) = 0,

that are bounded as x→ 0.

(a) Use the generating function

φ =
∞∑

m=−∞
tmJm(x) = exp

{
1

2
x

(
t− 1

t

)}
to establish the results

J−m(x) = (−1)mJm(x), 2J ′m(x) = Jm−1(x)− Jm+1(x),
2m

x
Jm(x) = Jm−1(x) + Jm+1(x).

Hence show that
d

dx

(
xmJm(x)

)
= xmJm−1(x).

[5 marks]

(b) Suppose that a function f(r) on the interval 0 ≤ r ≤ a satisfies the boundary condition ∂f/∂r = −σf
on r = a. Show that f(r) may be expressed as the series

f(r) =
∞∑
n=1

cnJ0(knr),

with coefficients
cn =

2

a2(1 + σ2/k2n)J0(kna)2

∫ a

0
f(r)J0(knr)r dr,

and explain how to determine the positive constants kn.

[8 marks]

(c) The temperature T (r, t) in an infinite cylinder of radius a surrounded by cold air satisfies:

∂T

∂t
= κ∇2T in 0 ≤ r ≤ a,

∂T

∂r
= −σ T on r = a,

T (r, 0) = T0 in 0 ≤ r ≤ a.

[This question continues on the next page]
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(d) Show that the temperature for t > 0 may be expressed as the series

T (r, t) =
2T0σ

a

∞∑
n=1

J0(knr) exp(−κk2nt)
(k2n + σ2)J0(kna)

.

[12 marks]

You may use the relations∫ β

α
xJm(kx)Jm(`x) dx =

1

k2 − `2

[
`xJm(kx)J ′m(`x)− kxJm(`x)J ′m(kx)

]β
α

,

and ∫ β

α
x (Jm(kx))2 dx =

1

2

[(
x2 − m2

k2

)
(Jm(kx))2 + x2(J ′m(kx))2

]β
α

.
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Question 6

(a) The Hermite polynomials are defined by

Hn(x) = (−1)nex
2

(
d

dx

)n
e−x

2
.

By considering the series expansion of e−z
2
, show that the generating function for the Hermite polyno-

mials is
∞∑
n=0

tn

n!
Hn(x) = e2xt−t

2
= φ(x, t).

Hence show that
H ′n(x) = 2nHn−1(x).

By considering the expression φxx − 2xφx + 2tφt, show that each Hermite polynomial satisfies the
differential equation

H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0.

[7 marks]

(b) Show that
Hn(x) = 2nxn +O(xn−1).

Hence establish the orthogonality relation∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = 2nn!
√
πδnm.

[8 marks]

(c) Show that the Hermite functions defined by

ψn(x) = e−x
2/2Hn(x)

are eigenfunctions of the Fourier transform, in the sense that

1√
2π

∫ ∞
−∞

ψn(x)e−ikx dx = (−i)nψn(k).

[Hint: consider the Fourier transform of their generating function and complete the square.]

[10 marks]
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