Degree Master of Science in Mathematical Modelling and Scientific Computing

Mathematical Methods I

Thursday, 11th January 2007, 9:30 a.m. – 11:30 a.m.

Candidates may attempt as many questions as they wish. The best four solutions will count. Solutions to questions 1, 2–5, and 6 should be handed in separately.

Please start the answer to each question on a new page.

All questions will carry equal marks.

Do not turn over until told that you may do so.

In a model for the laying of an undersea cable, whose height above the seabed y = 0 is given by y = h(x), the angle between between the tangent to the cable and the horizontal, θ , satisfies the equation

$$\epsilon^2 \frac{\mathrm{d}^2 \theta}{\mathrm{d}s^2} - \sin \theta + (F_0 + s) \cos \theta = 0, \qquad 0 < s < L,$$

where s is arclength measured from the origin, taken at the point where the cable leaves the seabed. Here $0 < \epsilon \ll 1$, and F_0, L are unknown constants. The boundary conditions are

$$\theta = 0, \quad \frac{\mathrm{d}\theta}{\mathrm{d}s} = 0 \quad \text{at } s = 0, \qquad \theta = \theta_1 \quad (\text{given}) \text{ at } s = L.$$

Assuming that there is a solution with a boundary layer at s = 0, in which $s = O(\epsilon)$, find the leading order terms in inner and outer expansions for $\theta(s)$ (rescaling θ and F_0 as necessary for the latter) and show that $F_0 = -\epsilon$. Show that the inner limit of the leading order outer solution agrees with the outer limit of the leading order inner solution.

Verify from the outer solution that, when x = O(1), $h(x) = \cosh x - 1 + O(\epsilon)$.

Question 2

The temperature T of a piece of coal is described by the equation

$$c\dot{T} = -k(T - T_0) + A \exp\left(-\frac{E}{RT}\right),$$

where T_0 is the ambient atmospheric temperature. By scaling the variables suitably, show that the equations can be written in the dimensionless form

$$\dot{ heta} = - heta + \mu \exp\left(rac{ heta}{1+arepsilon heta}
ight),$$

and define the parameters μ and ε .

Show that multiple steady states are possible if $\varepsilon < \frac{1}{4}$, and if this is the case, that there are three solutions for $\mu_{-} < \mu < \mu_{+}$, where

$$\mu_{\pm} = \theta_{\pm} e^{-\sqrt{\theta_{\pm}}},$$

and

$$\theta_{\pm} = \frac{1}{2\varepsilon^2} \left[1 - 2\varepsilon \mp (1 - 4\varepsilon)^{1/2} \right].$$

Hence plot the steady state solutions as a function of μ when $\varepsilon < \frac{1}{4}$, and show that for small ε , $\theta \approx \mu$ for small μ . Comment on the stability of the solutions.

The function v(x) satisfies the equation

$$v'' + v - v^3 = 0.$$

By finding a first integral, or otherwise, show that oscillatory solutions are possible in which v oscillates between values v_{-} and $v_{+} > v_{-}$, where

$$-1 < v_{-} < 0 < v_{+} < 1$$

Show also that there are three constant solutions.

Now suppose that u(x, t) satisfies

$$u_t = u_{xx} + u - u^3,$$

with

$$u_x = 0$$
 at $x = 0, l$

By linearising the system, show that if $u - v = U(x)e^{\sigma t}$, then U satisfies the Sturm-Liouville system

$$U'' + [s(x) - \sigma]U = 0, \quad U'(0) = U'(l) = 0,$$

and deduce that the steady states $v = \pm 1$ are stable.

By consideration of a suitable variational principle, show that v = 0 is unstable if $l > \pi$. [Any results that you use concerning variational principles need not be proved, so long as they are clearly stated.]

Question 4

Explain the Neumann iterative method for the solution of the Fredholm integral equation

$$\phi(x) = f(x) + \lambda \int_0^1 K(x, y) \phi(y) \, dy,$$

and give the form of the solution as an infinite power series in λ . Find the solution of the integral equation

$$\phi(x) = 1 + \lambda \int_0^1 \phi(y) \cos \alpha y \, dy,$$

and show that the solution is uniquely defined except when λ takes one particular value λ_1 , which you should determine.

Find the solution of the integral equation

$$\phi(x) = f(x) + \lambda \int_0^1 \phi(y) \cos \alpha y \, dy,$$

providing $\lambda \neq \lambda_1$. If $\lambda = \lambda_1$, show that no solution exists unless a certain integral condition is satisfied, and find the general solution when it *is* satisfied.

The function u(x,t) satisfies the equation

$$u_t + u^2 u_x = \varepsilon (1 + u^2) u_{xx},$$

with

 $u(x,0) = \max[1 - |x|, 0].$

Solve the equation when $\varepsilon = 0$, and hence show that a shock will form when $x = x_c$ and $t = t_c$, and find the values of x_c and t_c .

If ε is small and positive, derive an approximate equation describing the shock structure, and hence derive an expression for the shock speed c in terms of the values u_- and u_+ behind and ahead of the shock.

In the particular case (for large time) where $u_{+} = 0$ and u_{-} is small, show that

 $c \approx \frac{1}{3}u_{-}^2$.

TURN OVER

(i) Show that, if D is a closed region with smooth boundary ∂D , the Euler-Lagrange equations for the minimisations of

$$\int \int_{D} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx \, dy$$
$$\int \int \left[\left(\frac{\partial^2 u}{\partial x} - \frac{\partial^2 u}{\partial y} \right)^2 \right] dx \, dy$$

and

$$\int\!\int_{D}\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right]^{2}dx\,dy$$

are $\nabla^2 u = 0$ and $\nabla^4 u = 0$, respectively, and that the natural boundary conditions on ∂D are

$$\frac{\partial u}{\partial n} = 0$$

and

$$\nabla^2 u = \frac{\partial}{\partial n} \nabla^2 u = 0,$$

respectively.

(ii) By varying y(x) to $y(x) + \varepsilon \eta_1(x) + \varepsilon \eta_2(x)$, show that when $\int_0^1 f(x, y, y') dx$ is minimised subject to $\int_0^1 g(x, y, y') dx = 0$, then there is a constant λ such that

$$\frac{d}{dx}\left(\frac{\partial f}{\partial y'}\right) - \frac{\partial f}{\partial y} - \lambda \left[\frac{d}{dx}\left(\frac{\partial g}{\partial y'}\right) - \frac{\partial g}{\partial y}\right] = 0.$$

(iii) A process x(t) is governed by

$$\frac{dx}{dt} = f[t, x(t), u(t)], \quad x(0) = x(1) = 0,$$

where u(t) is a control which is to be chosen to minimise the cost $\int_0^1 h[t, x(t), u(t)] dt$. Assuming $\frac{\partial f}{\partial u} \neq 0$, show that

$$\frac{d}{dt} \left(\frac{\partial h/\partial u}{\partial f/\partial u} \right) = \frac{\partial h}{\partial x} - \left(\frac{\partial h/\partial u}{\partial f/\partial u} \right) \frac{\partial f}{\partial x}$$

Deduce that, if $p = \frac{\partial h/\partial u}{\partial f/\partial u}$, then

$$\frac{dx}{dt} = -\frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = \frac{\partial H}{\partial x},$$

where H(x, p, t) is defined to be -h + pf.