JMAT 7303

Degree Master of Science in Mathematical Modelling and Scientific Computing

Mathematical Methods II

TRINITY TERM 2015 Thursday, 23rd April 2015, 9:30 a.m. – 11:30 a.m.

Candidates should submit answers to a maximum of four questions that include an answer to at least one question in each section.

Please start the answer to each question on a new page.

All questions will carry equal marks.

Do not turn over until told that you may do so.

Section A — Applied Partial Differential Equations

Question 1

(a) Suppose that T(x, t) > 0 satisfies

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} - Tf,\tag{1}$$

in the rectangular domain $\mathcal{D} = \{(x, t) : 0 < x < L, 0 < t < \tau\}$. Suppose also that f(x, t) > 0 and

$$T(x,0) = T_{in}(x),$$
 $0 < x < L,$ (2)

$$T(0,t) = T_0(t),$$
 $0 < t < \tau,$ (3)

$$T(L,t) = T_L(t), \qquad \qquad 0 < t < \tau, \tag{4}$$

where $T_{in}(x)$, $T_0(t)$ and $T_L(t)$ are known smooth functions. Show that if T has a positive maximum then it must be attained on either x = 0, x = L or at t = 0. Show further that such a solution is unique.

[8 marks]

(b) Let A(x,t) and B(x,t) be (2×2) matrices and let $c(x,t) = (c_1(x,t), c_2(x,t))^T$ and $\mathbf{u} = (u(x,t), v(x,t))^T$ be continuously differentiable. Suppose that for 0 < x and 0 < t

$$A\frac{\partial u}{\partial t} + B\frac{\partial u}{\partial x} = c \text{ for } (x,t) \in \mathbb{R}^2.$$
(5)

State conditions on A and B that make this system of partial differential equations parabolic.

[4 marks]

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}, C = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$
(6)

and suppose further than u(0,t) = 1/t and $v(0,t) = V^*/t$ for t > 0, where V^* is a positive constant. Use the result from part (b) to show that this system is parabolic.

[5 marks]

(d) Determine the real constants α and β and the functions f(.) and g(.) for which equation (5), with A, B and C defined by equation (6), admits solutions of the form $u(x,t) = t^{\alpha}f(x/t^{\beta})$ and $v(x,t) = t^{\alpha}g(x/t^{\beta})$. Derive analytical expressions for u(x,t) and v(x,t). Comment briefly on where you solution is valid.

[8 marks]

Consider the first order partial differential equation for u(x, y)

$$F(x, y, u, p, q) = 0$$

where

$$p = \frac{\partial u}{\partial x}, \quad q = \frac{\partial u}{\partial y},$$

and F is C^2 in its arguments. Suppose that $u = u_0(x, y)$ is specified on a curve in the (x, y)-plane on which $x = x_0(s), y = y_0(s)$ and $s_1 \leq s \leq s_2$.

(a) State Charpit's equations for this problem, together with appropriate initial data for their solution. Show that F = 0 along their solution.

[8 marks]

(b) Use Charpit's equations to find a solution in parametric form for

$$(p^2 + q^2)u = 1,$$

with $u = u_0(x, y)$ on $x = x_0(s), y = y_0(s), s_1 \le s \le s_2$.

[8 marks]

(c) Suppose that u = 1 on $x^2 + y^2 = 1$. Obtain an explicit solution for u = u(x, y) in the interior of the circle and state clearly where your solution is defined. Show that the maximum value of u is $(5/2)^{2/3}$. Is your solution unique?

[9 marks]

Consider the system

$$\begin{array}{ccc} 0 &= n_t + (nu)_x, \\ 0 &= u_t + uu_x + \frac{1}{n} f_x, \end{array}$$
 (7)

where $f = f(n) = n^{\alpha}$ and $\alpha > 1$ is a constant.

(a) Determine the characteristics of equations (7) and the associated Riemann invariants.

[12 marks]

(b) Consider the case for which α = 3. Suppose that u and n are everywhere smooth, except on a smooth curve x = S(t) which splits the upper half plane (t > 0, -∞ < x < ∞) into two regions, D₊ and D₋ say. For (x, t) ∈ D_±, we define

$$[u] = u_{+} - u_{-} \neq 0, \quad [n] = n_{+} - n_{-} \neq 0,$$

where

$$u_{\pm} = \lim_{x \to S(t)} u(x, t), \quad n_{\pm} = \lim_{x \to S(t)} n(x, t).$$

Show that the curve x = S(t) satisfies

$$\left[\begin{array}{c}n\\u\end{array}\right] \frac{dS}{dt} = \left[\begin{array}{c}nu\\\frac{u^2}{2}+3n^2\end{array}\right].$$

Determine the conditions for the shock to be causal.

[7 marks]

(c) Suppose further that $u_+ = 0$ and $n_- = 1$. Determine u_- and dS/dt in terms of n_+ . For what values of n_+ is the shock causal?

[6 marks]

(a) You are given that F(t, x, u) = constant and G(t, x, u) = constant are linearly independent solutions of the ordinary differential equations

$$\frac{dt}{a(t,x,u)} = \frac{dx}{b(t,x,u)} = \frac{du}{c(t,x,u)}.$$

Explain why F and G satisfy the partial differential equations

$$a\frac{\partial F}{\partial t} + b\frac{\partial F}{\partial x} + c\frac{\partial F}{\partial u} = 0,$$
$$a\frac{\partial G}{\partial t} + b\frac{\partial G}{\partial x} + c\frac{\partial G}{\partial u} = 0.$$

Show further that if u(t, x) is determined implicitly by the relation

$$F(t, x, u) = \Gamma(G(t, x, u))$$

where $\Gamma(.)$ is any suitably smooth function, then u(t, x) satisifes the partial differential equation

$$a\frac{\partial u}{\partial t} + b\frac{\partial u}{\partial x} = c.$$

[13 marks]

(b) Hence, or otherwise, determine the general solution of the following partial differential equation:

$$\frac{\partial u}{\partial t} + tu\frac{\partial u}{\partial x} = tu^2.$$
(8)

[6 marks]

(c) Determine an explicit solution to equation (8) when $u(0, x) = 1 + e^{-x}$ for $0 \le x < \infty$. Where is your solution valid?

[6 marks]

Section B — Further Applied Partial Differential Equations

Question 5

The Bessel functions $J_m(x)$ are the solutions of the equation

$$\left[x^2\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x\frac{\mathrm{d}}{\mathrm{d}x} + x^2 - m^2\right]J_m(x) = 0,$$

that are bounded as $x \to 0$.

(a) Use the generating function

$$\phi = \sum_{m=-\infty}^{\infty} t^m J_m(x) = \exp\left\{\frac{1}{2}x\left(t - \frac{1}{t}\right)\right\}$$

to establish the results

$$J_{-m}(x) = (-1)^m J_m(x), \quad 2J'_m(x) = J_{m-1}(x) - J_{m+1}(x), \quad \frac{2m}{x} J_m(x) = J_{m-1}(x) + J_{m+1}(x).$$

Hence show that

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^m J_m(x)) = x^m J_{m-1}(x).$$

[5 marks]

(b) Suppose that a function f(r) on the interval $0 \le r \le a$ satisfies the boundary condition $\partial f/\partial r = -\sigma f$ on r = a. Show that f(r) may be expressed as the series

$$f(r) = \sum_{n=1}^{\infty} c_n J_0(k_n r),$$

with coefficients

$$c_n = \frac{2}{a^2(1+\sigma^2/k_n^2)J_0(k_n a)^2} \int_0^a f(r)J_0(k_n r)r \,\mathrm{d}r,$$

and explain how to determine the positive constants k_n .

[8 marks]

(c) The temperature T(r, t) in an infinite cylinder of radius *a* surrounded by cold air satisfies:

$$\begin{split} \frac{\partial T}{\partial t} &= \kappa \nabla^2 T \text{ in } 0 \leq r \leq a, \\ \frac{\partial T}{\partial r} &= -\sigma T \text{ on } r = a, \\ T(r,0) &= T_0 \text{ in } 0 \leq r \leq a. \end{split}$$

[This question continues on the next page]

7303

(d) Show that the temperature for t > 0 may be expressed as the series

$$T(r,t) = \frac{2T_0\sigma}{a} \sum_{n=1}^{\infty} \frac{J_0(k_n r) \exp(-\kappa k_n^2 t)}{(k_n^2 + \sigma^2) J_0(k_n a)}.$$

[12 marks]

You may use the relations

$$\int_{\alpha}^{\beta} x J_m(kx) J_m(\ell x) \,\mathrm{d}x = \frac{1}{k^2 - \ell^2} \bigg[\ell x J_m(kx) J_m'(\ell x) - kx J_m(\ell x) J_m'(kx) \bigg]_{\alpha}^{\beta},$$

and

$$\int_{\alpha}^{\beta} x \left(J_m(kx) \right)^2 \mathrm{d}x = \frac{1}{2} \left[\left(x^2 - \frac{m^2}{k^2} \right) \left(J_m(kx) \right)^2 + x^2 \left(J_m'(kx) \right)^2 \right]_{\alpha}^{\beta}.$$

(a) The Hermite polynomials are defined by

$$H_n(x) = (-1)^n \mathrm{e}^{x^2} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n \mathrm{e}^{-x^2}.$$

By considering the series expansion of e^{-z^2} , show that the generating function for the Hermite polynomials is

$$\sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x) = e^{2xt - t^2} = \phi(x, t).$$

Hence show that

$$H_n'(x) = 2nH_{n-1}(x).$$

By considering the expression $\phi_{xx} - 2x\phi_x + 2t\phi_t$, show that each Hermite polynomial satisfies the differential equation

$$H_n''(x) - 2xH_n'(x) + 2nH_n(x) = 0.$$

[7 marks]

(b) Show that

$$H_n(x) = 2^n x^n + \mathcal{O}(x^{n-1}).$$

Hence establish the orthogonality relation

$$\int_{-\infty}^{\infty} H_n(x) H_m(x) e^{-x^2} dx = 2^n n! \sqrt{\pi} \delta_{nm}.$$
[8 marks]

(c) Show that the Hermite functions defined by

$$\psi_n(x) = \mathrm{e}^{-x^2/2} H_n(x)$$

are eigenfunctions of the Fourier transform, in the sense that

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi_n(x) \mathrm{e}^{-\mathrm{i}kx} \,\mathrm{d}x = (-\mathrm{i})^n \psi_n(k).$$

[Hint: consider the Fourier transform of their generating function and complete the square.]

[10 marks]

7303

LAST PAGE