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Candidates may attempt as many questions as they wish. All questions will carry equal
marks.
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1. Numerical Linear Algebra

(a) If A ∈ Rm×n, what is the Singular Value Decomposition (SVD) of A? If the singular
values {σi} satisfy σ1 ≥ σ2 ≥ . . . ≥ σr > 0, σj = 0, j > r, show that Rank(A) = r.
Show also that ‖A‖2 = σ1 (proving any results that you need).
Suppose that the SVD of A has been computed and is available, and b ∈ Rm is
given.
If m = n = r, how might the linear system Ax = b be solved without further
factorisation of A?
If m > n = r, how might the least squares problem

min
x∈Rn

‖Ax− b‖2

be solved without further factorising A?

(b) What is the Gauss–Seidel iteration for the solution of Ax = b with b ∈ Rn, and
A ∈ Rn×n nonsingular and having entries {ai,j} with ai,i 6= 0?
State, but do not prove, a necessary and sufficient condition for the convergence of
this iteration.
If

|ai,i| >
n∑
j=1

j 6=i

|ai,j | for all i ∈ {1, . . . , n} ,

prove that the Gauss–Seidel iteration converges.

2. Numerical Solution of Ordinary Differential Equations

State the general form of a linear k-step method, k ≥ 1, for the numerical solution of
the initial-value problem y′ = f(x, y), y(x0) = y0, on the mesh {xn : xn = x0 + nh, n =
0, 1, 2, . . .} of uniform spacing h > 0. What does it mean to say that the method is
absolutely stable?

(a) Find the interval of absolute stability of the explicit Euler method.

(b) Find the interval of absolute stability of the implicit Simpson-rule method

yn+2 − yn =
1
3
h (fn+2 + 4fn+1 + fn) ,

where f` denotes f(x`, y`), ` ≥ 0.

(c) Let m be a positive integer. State the Predictor-Corrector method P (EC)mE where
the predictor P is the explicit Euler method and the corrector C is the implicit
Simpson-rule method.

(d) Find the interval of absolute stability of the P (EC)1E method from the family
P (EC)mE defined under c).
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3. Numerical Solution of Partial Differential Equations

Consider the equation

ut = uxx − uxxxx , 0 < x < 1 , t > 0 ,

with initial condition u(x, t) = u0(x) and boundary conditions

u(0) = u(1) = ux(1) = 0 , ux(0) = 1 .

Consider solving this problem numerically by a finite difference method applied on a
regular grid xj = j∆x, j = 0, 1, . . . , N , with ∆x = 1/N for some integer N ≥ 4.

(a) Ignoring boundary conditions for the moment, write down the explicit finite dif-
ference model obtained by approximating the time derivative by the usual forward
difference, the second space derivative by the usual three-point centred difference,
and the fourth space derivative by the square of the latter, i.e., the second difference
of the second difference.

(b) Complete your model by proposing a set of appropriate numerical boundary condi-
tions. There is some flexibility in the choice, but make sure that you give the cor-
rect number of boundary conditions and that they are consistent with the problem.
(Continue to use the grid x0, x1, · · ·xN ; do not introduce additional grid points).

(c) For a successful computation, the time step ∆t will have to satisfy a certain stability
restriction. Work out this restriction by Fourier analysis. For this calculation you
may ignore the boundary conditions.

(d) To get around the stability restriction, we could use an implicit formula of Crank-
Nicolson type, i.e., with equal weightings at time steps n and n + 1. Write down
this finite difference model, and for the case N = 8, write down explicitly the 5× 5
matrix problem that must be solved to step from Un to Un+1.
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4. Suppose that the function u satisfies

∇2u = f , (x, y) ∈ Ω = (0, 1)× (0, 1) ,

and that u obeys a certain boundary condition on ∂Ω.

Let h = 1/N with N an integer, N ≥ 2. An approximation Ur,s to ur,s = u(rh, sh),
r, s = 0, . . . , N , is defined on a uniform mesh of size h by

LhUr,s ≡
1
h2

(Ur+1,s + Ur−1,s + Ur,s+1 + Ur,s−1 − 4Ur,s) = fr,s ,

r, s = 1, . . . , N − 1 ,

where fr,s = f(rh, sh) for r, s = 0, . . . , N .

Define the truncation error Tr,s of this method and, assuming that u is sufficiently smooth,
show that

|Tr,s| ≤ K1h
2 , r, s = 1, . . . , N − 1 ,

for some K1 > 0.

If both u = 0 and Ur,s = 0 on ∂Ω show that the error er,s = ur,s − Ur,s satisfies

|er,s| ≤
1
8
K1h

2 .

[Hint: You may use without proof that if a function ψ(x, y) with ψ ≥ 0 on ∂Ω satisfies
Lhψr,s ≥ 0 for r, s = 1, . . . , N − 1, then the values ψr,s = ψ(rh, sh) attain a maximum on
the boundary, ∂Ω, where either r or s equals 0 or N .]

Now, suppose that the boundary condition u = 0 on x = 1 is replaced by

∂u

∂x
(1, y) = g(y) , 0 ≤ y ≤ 1 .

Using a local Taylor expansion in x about x = 1, show that an approximation to this
boundary condition can be incorporated implicitly into Lh, and that the truncation error
on x = 1 then satisfies

|TN,s| ≤ K2h , s = 1, . . . , N − 1 .

Show that there exists a constant K3 > 0 such that

|er,s| ≤ K3h
2 , r = 1, . . . , N, s = 1, . . . , N − 1 .
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5. Finite Element Methods for Partial Differential Equations

Consider the boundary-value problem

−(xu′)′ + u = f(x) , x ∈ (1, 2) , u(1) = u′(1) , u′(2) = −u(2) ,

where f ∈ L2(1, 2). Define a symmetric bilinear functional a(·, ·) on H1(1, 2)×H1(1, 2)
and a linear functional `(·) on H1(1, 2) such that the weak formulation of the boundary
value problem has the form

find u ∈ H1(1, 2) such that a(u, v) = `(v) for all v ∈ H1(1, 2) .

Apply the Lax-Milgram theorem to show the existence of a unique weak solution to the
boundary value problem.

[You may assume that maxx∈[1,2] |v(x)| ≤ ‖v‖L2(1,2) + ‖v′‖L2(1,2) for any v ∈ H1(1, 2).]

Formulate the piecewise linear finite element method for the numerical solution of the
boundary value problem on a subdivision T h of the interval [1, 2] of uniform spacing
h = 1/N , N ≥ 2. Show that the finite element method has a unique solution uh.

State explicitly the energy norm ‖ · ‖a associated with a(·, ·), and show that the method
has the following best-approximation property:

‖u− uh‖a = min
v∈V h

‖u− v‖a ,

where V h is the (N + 1)-dimensional linear subspace of H1(1, 2) consisting of all contin-
uous piecewise linear functions defined on T h.
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6. Consider the following initial-boundary value problem for the heat equation:

ut = uxx − u , x ∈ (0, 1) , t ∈ (0, 1] ,
ux(0, t) = 0 , ux(1, t) = 0 , t ∈ (0, 1] ,

u(x, 0) = u0(x) ,

where u0 is a given function in L2(0, 1).

Using piecewise linear finite elements in the x-direction, formulate the implicit Euler
method for the numerical solution of this problem on a uniform mesh of spacing h = 1/N
in the x-direction and spacing ∆t = 1/K in the t-direction; N ≥ 2, K ≥ 1.

Show that the method is unconditionally stable in the L2(0, 1) norm.

On denoting by ukh(x) the finite element approximation to u(x, k∆t), 0 ≤ k ≤ K, and
expanding ukh(x) in terms of the standard piecewise linear finite element basis functions
ϕi(x), i = 0, . . . , N , as

ukh(x) =
N∑
i=0

Uki ϕi(x) ,

show that the vector Uk = (Uk0 , . . . , U
k
N )T may be determined by solving a set of linear

algebraic equations of the form

M
Uk − Uk−1

∆t
+ (S +M)Uk = 0 , 1 ≤ k ≤ K ,

MU0 = G0 ,

where M and S are (N + 1)× (N + 1) matrices whose entries you should specify, and G0

is a column vector of size N + 1 whose entries should be expressed in terms of u0.
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