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Section A: Further Numerical Linear Algebra

1. Suppose that one is given an invertible matrix A ∈ Rn×n, as well as vectors r ∈ Rn, b ∈ Rn,
and a starting guess x0 ∈ Rn.

(a) [4 marks] What is the Krylov subspace Kk(A, r)? What is a Krylov subspace method for
the solution of the linear system, Ax = b? Show that any such method computes iterates
xk, k = 1, 2, . . ., such that the residuals rk = b−Axk, k = 0, 1, 2, . . ., satisfy

rk = p(A)r0, (1)

where p is a polynomial. Exactly what conditions does p satisfy?

(b) [5 marks] State Arnoldi’s method and say what it achieves.

(c) [11 marks] If Arnoldi’s method is written in the form

AVk = Vk+1Ĥk,

describe the exact form of the matrices Vk and Ĥk. Hence show how the residuals and
iterates of the GMRES method, which minimizes the Euclidean norm of the residual rk
for each k, can be computed via the solution of a linear least squares problem involving
Ĥk. If y ∈ Rk is the solution of this linear least squares problem, show that

y = V T
k q(A)r0

where q is a polynomial that you should express in terms of the polynomial p in (1).

(d) [5 marks] Calculate the GMRES iterates for the system Ax = b with

A =

 2 1 0
0 2 0
0 0 2

 , b =

 0
1
0

 and x0 =

 0
0
0

 .
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2. Let A ∈ Rn×n be symmetric and positive definite.

The Conjugate Gradient method applied to find the solution, x, of the linear system Ax = b is:
choose x0 , r0 = b−Ax0 = p0 and for k = 0, 1, 2, . . .

αk = pTk rk/p
T
kApk

xk+1 = xk + αkpk

rk+1 = b−Axk+1 (2)

βk = −pTkArk+1/p
T
kApk

pk+1 = rk+1 + βkpk.

(a) [9 marks] Show that rk+1 = rk − αkApk is an alternative definition of rk+1 to (2). What
is the advantage of replacing (2) with this formula? Prove that rTk+1pk = 0 and that

pTk+1Apk = 0. Prove also that rTk+1rk = 0.

(b) [10 marks] In what sense is the error vector, x−xk, minimized for the conjugate gradient
method? Show that

‖x− xk‖A 6 min
p∈Πk,p(0)=1

max
j
|p(λj)| ‖x− x0‖A,

where λj , j = 1, 2, . . . , n, are the eigenvalues of A.

(c) [6 marks] Let A ∈ Rn×n be such that all but one of its eigenvalues is contained in [1, 2]
and with a single outlying eigenvalue at 105. Let B ∈ R(n−1)×(n−1) be another symmetric
and positive definite matrix that has all of its eigenvalues contained in [1, 2] being exactly
the same as the eigenvalues of A in [1, 2]. If the conjugate gradient method with zero
starting vector is applied for Ax = b and By = c, explain why convergence to some
prescribed accuracy can generally only be delayed by at most one iteration for the system
involving A compared to the system involving B.

If the outlying eigenvalue were instead at 10−5, would the same statement remain true?
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Section B: Continuous Optimization

3. (a) Consider the function
p(x) = xn1x2 − 2x2

2 + x4
2, (1)

where x = (x1 x2)T , n is an integer and n > 1.

(i) [3 marks] Find all stationary points of the function p(x) for x ∈ R2.

(ii) [5 marks] Using only second-order optimality conditions, investigate the nature of
each of the stationary points, namely, establish, whenever possible, whether they are
local minimizers, maximizers or saddle points.

(iii) [5 marks] For n > 2, show that the origin x∗ = (0 0)T is a saddle point of p(x).

(b) Consider the constrained optimization problem

min
x∈R3

x2
1 − x2

2 − x2
3 subject to x4

1 + x4
2 + x4

3 6 1. (2)

(i) [2 marks] Is problem (2) convex? Is any minimizer a KKT point?

(ii) [7 marks] By establishing the nature of the KKT points of problem (2), or otherwise,
calculate the global solution(s) of problem (2).

(c) [3 marks] Consider the constrained optimization problem

min
x∈Rn

f(x) subject to c(x) > 0, (3)

where f : Rn → R and c : Rn → Rp with c(x) = (c1(x), c2(x), . . . , cp(x)) are twice
continuously differentiable functions. Assuming a suitable constraint qualification holds
(which you do not need to define), briefly state (without proof) the second-order necessary
optimality conditions at a local minimizer of (3).
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4. Consider
min
x∈Rn

f(x), (4)

where f : Rn → R is continuously differentiable, and let ∇f(·) denote the gradient of f . Apply
a generic trust-region method to (4), where at the kth iterate xk, the step sk is calculated by
solving (exactly) the following trust-region subproblem

min
s∈Rn

mk(s) := f(xk) + sT∇f(xk) subject to ‖s‖ 6 ∆k, (5)

where ∆k > 0 is the trust-region radius.

(a) [8 marks] Assuming that ∇f(xk) 6= 0, calculate an expression for the step sk as defined
by (5), depending on ∇f(xk) and ∆k. Using this expression for sk, or otherwise, calculate
a lower bound on the model decrease f(xk)−mk(s

k).

(b) [3 marks] Define the Cauchy point skC for (5). Relate skC to the step sk calculated in part
(a).

(c) [10 marks] State a global convergence theorem for the generic trust-region method with
subproblem (5).

Prove the theorem you state; you may assume that ∇f(xk) 6= 0 for all k, that there are
infinitely many successful iterations and that (under the assumptions you have stated in
your theorem) there exists a constant κd > 0 independent of k such that

∆k > κd inf
k>0
‖∇f(xk)‖ for all k > 0.

(d) [4 marks] Briefly describe two benefits and two disadvantages of using the step sk as
defined by (5) in each iteration of a generic trust-region method applied to (4).
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5. (a) Consider the nonlinear least-squares problem

min
x∈Rn

f(x) =
1

2
‖r(x)‖2, (6)

where r : Rn → Rm is twice-continuously differentiable with m > n and ‖ · ‖ denotes the
Euclidean norm.

(i) [7 marks] Write down an expression for the gradient ∇f(x) and the Hessian matrix
∇2f(x) of f in (6) as a function of the residual r(x) and its derivatives. Derive the
expression of the Gauss-Newton iteration (without linesearch) for (6). Show that the
Gauss-Newton search direction is a descent direction from some x with ∇f(x) 6= 0,
provided the Jacobian of r at x has full column rank.

(ii) [9 marks] In (6), let

r(x) =

(
x2 − 1

x2 − 2x+ λ

)
, (7)

where x ∈ R and λ ∈ R. Find all x∗ such that r(x∗) = 0. Show that the local
rate of convergence of the Gauss-Newton method (without linesearch) applied to (6)
with r defined as in (7) is quadratic, when the starting point is close to each of the
zero-residual solutions x∗ that you found. Briefly justify this rate by comparison to
the local rate of convergence of Newton’s method.

(b) [9 marks] Consider the equality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) = 0, (8)

where f : Rn → R and c : Rn → Rm with c(x) = (c1(x), . . . , cm(x))T are twice continu-
ously differentiable functions.

Write down the quadratic penalty function associated with (8). State (without proof) the
global convergence theorem for the quadratic penalty method applied to (8).

Assume that on each major iteration of the quadratic penalty method, Newton’s method
with backtracking-Armijo linesearch is employed to minimize the corresponding quadratic
penalty function. State (without proof) conditions under which this (inner) minimization
can be terminated successfully, irrespective of the starting point.
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6. Consider the inequality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) > 0, (9)

where f : Rn → R and c : Rn → Rp with c(x) = (c1(x), . . . , cp(x))T are twice continuously
differentiable functions.

(a) (i) [2 marks] Write down the logarithmic barrier function associated with (9) and the
conditions under which it is well-defined.

(ii) [5 marks] State the global convergence theorem of the basic barrier algorithm applied
to (9).

(iii) [8 marks] In the conditions of the theorem you state in part (a)(ii), prove that the

multiplier estimates at the kth iteration, λki = µk

ci(xk)
converge to the optimal multi-

pliers λ∗i as k →∞, for i ∈ {1, . . . , p}, where xk are the (major) iterates of the basic
barrier method that are assumed to converge to some point x∗ and µk is the barrier
parameter. Hint: Recall that λ∗ = (λ∗A λ∗I) where the partition is according to ac-
tive and inactive constraints at the KKT point x∗, respectively. Also, under suitable
assumptions, λ∗I = 0 and λ∗A = JA(x∗)+∇f(x∗) where JA(x∗)+ is the pseudo-inverse
of JA(x∗)T .

(b) [10 marks] In (9), let

f(x) = x2
1 + (x2 − 1)2 and c(x) = x1 + x2 − 2, (10)

where x = (x1 x2)T and p = 1. Find the minimizer(s) x(µ) of the logarithmic barrier
function fµ associated with (9) and (10), for any value µ > 0 of the barrier parameter.

Let ∇2
xxfµ(x(µ)) be the Hessian matrix of the logarithmic barrier function fµ evaluated

at x(µ). Show that the condition number of ∇2
xxfµ(x(µ)) grows unboundedly as µ → 0.

Briefly describe why this ill-conditioning causes difficulties in interior point methods, as
well as a way to overcome it.

Hint: you may assume (without proof) that the solution of problem (9) with data (10) is

x∗ =
(

1
2

3
2

)T
.
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